PuMer: Pruning and Merging Tokens for Efficient Vision Language Models

Qingqing Cao

Bhargavi Paranjape

Hannaneh Hajishirzi

{gicao,bparan, hannaneh}lcs.washington.edu
University of Washington

Abstract

Large-scale vision language (VL) models use
Transformers to perform cross-modal interac-
tions between the input text and image. These
cross-modal interactions are computationally
expensive and memory-intensive due to the
quadratic complexity of processing the input
image and text. We present PuMer!: a token
reduction framework that uses text-informed
Pruning and modality-aware Merging strate-
gies to progressively reduce the tokens of in-
put image and text, improving model inference
speed and reducing memory footprint. PuMer
learns to keep salient image tokens related to
the input text and merges similar textual and
visual tokens by adding lightweight token re-
ducer modules at several cross-modal layers in
the VL model. Training PuMer is mostly the
same as finetuning the original VL model but
faster. Our evaluation for two vision language
models on four downstream VL tasks shows
PuMer increases inference throughput by up to
2x and reduces memory footprint by over 50%
while incurring less than a 1% accuracy drop. 2

1 Introduction

Large-scale vision language models (Dou et al.,
2022; Wang et al., 2022; Zeng et al., 2021; Kim
etal., 2021; Wang et al., 2021; Zhang et al., 2021)
have shown substantial progress on many vision
language tasks such as visual question answer-
ing, natural language visual reasoning, and vi-
sual entailment. However, state-of-the-art lan-
guage and vision models are memory intensive
and computationally expensive because they use
multi-layer self-attention between many language
and vision input tokens (small image patches) with
quadratic complexity. This inefficiency limits high-
throughput cloud deployments and makes it infea-
sible to run on resource-constrained devices.
"Pronounced as “puma”

2Code is available at
csarron/PuMer.

https://github.com/

’{'h 1 How many people are playing?§

“. wﬁt'

g }‘ | P R — Four
8- o BVEE
Prune Q a
Merge 2

Figure 1: PuMer applies token reduction to VL models
via pruning and merging. PuMer makes VL models run
faster by text-informed image pruning to remove text-
irrelevant image tokens and modality-aware merging to
compress similar input tokens.

The key source of inefficiency in deep VL mod-
els is that these models need to process the entire
input image and text tokens over all the layers. Our
intuition is that the input image contains redundant
information and only parts of the image (salient
regions, referred by the text) are required and re-
lated to the end task. For example, in Figure 1,
most of the image content (the four persons, field)
is not needed except for the bottom-center soccer
region to answer the visual question “What sport
are they playing?”. This paper advocates using the
correlations between image and text modalities to
reduce tokens for VL problems.

In the vision-only or text-only domains, re-
searchers have shown that reducing image or text
tokens can improve the model computational com-
plexity through pruning (Liang et al., 2021; Rao
et al., 2021; Yin et al., 2022; Marin et al., 2021;
Goyal et al., 2020) that learns to remove non-salient
image or text tokens for a given task; or merging
(Bolya et al., 2022; Xu et al., 2022; Ryoo et al.,
2021) that groups semantically similar tokens. Us-
ing either reduction method in isolation is not suf-
ficient for a VL problem setting since i) salient
image tokens are different given different text in-
puts, ii) pruning alone causes big information loss,
hurting the performance, iii) merging tokens irre-
spective of their modality confuses the VL models
since text and image token representations cannot

12890

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12890-12903
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/csarron/PuMer
https://github.com/csarron/PuMer

be perfectly aligned to the same semantic space. In
this paper, we design a lightweight and effective
framework that integrates these token reduction
strategies into VL models.

We introduce PuMer, a token reduction frame-
work that consists of Pruning-and-Merging oper-
ations to gradually reduce image tokens that are
not related to text and merge image and text to-
kens respective to their modality. In particular,
we design (i) text-informed image token pruning
to remove image tokens that are irrelevant to text
and are unimportant to the VL task predictions (re-
moving tokens that describe persons and field for
the second question in the Figure 1 example); (ii)
modality-aware token merging to merge semanti-
cally redundant tokens for text and image tokens
modality independently (combining the image to-
kens describing each person for the first question
in Figure 1). We keep the remaining tokens that are
neither pruned nor merged. At the core of PuMer
is a set of lightweight non-parametric token reduc-
ers that decide which image tokens are pruned and
merged as the VL. model forward computation pro-
ceeds. To reduce abrupt image information loss and
improve computational efficiency, we scatter the
token reducers at different cross-modal layers in
the VL model and reduce the tokens in a cascaded
fashion. Fewer tokens are pruned and merged in
earlier layers.

PuMer is easy to train since the token reducers
contain no parameters and add little overhead. The
training procedure is almost the same as finetun-
ing the original VL models, except that we add
a knowledge distillation loss that further reduces
the accuracy gap compared to finetuned models.
Though we focus on inference efficiency, PuMer
makes VL models run faster for both training and
inference because text and image tokens are re-
duced in the forward computation.

We evaluate PuMer over two recent VL models
ViLT (Kim et al., 2021) and METER (Dou et al.,
2022) across five vision language tasks: text-image
retrieval tasks (including image-to-text and text-to-
image retrieval) (Plummer et al., 2015), visual ques-
tion answering (VQAv2; Goyal et al. 2017), natu-
ral language visual reasoning (NLVR2; Suhr et al.
2019), and visual entailment (SNLI-VE; Xie et al.
2019). Compared to baselines, PuMer improves
the model inference throughput by 1.7x~2.1x and
reduces memory footprint by 38 % ~50% with min-
imal (less than 1%) accuracy loss. Our analysis

validates that both text-informed image pruning
and modality-aware token merging contribute to
the token reduction effectiveness of PuMer.

2 Related work

Token Reduction in NLP and Vision. Prior
work in data pruning (Rao et al., 2021; Yin et al.,
2022; Liang et al., 2021; Goyal et al., 2020) focus
on single-modality models by either pruning input
text or image alone. DynamicViT (Rao et al., 2021)
and A-ViT (Yin et al., 2022) both progressively re-
move the uninformative content and keep salient
regions in the input image. This type of pruning
does not apply to language and vision tasks where
the salient regions depend on the input text. Our
work shows different input texts lead to pruning
different image regions even for the same input
image. POWER-BERT (Goyal et al., 2020) speeds
up the inference of text-based Transformers like
BERT (Devlin et al., 2019) by removing the input
text tokens, which are not the main computation
bottlenecks for most vision and language tasks.

Another line of work seeks to reduce input to-
kens by merging tokens. SPViT (Kong et al., 2022)
and EViT (Liang et al., 2021) select uninforma-
tive image tokens and combine them into one to-
ken. And EVIT also requires expensive pretraining.
GroupViT (Xu et al., 2022) combines image to-
kens via cross-attention to find similar objects for
semantic segmentation. Recently, ToMe (Bolya
et al., 2022), TokenLearner (Ryoo et al., 2021) and
TokenPooling (Marin et al., 2021) combine tokens
without pruning and achieves better speedup versus
accuracy trade-offs.

Our method is inspired by token pruning and
merging works but integrates them into a token re-
duction framework suitable for VL. models. Our
key difference is to leverage the relationships be-
tween textual and visual tokens to remove and com-
bine tokens. Our experiments (Section 5) show
improvements over these lines of work.

Efficient Vision Language Models. Many tech-
niques have focused on model pruning (Lagunas
et al., 2021; Yu and Wu, 2021; Yuet al., 2022; TPr),
dynamic computation by early exiting (Xin et al.,
2020; Zhou et al., 2020; Schwartz et al., 2020; Liu
et al., 2020; Cao et al., 2022) or designing small
and efficient VL models (Fang et al., 2021; Wang
et al., 2020). Combining these orthogonal opti-
mizations with our token reduction method could
further accelerate the inference in VL models.

12891

3 Background and Overview

Vision Language Models. Figure 2 shows the
backbone of a VL model consisting of a text en-
coder, an image encoder, and a cross-modal en-
coder. The input sentence (e.g. a question or a
statement) is first tokenized as text tokens and fed
to the text encoder to create contextualized text rep-
resentations. Similarly, the input image is projected
into many small image patches, referred to as “im-
age tokens”, that are further contextualized by the
image encoder. Finally, the cross-modal encoder
takes the concatenated text and image tokens and
fuses information between image and text modal-
ities via Transformer-style (Vaswani et al., 2017)
cross-attention interactions.

Image Text Cross-Modal Encoder

Text Tokens, Image Tokens
Text Encoder

Image Encoder

Text tokens

what sport are they playing? fi Q !&éﬁ

Image Patches

Figure 2: General architecture of vision language mod-
els. The input image is projected into many small im-
age patches (“tokens”) that are processed by the image
encoder. The cross-modal attention between text and
image tokens has quadratic time complexity, which is
computationally expensive. Both VIiLT and METER
models follow this pattern.

For many VL tasks, the number of tokens of
the input image is an order of magnitude more
than that of the input text — a visual question can
have at most a dozen tokens but the associated
image consists of a hundred image tokens. For
example, for an image with a resolution of 384x384
and a patch size of 16, the number of tokens is
(384/16)% = 576.

Token Reduction for Efficiency. In this paper,
we focus on reducing image tokens to improve com-
putational efficiency of the model through pruning
and merging. However, naively removing a large
percentage of the image tokens inside the cross-
modal layers may cause abrupt image information
loss, as the VL model is trained to build represen-
tations of the full image for the downstream task.
For example, if the soccer region in Figure 1 gets
pruned, the VL model is unlikely to output the
answer “soccer” for the question “what sport are

they playing?”. On the other hand, simply merging
image tokens without text guidance can lead to sub-
optimal performance. For example, merging the
image regions of the background field and soccer
in Figure 1 does not contribute to answering the
visual question “how many people are playing?”.

The next section describes our text-informed to-
ken reduction approach. The basic building blocks
of PuMer are lightweight non-parametric token
reducers that reduce image and text tokens in a
cascaded manner to mitigate the information loss
and improve the computational efficiency of a VL
model.

4 PuMer: Text-Informed Token
Reduction Framework

Given a VL cross-modal encoder, PuMer progres-
sively reduces image tokens going through the
cross-modal encoder (depicted in Figure 3). PuMer
uses lightweight token reducers with no learnable
parameters, adding them in different layers of the
cross-modal encoder to predict which image tokens
are removed or merged.

Token Reducers. For an n-layer cross-modal en-
coder, after the first f (f < n) layers, a token
reducer first removes k% of the image tokens at
any layer ¢ between f and n guided by the text
information. The tokens removed in layer £ are not
used in subsequent layers. Then the token reducer
merges 7% and t% of the image and text tokens
respectively in layer £. We scatter the token re-
ducers across the cross-modal layers to achieve a
better accuracy and efficiency trade-off. Intuitively,
reducing at early layers in the cross-modal encoder
will have higher inference efficiency but may have
bigger performance loss and vice versa. We study
this trade-off in more detail in Section 6.2.

The token reduction algorithm is described
in Algorithm 1. Each token reducer consists
of two sequential non-parametric modules: first,
a text-informed pruner (TIP) prunes image to-
kens that are not related to the accompanying
text (Section 4.1); second, a modality-aware
merger (MAM) reduces tokens by merging simi-
lar tokens within the image or text modality (Sec-
tion 4.2). These two steps reduce the image and
text tokens to benefit the computational efficiency,
while not losing the accuracy. Note that if we only
apply text-informed pruning to the images with-
out merging, to achieve similar efficiency gains,
we need to set a larger pruning ratio which will

12892

what Cross-Modal Encoder

Text Token

they Encoder Reducer

layi Token

pere Reducer

M Prediction: soccer
p[liHEd pruned Classifier
IS Image : o=
8} Encoder
ﬁ Cross-Modal Layers
.
f@ Cross-Modal Layers

Figure 3: PuMer applies token reducers in the cross-modal layers of a VL model. Each token reducer is non-
parametric and uses text-informed pruning and modality-aware merging to reduce image and text tokens.

Algorithm 1 Token Reduction via Text-Informed Image Pruning and Modality-Aware Merging

Input: text token vectors T, text-to-image cross attention scores A, image token vectors V,
prune ratio k, image merge ratio r, text merge ratio ¢
Output: merged text token vectors T',,,, pruned and merged image token vectors V,,,

1. for image tokens V, compute text-saliency scores s using Eql; > text-informed image pruning
2: obtain indices idx of top-k’ items in score s, ¥’ = (1 — k)|V|; >k’ is the # of kept image tokens
3: select k' image tokens by the top-£’ indices, V,, = V[idz];
4: merge text tokens T by bipartite soft matching into T),, = bipartite_merge(T, t);
merge image tokens V), into V,,, = bipartite_merge(V,r) > modality-aware merging
procedure BIPARTITE_MERGE(input tokens: X, merge ratio: r)

divide tokens X into two sets of tokens O and E based on even and odd order
7: for each token O, in O, compute its top-1 similar token E; in E, save the indices a and b into
a token edge (an edge between O, and E;), save all token edges as P and corresponding
top-1 similarity scores S, > this can be implemented as a fast parallel operation
r’ = r|X|, obtain indices ind of top-r’ items in S, select top-r’ edges: P, = P[ind]
for each token edge (a, b) in P,., collect tokens from O and E, merge tokens in O and E that
are connected via edges (sharing the same token as a vertex node) into OE by computing
the average of each token vectors, gather O,..¢; and E,..4; from the rest (unmerged) indices.
output: merged tokens X,,, = gather(OE, Oycst, Erest)

SANA

10:

11: end procedure

hurt task performance due to substantial informa-
tion loss. Instead of dropping such information,
modality-aware merging helps alleviate informa-
tion loss by compressing semantically similar con-
tent into fewer tokens while still providing effi-
ciency benefits.

4.1 Text-Informed Image Pruning

The first step is to prune image tokens according
to their relevance to the text. The intuition is that
only some parts of the image are important for
the end language-vision task, hence removing the
text-irrelevant parts will not hurt the performance,
while it improves the computational efficiency. Un-

like previous works (Rao et al., 2021) that use extra
learnable parameters to predict which image tokens
to prune, we take a different but faster approach
without using any parameters. The key idea is to
use the text-to-image cross-attention scores’ that
are already available in the VL. model to compute
how important each image token is to the text. We
keep important image tokens and prune the rest.
Since this text-informed pruning also removes im-
age tokens during training, it trains faster* than
parameter-based pruning approaches like Rao et al.

3VL models use cross-attention to perform information
fusion between different modalities.
*We observe 15%~20% faster training speed in practice.

12893

(2021).

For each cross-modal layer £ where the token
reducer is applied, we denote the input text token
vectors as T, image token vectors as V, and text-
to-image cross-attention scores as A (computed in
the cross-attention layer that already exists in a VL
model). We first compute the text-saliency scores
s for every image token:

t=1 h=1

> Al M

IT\ H

where |T'| is the number of text tokens, H the num-
ber of attention heads, ¢t and v are the indices of
text and image tokens. This text-saliency score
for the image token is text-informed because each
value is summed over all text tokens, and an image
token with a bigger text-saliency score means it’s
attended more by the text and hence is more text-
relevant. Next, we keep top-k’ image tokens’ Vv,
according to their text-saliency score and discard
the remaining image tokens.

4.2 Modality-Aware Merging

Once text-irrelevant image tokens are pruned, the
remaining image tokens contain more text-salient
information but they might still be redundant. For
example, multiple image tokens describe the same
person in the Figure 1 image and their representa-
tions might be similar (their vector distances are
close). For the text modality, the token redundancy
still exists due to the self-attention contextualiza-
tion which progressively creates similar informa-
tion (Goyal et al., 2020). In practice, text tokens
are padded to max length for efficient training and
inference, these padding tokens also contribute to
redundancy.

In this section, we describe our modality-aware
merging approach to eliminate such redundancy. In
particular, our method merges semantically similar
image tokens V), into a single image token and
similar text tokens T into a single text token to fur-
ther reduce the number of tokens. We specifically
merge tokens within each modality, i.e., image to-
kens are merged with similar image tokens, and
text tokens are merged with similar text tokens.

To implement modality-aware merging, we need
to identify similar tokens and combine their infor-
mation in a lightweight way. Existing methods such
as k-means clustering (Marin et al., 2021), pool-
ing (Pietruszka et al., 2020; Nawrot et al., 2022),

Sk’ = (1 — k)| V| is the number of kept tokens

grouping (Xu et al., 2022) or learning-based (Ryoo
et al., 2021) cause non-negligible overhead and
slow down the VL model computation, instead, we
use the bipartite soft matching algorithm (Bolya
et al., 2022) to find similar tokens and combine
them in parallel.

Here, we explain the bipartite matching ap-
proach in more detail. Specifically, the inputs are
a set of token vectors X (can be V, or T) and a
merge ratio r, we form a bipartite graph by divid-
ing the nodes (tokens) into two disjoint sets (say E
and O) of equal size based on their order (even or
odd). Then, for each token in O, we find its most
similar token in E, and draw an edge between the
token pair (lines in the left figure in Figure 4). We
select the top-r’ edges® based on the similarity and
merge their corresponding (most similar) token in
E and O. Figure 4 shows an example of bipartite
matching. Since the self-attention in a VL. model
layer already has computed keys and values for
each token to measure similarity, following Bolya
et al. (2022), we compute the similarity as the dot
product S} = K, Ky, between the keys of each
token vector X;. We keep the rest non-top-r’ to-
kens in O, and unmerged tokens in E,¢s;. We
also describe this procedure in Algorithm 1.

Eiiﬂ Eﬁ

§ merged merged
i ‘%ﬁ Q ﬁ

Figure 4: Illustration of merging by bipartite match-
ing. In this example, there are 8 tokens, E consists
of token t1, t3, t5 and t7, O has to, t4, tg, tg. Assume
for t1,t3,t5, t7 in E, the most similar tokens in O are
ty, 4, ts, t respectively, and t3 —ty, t7 —tg, t5 —tg are
the edges (darker and thicker lines mean larger similar-
ity values) with top-r’ (v’ = 3) most similarity, then we
merge (t3,t4) into one token 4}, (¢s,t7,ts) into one
token t7,, and keep 1, t2, tg, in this case, we reduce
three (3/8=37.5%) tokens.

4.3 Training and Inference

Token reducers in PuMer contain no trainable pa-
rameters and can be incorporated into off-the-shelf
VL models without changing model architectures
for both training and inference. PuMer is easy to

67/ = ¢|X| is the number of merge tokens

12894

train and follows the same setup as finetuning orig-
inal VL models. To reduce the accuracy drop fur-
ther, we add a knowledge distillation (Hinton et al.,
2015) loss. During training and inference, PuMer
has three configurable hyperparameters (keep ra-
tio k, merge ratios 7, and ¢ for image and text) to
control the efficiency versus accuracy trade-offs.
Implementation Details. We set the pruning and
merging ratio in the range of 0.1 to 0.5 in 3 or 4
locations in cross-modal layers. The exact values
are in Appendix A.l. In Section 6.2, we study the
design choices for different reduction ratios and
reduction layer locations. More implementation
and training details are in Appendix A.1.

5 Evaluation Setup
5.1 Backbone Vision-Language Models

We evaluate PuMer for two different VL models:
ViLT (Kim et al., 2021) with 110 million parame-
ters and a state-of-the-art VL model, METER (Dou
et al., 2022) with 330 million parameters. We de-
note PuMer-ViLT and PuMer-METER as PuMer
applied for ViLT and METER respectively.

VILT is a recent efficient VL. model that uses
BERT (Devlin et al., 2019) embeddings to encode
text and a linear layer to project image patches.
ViLT then concatenates the text and image tokens
and uses a 12-layer Transformer encoder to per-
form the cross-modal fusion. ViLT is a relatively
lightweight model and has 110 million parameters.

METER is a state-of-the-art VL model that uses
RoBERTa (Liu et al., 2019) as the text encoder and
CLIP (Radford et al., 2021) as the image encoder,
and 12 BERT-like cross-attention layers to fuse
the text and image modalities. METER is a large
model and has 330 million parameters.

5.2 Evaluation Tasks

We evaluate the models on five vision-language
language tasks:

Image-Text Retrieval contains two subtasks:
image-to-text retrieval (IR) and text-to-image re-
trieval (TR). We finetune PuMer and evaluate on
the Flickr30K (Plummer et al., 2015).

Visual Question Answering (VQAv2) dataset
(Goyal et al., 2017) contains over 1 million diverse
open-ended questions about images both from the
MSCOCO (Lin et al., 2014) and real-world scenes.

Answering these questions requires an understand-
ing of vision, language, and commonsense knowl-
edge.

Visual Entailment (VE) (Xieetal.,2019)is a
visual inference task that consists of 570K sentence
image pairs constructed from the Stanford Natural
Language Inference corpus (Bowman et al., 2015)
and Flickr30k (Young et al., 2014). The goal is
to predict whether the image premise semantically
entails the text.

Natural Language for Visual Reasoning
(NLVR2) corpora (Suhr et al., 2019) have over
100K examples of linguistically diverse English
sentences written by humans and are grounded in
pairs of visually complex images. The goal is to
predict whether a sentence is true about two input
images.

5.3 Baselines

To compare the benefits of PuMer, we additionally
evaluate three baselines:

DynamicViT (Rao et al., 2021) designs several
prediction modules parameterized by MLPs to pre-
dict which image tokens to prune in vision trans-
formers (Dosovitskiy et al., 2020). For a fair com-
parison, we use the original DynamicViT config-
urations (pruning layers and ratios) for the ViLT
model.

ToMe (Bolya et al., 2022) uses token merging to
reduce the number of tokens in vision transformers.
We configure ToMe to make sure similar speedup
as PuMer and compare their accuracy.

Note that both DynamicViT and ToMe are de-

signed for vision Transformers and work for image
modality, therefore they do not distinguish between
the image and text tokens. On the contrary, PuMer
is a more general token reduction framework that
uses text to guide the image pruning and makes
merging modality aware.
Smaller Resolution (SmRes): We downsample the
input image to smaller resolutions and finetune the
VL models. Using smaller input images directly
reduces the computation of VL models.

5.4 Evaluation Metrics

Accuracy Metrics. We measure VQA accu-
racy (Goyal et al., 2017) for the VQAV2 dataset and
accuracy for both the VE and NLVR2 datasets. For
text retrieval (TR) and image retrieval (IR) tasks,
the accuracy refers to Top1-recall. Unlike previous
works (Kim et al., 2021; Dou et al., 2022), where

12895

Model Datasets Original Accuracy PuMer Accuracy Throughput Increase ~ Memory Reduction
Flickr30k TR 94.7 93.8 (-0.9) 1.81x 38%
Flickr30k IR 82.0 81.2 (-0.8) 1.81x 38%

METER (SoTA) VQAv2 71.5 76.8 (-0.7) 1.82x 38%
SNLI-VE 81.1 80.3 (-0.8) 2.07x 43%
NLVR2 82.7 82.2 (-0.5) 1.79x 38%
Flickr30k TR 78.2 77.6 (-0.6) 1.78x 46%
Flickr30k IR 60.2 59.6 (-0.7) 1.78x 46%

ViLT VQAvV2 69.5 68.9 (-0.6) 1.76x 45%
SNLI-VE 76.0 75.6 (-0.4) 2.01x 51%
NLVR2 75.5 74.9 (-0.6) 1.74x 45%

Table 1: Performance and inference efficiency comparison between the original fine-tuned vs PuMer fine-tuned
models for the VILT and METER over four downstream visual reasoning tasks.

their models are trained on the combined training
and validation sets, our focus is not to obtain state-
of-the-art results, so we train the two VL models
on the training set and report the results on the test
set. All the accuracy numbers are average values
across 3 runs.

Efficiency Metrics. We measure the actual in-
ference throughput (examples per second) of the
VL models on the GPU hardware and compare
them to the original finetuned models, and we re-
port the throughput increase. We also measure
the peak memory consumed during the model in-
ference phase and report memory reduction ratio
compared to the original finetuned models. These
two runtime metrics reflect actual efficiency and
are found to be more accurate to compare resource
consumption instead of using the FLOPs complex-
ity metric (Graham et al., 2021). For comparison
purposes, we include the FLOPs comparison in the
appendix Appendix A.2.

For inference throughput measurements, we in-
crease the batch size until the model gets out of
GPU memory, and run the inference with the batch
size that gives the biggest throughput for 30 sec-
onds on a single GPU. For inference memory foot-
print, we use the same batch size for the original
VL model and PuMer version and report the peak
memory difference. For VILT models, we use GTX
1080 Ti GPU and start the batch size from 32 with
a step of 8; for METER models, we use an A40
GPU and start the batch size from 16 with a step of
8.

6 Experimental Results

6.1 Main Results

PuMer is faster and remains accurate. Ta-
ble 1 shows the main results comparing perfor-
mance, inference speed, and memory reduction of

69.5 o
> 69.0
(@}
o
>
3 68.5
<
g —=+=- DynamicViT
> 68.0 -—a- ToMe S
—+— PuMer (Ours) \
\ []
67.5 e Original L
1.0 1.2 1.4 1.6 1.8 2.0

Throughput Increase

Figure 5: Comparing PuMer with DynamicViT and
ToMe for the VIiLT model on the VQAv2 dataset. Set-
ting different pruning and merging ratios for Dynam-
icViT and ToMe gives different inference throughput
and accuracy numbers. Right and top lines are better
trade-offs.

PuMer versus the original models. Overall, we ob-
serve over 1.7x ~ 2x speedup in inference through-
put and over 35% ~ 51% reduction in memory
footprint for both ViLT and METER models on
the VL tasks. Importantly, the task performance of
PuMer remains competitive compared to the orig-
inal finetuned VL models with only <1% drop in
accuracy.

PuMer is more accurate and faster than previ-
ous token reduction methods. Figure 5 presents
the accuracy versus inference throughput increase
trade-offs for PuMer, DynamicViT and ToMe ap-
plied to the ViLT model on the VQAv2 dataset.
Given a similar throughput increase (like 1.8x),
PuMer has the best accuracy compared to Dynam-
icViT and ToMe. Similarly, for a given accuracy
drop constraint (like < 1%), PuMer provides a big-
ger throughput increase.

12896

Model Image VQAv2 Throughput Memory
Resolution Accuracy Increase Reduction
192x192 74.3 (-3.2) 4.23x 75%
Resolution 224x224 75.2(-2.3) 3.48x 66%
256x256 76.1(-1.4) 2.67x 54%
320x320 77.0 (-0.5) 1.62x 37%
PuMer 320x320 763 (-1.2) 2.86x 59%
PuMer 384x384 76.8 (-0.7) 1.82x 38%
Original ~ 384x384 77.5 1x 0%

Table 2: Performance and inference efficiency compari-
son between the smaller resolution baselines and PuMer
for the METER model on the VQAV?2 test set.

PuMer provides larger efficiency gains over
smaller resolution baselines. Table 2 shows
the results for the METER model on the VQAv2
dataset when comparing PuMer with downsam-
pling the input image to smaller resolutions. Using
smaller resolution input images improves the infer-
ence throughput and reduces memory footprint but
comes with larger accuracy drops. The closest res-
olution is 320x320 which is slightly more (0.2%)
accurate than PuMer, but it has 20% lower infer-
ence throughput. Meanwhile, PuMer is orthogonal
to downsampling strategies, and applying PuMer
to smaller images could provide additional effi-
ciency gains; for input image resolution 320x320,
PuMer improves METER throughput by 1.76x with
a0.7% accuracy drop’ (see the 3rd row numbers in
Table 2).

6.2 Ablation Study

Model VQA Throughput
Accuracy Increase
ViLT 69.5 1x
PuMer-ViLT 68.9 (-0.6) 1.76x
w/o text-informed image pruning 69.2 (-0.3) 1.52x
w/o modality-aware merging 69.1 (-0.4) 1.46x
w/o distillation 68.6 (-0.9) 1.76x

Table 3: Ablation analysis for each component in PuMer
on the VQAV2 dataset for VILT model.

Effectiveness of PuMer Components. To show
how each component in PuMer affects the VL task
accuracy and model inference efficiency, we ab-
late the three components — text-informed image
pruning, modality-aware merging and distillation
— in Table 3. Applying text-informed image prun-
ing or modality-aware merging individually has

71.76=2.86/1.62, 0.7=77.0-76.3

shown improvements in model inference through-
put with smaller accuracy loss. But stacking the
two techniques together provides bigger inference
efficiency without losing much task performance.
Without knowledge distillation, PuMer is still ac-
curate and fast and adding it further reduces the
performance gap.

Token Reduction Design Choices. Given a 12-
layer VL cross-modal encoder like ViLT, many
combinations of reduction locations and ratios
achieve similar inference speedups. Reducing to-
kens at earlier layers with lower ratios has similar
computation efficiency to pruning at later layers
with higher ratios. For comparing the accuracy
with different numbers of reduction layers, we con-
trol the inference throughput to be similar to PuMer
by selecting the pruning and merging ratios and lo-
cations. Table 4 shows cascaded reduction at 4
layers (2th, 4th, 6th, 8th) has higher accuracy and
speedups.

The ratios row in Table 4 shows reducing (via
pruning or merging) more tokens leads to a bigger
throughput increase but has a significant (>1%)
accuracy drop while reducing fewer tokens is more
accurate but causes lower throughput. As shown
in the locations row, we find that reducing tokens
in the earlier layers leads to bigger throughput but
drops accuracy by 1.8%, while reducing tokens in
the later layers is slightly more accurate but pro-
vides fewer benefits in throughput. Overall, for
ViLT on the SNLI-VE task, we choose a 4-layer
cascaded token reduction strategy with a pruning
ratio of 0.1 and merging ratio of 0.3 and 0.2 for
image and text respectively, and scatter the reduc-
tion locations more evenly to balance accuracy and
speed trade-offs.

7 Conclusion

Large vision language models have been effective
at visual reasoning tasks due to their complex cross-
modal interactions between the text and image to-
kens. These cross-modal interactions are compu-
tationally expensive because all image and text to-
kens are processed in many layers. We introduce
a token reduction framework — PuMer that uses
text-informed image pruning and modality-aware
merging techniques to effectively reduce the image
and text tokens inside cross-modal layers. PuMer
progressively removes the redundant image and
text information and makes VL models run faster
with minimal task performance drop. PuMer is

12897

Choice

Reduction Layers Prune Ratio Image Merge Ratio Text Merge Ratio VE Accuracy Throughput Increase

2,5,8 0.1 0.3 0.2 75.8 (-0.2) 1.77x

ratios 2,5.8 0.3 0.3 0.2 74.7 (-1.3) 2.04x
2,5,8 0.1 0.3 0.5 74.9 (-1.1) 1.89x

2,5.8 0.1 0.5 0.2 73.8 (-2.1) 2.12x

2 0.1 0.3 0.2 75.9 (-0.15) 1.43x

of layers 2,4 0.1 0.3 0.2 75.8 (-0.2) 1.69x
24,6 0.1 0.3 0.2 75.7 (-0.3) 1.80x

locations 2,34 0.2 0.2 0.2 74.2 (-1.8) 2.03x
) 7,8,9 0.2 0.2 0.2 75.9 (-0.1) 1.31x

PuMer (Ours) 2.4,6,8 0.1 0.3 0.2 75.6 (-0.4) 2.01x
ViILT - - - - 76.0 1.00x

Table 4: Design choices analysis of prune and merge ratios, # of reduction layers, and reduction locations for the

ViLT model on SNLI-VE task.

easy to train and speeds up both training and infer-
ence of vision and language models across diverse
downstream visual reasoning tasks.

Acknowledgements

This research was supported partly by NSF IIS-
2044660, an Allen Investigator Distinguished
award. We thank the anonymous reviewers and
the members of the UW NLP group for their com-
ments and feedback on this paper.

8 Limitations

Our method does not apply to VL. models where
the cross-modal encoder layers are relatively
lightweight. For example, the vision encoder
is much more computationally expensive than
the cross-modal encoder for VL. models like AL-
BEF (Li et al., 2021) and X-VLM (Zeng et al.,
2021), therefore, the end to end inference speed im-
provement is marginal. Reducing the image tokens
inside the vision encoder could further improve
the model efficiency, we leave this exploration to
future work.

References

TPrune: Efficient Transformer Pruning for Mobile De-
vices: ACM Transactions on Cyber-Physical Sys-
tems: Vol 5, No 3.

2022. Deepspeed.

2022. huggingface/accelerate.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoff-

man. 2022. Token Merging: Your ViT But Faster.
ArXiv:2210.09461 [cs].

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632-642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Qingqing Cao, Prerna Khanna, Nicholas D. Lane, and
Aruna Balasubramanian. 2022. MobiVQA: Efficient
On-Device Visual Question Answering. Proceedings
of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(2):44:1-44:23.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An Image
is Worth 16x16 Words: Transformers for Image
Recognition at Scale.

Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang,
Shuohang Wang, Lijuan Wang, Chenguang Zhu,
Pengchuan Zhang, Lu Yuan, Nanyun Peng, Zicheng
Liu, and Michael Zeng. 2022. An empirical study of
training end-to-end vision-and-language transform-
ers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 18166-18176.

Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lijuan
Wang, Yezhou Yang, and Zicheng Liu. 2021. Com-
pressing Visual-Linguistic Model via Knowledge Dis-
tillation. pages 1428-1438.

12898

https://dl.acm.org/doi/abs/10.1145/3446640
https://dl.acm.org/doi/abs/10.1145/3446640
https://dl.acm.org/doi/abs/10.1145/3446640
https://github.com/microsoft/DeepSpeed
https://github.com/huggingface/accelerate
https://doi.org/10.48550/arXiv.2210.09461
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1145/3534619
https://doi.org/10.1145/3534619
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openaccess.thecvf.com/content/ICCV2021/html/Fang_Compressing_Visual-Linguistic_Model_via_Knowledge_Distillation_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Fang_Compressing_Visual-Linguistic_Model_via_Knowledge_Distillation_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Fang_Compressing_Visual-Linguistic_Model_via_Knowledge_Distillation_ICCV_2021_paper.html

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. PoOWER-BERT: Acceler-
ating BERT Inference via Progressive Word-vector
Elimination. In Proceedings of the 37th International
Conference on Machine Learning, pages 3690-3699.
PMLR. ISSN: 2640-3498.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in VQA
Matter: Elevating the Role of Image Understanding
in Visual Question Answering. pages 6904—6913.

Benjamin Graham, Alaaeldin El-Nouby, Hugo Tou-
vron, Pierre Stock, Armand Joulin, Hervé Jégou, and
Matthijs Douze. 2021. LeViT: A Vision Transformer
in ConvNet’s Clothing for Faster Inference. pages
12259-12269.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the Knowledge in a Neural Network.
ArXiv:1503.02531 [cs, stat].

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. ViLT:
Vision-and-Language Transformer Without Convo-
lution or Region Supervision. In Proceedings of the

38th International Conference on Machine Learning,
pages 5583-5594. PMLR. ISSN: 2640-3498.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng,
Mengshu Sun, Wei Niu, Xuan Shen, Geng Yuan,
Bin Ren, Minghai Qin, Hao Tang, and Yanzhi Wang.
2022. SPViT: Enabling Faster Vision Transformers
via Soft Token Pruning. ArXiv:2112.13890 [cs].

Francois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block Pruning For Faster
Transformers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 10619-10629, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
In Advances in neural information processing sys-
tems, volume 34, pages 9694-9705. Curran Asso-
ciates, Inc.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. 2021. EViT: Expediting
Vision Transformers via Token Reorganizations.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
Common Objects in Context. In Computer Vision
— ECCV 2014, Lecture Notes in Computer Science,
pages 740755, Cham. Springer International Pub-
lishing.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a Self-
distilling BERT with Adaptive Inference Time. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035—
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. Number: arXiv:1907.11692
arXiv:1907.11692 [cs].

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan,
Anish Prabhu, Mohammad Rastegari, and Oncel
Tuzel. 2021. Token Pooling in Vision Transform-
ers. ArXiv:2110.03860 [cs].

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and
Edoardo M. Ponti. 2022. Efficient Transformers with
Dynamic Token Pooling. ArXiv:2211.09761 [cs]
version: 1.

Michat Pietruszka, Lukasz Borchmann, and Filip
Graliniski. 2020. Sparsifying Transformer Mod-
els with Differentiable Representation Pooling.
arXiv:2009.05169 [cs]. ArXiv: 2009.051609.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k Entities: Collecting
Region-to-Phrase Correspondences for Richer Image-
to-Sentence Models. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 2641-
2649. ISSN: 2380-7504.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pages
8748-8763. PMLR. ISSN: 2640-3498.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen
Lu, Jie Zhou, and Cho-Jui Hsieh. 2021. Dynam-
icViT: Efficient Vision Transformers with Dynamic
Token Sparsification. arXiv:2106.02034 [cs]. ArXiv:
2106.02034.

Michael S. Ryoo, A. J. Piergiovanni, Anurag Arnab,
Mostafa Dehghani, and Anelia Angelova. 2021. To-
kenLearner: What Can 8 Learned Tokens Do for
Images and Videos?

Roy Schwartz, Gabriel Stanovsky, @ Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The Right Tool for the Job: Matching
Model and Instance Complexities. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6640—6651,
Online. Association for Computational Linguistics.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A Corpus for

12899

https://proceedings.mlr.press/v119/goyal20a.html
https://proceedings.mlr.press/v119/goyal20a.html
https://proceedings.mlr.press/v119/goyal20a.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Goyal_Making_the_v_CVPR_2017_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Graham_LeViT_A_Vision_Transformer_in_ConvNets_Clothing_for_Faster_Inference_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Graham_LeViT_A_Vision_Transformer_in_ConvNets_Clothing_for_Faster_Inference_ICCV_2021_paper.html
https://doi.org/10.48550/arXiv.1503.02531
https://proceedings.mlr.press/v139/kim21k.html
https://proceedings.mlr.press/v139/kim21k.html
https://proceedings.mlr.press/v139/kim21k.html
https://doi.org/10.48550/arXiv.2112.13890
https://doi.org/10.48550/arXiv.2112.13890
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://proceedings.neurips.cc/paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf
https://openreview.net/forum?id=BjyvwnXXVn_
https://openreview.net/forum?id=BjyvwnXXVn_
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.2110.03860
https://doi.org/10.48550/arXiv.2110.03860
https://doi.org/10.48550/arXiv.2211.09761
https://doi.org/10.48550/arXiv.2211.09761
http://arxiv.org/abs/2009.05169
http://arxiv.org/abs/2009.05169
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
http://arxiv.org/abs/2106.02034
http://arxiv.org/abs/2106.02034
http://arxiv.org/abs/2106.02034
https://arxiv.org/abs/2106.11297v3
https://arxiv.org/abs/2106.11297v3
https://arxiv.org/abs/2106.11297v3
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/P19-1644

Reasoning about Natural Language Grounded in Pho-
tographs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6418-6428, Florence, Italy. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Jianfeng Wang, Xiaowei Hu, Pengchuan Zhang, Xi-
ujun Li, Lijuan Wang, Lei Zhang, Jianfeng Gao,
and Zicheng Liu. 2020. MiniVLM: A Smaller and
Faster Vision-Language Model. arXiv:2012.06946
[cs]. ArXiv: 2012.06946.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jin-
gren Zhou, and Hongxia Yang. 2022. OFA: Unify-
ing Architectures, Tasks, and Modalities Through
a Simple Sequence-to-Sequence Learning Frame-
work. Technical Report arXiv:2202.03052, arXiv.
ArXiv:2202.03052 [cs] version: 2 type: article.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai,
Yulia Tsvetkov, and Yuan Cao. 2021. SimVLM: Sim-
ple Visual Language Model Pretraining with Weak
Supervision.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Ning Xie, Farley Lai, Derek Doran, and Asim Ka-
dav. 2019. Visual Entailment Task for Visually-
Grounded Language Learning. Technical Report
arXiv:1811.10582, arXiv. ArXiv:1811.10582 [cs]
type: article.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin.
2020. Early Exiting BERT for Efficient Document
Ranking. In Proceedings of SustaiNLP: Workshop on
Simple and Efficient Natural Language Processing,
pages 83-88, Online. Association for Computational
Linguistics.

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas Breuel, Jan Kautz, and Xiaolong Wang.
2022. GroupViT: Semantic Segmentation Emerges
From Text Supervision. pages 18134-18144.

Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun
Mallya, Jan Kautz, and Pavlo Molchanov. 2022. A-
vit: Adaptive tokens for efficient vision transformer.

In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
10809-10818.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the

Association for Computational Linguistics, 2:67-78.
Place: Cambridge, MA Publisher: MIT Press.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei
Chu, and Li Cui. 2022. Width & depth pruning for
vision transformers. In AAAI Conference on Artificial
Intelligence (AAAI), volume 2022.

Hao Yu and Jianxin Wu. 2021. A Unified
Pruning Framework for Vision Transformers.
arXiv:2111.15127 [cs]. ArXiv: 2111.15127.

Yan Zeng, Xinsong Zhang, and Hang Li. 2021. Multi-
Grained Vision Language Pre-Training: Aligning
Texts with Visual Concepts.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. VinVL: Revisiting Visual Repre-
sentations in Vision-Language Models. pages 5579—
5588.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit. In
Advances in neural information processing systems,
volume 33, pages 18330-18341. Curran Associates,
Inc.

12900

https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
http://arxiv.org/abs/2012.06946
http://arxiv.org/abs/2012.06946
https://doi.org/10.48550/arXiv.2202.03052
https://doi.org/10.48550/arXiv.2202.03052
https://doi.org/10.48550/arXiv.2202.03052
https://doi.org/10.48550/arXiv.2202.03052
https://arxiv.org/abs/2108.10904v1
https://arxiv.org/abs/2108.10904v1
https://arxiv.org/abs/2108.10904v1
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.1811.10582
https://doi.org/10.48550/arXiv.1811.10582
https://doi.org/10.18653/v1/2020.sustainlp-1.11
https://doi.org/10.18653/v1/2020.sustainlp-1.11
https://openaccess.thecvf.com/content/CVPR2022/html/Xu_GroupViT_Semantic_Segmentation_Emerges_From_Text_Supervision_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Xu_GroupViT_Semantic_Segmentation_Emerges_From_Text_Supervision_CVPR_2022_paper.html
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
http://arxiv.org/abs/2111.15127
http://arxiv.org/abs/2111.15127
https://arxiv.org/abs/2111.08276v2
https://arxiv.org/abs/2111.08276v2
https://arxiv.org/abs/2111.08276v2
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_VinVL_Revisiting_Visual_Representations_in_Vision-Language_Models_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_VinVL_Revisiting_Visual_Representations_in_Vision-Language_Models_CVPR_2021_paper.html
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

A Appendix

A.1 PuMer Details

Implementation. We use the Transformers (Wolf
et al., 2020) and Accelerate (Hug, 2022) with Deep-
Speed (Dee, 2022) library to implement the training
tasks. We conduct training jobs on 4 Nvidia A100
GPUs. For both VILT and METER model, we first
follow the training hyperparameters in their orig-
inal papers and finetune the pretrained model to
obtain task-specific models. These models are used
as baselines for measuring accuracy drop and also
used as the teacher model for PuMer distillation.
For baseline VL. models, we finetune both METER
and ViLT models on the studied VL tasks for 10
epochs. For PuMer, we finetune 20 epochs using
early stopping with a penitence of 5 (the accuracy
won’t improve after 5 epochs).

We list all training hyperparameters in Table 5.

METER Retrieval VQAv2 NLVR2 SNLI-VE
cross-modal Ir 2.5e-5 2.5e-5 5Se-5 le-5
classifier Ir 2.5e-5 2.5e-4 le4 2e-5
batch size per gpu 32 32 16 32
image size 384 384 288 384
patch size 16 16 16 16
ViLT Retrieval VQAv2 NLVR2 SNLI-VE
cross-modal Ir le-4 le-4 le-4 le-4
classifier Ir le-4 le-3 le-4 le-3
batch size per gpu 32 64 32 64
image size 384 384 384 384
patch size 32 32 32 32

Table 5: Hyperparameters for finetuning PuMer and
original VL models.

We list the default reduction layers and ratios for
different VL tasks in Table 6.

METER VQAv2 NLVR2 SNLI-VE Retrieval
Reduction Layers 0,2,4,6 24,6 0,2,4,6 24,6
Prune Ratio 0.2 0.3 0.3 0.2
Image Merge Ratio 0.2 0.5 0.5 0.5

Text Merge Ratio 0.2 0.2 0.2 0.2

ViLT VQAv2 NLVR2 SNLI-VE Retrieval
Reduction Layers 2,5,8 25,8 2,4,6,8 25,8
Prune Ratio 0.1 0.1 0.1 0.1
Image Merge Ratio 0.3 0.3 0.3 0.3

Text Merge Ratio 0.2 0.2 0.2 0.2

Table 6: Reduction layers and ratios for PuMer-METER
and PuMer-ViLT on the VL tasks.

Model Datasets ~ Original PuMer Speedup
VQAV2 92 64.7 1.42x
METER SNLI-VE 92 59 1.56x
NLVR2 184 131 1.40x
VQAV2 16 8.7 1.84x
ViLT SNLI-VE 16 7.7 2.08x
NLVR2 32 17.4 1.84x

Table 7: GFLOPs comparison between PuMer and orig-
inal VL models for METER and ViLT.

A.2 Model Inference FLOPs Comparison

We measure FLOPs of both PuMer and the original
model for METER and ViLT using the fvcore tool®.
The results are shown in Table 7.

$https://github.com/facebookresearch/
fvcore/blob/main/docs/flop_count .md

12901

https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md
https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
section 8

[0 A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B [Did you use or create scientific artifacts?
Not applicable. Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

L1 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

No response.

C ¥ Did you run computational experiments?
section 5 and 6
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
section 5 and appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

12902

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 5 and appendix

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
section 5

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
appendix

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

O D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12903

