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Abstract: Transformer models have emerged as the state-of-the-art in many natural language pro-
cessing and computer vision applications due to their capability of attending to longer sequences of
tokens and supporting parallel processing more efficiently. Nevertheless, the training and inference of
transformer models are computationally expensive and memory intensive. Meanwhile, utilizing the
sparsity in deep learning models has proven to be an effective approach to alleviate the computation
challenge as well as help to fit large models in edge devices. As high-performance CPUs and GPUs
are generally not flexible enough to explore low-level sparsity, a number of specialized hardware ac-
celerators have been proposed for transformer models. This paper provides a comprehensive review
of hardware transformer accelerators that have been proposed to explore sparsity for computation
and memory optimizations. We classify existing works based on the strategies of utilizing sparsity
and identify their pros and cons in those strategies. Based on our analysis, we point out promising
directions and recommendations for future works on improving the effective sparse execution of
transformer hardware accelerators.

Keywords: transformer; sparsity; hardware accelerator; efficient processing

1. Introduction

Natural language processing (NLP) has become an integral part of modern daily life
due to various applications such as search engines, personal assistants, language transla-
tion, customer services, and numerous others. Advancements in deep learning models
have made NLP possible for practical use cases. From the implementation perspective,
most NLP applications deal with sequences of audio or text data for which recurrent
neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent
unit (GRU) networks have been popular solutions in the early 2000s. However, accu-
rate prediction of NLP systems relies on extracting relations and knowledge from past
sequences. RNNs, LSTMs, and GRUs have a comparatively shorter attention span. As a
result, these models may struggle to find contexts in long text or audio sequences. More-
over, these networks are dominantly sequential in nature, making it challenging to speed
up in hardware implementation. Transformer [1] models, proposed in the late 2010s, pre-
serve long dependencies in longer sequences and support parallel hardware computation.
Transformer-based models have reached unparalleled performance in various difficult tasks
in natural language processing and computer vision. The core component in a transformer
model is the attention mechanism, which identifies relevant information in an input se-
quence for a target output [1-3]. Based on this attention mechanism, several breakthrough
models have been proposed such as BERT( Google) [4], RoBERTa (Facebook) [5], GPT
(OpenAl) [6], MegatronLM (NVIDIA) [7], and Turing-NLG (Microsoft) [8].

Transformer-based models employ two types of attention mechanisms: self-attention
and cross-attention. While both mechanisms are similar in computation, self-attention
operates only on the tokens in the input sequence, whereas cross-attention relates the
output token to the input sequence tokens. The attention mechanism considers all the
possible past tokens to compute the dependencies, thus resulting in more accurate and
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higher-quality output. However, the performance of attention comes at an immense com-
putational expense. It is usually computed as dense matrix operations in conventional
hardware. General-purpose computational devices such as CPUs and even GPUs compute
attention with a relatively low throughput due to complex data movement [9]. The atten-
tion computes the similarity across all search tokens and the computational complexity
is quadratic to the number of search tokens in the initial transformer models [10]. This
means that the retrieval of relevant knowledge over a larger external knowledge base will
require more computation. Consequently, it becomes a bottleneck when implemented in
smaller devices as it takes a substantial amount of time and energy to compute. Meanwhile,
transformer model implementation also has an immense memory footprint, as a large
amount of memory is required to store the parameters during inference. This poses a signif-
icant constraint for low-resource edge devices, which have limited computing power and
capacity. Training transformer models, while typically not performed in edge devices, have
a significant carbon footprint [11,12] and a considerable negative environmental impact.

Recently, sparse computation has received increased attention as an alternative to
address computational and memory challenges for transformer model implementation.
Deep neural networks are usually sparse or can be processed as sparse. The sparsity in
neural networks refers to the repetition of the value “0” in weights or activations, which
allows the elimination of unnecessary computations [13]. Although GPUs are highly
optimized in non-sparse dense matrix multiplication, they may not be efficient in reaping
the full benefits of sparse matrix multiplication [10,14]. Different layers of a neural network
exhibit sparsity in unique ways, which necessitates specialized hardware due to variations
in the computation nature. As a result, new domain-specific and task-specific hardware
are needed to explore the sparsity in transformer models due to the dissimilarities in
computation and sparsity patterns with other neural networks [9].

In this paper, we focus on hardware accelerators that are designed to explore the spar-
sity in transformer models and handle the computation and memory challenges. We first
provide an elaborate discussion on the transformer model architecture and sparsity. Then,
hardware accelerators based on different strategies of utilizing sparsity are explained and
compared. To cope with the memory constraints, some accelerators deploy compression
techniques to fit the sparse parameters into memory. Compression techniques require
additional encoding and decoding units in hardware that incur extra computational com-
plexity [15]. Some accelerators instead explore the inherent sparsity present in activation
and parameters, although the resultant holistic hardware efficiency is often not adequate.
In addition to the inherent static sparsity, it is also possible to utilize dynamic sparsity that
is generated with respect to different inputs during attention computation. Accelerators
based on dynamic sparsity can further reduce computational complexity and have started
to demonstrate the prospect of achieving practical hardware constraints [2,3,9,14]. We
classify different accelerators based on these and other sparsity exploration strategies and
identify their pros and cons. This is followed by a discussion of promising future directions
in designing hardware accelerators for transformer models.

2. Background

In this section, the architecture of transformer models and their sparsity are discussed.
More focus is placed on the attention mechanism as it is the heart of the computation
in accelerators.

2.1. Transformer Architecture

Similar to previous state-of-the-art transduction models, the transformer model con-
sists of encoder-decoder blocks. However, the core is the attention mechanism that captures
the knowledge. This attention allows the encoder and decoder to attend to all the input
sequences and make decisions based on importance. Unlike other sequential models,
these attention mechanisms have a parallelization opportunity to improve speed while
maintaining long-range relations.
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The encoder in transformers takes an input sequence of symbol representations
x = (x1,x2,%3,...,Xx,) and converts it to a sequence of continuous representations of
z=(z1,22,23,-..,2n). The decoder then computes on z and generates an output sequence
Yy =1,Y2,Y3,...,Yn) of symbols one element at a time. The transformer consists of stacked
encoder and decoder layers, as shown in Figure 1. Each encoder layer includes self-attention
and a fully connected layer. Additionally, the decoder also has a masked attention layer.
The model is auto-regressive as it uses previously generated outputs as input when it
generates the next output [1,16].
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Figure 1. A typical transformer architecture with N numbers of encoder and decoder layers [1].

2.1.1. Encoder

The encoder stack of the transformer model consists of several identical encoder layers
(e.g., six layers in the original paper [1]). Each encoder layer has two sub-layers: a multi-
head self-attention mechanism and a simple, position-wise fully connected feed-forward
network. These two sub-layers have a residual connection [17] and are followed by a layer
normalization [18]. The residual connections in all the sub-layers are of the same length
A oder (€.8.,5121n [1]).

2.1.2. Decoder

Similar to the encoder, the decoder stack is also composed of several identical layers
(again, six in the original implementation [1]). The structure of the decoders is very similar
to the encoders. In addition to the two sub-layers of the encoder, the decoder layer also
has an additional multi-head attention that computes the attention over the output of the
encoder. At each step, the decoder takes all the previously generated outputs as the input
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and generates the next output. To make sure that the generation of current output does not
depend on itself, the masking along with the output embedding is offset by one.

2.1.3. Transformer Attention Mechanism

The main computational focus in the transformer is the attention function that maps
a query and a set of key—value pairs to an output. The model uses multi-head attention
where each head is a single attention block, referred to as the scaled dot-product attention.
This mechanism searches over the input sequence and calculates the relevance of the input
and determines where to attend [1,10].

Scaled Dot-Product Attention: The scaled dot-product attention block takes in three vec-
tors: queries (g;) and keys (k;), both of the dimensions of di, and a corresponding value (v;)
of d, dimension as inputs. Here, i denotes the ith token of an input sequence. At first, a
score is calculated for a query with all the keys. In the example presented in Figure 2, all
the words in the sentence are scored with respect to the word “Natural”. The scores are
calculated by taking the dot product of query (1) and key vectors (v1, vz, and v3). Based
on the scores, the attention mechanism puts importance on other words in the sentence
while encoding a word at a specific position. The second step scales the scores by 1/+/dy
for stable gradients. The intuition behind this is to avoid a large dot-product result pushing
the softmax function of the next step into regions where the gradient is insignificant. After
softmayx, all the scores are normalized, made positive, and summed to one. In the last step
of scaled dot-product attention, all the values (v;) are multiplied with the corresponding
softmax normalized scores.

In practice, the attention is calculated in matrices to perform multiple calculations
simultaneously. Thus, the output is calculated as

QK"
Vi
where Q, K, and V are matrices of queries, keys, and values. Between two popular attention

mechanisms, namely additive attention and dot-product attention, the transformer model
uses the scaled dot-product attention due to faster and space-efficient matrix multiplication.

Attention(Q, K, V) = softmax( % 1)

Scaled Dot-Product

Attention Tnput Natural Language Processing

Embedding *1 X2 X3
Queries (Q) a1 a3 a3
Keys (K) ky ks ke
Values (V) vy vz V3
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Figure 2. Calculation steps in scaled dot-product attention. The dotted section shows the output z;
of the attention layer for the query g;. The "Score’ step involves calculating a score for each key (k;)
related to a specific query by means of dot-product. After obtaining the scores for the keys, they are
scaled and subjected to the softmax operation to determine their relevance with respect to the query
compared to the other keys. Each value (v;) is multiplied by the corresponding softmax score of its
key (k;) after the softmax operation. Finally, the softmax weighted values are summed up to generate
the attention output z; for a key k; with respect to the query g;.

Multi-Head Self Attention: The complexity of directly computing attention with d,;,,4./-
dimensional keys, values, and queries in a single attention block is very high. Instead,
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it is beneficial to linearly project the queries, keys, and values h times with different,
learned linear projections to dy, dy, and d, dimensions, respectively. This makes it possible
to perform the attention function in parallel, yielding d,-dimensional output values in
each of these projected versions of queries, keys, and values. The final outputs of these
heads are concatenated and once again projected, resulting in the final values. The linear
projection-based, multi-head attention allows the model to jointly attend to information
from different representation sub-spaces at different positions, which is not possible with a
single attention head.

2.1.4. Position-Wise Feed-Forward Network

The encoder and decoder blocks have fully connected feed-forward networks (FFNs)
in addition to attention units. An FEN consists of two linear transformations with ReLU and
is applied to each position separately and identically. In each layer, the same transformation
is applied, but they learn different parameters. The weight and bias parameters of the
feed-forward network are denoted by W and b, respectively, in the equation below.

FFEN(x) = max(0,xWy + by) Wy + by 2)

2.1.5. Embedding and Positional Encoding

Like other sequence transduction models, learned embeddings are used to convert
the input tokens and output tokens to vectors. At the output, the usual learned linear
transformation and the softmax function are used to convert the decoder output to the
predicted next-token probabilities. The transformer does not contain recurrence and convo-
lution. Instead, to reflect the order of tokens in the sequence, the model injects positional
information in the form of “positional encodings” to the input embeddings at the start of
the encoder and decoder stacks.

2.2. Sparsity in Deep Learning Models

Deep networks achieve state-of-the-art performance in solving many real-life problems,
but in many cases, these models are over-parameterized. Many studies show that there is
significant redundancy exists in the data of large models [19]. Execution of these models
can be improved significantly by reducing computation, communication, and memory
requirements through efficient compression of redundant data tensors. Highly compact
models can be achieved by compressing tensors through the exploitation of (a) sparsity,
(b) tensor size reduction, and (c) value quantization. In this paper, our primary focus is the
exploration of the sparsification approaches.

Interestingly, deep neural networks (DNNs) are typically sparse in nature or can
be made sparse through efficient processing techniques. The sparsity of data is usually
expressed as a percentage of zeros. Sparsity due to zeros offers multiple architectural
benefits. Firstly, sparsity eliminates ineffectual computations. Since multiplication by zero
reduces multiply—accumulate (MAC) operation, sparsity reduces execution time and energy
by computing only the non-zeros. Secondly, sparsity encodes only non-zeros which reduces
the footprint of the data, allows more data to fit in on-chip memory, and decreases off-
chip memory accesses. As a result, device throughput improves and energy consumption
decreases. Lastly, sparsity increases speedup due to less communication required as the
data movement is reduced.

Sparsity can be generated, for example, by an activation unit. ReLU turns all negative
activation values to zero and introduces sparsity. Pruning is a special method that can
introduce more sparsity by converting certain values to zero via thresholding. Pruning
can be applied to both activation and weights of a model. Apart from these, transformer
attention computation can harness dynamical sparsity based on input features.

3. Overview of the Transformer-Based Accelerators Exploring Sparsity

In this section, we give a concise overview of transformer-based accelerators that
leverage sparsity for improved performance in practical applications. We categorize and
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compile a list of these accelerators based on their commonalities, which will be described
further in more detail in the next section. Table 1 compares the hardware accelerators used
for NLP applications that employ transformer-based models.

Table 1. Comparison of transformer-based hardware accelerators.

Sparse

Pattern Accuracy Design

Accelerators Pattern Regularity Sparsity Algorithm Loss Process Design Objective
. Coarse-grained . Movement, ..
EdgeBERT [15] Static structured Medium Magnitude pruning Negligible SW-HW  Energy
Coarse-grained Compression and Latency,
OPTIMUS [20] Static structured Low SA-RCSC Negligible HW Throughput,
Energy
. Coarse-grained Block-circulant o
FTRANS [21]  Static structured Low matrix (BCM) 0% HW Speedup, Energy
A3 [10] Dynamic Unstructured Medium Approximation Negligible SW-HW  Energy
. Coarse-grained Cascade Token and o
SpAtten [9] Dynamic structured Low Head Pruning 0% SW-HW  Speedup, Energy
ELSA [3] Dynamic Unstructured Medium Approximation <1% SW-HW  Speedup
. Fine-grained . . o
DOTA [22,23] Dynamic structured High Approximate 0.12% HW Speedup
. Fine-grained . . . o
Sanger [2] Dynamic structured High Attention Pruning 0% SW-HW  Speedup
Energon [14]  Dynamic Fine-grained High MP-MRF 0.50% SW-HW  Speedup, Energy
. . . . Data Reordering o
SALO [24] Static Hybrid Sparsity Medium and Splitting 0% HW Speedup
. Fine-grained . IDP and Improved
STA [25,26] Static N-M High Model Compression  6.7% SW-HW  Speedup, Memory

The computation of attention is heavily influenced by the length of the input sequence,
with computational complexity increasing as the square of the sequence length. Some have
attempted to mitigate this complexity by segmenting the sequence, but this often results
in degraded accuracy due to the inability of establishing connections between distant
input tokens. Additionally, the attention mechanism often accounts for the majority of
execution time in transformer-based models, while the model parameters are typically
large and challenging to fit into embedded system memory. Furthermore, computing
these models incurs high energy consumption and latency due to the substantial DRAM
accesses required. Sparse computation can remedy these problems but are difficult to
utilize in mainstream processors. GPUs, for example, when compared with purposely-built
accelerators, are much less efficient when performing attention inference due to complex
data movement and low computing intensity.

In transformer models, static sparsity can be introduced in the weights of linear layers,
such as Q, K, and V, as well as in the feed-forward neural network modules. By leveraging
these opportunities for static sparsity, unnecessary computations in the transformer model
can be greatly reduced, leading to improved computational efficiency. Along this line of
research, OPTIMUS [20] explores the intrinsic static sparsity in the weights of transformer
decoders to skip redundant computations. In decoders, all the previous queries (K) and val-
ues (V) are retained to remove redundant re-computations for later stages. In addition, the
proposed set-associated rearranged compressed sparse column (SA-RCSC) ensures efficient
processing of sparse matrix-dense vector multiplication by mitigating load imbalance and
load miss. EdgeBERT [15] applies movement pruning [27] and magnitude pruning [28] to
explore static sparsity in embedding and encoder layers, based on hardware optimization
techniques to reduce latency and energy consumption in BERT-based model inference.
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Meanwhile, FPGA-based transformer accelerator, FTRANS [21], utilizes enhanced block-
circulant matrix (BCM) weight representation to compress large-scale language model
weights to fit into an FPGA but it does not explore sparsity.

The hardware design for static sparsity can leverage knowledge from other domains,
whereas a distinct design approach is required for dynamic sparsity. Utilizing dynamic
sparsity has the potential to eliminate unnecessary computation to a greater extent than
static sparsity, and, as a result, most research endeavors to employ different approaches
to implement dynamic sparsity. The main idea behind dynamic sparsity is to calculate
attention only for the important query—key pairs. The important query—key pairs are
approximated prior to attention computation. The first transformer-based accelerator un-
der this category, A% [10], accelerates the attention mechanism through an approximation
method based on a top-k engine to reduce search targets. The accelerator can process long
sequences and achieves significant speed up and energy efficiency over conventional hard-
ware. The SpAtten [9] dynamically sparsifies based on each input by performing cascade
pruning on redundant attention heads and tokens. Compared to prior memory-bounded
accelerators, SpAtten can optimize both memory and computation-bounded models. Both
A3 [10] and SpAtten [9] utilize a top-k engine for the selection of important query-key pairs
which incurs high computational overhead, resulting in less computational efficiency. To
mitigate the issue of quadratic complexity that arises from processing long sequence data,
ELSA [3] employs an approximate approach that involves computing hashes and norms of
the input during runtime. It identifies the keys that have the highest similarity to a given
query by utilizing their hash distance, and then calculates only those query—key pairs to
minimize computational complexity. All the prior accelerators mostly explore coarse grain
sparsity and cannot optimize maximum hardware optimization. DOTA [22,23] proposes
a fine-grained Dynamic Sparse Attention (DSA) approach that deploys an approximate
attention detector to predict dynamic sparse patterns in attention weights. Rather than
relying on a top-k engine, the method is trained using a random sparse projection pattern to
generate low-precision attention computations that identify the most important query—key
pairs, albeit with a slight reduction in accuracy.

Different from the aforementioned methods that are based on full-precision, Sanger [2]
and Energon [14] deploy low-precision compute attention to explore dynamic sparsity.
Sanger [2] proposes a method that can process dynamic fine-grain sparsity and achieves
higher hardware efficiency compared to existing accelerators. It employs pack and split
encoding, as well as a score-stationary dataflow, to handle all dynamic computations.
Similarly, Energon [14] proposes an approximation method that uses mixed-precision
filtering to dynamically detect output-varying query—key pairs and reduce computational
complexity. It employs a data fetcher to compute sparse attention efficiently based on
the selected query—key pairs from the mixed-precision filtering. Both methods apply
full-precision attention computation only on the selected query—key pairs to maintain
output accuracy.

The combination of structured and unstructured sparsity in hybrid sparsity presents ad-
ditional opportunities for efficient processing in sparse attention computation. This approach
allows for the fine-tuning of models and the generation of compact models, which can help to
improve computational efficiency. SALO [24] explores hybrid sparse attention mechanisms
and processes the hybrid patterns with a systolic array-based spatial accelerator. Ampere
graphics processing units have shown significant inference performance improvement with
2:4 sparse tensor (two zeros within four continuous parameters) capabilities [29]. To design a
more flexible accelerator that can compute different sparsity proportions, authors of [25,26]
propose an accelerator, Sparse Transformer (STA), that can handle N:M sparse tensors and
achieves comparable speedup compared to GPUs. STA’s ability to process N:M sparse tensors
enables it to efficiently handle arbitrary sparse patterns.

Various optimization techniques can be utilized by accelerators to further minimize
redundant computations in transformer-based models. The proposed FPGA-based acceler-
ator in [30] accelerates the multi-head attention (MHA) and the position-wise feed-forward
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network (FFN) blocks. The proposed matrix partition method allows the MHA and FFN
blocks to share hardware resources, thus increasing hardware utilization in the systolic
array-based accelerator. The paper also demonstrates that quantization is useful to fit the
final model in an FPGA with a negligible accuracy loss. TranCIM [31] computes sparse
transformer models using a fully digital computing-in-memory (CIM) module. To reduce
redundant memory access and computation, it supports both pipeline/parallel recon-
figurable models. AccelTran, another accelerator proposed in [32,33], uses DynaTran, a
granular and hardware-aware dynamic inference framework that applies pruning to all the
activations in order to reduce ineffective MAC operations, to sparsify transformer mod-
els. The proposed accelerator utilizes tiled-matrix operations to compute weight-pruned
transformer models. A novel mapping scheme is employed to optimize these operations,
maximizing hardware utilization and parallelization. Furthermore, the framework inves-
tigates various dataflows to identify the optimal one that maximizes data reuse, thereby
enhancing energy efficiency.

4. In-Depth Analysis of Key Approaches

In this section, we delve into the architectural designs in existing accelerators. A brief
explanation is provided for each main approach, followed by an analysis of the respective
advantages and disadvantages.

4.1. Accelerators Exploring Static Sparsity

EdgeBERT: The EdgeBERT [15] accelerator takes an algorithm-hardware co-design ap-
proach to design a latency-aware energy-efficient accelerator for multi-task NLP applica-
tions on resource-constrained embedded systems. Adhering to target latency constraints, it
employs entropy-based early exit to execute dynamic voltage-frequency (DVFS) to reduce
energy consumption. Moreover, EdgeBERT reduces computational and memory footprint
by exploring the combination of adaptive attention span, selective network pruning, and
floating-point quantization.

EdgeBERT investigates sparsity by employing movement pruning [27] and magnitude
pruning [28] in the embedding and encoder layers of BERT. Movement pruning eliminates
the weights that are dynamically moving toward zero during model fine-tuning. In transfer
learning, movement pruning is more efficient compared to magnitude pruning as it keeps
near-zero values based on their behavior during fine-tuning. On the other hand, magnitude
pruning is more beneficial in high-sparsity regimes due to its specific characteristic. To
encode and decode sparse matrices in hardware, bit-mask encoding and decoding meth-
ods are utilized. Moreover, the hardware datapath includes a skip logic that disregards
zero elements.

4.2. Accelerators Exploring Sparsity with Approximate Candidate Selection

A3: The A3 [10] accelerator is a pioneering work that utilizes specialized hardware algorith-
mic approximation to accelerate attention mechanism computation. The similarity between
all search targets is computed by the attention matrix, allowing for a content-based search
that takes into account semantic significance. When the attention mechanism needs to
retrieve knowledge over a longer period of past states, i.e., a longer sequence of input
data, the computational complexity of this attention matrix increases quadratically [10]. To
alleviate the computational cost and limit the number of search targets, A% developed an
approximate candidate selection mechanism that considers the fact that only a small subset
of the targets are pertinent to a given task. Employing algorithm-hardware co-design,
A3 implements an energy-efficient accelerator that can handle long input data sequences
and achieve multiple orders of magnitude speedup over conventional hardware while
maintaining model accuracy.

The softmax operation in the attention mechanism results in most of the score values
being converted to near zero, indicating that the matrix—vector multiplication between
the key matrix and query matrix has minimal influence on the final score. Preprocessing
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the key matrix enables the accelerator to identify important rows and reduce unnecessary
computations. The proposed approximation algorithm preprocesses the key matrix and
eliminates the need to compute the score for rows of the key value matrix that will result in
near-zero values after softmax computation. Interestingly, the key matrix preprocessing
can be performed when acquiring the query, resulting in no significant overhead for the
key matrix preprocessing. To preprocess the key matrix, A% employs a candidate selection
module (presented in Figure 3a) that stores sorted keys and their corresponding indices
in SRAM buffers. Two circular queues buffer query and key multiplication component
results to find the max and min values in the component products using a comparator tree.
The maximum and minimum values are stored in registers max_ptr and min_ptr, and the
greedy score module is updated to select a set of keys.

Selected Column ID Selected Column ID

Query vector

4\ »| Max pointer Min pointer [+
4
v A 4
X | — | ¢
Component . Component
Sorted Key Matrix s "
Multiplication Buffer Y Multiplication Buffer

Greedy Score

v
Candidate Vector

Comparator tree

Comparator tree

(@)

C entries C entries K entries
. K entries
N entries
. Post-
Candidate Dot Scorine Exponent Output
Selection Product ormg Computation Computation
Selection
~M cycles ~C cycles ~K cycles ~K cycles

(b)
Figure 3. Overview of the A3 accelerator [10]. A3 utilizes a greedy algorithm to choose candidates by
first finding the maximum and minimum values of query and key products. The candidate selection
module takes around M cycles to identify C candidates. The approximated attention computation for
the chosen candidates takes a total of M + C + 2K 4+ « cycles, where « is a constant and K represents
the top entries chosen by the post-scoring selection module. (a) A3 candidate selection module [10].
(b) High level implementation steps of A% accelerator [10].

Using a candidate selection module, the accelerator preprocesses the key matrix and
extracts a list of rows for computation in the dot-product module. The dot-product module
generates results for the provided list of candidates, which are then passed on to the
post-scoring selector module. The post-scoring selector module chooses a small subset of
important rows for calculation in the exponent unit, and the final weighted sum is then
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computed in the output computation module. Figure 3b displays the clock cycles necessary
for computing attention. The modular design of A® allows it to function as a co-processor
alongside CPUs and GPUs.

SpAtten: Transformer models are known for their high performance but come at a signifi-
cant computational cost. Due to their unique computational and memory-bound charac-
teristics, they can be challenging to accelerate. As a result, different transformer models
require specific computational optimizations to achieve optimal performance. SpAtten [9]
implements cascade token, head pruning, and progressive quantization to leverage token
sparsity, head sparsity, and quantization opportunities to optimize both computation-
bounded and memory-bounded models. Figure 4 depicts an illustration of the SpAtten
architecture overview.
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Figure 4. Overview of SpAtten architecture [9].

When performing cascade pruning, the removal of an element (such as a token or a
head) in one layer results in its removal from all subsequent layers. To minimize memory
(e.g., DRAM) access, cascade token pruning eliminates structural and non-essential tokens
such as articles, prepositions, and adverbs. Cascade head pruning eliminates unnecessary
heads from the attention mechanism by considering their impact on the output, thereby
reducing redundancy. Consequently, token pruning decreases sentence length, whereas
head pruning decreases features. As a result, SpAtten is more amenable to retrieving
knowledge from longer input sequences while minimizing computation and memory
access redundancy. In addition, progressive quantization modifies bit-widths in different
attention heads and layers based on attention probability distribution, leading to additional
reduction in DRAM access [9].

To dynamically process each input for efficient hardware execution, a specialized high
parallelism top-k engine is designed for SpAtten to rank token and head importance scores
for pruning. By utilizing a quick-select module that selects the kth largest element as a
threshold to filter the input, this top-k engine achieves linear time complexity O(n), i.e.,
the runtime scales linearly with the size of the input. The top-k engine retrieves the k most
relevant keys (K) for a given query (Q) by evaluating the importance score of each token
and ranking them accordingly. After identifying the relevant query—key pairs, a matrix—
vector module is used to compute their corresponding attention scores. These scores are
then passed through a softmax unit to calculate the attention probabilities. The resulting
probabilities are subsequently sent to an on-chip bit-width converter, which performs
progressive quantization. Following that, based on the top-k selected k-most important
values, the final attention output is computed. Once all the necessary computations are
completed within a single head, the head’s importance score is calculated. After computing
all the heads in a layer, the top-k engine prunes the ones that are deemed unimportant.
This cascade pruning technique ensures that the pruned heads are not computed in the
subsequent layers. This helps to reduce DRAM access, thereby improving the overall
efficiency of the system.

ELSA: In order to overcome the quadratic challenges that arise with lengthy input se-
quences, numerous techniques divide the sequence into smaller segments. Nevertheless,
when using such methods in conjunction with an attention mechanism, there is a limitation
in that it is incapable of establishing connections between two tokens that belong to separate
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segments. By employing an approximation scheme on the input sequence, ELSA [3], an
efficient and lightweight self-attention accelerator, considerably reduces energy consump-
tion and run-time. With the proposed approximation scheme, computational inefficiency is
significantly reduced by eliminating irrelevant relations in the input sequence, which does
not affect the final output. This enables the processing of long sequences without dividing
them into segments.

When the dimensions of query and key are n X d in self-attention, the intermediate
score matrix (referred to as the attention matrix) S (=QK7') involves nd multiplications.
Despite this, most of the values in the score matrix become nearly zero after the softmax
operation, leading to a sparse output. To mitigate this problem, ELSA identifies a specific
subset of keys that are expected to have significant attention scores for each query, thus
reducing the number of multiplications necessary for the score matrix (n2d). ELSA deter-
mines the relevance of a key to a query by calculating the similarity between their vectors
based on their angle and comparing the approximate similarity with a threshold. This
method is employed to achieve the goal of reducing the number of multiplications needed
for the score matrix. Figure 5 presents a block diagram that depicts the high-level data
flow of the ELSA accelerator pipeline.

Key from

Key Mem. Query from  Value from
Query mem.  Value mem.
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Query Hash
Buffer ->

Key Hash |, Candl(%ate Attention —| Output Divider |, Output
Memory Selection Computation Mem.

—
Hash Computation

—
Norm Computation —»| Key Norm [
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Figure 5. Overview of ELSA architecture [3].

The ELSA accelerator comprises hash and norm computation units that calculate hash
and norm values for each row of the key matrix. Once these values are stored in their
respective memories, candidate selection modules determine the selected candidate key
IDs for each module’s output queue. An arbitrator processes these selected key IDs, which
are then computed in the attention computation module. This module calculates and
aggregates the selected key’s contribution to the current query. The output division module
performs division once all the selected keys for a specific query have been computed. The
accelerator repeats all computations until all queries are processed. This accelerator can be
viewed as a specialized functional unit for self-attention computation and can be integrated
with CPUs, GPUs, and other accelerators.

DOTA: In order to address the challenges posed by quadratic time and space complexity,
DOTA [22,23] introduces the Dynamic Sparse Attention (DSA) technique. This method
leverages an approximate attention predictor to anticipate the dynamic sparse patterns
present in attention weights. DSA investigates dynamic sparsity in attention without
static constraints while maintaining low computational cost and full attention effectiveness.
Figure 6 presents an illustration of the DSA overview. The standard attention mechanism

calculates the attention score S = QKT and the final attention output using a general matrix—
matrix multlphcatlon (GEMM) operatlon The DSA algorlthm computes the approximate

attention score S using the expressmn S= XPWQ(XPWK) where P represents a sparse

random projection, and WK and WQ denote the approximation weights for the keys K
and queries Q, respectively. The sparse attention mask M is obtained by thresholding
the approximate score, which can be fine-tuned using the validation set or calculated
using a top-k engine. The sparse attention masks M are employed to generate the final
sparse outputs.
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Figure 6. Sparse computation with approximation-based prediction in dynamic sparse attention
(DSA). The predictor is trained using a sparse random projection matrix P to calculate low-precision
query and key. The sparse attention mask M is produced by applying thresholding to the low-
precision query-key product. (a) Dense computation steps in non-sparse attention computation.
(b) Sparse computation steps in DSA.

Figure 7 depicts the abstraction of the DOTA accelerator, which implements DSA.
While the model is limited to processing a single sequence at a time, it can be scaled
out to multiple instances, enabling sequence-level parallelism. The encoder conducts
three data-dependent sequential GEMM computations: linear transformation, multi-head
attention, and FFN. These sequential operations are partitioned into four chunks (four
lanes in Figure 7) to enhance performance. Each lane operates on a portion of Wg, Wk,
and Wy, with the final outcomes from these lanes aggregated by the accumulator. If more
chunk-level parallelism is required by the application, the number of lanes can be increased.
Each lane comprises a Re-configurable Matrix Multiplication Unit (RMMU), an Attention
Selection Detector, and a Multi-Function Unit. The RMMU is capable of performing
different-precision GEMM operations. The detector computes attention selection based
on RMMU's low-precision computations, with the Scheduler in the detector organizing
computations to balance the computational load and memory access.

DOTA e I 14
[ ] ) : Ex Di
. Reconfigurable — =
ME > B
2l tee 2 |92 2 e
*-/f: ‘ E = Adder Tree
2o “ 8 ~

Figure 7. Overview of DOTA Accelerator [22,23]. The input is divided among multiple parallel
lanes, with each lane handling a section of the input before the results are merged once all lanes have
finished processing.

4.3. Accelerators Exploring Dynamic Sparsity with Mixed-Precision Selection

Sanger: The approaches that explore irregular or regular coarse-grained sparsity patterns
in attention mechanisms are less effective in utilizing the higher computational benefits
of fine-grained sparsity. Furthermore, irregular sparse patterns pose challenges for paral-
lelization due to irregular data movement and can lead to data imbalance across processing
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elements (PEs) when not distributed evenly. Sanger [2] employs a “pack and split’ based
encoding scheme to transform a dynamic unstructured sparse pattern into load-balanced
multiple fine-grained structured blocks. Sanger [2], with a score-stationary dataflow and
reconfigurable systolic array-based hardware architecture, overcomes additional overheads
due to decoding and memory transfer. The ability to handle dynamic fine-grained and
structured patterns allows Sanger to exploit higher sparsity and speed up compared to
A3[10] and SpAtten [9].

Sanger takes a software-hardware co-design approach to optimize the model inference.
The overview of the proposed Sanger framework is depicted in Figure 8. An attention-
pruning algorithm is applied to the attention matrix during software-level optimization,
generating an unstructured sparse pattern. By computing a low-bit attention matrix (S)
on quantized (e.g., 4-bit) matrices of query (Q) and keys (K), a sparse attention mask is
then pruned from the low-bit attention matrix using binary thresholding. The resultant
sparse attention mask is unstructured and exhibits higher sparsity due to the dynamic
sparse pattern captured from each input query and keys. To overcome the challenges in
accelerating unstructured fine-grained sparsity, Sanger proposes an encoding method to
pack and split the attention mask and transforms it into multiple structured blocks while
maintaining balanced workloads.

Keys
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PE array ° g "
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Figure 8. Overview of Sanger framework [2].

Sanger hardware accelerator is designed with a re-configurable systolic array (RSA)
that unifies and performs both SDDMM and SpMM operations in a score-stationary
dataflow. In the RSA, the processing elements can dynamically handle queries, keys,
and values with different indices, enabling a flexible distribution of non-zero values within
a block. This feature is useful in improving the compression ratio during pruning. During
inference, the accelerator takes the input and generates sparse masks that implement the
pruning algorithm, including quantization, thresholding, and encoding. Finally, the sparse
computations are computed on the RSA.

Energon: Performing real-time inference on resource-constrained edge-computing devices
poses a significant challenge. To reduce latency and improve throughput, Energon [14]
proposes a Mix-Precision Multi-Round Filtering (MP-MRF) algorithm to dynamically
identify result-dependent query—key pairs at runtime to tackle the quadratic computational
complexity. During the filtering stage, the accelerator utilizes low-precision computation
to determine the crucial query—key pairs. Nevertheless, for these significant pairs, high-
precision tensors are utilized in the attention computation to preserve the model’s accuracy.
Energon achieves significant speed up and energy reduction compared to CPU and GPU
implementations on many CV and NLP benchmarks at a negligible accuracy loss [14].
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The MP-MREF strategy searches for important keys for each query by performing
mix-precision filtering for multiple rounds (as depicted in Figure 9). The computation of
the query—key (Q - KT) is first performed using an extremely low bit-width (e.g., 2 bit) in the
initial round. Subsequently, the bit-width is gradually increased in each successive round to
filter out additional keys. The MP-MRF approach utilizes mean filtering to identify query—
key pairs in each round, which is a hardware-efficient alternative to top-k selection. Despite
the use of specialized hardware, the top-k engine remains computationally demanding due
to the need for full precision attention score computation and a sorting engine to determine
the top candidates. Typically, mean filtering is responsible for pruning around 50% of the
elements in each round. However, in the case of Energon, an adjustable parameter has been
incorporated to regulate the degree of pruning. Once the low-bit-width filtering round
has identified the query—key pairs, the final sparse attention computation is performed
using high-precision tensors. This approach enables the MP-MRF strategy to minimize
computational complexity by leveraging mix-precision tensor computations.
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with 2 bits with 4 bits with 16 bits

Figure 9. Filtering steps of MP-MREF [14]. Starting from the left side of the diagram, the bit-width is
progressively increased in order to eliminate less significant keys for a given query. Final computation
uses full 16-bit precision.

The overview of Energon accelerator architecture is illustrated in Figure 10. The fil-
tering unit (FU) fetches query-key pairs from memory and performs MP-MREF to find the
indices of important keys. The attention unit (AU) takes the key indices and computes
sparse attention and stores it back to DRAM. In the filtering unit, the result-reusable mix-
precision Inner-Product Unit (IPU) and key data layout are employed for better efficient
processing and on-chip resource savings. During pipeline execution of attention computa-
tion in the attention unit, Energon implements an On-Demand Fetching (ODF) to reduce
DRAM access.

Filtering Unit

DRAM | — Memory Attention

— Control MR.MPT Unit

Fy

Output
]

Figure 10. Overview of Energon Accelerator [14]. The process of selecting essential keys for each
query is carried out by the Filtering Unit (FU) through multi-round mix-precision filtering. Once
the filtering is complete, the attention unit (AU) computes high-precision sparse attention on the
selected keys.

4.4. Accelerators Exploring Hybrid Sparse Pattern

SALO: The SALO [24] work presents an innovative solution to address the computational
and memory challenges that arise when processing lengthy input sequences. By employing
a hybrid sparse attention mechanism that incorporates both local window and global atten-
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tion patterns, the authors are able to reduce the computational complexity to a linear scale,
thereby enhancing the efficiency of sequence processing. By transforming a sparse pattern
into a hybrid pattern and utilizing a spatial accelerator, SALO achieves a considerable
increase in processing speed when compared to CPU and GPU implementations. Figure 11
provides an overview of the SALO framework.

Hybrid Sparse
Attention Pattern

Hardware
= Pattern Metadata
Metadata ¢ l

Query Data Schedular
| — — —

H — —_ Spatial

] Processed Accelerator

K N Data Splitting and Data,

,_,_6‘?’_,_ reordering Output
Value

Figure 11. Overview of SALO framework [24]. Data scheduler performs data reordering and splitting
on the hybrid pattern. On the processed data from the data scheduler, the spatial accelerator performs
sparse computation.

The SALO comprises a data scheduler and a systolic array-based spatial accelerator.

The hybrid sparse attention patterns in SALO are transformed by the data scheduler to
meet the constraints required for executing them in the spatial accelerators. This process
involves data reordering and splitting, which enable the dataflow and size constraints to
be satistied. SALO’s dataflow design focuses on maximizing data reuse during hybrid
sparse attention computation to reduce memory accesses and shorten the data path. Sliding
window patterns and global attention are divided into tiles for multiple passes while dilated
patterns are reordered into sliding window patterns to be processed by the accelerator.
The data scheduler thus facilitates the processing of long input sequences using hybrid
sparse attention and ensures that they fit into the spatial accelerator. The spatial accelerator
consists of processing element (PE) arrays, including global PE units that accumulate row
and column-wise from the arrays. To maximize data reuse, the PE arrays feature diagonal
connections. SALO evaluation mostly compares CPU and GPU implementations which
is promising; however, comparison with existing accelerators is limited. SALO, similar
to Sanger [2], computes using systolic arrays and achieves 1.33x speedup compared to
Sanger [2].
STA: Aggressive weight pruning can cause transformer models to become heavily sparsed,
resulting in the generation of N:M sparse patterns (such as 1:8 or 2:8). As a result,
STA [25,26] has proposed an accelerator that focuses on accelerating fine-grained N:M
sparse tensors in transformers, following this concept. These sparse tensors have N zeros
within M continuous parameters, and recent research [34] indicates that utilizing them can
lead to significant performance improvements compared to unstructured sparsity.

In N:M sparse pattern generation, existing methods such as SR-STE [34] and NVIDIA
ASP [35] suffers from performance degradation at a higher sparse ratio. To alleviate this,
the proposed approach uses an inherited dynamic pruning (IDP)-based sparsity inheritance
mechanism to achieve an N:M sparse pattern. During the conversion process using IDP,
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prior knowledge of N:M sparse models is utilized to facilitate faster and more effective
convergence of the current model. In order to fully leverage the advantages of the sparse
model, the N:M sparse transformer is compressed through bitmap-based compression,
resulting in a significant reduction in memory requirements (5.33x). Upon completion
of all algorithmic optimizations, the automatic hardware generator utilizes the optimized
model and a hardware template library of FPGAs to generate a custom STA architecture.
The overview of the STA architecture is illustrated in Figure 12.
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Figure 12. Overview of STA architecture [25].

The three primary components of the STA architecture are the storage block, the
computing block, and the control block. Within the computing blocks, there are several
elements including a Diverse MatMul computing engine called DMME, a scalable soft-
max module, a vector unit, and a data reshuffle network. DMME performs N:M sparse
operations: sparse—dense and dense-dense matrix multiplication during run time with
dynamic configuration while maintaining high efficiency. The computational efficiency
of sparse-dense matrix multiplications is significantly improved by selecting only the
non-zero weight parameters and their corresponding activation values for computation,
thereby reducing the number of unnecessary computations. Meanwhile, multi-headed
attention residual computations can be executed without off-chip memory transfer in the
scalable softmax, thus eliminating off-chip memory access. Intermediate memory block
stores all the intermediate results to reduce additional communication to off-chip memory.

5. Discussions and Future Directions

Analyzing the sparse accelerators for transformers, it is evident that dynamic spar-
sity can provide higher sparsity but is challenging to accelerate in hardware due to the
inherent unstructured sparse patterns. A% [10] can harvest dynamic sparsity and improve
computational complexity. It can accelerate computationally bounded models such as
BERT. However, to achieve that, A3 needs to load the full uncompressed QKV vectors to
on-chip memory from DRAM. As it cannot reduce DRAM accesses, it is memory bounded
and cannot handle memory-bound models like GPT. On the contrary, cascade pruning
allows SpAtten [9] to handle long sequences and process memory-bound models efficiently.
The top-k engine in SpAtten, which is used to select items for pruning, is computationally
expensive and inefficient in dynamic sparsity acceleration due to the low pruning ratio.
Similar to A% [10], ELSA [3] uses an approximation method and dot-product module to
calculate attention. It speeds up by utilizing more parallel computing units. However,
the approximation method and candidate selection suffer from high computational over-
head. EdgeBERT [15] mostly depends on hardware design optimization techniques to
reduce computation. Explored sparsity ratio is not adequate and has limited savings in
computation. Sanger [2] and SALO [24] both show similar performance by using a systolic
array as the computing unit. However, Sanger’s attention pruning suffers from latency
due to long sequence quadratic complexity. While the spatial accelerator in SALO [24] is
efficient, there is a limitation in its ability to fully utilize the efficiency of the hybrid sparse
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pattern, as it does not have knowledge of the input data during inference. OPTIMUS [20]
requires computation in the Fourier domain which requires complex value computation
and limits achievable speedup. FTRANS [21] uses a compression technique to optimize
memory consumption; however, it does not utilize sparsity for computational optimization.
Most of the recent research has focused on optimizing the attention calculation based on
dynamic prediction or approximation of the important query—key pairs. Dynamic sparsity
has the highest pruning ratio and can reduce computation by a significant amount. This
can be utilized by using mixed-precision computation to determine the importance of the
query-key pairs before the full computation of the attention matrix. Mixed-precision-based
computations typically suffer from a certain degree of error. Based on these observations
and analysis, we have synthesized several main future opportunities in exploring sparsity
for transformer accelerators.

Sparsification Methods: Hardware acceleration has significant potential for further de-
velopment and application of sparsification methods. During inference, current dynamic
sparsity is utilized almost exclusively in the attention computation, but its effect on sparsity
in other computational units is minimal. Magnitude pruning and movement pruning can
be applied for exploring sparsity in other computational layers, such as fully connected
layers, as these methods are comparatively easier to train. Regularization methods can also
achieve a high level of sparsity, but they are challenging to train [36]. One example of a
sparsification method is L1 regularization, which encourages many weights in a model to
be zero, resulting in a high degree of sparsity. In contrast, the Lasso method can induce
structured sparsity by promoting groups of related weights to be zero. Therefore, additional
investigation on addressing the difficulties associated with training using regularization
techniques could satisfy the additional design needs. Moreover, hardware architecture
along with model architecture can be co-explored in optimizing sparsification methods for
achieving optimal performance and energy efficiency on a given hardware platform.

Hardware Architecture for Unstructured sparsity: Existing accelerators are efficient in
processing structured sparse patterns. Currently, additional layers of computation are
required to preprocess the unstructured pattern for efficient hardware execution. A signifi-
cant amount of computation can be reduced if this step is removed. An optimized hardware
architecture for unstructured fine-grained sparsity is still an open research direction that
can further accelerate the inference of transformer-based models.

Linearized Transformers: To alleviate quadratic computation complexity, low-rank ap-
proximation [37] and kernelization [38—41] of attention computation have been popular
recently [42]. In the attention matrix, a low-rank approximation-based Linformer [37]
projects keys and values in lower dimensions to reduce memory complexity. The attention
matrix N x N decomposes to N x k where k < N. Meanwhile, kernelization does not
require explicit computation of the (N x N) attention matrix. Both such approximation
methods reduce computational complexity O(N?) to an approximated O(N). Hardware
accelerators can utilize these linearization techniques to handle quadratic computation and
memory challenges.

Flexible Accelerators for Training: For many applications in various domains, deep learn-
ing models are trained on high-performance computing clusters with a large number of
CPUs and GPUs, incurring a large amount of cost and carbon footprint [11,12]. In the
ever-changing deep learning paradigm, accelerators can be less preferred for training due
to financial considerations and the flexibility of GPUs. While some works have started to
explore flexible accelerators for training, substantially more research is needed to improve
the performance, energy efficiency, and flexibility of accelerators. Accelerators for com-
puter vision tasks such as ScaleDeep [43] and HyPar [44] report significant performance
gains even without exploring sparsity opportunities in CNNs. Ampere architecture-based
GPUs from NVidia support 1:2 structured sparsity which reports significant performance
improvement over its predecessors [29]. Accelerators for training can utilize data reuse and
mixed precision with high sparsity. It may be worth exploring the combined use of GPUs
and sparsity-exploring accelerators to further alleviate training challenges.
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Unified Evaluation Framework: It is difficult to evaluate and compare accelerators as
there is no unified framework to conduct comparative measures effectively. Hardware
accelerators use different hardware technologies. It is challenging to compare an FPGA
implementation with an ASIC implementation. Usually, ASIC implementations can be
optimized over FPGAs. Furthermore, different ASIC technologies used in accelerator
implementation have a significant impact on accelerator performance. A better imple-
mentation choice for an average design choice may achieve a better performance than a
better design approach with an older implementation process. A standard implementation
process may assist in identifying a better hardware architecture. Although there are several
frameworks [45-47] available for developing accelerators, they are not designed for sparse
computation [19]. At the software level, harnessing sparsity using different approaches
vastly depends on the target objective, experimental setup, and hyperparameter settings.
Several benchmarks such as MLPerf [48], Deep500 [49], and [50] have been popular in
evaluating algorithms by applying standard setup for specific tasks. A unified evalua-
tion framework combining hardware and software optimizations can help achieve target
constraints [36].

6. Conclusions

Transformer-based models have become the driving force for sequence modeling tasks,
but their computational requirement is the bottleneck for low-resource devices. Hardware
accelerators can alleviate the challenges, but in-depth optimizations of software and hard-
ware are crucial for their effectiveness. Sparsity has emerged as a promising approach
for hardware accelerators, as it reduces redundancy and enhances hardware efficiency.
This paper discusses and analyzes accelerators for transformers that utilize sparsity to
address the challenges of computation and memory. Prior research has investigated var-
ious aspects of sparsity and hardware architecture, but the majority of studies focus on
optimizing computational efficiency using static and dynamic sparsity. Analysis shows
that dynamic and fine-grained sparsity significantly reduces redundancy and improves
hardware efficiency. Nevertheless, the problem of reducing overhead caused by encoding
and decoding the sparse computation pattern through architectural exploration remains a
challenge. Furthermore, investigating sparsity in linearized transformers can mitigate the
existing limitations in hardware implementation.
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