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Development in the field of gas sensors has witnessed exponential growth with multitude of applications. The diverse applications
have led to unexpected challenges. Recent advances in data science have addressed the challenges such as selectivity, drift, aging,
limit of detection, and response time. The incorporation of modern data analysis including machine learning techniques have
enabled a self-sustaining gas sensing infrastructure without human intervention. This article provides a birds-eye view on data
enabled technologies in the realm of gas sensors. While elaborating the prior developments in gas sensing related data analysis, this
article is poised to be an entrant for enthusiast in the domain of data science and gas sensors.
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Gas sensors are ubiquitous with myriad of applications. There is
increasing demand for accurate and fast gas sensing system for
applications ranging from environmental screening to space
exploration.1–13 Rational materials choice, simpler fabrication techni-
ques and modern data analysis have enabled electronic gas sensors to
be deployed in sophisticated and hazardous environments.14–18 There
exist different types of gas sensors, which uses different transduction
principles to detect specific gases. Such modalities include electrical,
optical, chemical, and electrochemical mechanisms.19–22 An arrayed
version of the gas sensors for detecting multiple gases simultaneously
is called the Electronic nose (E-Nose). E-nose works by mimicking
human odor-sensing or olfaction mechanisms.23,24 In general, E-nose
consists of a separator unit, a sensor or array of sensors, and a
processing unit for signal processing and data analysis.25 Recent
advancements in materials and semiconductor technology have
ensured reliable odor sensing. Moreover, compact and powerful
micro- ICs have enabled miniaturization and fast processing of data
without compromising on performance.26

It is essential to select, pre-process, and extract significant
features for sensor post-data analysis27–31 for monitoring its perfor-
mance. External and internal factors degrade E-nose performance.
Such factors include vicious change in temperature, pressure,
excessive exposure to gases, vibrations, flexing of the substrates
and/or, changing of the materialistic properties of the active material
themselves.32 These factors often cause drift in sensors. The drift
often leads to a decrement in the life span of the sensors.

Moreover, the detection or, frequent calibration of sensors is
expensive or, sometimes, impossible. Asymmetric parameter
changes in the E-nose array leads to performance shift. The sensor
shift, unlike the drift problem, can cause rapid sensor degradation.
The detection of faulty sensor is also crucial when it comes to
screening for a particular gas, where different data driven techniques
can be handy. There exist different review articles to provide details
on data driven topologies and analysis in the gas sensors. However,
majority of them are either concise or cater to specific application of
gas sensors, without considering the holistic significance of data
analysis in gas sensor research.33–47

The goal of this manuscript is to summarize a collection of the
different data aided techniques that are incorporated in modern gas
sensing systems that include sampling and feature selection, data
augmentation, classification, and data visualization. Next, the article
illustrates important sensor features for data analysis. The evolution
of gas sensor signal management tools has been described in detail.

Then, different approaches for data analysis to address gas sensor
challenges are presented. Finally, the article provides a summary and
guidelines for the reader to adopt suitable tools for gas sensor
analysis.

Salient Attributes of A Gas Sensor Signal

For any type of signal analysis, it is critical to identify the
significant information that can be extracted from that signal. The
performance of any data analysis algorithm depends on the quality of
derived attributes. For gas sensors, the signal collected from the
sensors can be classified into three parts: increasing transient
response, the steady-state response, and the decreasing transient
response,48 shown in Fig. 1.

Different time domain and frequency domain features of the signal
allows to identify performance metrics. The gas of interest often needs
to be mixed up with oxygen and sometimes heated up prior exposing
to the sensor. The ratio of oxygen,49 temperature variation,50 gas
concentration,51 and flow rate play important roles in the gas sensor
response. Specifically, the response time, recovery time, selectivity,
and sensitivity are some of the factors which are influenced by
different excitation conditions.52 Some derivative features of sensors
are employed in research investigations to describe the transient
behavior of the sensors.53 For model development and data analysis,
an easily accessible dataset is critical. Such a dataset can be found
from Wijaya et al.54 In this dataset, ten gas sensors have been used to
form a time series data having four distinct classes of beef and
continuous microbial population index as target labels with two
intrinsic and 4 extrinsic sensor features. In another dataset from a prior
article,55 an E-nose of six sensors was implemented to record 235
wine quality tester data. To classify Chronic Obstructive Pulmonary
Disease (COPD) affected people, Acevedo et al.56 gathered 78
samples from different class of people using E-nose. A large dataset
for drift analysis of gas sensors was collected and open-sourced in
UCI repository.57 In this dataset, there are sixteen sensors with eight
features each combining 128 features for six gases to be classified.

Gas Sensor Data Analysis

Modern data driven techniques such as regression models,
classifiers, deep learning techniques, and machine learning have
paved the way of converting raw features into actual and meaningful
information. Successful feature extraction and selection techniques
improve the performance of such data driven algorithms. This
Section describes the feature and model-based approaches that
were developed in the past few years in the gas sensors area.zE-mail: praveen.sekhar@wsu.edu
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Feature oriented systems.—Feature is a meaningful data that
holds dense information for making certain decisions with respect to
field deployability of sensors. Such features include correlation and
convoluted information among different sensor responses, distribu-
tion based information of a dataset, maximum variance and
neighborhood information of sensor data, and so on. It is important
to choose the right features to ensure accurate decision making.
Feature extraction involves algorithms.

The performance of these algorithm can be increased in many
ways resulting in decreased time of operation, real time analysis,
online monitoring ability, decreased computation complexity, and
computational cost. Further, many mathematical models have come
up with different solutions to turn the non-linear features of a gas
sensor into linear trends, which enables better results with simpler
learning models. Also, different augmentation techniques ameliorate
the usage of data to extract unknown and interconnected valuable
features from the original dataset.

Attribute and instance selection.—It is necessary for feature
selection algorithms to have proper selection of samples to achieve
maximum efficiency. Yu et al.58 suggested active sampling approach
for query by committee (QBC) algorithm which showed signifi-
cantly increased performance with low dataset size. Further, Liu et
al.59 proposed a novel min-max confidence strategy for selecting
samples toward an online classifier which works better than the
conventional QBC approach when addressing gas sensor drift.

Later, Liu et al.60 proposed an adaptive sampling method for drift
compensation (via online learning) inspired by QBC approach where
posterior probability needs to be calculated for optimal instance
selection.

Unlike the conventional approach, the study offered a pool-based
criteria selection method for better adaptation for classifier models.
An active and transfer sub sampling-based approach provided
significant variance among classes of a dataset reported in a
study.61 An active instance selection strategy on mixed kernel

Figure 1. A typical gas sensor output in time domain.

Figure 2. Fisher Discriminant Score (FDS) based feature selection scheme in a prior article. (A) Comparison between FDS and non-FDS approaches for initial
feature reduction. The feature will be selected if at least one class distribution is different from the others. (B) three different cases of dynamic feature selection.
A feature is selected only if the sample can be attributed to only one class distribution.66
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mechanism was proposed by Liu et al.62 which can compensate drift.
The study showed that the algorithm employed with active learning
provides maximum recognition accuracy of 83.59%. For sensors
exhibiting drift, a calibration sample selection method was employed
by Liu et al.63,64 to tackle class imbalance problem. This showed an
average accuracy up to 97.64% over other passive sampling-based
approaches. Feature selection has become an emerging research
topic in recent years due to its importance in data aided performance
improvement of gas sensors. In this context, Deng et al.65 proposed a
unique feature fusion framework using separability and dissimilarity
index of features which provided improved classification accuracy
with simple models like K-nearest neighbor (KNN). A dynamic
feature selection based on the closeness to expected class distribu-
tion was proposed in another article66 where Fisher Discriminant
Score (FDS) was used for data sorting based on the application
(Fig. 2). According to the Fig. 2, the samples are dynamically
selected to achieve expected variance to the selected dataset.
Multiple feature selection algorithms such as chi-square, reliefF,
and gini index was employed in another study67 which seemingly
improved the quality of the learning models. Further, Czarnowski et
al.37 described a weighted ensemble technique of instance selection
and oversampling in the case of data imbalance.

Many unsupervised optimization algorithms are employed to
extract intrinsic features from actual data. A modified binary ant
colony optimization (ACO) was proposed by Shu et al.68 to select
features with minimum redundancy to reduce computational time. A
feature selection approach based on the orthogonal correlation
among features was proposed in prior articles69,70 where the actual
features are converted to a orthogonal feature space using orthogo-
nalized scores and weights as described in Eq. 1, where t⊥ is the
orthogonal score, and ′⊥p is the loadings. Substituting their product
from the actual data space X provides orthogonal components free
subspace XOSC.

′= − [ ]⊥ ⊥X X t p 1OSC

Data augmentation.—Researchers are looking into inherent
correlation between different raw sensor attributes. Such correlations
can be generated using many mathematical models71 to address
sensor performance challenges under field conditions. In most cases,
the gas sensor responses are non-linear in nature. This non-linearity
often leads to incompatibility in optimization of any learning
algorithm or result in an expensive and complex system design.

Vergara et al.48 provided an approach where the non-linear
transient features have been converted into linear features using the
Eq. 2. The y[k− 1] is the exponential moving average value of the
sample k− 1 in the discrete time series, α is the weighting factor,
and r[k] and r[k− 1] are the two consecutive responses from the
discrete time series response.

α α[ ] = ( − ) [ − ] + ( [ ] − [ − ]) [ ]y k y k r k r k1 1 1 2

Burgues et al.72 proposed a logarithmic transformation of the
non-linear data for low concentrations of the analyte. Utilizing
cosine similarities between different combinations of features
defined in Eq. 3, Rehman et al.73 extracted metaheuristic drift-
insensitive features from raw data. In the Eq. 3, t represents the test
sample, m is the median of the selected features in training data from
class k, and s is the total number of selected features.
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Another study employing the cosine similarity-based feature
extraction method showed improved performance in long term drift
affected dataset.74 The Tree Structured Cosine Similarity based
Shuffled Frog Leaping Optimization (TSCS- SFLO) algorithm

proposed in a prior study showed an overall detection accuracy of
91.34% over three years period of drifted gas sensors data. However,
the study from an earlier article65 showed correlation-based distance
measurement exhibiting better performance over cosine based
distance calculation algorithms.

A canonical correlation analysis of data was proposed in an
earlier study41 to utilize the maximization of correlation between
two sets of data for improved sensor performance. Yan et al.40

proposed a method of subspace alignment among features by
optimizing the distribution discrepancy between source and target
domain. To minimize the maximum mean discrepancy among the
features, many researchers employed joint distribution adaptation-
based transfer learning where Principal Component Analysis (PCA)
was used to measure the maximum variance of the dataset. Liu et
al.75 extracted features using Fisher linear discriminant approach for
drift compensation which decreases the inter-concentration discre-
pancy of the feature distribution, resulting in concentration inde-
pendent features. Balanced distribution adaptation algorithm showed
better performance over joint distribution adaptation according to
Jiang et al.76 where the marginal and conditional distributions are
considered. An earlier article77 combined simple classifiers with
these features, resulting in an improved accuracy.

Orthogonal representation of a signal often provides significant
information on domain distribution of a dataset. A kernel PCA based
approach with XGBoost classifier resulted in enhanced the accuracy,
the sensitivity, and the specificity of gas sensor when recognizing
different lung cancer stages.78 Apart from PCA and orthogonal
projection, projection on convex set showed improved performance
while combining with extreme machine learning approaches to
achieve global calibration instead of local calibration.79,80

A recursive feature elimination-based approach was proposed in
a prior article81 to extract critical features that compensates small
scale drifting. PCA can also be used for feature reduction
purposes.82

Wozniak et al.83 utilized Fast Fourier Transform (FFT) to extract
features from the frequency domain of the sensor signal via a simple
regression model. In another study, Discrete Fourier Transform
(DFT) analysis was utilized to observe the H2S gas absorption with
respect to the doping of osmium.84 A wavelet packet decomposition
algorithm was adopted in another study85 for no load data decom-
position to correct the drifting effect over time. Similar approach of
sample test time window (SMTW)86 successfully rectified long term
drift component from the gas sensor dataset. A Wasserstein Distance
Learned Feature Representations (WDLFR) was proposed in another
study87 to optimize the Wasserstein distance instead of Euclidean
distance for domain invariant feature extraction in noise and drift
affected gas sensor dataset.

Features sometimes need to be reshaped for data analysis. Instead
of using 1D sensor signal data, an augmentation was incorporated88

to make the sensor signal compatible with the 3D input feature space
of a conventional convolutional neural network (CNN) as illustrated
in Fig. 3. A deep recurrent neural network illustrated by Wang et
al.89 derived extreme non-linear features of drift contaminated gas
sensors without incorporating any further formulations. Most of
these complex models can use the original sensor data directly and
learn latent information about the sensor data.

Signal denosing applications.—Denoising is an integral part of
signal pre-processing for many sensing applications. Noise in the
sensor data often cause false predictions. There are two types of
noises: random and systematic. Random noise in sensor signals is
inevitable and need transformational algorithms to change the initial
domain of dataset into another (such as time domain to frequency
domain) for better estimation. The systematic errors can be caused
by drift or, shift and require recalibration of the sensor, which is both
time consuming and expensive. Researchers are working on different
techniques to reduce in gas sensor dataset,35,90 which will be
demonstrated later in this section.
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Zhifang et al. categorized interference in E-nose sensors into two
types.35 Interference caused by the operating condition of the sensor,
such as sudden environmental change, carrier gas, and dynamic
interference. Another type includes system effect which refers to the
change in sensor characteristics due to drift, hardware failure etc.
These interferences are non-linear in nature, which makes it difficult
to suppress. Mojtaba et al. implemented a MANOVA based
statistical approach to track the significance among independent
features, to learn if a dataset needs baseline correction due noise.91

Discrete wavelet based tranformations (DWT) are popular in
removing baseline noise. DWT was illustrated in a article by Shen
et al. in a gas detection system for baseline correction92 and by
Wijaya et al. in beef quality monitoring application.93 The same
author, in a later article, proposed a variant of discrete wavelet
transform combining with long short term memory (LSTM), which
utilizes the inherent features of the sequence of reading from an E-
nose sensor.94 LSTM was employed by Wang et al. with CNN to
reduce noise.95 Yang et al. showed that by optimizing the K values
while using K-means clustering could achieve significant noise
reduction.96

Another popular algorithm to eliminate noise from gas sensor
dataset is the moving averge method. The algorithm was imple-
mented by Ima et al. to suppress noise.97 Another article, by Albert
et al. also used moving average technique for noise cancellation.98

PCA was utilized to reduce noise while random tree was used for
mixed gas classification by Yonghui et al.99 Morati et al. imple-
mented PCA for noise reduction for single MOX gas sensor.100

Alongside a filtering algorithm, Liu et al. proposed a PCA based
squared prediction error technique to eliminate random noise
classified as outliers.101 Jianyou et al. proposed a sparse optimization
algorithm for removing the coupling noise in a distributed acoustic
sensing (DAS) system.102 Maximum independence of concentration
features was calculated to reduce the inter-concentration discrepancy
of distribution thereby improving the noise influence on the
dataset.75 Chao et al. employed systematic and measurement noise
inside a Kalman filter equation, which was successful in reducing
overall noise, hence increasing the signal to noise ratio.103 A CNN
based denoising autoencoder technique showed significant efficiency
in noise removal.104 Zhifang et al.41 showed a sparse reconstruction
using domain transfer technique to eliminate noise resulting in
increased gas sensor performance.

Model based algorithms.—Model based algorithms have now
become an eminent tool for decision making in many unforeseen and
unprecedented circumstances observed in real time gas sensor
applications. There exist different types of modeling approaches
according to the data availability, performance, level of complexity,
and usability. Based on the learning pattern, the model-based
algorithms have been primarily divided into supervised and un-
supervised learning.

Supervised approaches.—Supervised learning refers to the tech-
nique of learning internal structure of the features with the help of
labels. They are getting popular due to the increased availability of
labeled data.

In many gas sensing applications, supervised learning methods
showed tremendous success in improving the performance, robust-
ness, and device reliability.105 Different supervised algorithms such
as support vector machine (SVM), random forest, XGBoost, K-
nearest neighbor (KNN), different neural networks are widely being
implemented to address challenges like drifting, fault detection,
calibration, and classification etc.106–110 Models like SVM and KNN
provide expected performance in online active learning applications
even when encountering sensor drifting challenges.59,111

Matthews et al.61 described a non-linear classification approach
implementing an active and transfer sampling method for low cost
SnO2 based semiconducting gas sensors. While using 75% of the
total dataset which is 1,35,000, this approach achieved accuracy
above 90% with Radial Basis Function (RBF) based SVM. Shu et
al.68 described a random forest regression algorithm to compensate
drift of gas sensors. An online inertial learning enabled SVM
classifier was proposed in an article112 where for each sample, the
training model is poised to change in a short amount of time, making
it conducive for real world applications. In another study, XGBoost
facilitated better results compared to SVM when combining kernel
PCA based feature extraction.78 In lung cancer diagnosis
application,113 random forest with 5-fold cross- validation provided
good accuracy over logistic regression with an accuracy of 85.38%
and 0.87 area under the curve (AUC). KNN provided promising
results (when integrated with enhance feature selection algorithms)
with an increased accuracy up to 97.5% in a drifted E-nose dataset.76

It was used alongside balanced distribution adaptation (BDA)
optimization of features. In another study, KNN showed promising
result in determining the perishable quality of shrimp when used
with softmax regressor.114

A domain transfer-based algorithm was described in a prior
study115 where the feature level and the decision level information of
the training data was utilized using joint distribution adaptation
mechanism. Another domain transfer-based approach proposed by
Liang et al.41 utilized external factor interference suppression in
classifying gases. A feature transfer-based algorithm was proposed
in another article116 to increase accuracy for drifted E-nose sensors.
A joint distribution adaptation-based algorithm was demonstrated in
another study77 where KNN was implemented after minimizing the
maximum mean discrepancy (MMD) among features. The study
showed an accuracy of 97.29% for some of the batches. Another
study that employed MMD117 where the combination of manifold
learning and domain adaptation was used to increase performance of
the classifiers resulting in the reduction of the long- and short-term
drifting of gas sensors. To eliminate domain discrepancy, Zhengkun
et al.82 proposed an approach of aligning source and target domain

Figure 3. E-nose data transformation for augmented convolutional neural network.88
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distribution, which showed an average accuracy of 66.05% in gas
classification.

The domain adaptation-based algorithm described in prior
articles33,118,119 was based on optimal subspace selection for each
dataset to achieve better accuracy. Yi et al.120 proposed another
approach of neighborhood preservation using two novel terms:
intraclass and interclass distance. After optimizing the distance
among different classes, the resulting features showed enhanced
performance when using a regular classifier to classify drifted gas
sensor dataset.

The idea of the intra class and inter class distance analysis
between features is gaining popularity due to their ability to model
performance enhancement. The authors from the previous article121

proposed a similar idea where the mean distance between samples
was optimized prior classification. This approach showed promising
results in drift affected sensors with an average accuracy of 76.31%.
A Time-Wasserstein dynamic distribution alignment algorithm was
proposed in an article122 for learning the feature distribution
dynamically in time domain thus minimizing the distribution
discrepancy in drifting sensors.

Ensembling techniques provide better performance when com-
pared to standalone models with a single classifier.123,124 An
ensemble technique was proposed in a previous study67 and
evaluated considering the F-measure and mean squared error
(MSE), where MSE was found to be less than 0.001 for different
classifiers. An ensemble tree mechanism was adopted prior125 for
overcoming delayed response of models incorporating only the
transient feature of the sensor. This method achieved an overall
accuracy of 87.34%. A similar type of ensemble technique was
found in an earlier article126 where a small number of labeled
samples was required for training to achieve the desired accuracy. A
2D Convolutional Neural Network (CNN) based ensemble technique
showed significant accuracy with drifted dataset as demonstrated in a
prior article.127 The study claims of an accuracy of 91%. Ensemble
techniques can perform better with generalized neural network.128 A
multi-dimensional CNN ensembling technique was adopted by
Chaudhri et al.129 which outperformed simpler classifiers such as
SVM providing a robust classification for drifted gas sensors. A
decision level drift compensation scheme was proposed by Tian et
al.130 where a unified classification model was implemented in-
corporating a Gaussian deep belief classification network.

Feng et al.88 proposed an augmented CNN modeling approach
where a feedback network updates the base model with necessary
adjustment in case of drifted dataset. Another CNN model with 10
layers was proposed in a prior study131 for volatile organic
compound (VOC) detection which achieved promising results with
minimized root mean squared error (RMSE). For specific elimina-
tion of the effect of temperature and humidity in sensor signal, a
deep back propagation neural network was proposed in a prior
study132 where 14 hidden layers have been used and optimized for
analyte classification. A novel memory mechanism was proposed to
address sensor drift in gas sensing applications133 where a simple
feedback algorithm has been utilized to let the model learn about the
deviation and thus calibrate the model parameters. A multilayered
perceptron SimResNet-9 was implemented in another article134

which improved accuracy of the model from 88.0% to 93.7%. A
hybrid KNN-ANN network proposed in a prior study135 that
achieved 96.51% of accuracy for drifted gas sensor data classifica-
tion.

For detecting fault in the sensor systems, Tan et al.136 employed
Naive Bayes and probabilistic neural network (PNN) to monitor and
classify faulty sensors and systems. Chaudhuri et al.137 proposed an
attention based gated recurrent unit (GRU) modeling for drift
compensation in gas sensors. The use of the model increased the
average accuracy to 93% for drift affected dataset. Using specific
concentrations from the target, Cheng et al.138 demonstrated an
algorithm to compensate drift from a time varying dataset.

Liu et al.75 proposed a concentration independent drift compen-
sation approach utilizing transfer learning technique with an average

accuracy of 76.17%. A short-term memory and SVM incorporated
ensemble technique was mentioned in an earlier article.139 The
results showed an average accuracy upto 89.3% for a time series
drift affected dataset of an E-nose system.

Apart from classification, some applications need regression
models where the concentration of a particular gas needs to be
measured. Partial Least Squared (PLS) algorithm has been used in
many applications for fast and accurate prediction.140 Wozniak et
al.83 proposed a simple PLS regression model which provided as low
RMSE (7.34) toward estimating gas concentrations. Another study
adopting PLS with domain adaptation showed reduced relative
standard deviation of the sensor signals ranging between 91.5%
and 99.7% depending on long or, short sequences.141 PLS was also
used in another study142 for recognizing volatile organic gases.
Zhang et al.143 proposed a target domain free approach which
provided promising results without incorporating the data from the
unknown target domain (Fig. 4).

According to the Fig. 4, the technique converts raw input data to
a stream of sensor delimited data which enters into multiple
convoluting blocks to extract inherent features, then ensembles the
features for gas prediction. Wang et al.144 proposed a domain
reconstruction-based approach to suppress drifting effect of gas
sensors which achieved 86.88% of average accuracy without any
target domain dataset for the training.

Unsupervised approaches.—The main drawback of supervised
learning is the need for a lot of labeled data. It is practically hard to
have enough labeled data for supervised learning as it becomes
expensive to collect and label gas sensor data manually.
Unsupervised and semi-supervised learning approaches are gaining
popularity in recent years.

Different optimization algorithms based on natural phenomena
such as particle swarm, ant colony, genetic algorithm is showing
significant performance with scarcity or absence of a labeled dataset.

A fuzzy clustering approach was proposed earlier145 to eradicate
the overlapping problem of clusters while differentiating aromatic
and non- aromatic rice (Fig. 5). A semi-supervised classifier was
proposed earlier66 where a novel feature selection approach was
utilized to better sensor performance. Another study60 showed that
the average accuracy of active learning on adaptive confidence rule
was greater than the conventional supervised and semi-supervised
approaches. Further, semi-supervised approach for drift rectification
of gases was proposed in an earlier study146 which could classify
unlabeled samples collected real time.

Rehman et al.73 described such an approach where a discrete
particle swarm optimization (PSO) technique was utilized. PSO can
be found alongside with many feature augmenting and optimization
algorithms for increasing the performance of different classifiers and
regressors.76 Another study147 provided evidence of efficient para-
meter correction using PSO for practical unsupervised drift com-
pensation of gas sensors.

Another PSO based recursive metaheuristic optimization tech-
nique was proposed prior148 for anti-drift feature selection thus
increasing the performance of simple classifiers such as random
forest.

It is often difficult to obtain enough data to calibrate gas sensors
over time. To minimize the cost of the system, a correlation-based
approach was proposed by Maho et al.149 where the sensors were
calibrated blindly without the aid of any data. Yan et al.40 proposed a
PSO based subspace alignment method of classifying gas sensor data
with an average accuracy of 90.07% using an existing gas sensor
drift dataset. Ouqamra et al.150 described a blind source feature
separation framework that can eliminate baseline drifts as well as
mixed noises without actual labeled data.

A hybrid pattern recognition model based on PCA and K-means
clustering was proposed in another study151 for explosive detection.
An example of deep reinforcement learning was reported in a prior
study152 where a deep Q-network was used to self-calibrate the
sensors of a remote system. Genetic algorithm is also getting popular
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toward feature selection for fast and reliable decision-making.124 In
Table I, a collection of different data-driven studies to address gas
sensor challenges and their performance metrics is illustrated.

Evolution of Managerial Tools

Critical tasks for any data-oriented system are to properly
control, calibrate, segment, visualize, and direct the flow of the
raw data gathered from the gas sensors online and offline.

Interface design.—With the rapid advancement of graphical
user interface, it has become necessary to improve the visualization
and ease of control in gas sensing systems. Many studies adopted
feature reduction processes prior to visualizing signal data as it
is hard to demonstrate the distribution of features. Researchers
explore different correlation and component selection-based ap-
proaches such as principal component analysis, exponential trans-
formations, and variance calculation for better visualization of

features.40,41,48,118,121 In many real-time applications, E-noses are
used with proper visualization tools.153–155

Debabhuti et al.156 developed a graphical user interface (GUI) for
Quartz crystal Microbalance sensors and implemented in a
Raspberry Pi module. A GUI with interactive control and visualiza-
tion system was developed by Djelouat et al.30 which can also
analyze the responses and display the extracted features of the gas
sensor system real time. To learn different features from the data
distribution, Liu et al.29 developed a data visualization-based
approach, where CNN was utilized to extract small scale visual
features from different graphs automatically instead of manual
calculations.

A user interface for fast and reliable response-recovery analysis
was developed earlier157 which analyzed 8 samples of data from gas
sensors simultaneously and provide result instantaneously. PyQt
library alongside with NumPy, SciPy, Pandas, Matplotlib libraries
were used to develop this graphical user interface (Fig. 6).

Figure 4. Example of an augmented ensemble classifier from Ref. 143.
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A simulator was developed in a prior investigation158 to identify
faulty sensors using sensor validity index. Again, Bastuck et al.28

designed a Matlab toolbox to extract different features from cyclic
sensor data with a GUI. The toolbox can also be used for different
data driven operations such as exhaustive parameter search, auto-
matic data fusion and model hierarchies (Fig. 7). A mobile
application of e-nose was found in another study18 where a simple
threshold-based algorithm is employed with a GUI interface to
detect victims in hazardous area in real time.

Dataflow system.—Dataflow is one of the most important areas
of a gas sensor system design. Real-time data transformation, drift
compensation, calibration and analysis often lead to trade off in
performance over time required for a selected algorithm for a
definite application. Liu et al.59 implemented SVM and KNN based
models for online active learning applications. The performance of
such systems can be increased by extracting as much information as
possible from the raw dataset. Rehman et al.73 provided such an

approach where cosine similarity was utilized to minimize the
learning time and memory usage of an online system. Active
sampling showed promising outcome in online instance selection
for increased sensor system performance.61

An unsupervised approach was described in an earlier article66

for online applications where fault or high-level noise can risk the
performance of the sensor system. Rehman et al.125 provided a faster
approach by considering less features than usual to maintain high
accuracy. The multiclassifier tree model showed significant robust-
ness in handling drifted data. Active sampling provides promising
results than passive sampling for online drift calibration according to
Liu et al.63 Universal calibration of the system was achieved in an
earlier article79 by using projection on to convex set (POCS) and
extreme learning machine (ELM). To properly track the air quality, a
stochastic model was proposed earlier27 that illustrates the beha-
vioral pattern of Graphene-based electrochemical gas sensors by
simulating specially mapped sensor data related to the microscopic
features of a material. For self-calibration of Internet of things (IoT)

Figure 5. Fuzzy partitionings of non-aromatic rice samples and related membership diagrams for different fuzzifier values: (a) f = 1.1, (b) f = 1.5, (c) f = 2.0,
(d) f = 3.0, (e) f = 4.0, and (f) f = 5.0.145
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based sensor systems, the hidden Markov model was used for
characterization of a single sensor.159 You et al.152 proposed a
complete scheme of calibrating IoT gas sensors which eradicates the
Markov decision process problem by utilizing a deep Q-network. To
suppress faulty sensor data from inserting to the classifier, Magna et
al.160 proposed a self-repairing scheme, where the faulty sensor will
be replaced by a replica to increase the consistency of model
performance. An ultrafast algorithm based on opto-E-noses was
proposed in a prior study161 to detect infectious bacteria in metallic
nanoparticles. A deep CNN model was employed for real time gas
identification with E-nose sensors in a prior study.162 Another CNN
based approach for real-time gas classification can be found in an
earlier article163 with 100% accuracy.

Remote management and automation.—The importance of gas
sensors cannot be emphasized more where direct human interaction
in hazardous conditions is not possible. For such applications, it is
important to manage and control the systems remotely.

Tan et al.136 provided a data driven automatic fault detection and
classification scheme utilizing naive bayes and probabilistic neural
network. To prevent hazardous gas leakage, a monitoring system
employed with an adjoint probabilistic algorithm was proposed by
Zhou et al.164 where the response time of the gas monitoring sensors
was used to estimate the gas leakage point of a system. In the
underground coal mining system, it is necessary to monitor harmful,
combustible, and noxious gases for the safety of the workers. Instead

of using fuzzy, rule-based statistical approaches which are inefficient
in complex scenario, Sharma et al. and Pareek et al.165,166 ap-
proached with 1-D CNN models powered by Dempster Shafer
evidence theory that seem to perform in accuracy and the number of
training parameters. A multilayer perceptual neural network model
was used for natural gas monitoring application by an array of
infrared sensors earlier.167 To monitor NO2 in air, Laref et al.168

proposed an approach of calibration transfer to reduce the long-term
drift of the sensors. Targeting continuous monitoring of ambient air
quality, Bax et al.69 proposed an approach of removing all the
uncorrelated features from the feature vector using orthogonal signal
correction based method. Unsupervised approaches are more sui-
table for online monitoring and classification as they do not require
labeled dataset. A smartphone based remote management and basic
data manipulation from a wireless sensor has been proposed by
Alexander et al.169

Prior articles80,146 provided such algorithms which can coun-
teract drifting of sensors employing a semi-supervised approach. A
2-D CNN was implemented for fast and accurate online classifica-
tion of drifted sensors ensuring 91% accuracy.127 A genetic
algorithm-based feature optimization enabled fast ensemble classi-
fier was proposed by Manna et al.124 A novel energy efficient
additive neural network-based leakage detection system assisted by
generative adversarial network was proposed earlier170,171 which
performs better with consistency than regular and convolutional
neural networks. Another study to determine and eliminate sensor

Table I. Performance study of different data-driven techniques in gas sensing technology.

Algorithms Applications Performance matrics References

SVM Drift compensation, Classification Accuracy: 89.98%–96.62% 59, 61
XGBoost Classification Accuracy: 96.62%, Sensitivity: 95.60%, Specificity: 91.09% 61, 78
Random forest Classification Accuracy: 85.38%, AUC: 0.87 113
KNN Drift compensation Accuracy: 80.74%–97.5% 59, 65, 76,

114
CDC Drift compensation Avg accuracy: 91.85% 138
KNN-ANN Drift suppressed classification Accuracy: 96.51% 135
GDBCN Drift compensation Avg accuracy: 73.51% 130
PLS regressor Gas concentration prediction RMSE: 7.34 83, 176
AL-ISSMK Drift suppressed classification Avg accuracy: 74%–83.59% 62
OPLS Drift suppressed classification Accuracy: 91% 69
PLS-DA Drift suppressed feature augmentation Accuracy: 91% 141
AL-ACR Classification Avg accuracy: 66.60% 60
Domain transfer Drift and interference suppression Avg accuracy: 79.4%–95.92% 41, 77, 116
DANP and DANP+ Drift suppressed classification Avg accuracy: 77.83%–79.76% 120
TWDDA Drift suppressed classification Avg accuracy: 80.99%–92.44% 122
Multiclassifier ensemble Fast response classifier Avg accuracy: 87.34% 125, 126
LDSP Drift suppressed classification Avg accuracy: 76.31% 121
SAELM Drift suppressed classification Avg accuracy: 90.07% 40
ANN Classification Accuracy: 91.26% 61
CSFT-AELM Drift suppressed classification Avg accuracy: 92.44% 115
SSCA-DA Drift suppressed classification Avg accuracy: 86.54% 118
LME-CDSL Drift suppressed classification Avg accuracy: 70.95%–73.96% 117
PNN Fault classification Accuracy: 83.05%–99.89% 136
ACNN Drift compensation Accuracy increased over 30% worst case 88
MLPNN Gas concentration estimation Error decreased 7%–19% worst case 167
1d CNN Hazard monitoring and classification Accuracy: 99.6% 165, 166
2d CNN Online drift suppressed classification Accuracy: 91% 127
Deep CNN Real-time classification Accuracy: 98.1% 162
CNN ensemble Classification Accuracy: 99.72% 129
TDACNN Drift suppressed classification Avg accuracy: 81.48% 143
CGDA Drift suppressed classification Avg accuracy: 93% 137
PSO Drift compensation Accuracy: 86.01% 73
WWH-SSO Online drift suppressed classification Avg accuracy: 78.03% 146
LSTM-SVM ensemble Drift suppressed classification Avg accuracy: 89.3% 139
WDLRF Feature extraction Avg accuracy: 82.55% 87
SFLO-TSCS Feature extraction and classification Avg accuracy: 91.34% 74
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Figure 6. Graphical User Interface showing the main menu and plot area.157

Figure 7. Preprocessing module showing the quasistatic (a) and cyclic (b) view of the preprocessed data, with pale raw data in the background for comparison.28
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Table II. Data enabled techniques of different sectors in gas sensing technology.

Sector of implementation Applications Algorithms References

Feature oriented systems
Attributes and instance selection Fast response applications and

data imbalance reduction
KNN, QBC, ACO, PCA 37, 66, 58.–65., 67.–70.

Data manipulation Model compatibility and latent
feature extraction of data

Cosine similarity, correlation analysis, PCA, FFT,
Wavelet transform, augmented CNN, and RNN

40, 41, 48, 65, 71–89

Signal denoising applications Signal to noise ratio improve-
ment, outlier reduction, noise
cancellation

MANOVA, DWT, CNN-LSTM, PCA, Sparse opti-
mization

41, 75, 91–104

Model based algorithms
Supervised learning Classification, regression, drift

compensation, and fault detec-
tion

SVM, KNN, RF, XGBoost, PLS, BDA, MMD
optimization, domain transfer, classifier ensem-
bling, ANN, CNN, GRU

33, 41, 59, 61, 67, 68, 75–78, 82, 83, 88,
105–139, 143, 140–142, 144

Unsupervised learning Classification, regression, cali-
bration, and drift compensation

PSO, GA, ACO, semi-supervised learning, K-means
clustering, Q-network

40, 60, 66, 73, 76, 124, 145–152

Managerial systems
Interface design Control and visualization PyQt, Python, Matlab 18, 29, 30, 40, 41, 48, 118, 121, 157, 153–156, 158
Dataflow systems Fast classification, self-calibra-

tion and proper sampling
SVM, KNN, POCS, ELM, CNN, Reinforcement
learning 27, 66, 59, 61, 63, 73, 79, 125, 162, 152,

159–161, 163
Remote management and auto-

mation
Mobile system development and
fault management

SVM, KNN, 1d CNN, PLSR
69, 80, 103, 124, 127, 136, 176, 167, 165, 166,
146, 164, 168–175
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failure effect from the system was described in a report172 where
KNN, decision tree and linear discriminant analysis was used for
food quality assessment. E-nose devices are being used in many
quality assessment applications.173

A simulation based stochastic model was developed by Schober
et al.174 to properly screen sensor failures. A smartphone-based meat
quality inspection system was proposed earlier175 by tracking CO2.
In another study, a light-weight portable E-nose was developed with
Partial Least Square Regression (PLSR) based classifier for waste-
water treatment plant. The study implemented a GUI that illustrates
different measurements as well as the sensor condition and real time
imaging of the sensor location.176 A fast two-stage method for drift
suppressed learning was proposed earlier103 where one stage extracts
the linear information such as temperature change and time series
information from the dataset and another stage constantly makes
decision based on the linear parameters extracted from the previous
stage.

Future Prospects

The evolution of algorithms in recent years have provided
numerous opportunities in designing efficient odor sensing systems.
E-noses are currently being used to diagnose different chronic
diseases such as cancer, diabetes, and halitosis where data analysis
helps to distinguish the suitable biomarkers for better pattern
recognition.177 On the other hand, it is important to have better
gas recognition ability with as small amount of data as possible to
minimize the overall expense of a chemical sensor system.44

Although recent deep learning based complex machine learning

algorithms have provided improved results, they often require
extensive amount of data. Moreover, the complexity and depth of
the models are inversely proportional to the processing time.
Different algorithms like elastic net (Enet), region based CNN (R-
CNN), YOLO (you only look once) and their faster variants was
developed recently, which can improve the processing time
significantly.178–181 On the other hand, different activation and
ensembling approaches such as eLU, ReLU, linear discriminant
analysis (LDA), locality preserving projection (LPP) and other
neighborhood based methods have increased the convergence
performance, even with smaller dataset.

Multi-modality of a gas sensing system often leads to the aging
of sensors. Different evolutionary and metaheuristic algorithms can
ensure efficient analysis of such systems providing increased life-
time of the gas sensors.182–184

In many sophisticated applications such as military, nuclear
energy research and space aviation, it is critical to have energy
efficient and fast response algorithms.159,185,186 The demand of
such advanced algorithms in the field of gas sensing system is
becoming a necessity. Table II summarizes the different data
enabled techniques to address gas sensor challenges and the
corresponding algorithms. Figure 8 illustrates the article distribu-
tion in accordance with the research domains of data driven
analogies in gas sensing technology.

Conclusions

Malfunctioning of gas sensors can be devastating resulting in
accidents, inaccurate decision making, and loss of revenue. The need

Figure 8. The reviewed articles’ distribution according to the field of study.
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for a smart gas sensing system cannot be overstated. It is critical to
employ modern data analysis for building smart gas sensing systems.
Due to specific atomic and chemical structure of the active materials
used in any gas sensor, it has been a challenge to detect a range of
gases with one single device, making E-noses popular. E-nose
sensors are getting complex. It is critical to maintain the sensors
as well as analyze the raw data to make meaningful inferences.
Moreover, the size of factors that affect the sensor performance have
become enormous requiring the use of modern data analysis
techniques and management tools. For an automated gas sensor
system design, it is critical to select the parameters of the sensor
system carefully. From data collection to modeling, every aspect
needs to be in place to obtain intended performance out of the
system.

Numerous machine learning and statistical analysis based algo-
rithms have been proposed for data enabled sensor systems.
However, they cannot be directly implemented in gas sensing
applications given the complexity and interdisciplinary nature of
gas sensor research. Again, there exist many modeling and feature
extraction techniques independently, but there is a lack of holistic
sensor system design with data collection, visualization, feature
extraction and selection, failure detection and drift compensation
with qualitative and quantitative analysis of gas sensors. This article
acts as guide to develop an automated gas sensor system with the
above-mentioned features. With extensive elaboration and structured
way of presenting the cutting-edge research performed during the
past years, this mini-review provided an overall view on the
utilization of modern data enabled technologies in gas sensor
applications.
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