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ABSTRACT

Deep learning (DL) has emerged as a promising tool in healthcare
applications. However, the reproducibility of many studies in this
field is limited by the lack of accessible code implementations and
standard benchmarks. To address the issue, we create PyHealth, a
comprehensive library to build, deploy, and validate DL pipelines for
healthcare applications. PyHeal th supports various data modalities,
including electronic health records (EHRs), physiological signals,
medical images, and clinical text. It offers various advanced DL
models and maintains comprehensive medical knowledge systems.
The library is designed to support both DL researchers and clinical
data scientists. Upon the time of writing, PyHealth has received
633 stars, 130 forks, and 15k+ downloads in total on GitHub.

This tutorial will provide an overview of PyHealth, present dif-
ferent modules, and showcase their functionality through hands-on
demos. Participants can follow along and gain hands-on experience
on the Google Colab platform during the session.
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1 TARGET AUDIENCE AND PREREQUISITES

This tutorial is hands-on and will last for 3 hours. It is designed
for audiences interested in deep learning and health informatics,
including both deep learning researchers with experience in data
science and Python/PyTorch programming, and clinical informati-
cians with clinical expertise and some exposure to data science.
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Prerequisites for this tutorial include basic knowledge of deep
learning and Python programming. No prior knowledge of health-
care is required. Throughout the tutorial, we will alternate between
lectures and hands-on practice to encourage audience participation.
Attendees can access the same Colab notebook on our website and
follow along step-by-step. After the tutorial, we will make the tuto-
rial materials (e.g., tutorial summary, presentation slides, code, and
recordings) publicly available for wider dissemination.

2 TUTORIAL OUTLINES

The outline of the tutorial is listed below. Resources, including the
GitHub repository, documentation, YouTube playlist, slides, and
Colab notebooks, can be found on our website!.

Overview of PyHealth. This session introduces the background
and motivations behind PyHeal th and showcases its main features
with quickstart examples to motivate the audience.

Clinical Predictive Modeling with EHRs. This session provides
a detailed explanation of the five-stage pipeline with EHR data.
We will cover data loading? (e.g., MIMIC [6, 7], eICU [13]), task
definition (e.g., mortality prediction), model initialization (e.g., RE-
TAIN [1], SafeDrug [18]), model training, and evaluation.

Deep learning for Physiological Signals. This session demon-
strates how to utilize PyHealth for processing physiological sig-
nal data. We will introduce the biosignal datasets (e.g., ISRUC [9],
Sleep-EDF [8]) and existing biosignal models (e.g., ContraWR [19])
supported by PyHealth. We finally show a demo: sleep staging
with SPaRCNet [5] on the Sleep-EDF dataset.

Medical Imaging Analysis. This section demonstrates how to
utilize PyHeal th for medical image data. We will introduce medical
image datasets (e.g., CheXpert [4], COVID [14]), relevant tasks
(e.g., disease classification, segmentation), and existing models (e.g.,
ResNet [3]) in PyHealth. We finally show a demo: chest disease
classification with ResNet on the COVID dataset.

Natural Language Processing for Clinical Text. This section
demonstrates how to utilize PyHealth for medical text data. We will
introduce medical text datasets (e.g., MIMIC-III clinical notes [7]),
relevant tasks (e.g., medical report generation), and existing models

!https://sunlabuiuc.github.io/PyHealth/
%In compliance with dataset policies, we will utilize our synthetic version of the
datasets as a substitute in the tutorial.
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(e.g., CAML [12]) in PyHealth. We finally show a demo: assigning
medical billing codes to patient discharge summaries with CAML.

Medical Knowledge Graph. This session demonstrates how to
utilize PyHealth’s comprehensive medical knowledge base. We will
introduce different medical coding systems (e.g., ICD-9/10, ATC
codes), tools for concept lookup and mapping cross systems (e.g.,
rule-based mapping, AutoMap [17]), and the pre-trained medical
concept embeddings in PyHeal th. We finally show a demo: utilizing
the Unified Medical Language System (UMLS) knowledge graph
embeddings to improve the drug recommendation task.

Synthetic Data Generation. In this session, we will demonstrate
PyHealth’s synthetic data generation capability. We will introduce
HALO [16], a method capable of generating synthetic longitudinal
healthcare records which have the training utility of real patient
records, without privacy and regulatory concerns.

Post-Hoc Uncertainty Quantification. This session introduces
PyHealth’s uncertainty quantification module, covering important
tasks such as model calibration and prediction set construction.
We will provide a demo applying calibration methods [2, 10] and
prediction set construction methods [11, 15] on a trained sleep-
staging SPaRCNet [5] classifier on the ISRUC [9] dataset.

In the end, we summarize the tutorial and provide links to other
PyHealth resources to our users and potential collaborators.
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