
Composable Workflow for Accelerating Neural Architecture
Search Using In Situ Analytics for Protein Classification
Georgia Channing
University of Tennessee

Knoxville, Tennessee, USA

Ria Patel
University of Tennessee

Knoxville, Tennessee, USA

Paula Olaya
University of Tennessee

Knoxville, Tennessee, USA

Ariel Keller Rorabaugh
University of Tennessee

Knoxville, Tennessee, USA

Osamu Miyashita
RIKEN

Kobe, Hyōgo, JP

Silvina Caino-Lores
University of Tennessee

Knoxville, Tennessee, USA

Catherine Schuman
University of Tennessee

Knoxville, Tennessee, USA

Florence Tama
Nagoya University and RIKEN

Nagoya, Aichi, JP

Michela Taufer
University of Tennessee

Knoxville, Tennessee, USA

ABSTRACT
Neural architecture search (NAS), which automates the design of
neural network (NN) architectures for scienti�c datasets, requires
signi�cant computational resources and time — often on the order
of days or weeks of GPU hours and training time. We design the
Analytics for Neural Network (A4NN) work�ow, a composable
work�ow that signi�cantly reduces the time and resources required
to design accurate and e�cient NN architectures. We introduce a
parametric �tness prediction strategy and distribute training across
multiple accelerators to decrease the aggregated NN training time.
A4NN rigorously record neural architecture histories, model states,
and metadata to reproduce the search for near-optimal NNs. We
demonstrate A4NN’s ability to reduce training time and resource
consumption on a dataset generated by an X-ray Free Electron
Laser (XFEL) experiment simulation. When deploying A4NN, we
decrease training time by up to 37% and epochs required by up to
38%.

CCS CONCEPTS
• Computing methodologies! Genetic algorithms; Neural net-
works; Supervised learning by classi�cation; • Applied computing
! Physics; Chemistry.

KEYWORDS
Neural architecture search, Neural networks, Protein di�raction,
Predictive modeling, Deep learning, Early termination

ACM Reference Format:
Georgia Channing, Ria Patel, Paula Olaya, Ariel Keller Rorabaugh, Os-
amu Miyashita, Silvina Caino-Lores, Catherine Schuman, Florence Tama,
and Michela Taufer. 2023. Composable Work�ow for Accelerating Neu-
ral Architecture Search Using In Situ Analytics for Protein Classi�cation.
In 52nd International Conference on Parallel Processing (ICPP 2023), August

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0843-5/23/08.
https://doi.org/10.1145/3605573.3605636

7–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3605573.3605636

1 INTRODUCTION
Neural networks (NN) are powerful models that are increasingly
used in high-performance computing (HPC) simulations and new
research areas such as high-performance arti�cial intelligence and
high-throughput data analytics to solve problems in physics [6, 28,
32, 39], materials science [7, 38, 40, 46], neuroscience [5, 43], and
medical imaging [11, 33], among other domains [12, 15, 30]. Find-
ing suitable NNs for speci�c �tness measurements (e.g., accuracy
or loss), datasets (e.g., data from di�erent scienti�c domains), and
problems (e.g., classi�cation, segmentation, and regression) is a
time-consuming process involving several rounds of hyperparam-
eter and architecture selection, training, validation, and manual
inspection. Given a �tness measurement, a dataset, and a problem,
Neural Architecture Search (NAS) automates �nding near-optimal
models. Still, it comes at a high training cost involving thousands
of NNs on many HPC resources. For instance, conventional NAS
algorithms exhibit prohibitive computational demand where train-
ing each NN to convergence is the main bottleneck [3, 34]. A single
NAS run on a small dataset of one or two petabytes can require
HPC systems with thousands of accelerators [32]. A training run
of a large language model such as BERT takes more than 80 hours
on 16 TPUv3 AI accelerator hardware [44], and training a visual
transformer requires decades of compute time on a TPUv3 [9]. For
even larger datasets, scientists must allocate signi�cant time to the
largest compute resources available (in tens of thousands of GPU
hours [32]) to conduct a single search of NN models. Furthermore,
in the early stages of NAS, up to 88% of NNs fail to learn [14],
further wasting compute resources.

Current attempts to optimize NAS remains ine�cient. Built-
in truncated training, a �xed termination criterion where each
NN is trained for a set number of epochs, still wastes expensive
HPC resources [10, 25, 26, 41]. Advanced NAS implementations
use a �tness prediction strategy to terminate training dynami-
cally. However, by embedding their prediction strategy in their
search process, they produce a tightly-coupled solution, so any
attempt to optimize the NAS approach interferes with its imple-
mentation [1, 8, 16, 20, 23, 24, 27, 36]. Furthermore, complete record

https://doi.org/10.1145/3605573.3605636
https://doi.org/10.1145/3605573.3605636

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Georgia Channing et al.

trails of NNs through generation, training, and validation are rare;
it is thus almost impossible to advance explainable and reproducible
machine learning. Existing NN repositories store trained NNs and
sometimes their �nal fully-trained �tness values (e.g., DLHub [4]
and Model Zoo [35]) but do not capture the training lifespan in a
shareable record trail. It is still an open problem to �nd general,
e�ective solutions for high-throughput searches of near-optimal
neural networks (NN) to capture embedded knowledge and pre-
dict hidden trends in scienti�c data. This project addresses the
urgent need for solutions that reduce high-performance computing
(HPC) resources for NNs’ training while assuring more explainable,
reproducible, and nearly optimal NNs.

To address this problem, we introduce the A4NN work�ow to
reduce training costs in NAS on HPC platforms and produce more
explainable and reproducible NN results. Speci�cally, we de�ne a
methodology to (i) increase NN throughput in NAS via the predic-
tions of NNs’ �tness (e.g., accuracy or loss) early in the training
process, thus enabling early, �exible training termination; (ii) design
a work�ow that decouples the search from the prediction of �tness
for general NAS implementations across �tness measurements for
real datasets in protein di�raction; and (iii) generate an NN data
commons that share full provenance of the wide variety of NNs
with record trails of their structure, metadata, and performance
throughout training. We show that our work�ow can decrease
training time by up to 37% and the training epochs required by up
to 38%. We demonstrate that using our work�ow does not diminish
the performance of the NAS. Finally, we compare the A4NN work-
�ow’s performance on the protein crystallography use case to the
state-of-the-art for that use case.

The contributions of this paper are as follows:

• We design A4NN, a highly e�cient, composable work�ow
that leverages existing NAS and in situ parametric predic-
tions to classify protein conformations from protein di�rac-
tion image datasets.

• We rigorously record neural architecture histories, model
states, andmetadata to reproduce the search for near-optimal
NNs.

• We demonstrate A4NN’s ability to reduce training time and
resource consumption on a dataset generated by simulating
X-ray Free Electron Laser (XFEL) experiments.

• We discuss how the work�ow can be deployed across a
broader spectrum of NAS and datasets.

2 METHODOLOGY
WedesignA4NN as amodular and composable work�ow that works
in concert with existing NAS implementations. The core compo-
nents of our work�ow are a self-contained, externally-controllable
parametric prediction engine for predicting NN �tness [18]; a work-
�ow orchestrator handling the movement of data and metadata
between the NAS implementation and the prediction engine; a lin-
eage tracker collecting the evolution of NN architectures and their
metadata; an analyzer for extracting knowledge from the collected
data; a resource manager distributing computation across GPUs;
and user and communication interfaces that shield the training pro-
cess from the user. The path to training and validation datasets, the
NAS, and the prediction engine settings are entirely customizable;

they can be easily swapped out for other datasets, NAS implementa-
tions, and settings. Figure 1 presents the components of our A4NN
work�ow and their interactions with NAS and users.

Figure 1: Main components of the A4NN work�ow.

2.1 Parametric Prediction Engine
The parametric prediction engine augments the search for NNs in a
NAS. It interacts with the NAS, running on dedicated resources and
informing the search concurrently. In other words, the prediction
engine dynamically predicts the �tness each NN could attain during
the NN training phase and informs the NAS of each NN’s predicted
�tness. As the NAS trains NN from a speci�ed search space, the
prediction engine periodically pulls the partially trained NNs and
iteratively executes a two-step process depicted in Figure 1. First, the
engine constructs a parametric model for an NN’s �tness curve. It
uses the model to predict the �tness the NN is expected to attain at a
given epoch (Parametric modeling). Then, it determines whether the
prediction has converged (Prediction analyzer), deciding whether
to terminate or continue the iterative execution of modeling and
analysis.

2.1.1 Parametric Modeling. We leverage empirical observations
to model an NN’s �tness curve and predict the �tness value at a
given epoch to terminate training early and reduce the length of
the architecture search. We curate an adaptable parametric func-
tion that can predict an NN’s accuracy. Parametric modeling has
been successfully used in various machine learning problems to
model curves and extrapolate predictions [42]. However, paramet-
ric modeling has not yet been applied to model the �tness learning
curves of NNs. We apply parametric modeling to construct models
for NN �tness learning curves. Fitness accuracy tends to increase
as the NN learns; well-behaved learning curves tend to increase
with a concave down shape, with the �tness increasing quickly at
the beginning and more slowly as time continues [42]. We use a
concave function in the form of (F (G) = 0�1 (2�G)) to extrapolate
a candidate �tness prediction for an NN at a given epoch in the
future. We attain the values for the function parameters using the
least squares regression of the �tting. Speci�cally, we use regres-
sion to �t a parametric function to the learning curve data of the
partially-trained NN results in a function that models NN �tness
in terms of training epochs. The iterative nature of the training
process in A4NN allows us to add one more �tness data point to the
learning curve at each training step and compare the current can-
didate �tness prediction with previous ones to determine whether

Composable Workflow for Accelerating Neural Architecture Search Using In Situ Analytics for Protein Classification ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

the candidate predictions have converged to a stable value. If so,
this value is our �tness prediction for the NN.

2.1.2 Prediction Analyzer. The prediction analyzer determines
whether �tness predictions converge to a stable value. If so, the an-
alyzer outputs the �tness prediction that the NAS treats as the �nal
�tness of the network in its selection process, and the prediction
engine’s iterative execution terminates the NN’s training. If not,
the next iteration begins, and the NN continues to be trained. To
this end, the prediction analyzer �rst checks that the most recent
predicted �tnesses are valid �tness values to determine if the �tness
predictions have converged to a stable value. Our engine uses vali-
dation accuracy as �tness. Thus, the predicted value can neither be
greater than 100 nor less than 0. If any of the most recent predicted
�tnesses are outside the bounds of possible values, the prediction
analyzer returns that it has not converged on a stable value. Figure 2
depicts the predictive engine’s behavior on an example NN from
our results. Here, we use the parametric function F (G) = 0 � 12�G

to model the NN’s learning curves, where G represents the epoch
for which we predict �tness, 4?A43 . The resulting prediction of the
�tness at 25 epochs converges at epoch 12, and training should
then be terminated.

Figure 2: Example of the �tness (accuracy) prediction for
an NN trained on our use case using the function F (G) =
0 � 1 (2�G) .

2.2 Work�ow Orchestrator
A4NN orchestrates the interactions between the prediction engine
and NAS as well as the management of the NN’s state history (i.e.,
�tness and predictions) across epochs, automating these processes
for the user.

2.2.1 Orchestration Between Prediction Engine and NAS. Rather
than re-engineering the NAS and its mechanisms for early termina-
tion, A4NN relies on a plug-in to manage communication between
the prediction engine and the NAS during the training process and
to orchestrate decision-making iteratively. Algorithm 1 describes
the training loop. After each training epoch 4 for an NN" in the
NAS, the �tness history (H), which is comprised of all previous
�tness values, is fed to the predictor (Fitness history in Figure 1).
If the prediction engine can predict epoch 4 (?4), this prediction
is appended the prediction history (P), which is comprised of all
previous predictions. If the prediction analyzer has converged on
a stable prediction, then the engine communicates to the NAS the
�nal prediction (Fitness prediction in Figure 1), terminating both
the engine’s iterative execution and the NAS training.

Algorithm 1 Training Loop with Prediction Engine.

1: pred_eng pred_eng(4?A43 , F ,⇠<8=, A)
2: 2>=E4A643 �0;B4
3: for 4 2 =D<_4?>2⌘B do
4: " .CA08=()
5: ⌘4 " .E0;830C4 ()
6: H ⌘4
7: ?4 pred_eng.predictor(4,H)

8: P ?4
9: 2>=E4A643 pred_eng.analyzer(P)

10: if 2>=E4A643 then
11: break
12: else
13: continue
14: end if
15: end for
16:
17: if 2>=E4A643 then
18: return P[�1]
19: else
20: return ⌘4
21: end if

2.2.2 Orchestration of A4NN History. The NAS and the A4NN en-
gine share the �tness and prediction history, optimizing the mem-
ory usage in the training loop. At the end of each training epoch,
the work�ow orchestrator writes the partially trained NN’s state
to memory, such that each model can be loaded and re-evaluated
from any point in the training phase. When an NN’s training is
terminated, the work�ow orchestrator writes the �tness history,
prediction history, training times, FLOPS, and architecture informa-
tion to storage, such that a model’s entire training history can be
further analyzed. The write location for model and metadata �les
is con�gured as a command-line argument to the NAS.

2.3 Lineage Tracker and Data Commons
With the lineage tracker, we record the NN’s state history (i.e.,
architecture, metadata, and performance) for the training span of
our curated collection of NNs. Speci�cally, the tracker captures
the arc of an NN architecture’s optimization together with its be-
havior throughout training (i.e., the training parameters such as
learning rate and batch size, the criterion used for gain or loss,
and the method used for training and the measurement used for
�tness). The tracker uploads the record trails in an NN data com-
mons that maintains comprehensive NN record trails, enabling
reproducible and explainable machine learning. The data commons
provides information about epoch times, training accuracies, valida-
tion accuracies, FLOPS, predictions, prediction engine parameters,
genomes, and architecture information for each neural architecture.
We use the lineage tracking information collected from the tests
presented in this paper to create an open-access NN data commons
in Harvard Dataverse [19], a public repository for research data.
We add complete metadata to leverage the repository’s built-in ca-
pabilities. Our commons comes with a Python script demonstrating

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Georgia Channing et al.

how to load the data into a Pandas DataFrame and calculate and
save metrics of interest such as mean accuracy or NN learning rate.

2.4 Analyzer
Users can deploy our �tness models and data commons through a
Jupyter Notebook interface that serves as an Analyzer. Speci�cally,
scientists can use the A4NN Jupyter Notebooks to study NN per-
formance and evolution throughout training, the shape of �tness
curves, and the relationship between the architecture and perfor-
mance. The Jupyter Notebook enables potential users to search for
NNs with speci�c attributes. It serves as an interactive visualization
tool, allowing users to view learning curve shapes, visualize the
structure of NNs, and �nd NNs of interest. The Jupyter Notebook
supports visualization techniques for understanding the structure
and function of NNs designed with our work�ow. Figure 3 illus-
trates the type of supported visualization for NN structures.

2.5 Work�ow Resource Manager
Our work�ow’s decoupled nature and its components’ modularity
assure scalable, high-performance NN training. The decoupling
enables optimizations of the resource allocation for each work�ow
component, the components’ orchestration and placement, and the
mechanisms to exchange data e�ciently among the components.
We leverage the scheduling algorithms of Ray [22] and use its �rst
in, �rst out (FIFO) dynamic scheduling to assign models to GPUs
within a generation. When an NN �nishes training, another NN
within the generation begins training according to GPU availability.
As a result of Ray’s algorithm, GPU downtime can be accumulated
as the number of networks within each generation may not be
divisible by the number of available GPUs. Therefore, at the end of
each generation’s evaluation, some downtime may occur when not
all GPUs are used.

2.6 User Interfaces
The interaction between users and the A4NN components is man-
aged by a Jupyter Notebook interface that controls the NAS settings,
the path to the training and validation data, and prediction engine
settings.

2.6.1 NAS Se�ings. Con�guring the selected NAS implementation
is independent of the A4NN work�ow. In other words, augmenting
a NAS with A4NN does not change the user’s interaction with
NAS. In this work, we use NSGA-Net. Users submit the NSGA-Net
parameters through command-line arguments to the driver script
that instantiates the NAS run. These parameters include the size of
the starting population, the number of nodes per phase, the number
of o�spring per generation, the number of generations, and the
number of epochs to train.

2.6.2 Data Path. Changing the input dataset used in the A4NN
work�ow is a straightforward operation and can be done by chang-
ing the data path passed to the NAS. Most NAS approaches require
the customization of data loaders that structure scienti�c data for
neural network training (e.g., splitting for training and testing sets).
The A4NN work�ow does not add steps to NAS’s data loaders.

2.6.3 Prediction Engine Se�ings. We con�gure the prediction en-
gine’s parameters by changing the engine’s object instantiation.

These parameters include the parametric function (F), the min-
imum number of points to make a prediction (⇠<8=), the epoch
for which �tness is predicted (4?A43), the number of predictions to
consider when terminating training (#), and the allowed variance
in predictions (A).

3 SCIENTIFIC DATA AND NAS SELECTION
Our work�ow allows users to customize the scienti�c data and the
NAS. Here we use a real dataset representing protein di�raction
images from the protein crystallography domain as the dataset of
interest. We plug NSGA-Net into our work�ow.

3.1 Protein XFEL Di�raction Dataset
We evaluate A4NN with an X-ray Free Electron Laser (XFEL) pro-
tein dataset. We select this dataset for comparison reasons as it
has been previously studied with a traditional machine learning
approach [29]. In this study, we generate, train, and evaluate NNs
to classify protein conformations from protein di�raction patterns
generated through simulations of XFEL experiments. A protein con-
formation refers to the shape adopted by the protein and is caused
by the rotation of the protein atoms around one or more single
bonds. A4NN generates the NNs that di�erentiate and classify the
di�erent conformations.

In XFEL experiments, proteins are shot with a laser beam. The
resulting photon scattering from the protein is recorded as a di�rac-
tion pattern. The resulting di�raction patterns are unique images
of a given protein, similar to human �ngerprints, and encode infor-
mation about the 3-dimensional structure in 2-dimensional space.
Figure 4 shows an overview of an X-ray Free Electron Laser (XFEL)
experiment. In this work, we use simulated di�raction patterns. We
rely on the spsim simulator to generate di�erent di�raction patterns
for two conformations of EF2 with PDB ID 1n0u and 1n0v (Conf.
A and Conf. B in Figure 4) from the Protein Data Bank. We use
Xmipp to simulate the di�erent beam orientations. The simulated
images match the experimental ones but come with the additional
information on the protein’s angles needed for our validation. The
XFEL beam’s intensity directly a�ects the resultant images’ signal-
to-noise ratio and low beam intensities are a proxy for noise. The
lower the intensity, the higher the noise. The simulator reproduces
the outputs of a laser beam pulse measuring di�erent beam in-
tensities. Figures 5a, 5b, and 5 show the resolutions produced by
varying intensities of the XFEL beam on the same protein, rang-
ing from low (1 ⇥ 1014 photons/`<2/pulse) to medium (1 ⇥ 1015
photons/`<2/pulse) and high (1 ⇥ 1016 photons/`<2/pulse).

3.2 NAS and NSGA-Net.
We assessed several NAS implementations, including EvoCNN [41],
MENNDL [45], NASNet [47], Auto-Keras [13], NSGA-Net [26] to
select the NAS we plug into our work�ow for our demonstration.
The selection criteria were as follows: the NASmust be open-source,
easily customizable, and support useful metadata such as model
architecture information and performance metrics (i.e., FLOPS). We
use NSGA-Net as the NAS in the A4NN evaluation because it allows
us to use multi-objective NAS to optimize �tness while minimizing

Composable Workflow for Accelerating Neural Architecture Search Using In Situ Analytics for Protein Classification ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

Figure 3: Structural representation of generic NN provided by the Analyzer in A4NN.

Figure 4: Overview of an X-ray Free Electron Laser (XFEL) experiment generating two di�erent sets of patterns for two
conformations of the same eEF2 protein.

(a) Low (b) Medium (c) High

Figure 5: Simulated beam intensities for EF2 protein: (a) Low,
1 ⇥ 1014 photons/`<2/pulse; (b) Medium, 1 ⇥ 1015 photons/`<2/pulse;
and (c) High: 1 ⇥ 1016 photons/`<2/pulse

FLOPS usage. By minimizing FLOPS usage, we encourage the de-
velopment of models that can be executed on CPUs with relatively
low energy consumption.

The NSGA-Net evolutionary algorithm is as follows. It gener-
ates genomes that encode architecture information like layer types
within the speci�ed macro search space; initializes the �rst genera-
tion’s population of architectures; begins training and validating

the �rst generation; and uses mutation and crossover techniques to
create o�spring from the top two NNs from the �rst generation, de-
termined by tournament selection. In our comparison of NSGA-Net
alone versus NSGA-Net integrated into A4NN, we train and test
models with balanced conformation classes for each beam intensity
using an 80/20 train-test split of 63,508 images and 15,876 images,
respectively.

4 EVALUATION
We evaluate A4NN across metrics such as validation accuracy,
FLOPS, the number of epochs saved, and wall time for training. Val-
idation accuracy measures the �tness of a neural architecture; thus,
the higher, the better. FLOPS is a proxy for energy consumed by a
neural architecture; thus, the lower, the better. The number of com-
pleted training epochs is a proxy for the number of GPU hours and
amount of energy consumed by the NAS; thus, the lower, the better.
Last, wall time represents the time a scientist waits for a successful
model; thus, the lower, the better. Furthermore, we compare A4NN
to state-of-the-art methods for classifying protein conformations
from XFEL datasets. In our evaluation process, we answer four
critical questions: "What is the performance and accuracy impact

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Georgia Channing et al.

of our augmented search compared to using the standalone NAS?",
"How does our search scale?", "How does the A4NN work�ow compare
to the state-of-the-art for the protein di�raction datasets?", and "How
do we maintain data provenance in the A4NN work�ow?"

4.1 Evaluation Parameters
To compare A4NN to the standalone NSGA-Net, we hold constant
both A4NN and NSGA-Net’s parameters across our tests. We con-
�gure the prediction engine in A4NN with user input as listed in
Table 1. We use the function F (G) = 0 � 12�G to model each NN’s
�tness and con�gure the prediction engine to require three pre-
dictions (# = 3) within a variance threshold, A , of 0.5 to converge.

Table 1: Prediction Engine Con�guration

Variable Setting Description

F F (G) = 0 � 12�G parametric function for �tness mod-
eling

⇠<8= 3 minimum number of epochs before
making a prediction

4?A43 25 epoch for which to predict �nal �t-
ness

3 number of predictions to consider
when converging

A 0.5 variance of prediction to tolerate in
convergence

We con�gure NSGA-Net as listed in Table 2. We direct NSGA-
Net to begin with a population of 10 neural networks, produce 10
o�spring per generation, evolve for 10 generations, and train each
network for 25 epochs. Each test produces 100 networks in total.

Table 2: NSGA-Net Con�guration

Setting Value

size of starting population 10

number of nodes per phase 4

number of o�spring per generation 10

number of generations 10

number of epochs to train 25

4.2 A4NN vs Standalone NAS
To quantify the impact of augmenting NSGA-Net with A4NN, we
compare the performance of A4NN with the performance of stan-
dalone NSGA-Net for each of the three beam intensities in terms of
accuracy versus FLOPS, epochs saved, and wall time.

4.2.1 Accuracy versus FLOPS. We generate Pareto frontiers from
100 architectures designed in each test for maximized validation ac-
curacy and minimized FLOPS usage. Figure 6a shows the validation
accuracy and the FLOPS of the Pareto optimal models generated
by A4NN. Figure 6b shows the same metrics for the Pareto optimal
models generated by the standalone NAS. Each symbol represents

a Pareto optimal model, and the shape of each symbol demarcates
the beam intensity (i.e., low, medium, or high). Each beam intensity
results in a di�erent number of Pareto optimal models. The tests
are performed on a single GPU.

(a) A4NN

(b) Standalone NAS

Figure 6: Validation accuracy and FLOPS of the Pareto op-
timal models for A4NN and NSGA-Net for the three beam
intensities.

We search for models with high validation accuracy and low
FLOPS for this comparison. For low beam intensity tests, A4NN
generates models that achieve accuracy that reach 99.8% using be-
low 650 FLOPS versus the 98.1% accuracy achieved with a similar
number of FLOPS by standalone NSGA-Net. In the medium beam
intensity tests, A4NN generates models that outperform the models
generated by the standalone NAS. Speci�cally, A4NN achieves near
100% validation accuracy, while standalone NSGA-Net achieves un-
der 99% accuracy for the same FLOPS utilization. For high beam in-
tensity tests, A4NN achieves similar accuracy and FLOPS to NSGA-
Net at 99.9% and 450 FLOPS. As high beam intensity re�ects low
noise in training and validation images, it is unsurprising that both
methodologies can achieve high accuracy and low FLOPS. However,
A4NN delivers additional time and resource savings as it matches
the validation accuracy and FLOPS of NSGA-Net standalone. We
demonstrate this bene�t in Figures 7 and 9.

4.2.2 Epoch Savings. We measure the number of training epochs
required by A4NN and standalone NSGA-Net to evaluate 100 neural
architectures. For the tests using A4NN, we measure the number
of epochs using one and four GPUs. NSGA-Net does not support

Composable Workflow for Accelerating Neural Architecture Search Using In Situ Analytics for Protein Classification ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

multiple GPUs. Thus, the standalone NAS tests are executed on
a single GPU. In Figure 7, the bars show the number of training
epochs required by each test for each of the three beam intensities.
Without A4NN, NSGA-Net trains all models for 25 epochs by default.
As we generate 100 models per test, the total number of epochs
trained for each beam intensity by standalone NSGA-Net is 2,500.
In the �gure, we group results by beam intensity and measure the
percentage of saved epochs relative to the standalone NSGA-Net
baseline of 2,500 epochs. Using A4NN, we reduce the required
training epochs by 13.3%, 34.1%, and 30.5% on the low, medium, and
high beam intensity data, respectively. As the number of training
epochs is a proxy for energy consumption and GPU hours, we
signi�cantly increase the energy e�ciency of NSGA-Net with the
A4NN work�ow.

Figure 7: Epochs required for testing 100 architectures and
percentages of saved epochs with A4NN over the standalone
NAS when using one and four GPUs.

We evaluate the e�ects of the di�erent beam intensities on the
models’ convergence and measure the percentage of converged
models. The lower the number of epochs and the higher the per-
centage, the better. Figure 8 shows the distribution of 4C , the epoch
at which training is terminated because an NN’s �tness predictions
have converged to a stable value. The legend describes the percent-
age of neural architectures in which training was terminated. The
�gure shows only results for A4NN since all models were generated
by a standalone NSGA-Net train for all 25 epochs. For the low beam
intensity tests, we observe that the average 4C is greater than 18.
Though more than 60% of the models had training terminated early,
only a few epochs of training per model were saved. The average
4C is under 12.5, or half of the full training period for the medium
beam intensity tests. Figure 8 also shows that the prediction engine
can terminate training early for more than 70% of medium beam
intensity models. For the high beam intensity tests, we observe
an almost inverted bell curve in the distribution of 4C . Figure 8
shows that, for high beam models with training terminated early,
training was terminated early in the training phase with an average
4C of 10. However, only 55% of the high beam models have training
terminated early, while some high beam models forgo more than
half of their training, and almost as many must be trained for the
entire training period. We also observe a trend �rst observed and

discussed in Figure 7: the training across multiple GPUs converges
faster than on a single GPU.

Figure 8: E�ect of the di�erent beam intensities on the con-
vergence of the model’s predictions in terms of the number
of epochs and the percentage of the converged models.

4.3 Compute Performance and Scalability
We study the compute performance in terms of wall time savings
and scalability as a ratio of the measured training times. While wall
times may be indirectly related to the number of epochs, they do not
necessarily decrease linearly with the number of epochs because
the length of each epoch may vary from iteration to iteration and
from dataset to dataset.

4.3.1 Wall Time Savings. To minimize the time a scientist must
wait for accurate NNs to be designed and evaluated, we measure the
wall times of tests with A4NN and standalone NSGA-Net. Figure 9
compares the wall times required by A4NN and standalone NAS.
We group results by beam intensity and present results of tests
using A4NN with one and 4 GPUS. On the low beam intensity data,
on which the prediction engine only conserves 16.0% of training
epochs, we observe a wall time decrease of 3.5 hours. We observe
greater wall time savings of 15.8 and 16.3 hours on the medium and
high beam intensity data due to greater epoch savings. Comparing
Figures 7, 8, and 9, we also observe the impact of varying distri-
butions of 4C on wall time savings. Despite a greater percentage
of medium beam intensity models terminating training early, as
shown in Figure 8, we observe greater time savings for the high
beam intensity data, as shown in Figure 9. This results from the
di�erent distributions of 4C between the medium and high beam
intensity data. The overhead cost of the A4NN prediction engine
is negligible compared to its savings. Over the course of a test in
which 100 models are evaluated, using the A4NN prediction engine
adds an average of 52.16 seconds to the total wall time. Each inter-
action with the prediction engine, as depicted in Algorithm 1, takes
an average of 28.07 milliseconds. The variance of the overhead per
epoch is 1.12 milliseconds.

4.3.2 Scalability. We study the overall scalability of A4NN in terms
of saved epochs and wall clock times on a single GPU against four
GPUs. In Figure 9, we do not observe a near-linear epoch speed-up:

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Georgia Channing et al.

Figure 9: Wall times required by training NNs with A4NN
and standalone NAS for the three beam intensities using one
GPU (for the A4NN and NSGA-Net) and for four GPUs (for
A4NN).

we observe 1.17x, 1.13x, and 1.2x epoch savingswhenmoving from a
single GPU to four GPUs. On the other hand, in Figure 9, the training
distribution across multiple GPUs results in near-linear wall time
speed-ups. Compared to the A4NN work�ow’s performance on a
single GPU, we observe a 3.8x, 3.9x, and 3.4x wall time speed-up
on the low, medium, and high beam intensity images distributed
across the four GPUs. Furthermore, we observe slight accuracy
improvements with models generated by the distributed work�ow
compared to those generated on a single GPU. We hypothesize that
this phenomenon may result from the balance of breadth and depth
of testing when distributed. Additional tests are in progress to fully
reason about these observations.

4.4 Comparison with State-of-the-Art Methods
For the classi�cation of protein conformations from protein di�rac-
tion image datasets, the state-of-the-art solution is the X-ray Free
Electron Laser-based Protein Structure Identi�er (XPSI) frame-
work [29]. The XPSI framework is trained on a single NVIDIA-V100
GPU in 15 hours and 27 minutes. It achieved validation accuracy
of 92%, 99%, and 100% on the low, medium, and high beam inten-
sity images, respectively. As shown in Table 3, models produced

Table 3: Wall time and accuracy of A4NN versus XPSI for the
three beam intensity on a single GPU.

Beam Metric A4NN XPSI

Low Wall Time 46.55 h 15.45 h
Accuracy 97.8% 92%

Medium Wall Time 36.09 h 15.45 h
Accuracy 99.9% 99%

High Wall Time 32.3 h 15.45 h
Accuracy 100.0% 100%

by A4NN can match or improve on validation accuracy o�ered by

XPSI. For example, our experiments delivered models can classify
conformations with low, medium, and high beam intensity data at
validation accuracy of 97.9%, 99.9% for low and medium beam inten-
sities contrary to the 92%, 99% of XPSI, showing how our work�ow
is providing a more robust solution for noisy images. Note that
the beam intensity is a proxy for embedded noise. When executed
on just one GPU, the A4NN work�ow cannot compete with the
training time o�ered by XPSI. Where the XPSI framework requires
only 15 hours and 27 minutes of training for each beam intensity,
A4NN requires 46 hours and 33 minutes, 36 hours and 5.5 minutes,
and 32 hours and 18.3 minutes to train models for the low, medium,
and high beam intensity data, respectively. However, A4NN o�ers
two signi�cant advantages. First, it is composable and thus allows
users to customize the NAS and the datasets deployed. Second, by
distributing the work�ow’s training across four GPUs, the A4NN
work�ow delivers scalable training that the rigid XPSI framework
cannot support. Using multiple GPUs and our prediction engine,
the A4NN work�ow can deliver models for the low, medium, and
high beam intensity datasets in 12 hours and 3.8 minutes, 9 hours
and 10 minutes, and 9 hours and 27.6 minutes, respectively.

4.5 Data Lineage
A4NN contributes robust data lineage information to Dataverse.
As a result of our tests, we generated 54 GB of accessible and
documented data in Dataverse. We save models after every train-
ing epoch for each test conducted as retrievable and deployable
torch.packages. In total, we deliver 25,790 models, on which fur-
ther research can be conducted. In our data commons, we also
include training metadata �les (i.e., epoch times, training accu-
racy, validation accuracy, FLOPS, predictions, engine parameters,
genomes, and architecture information) for each neural architec-
ture. Figure 10 shows an example of NN architectures that our
analyzer can visualize. The �gure presents the architecture of the
NN Model 51 using the structural representation from Figure 3. NN
Model 51 is one of the near-optimal NNs identi�ed by A4NN for
low beam intensive di�raction images.

Figure 10: NN Model 51, one of the near-optimal NNs identi-
�ed by A4NN for low beam intensity images.

5 RELATEDWORKS
This work builds upon the previous works of Olaya et al. [29],
Patel et al. [31], and Rorabaugh et al. [18]. We also take inspiration
from previous works that use NAS for scienti�c datasets, such
as Kandasamy et al. [17] and Balaprakash et al. [2]. From work

Composable Workflow for Accelerating Neural Architecture Search Using In Situ Analytics for Protein Classification ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

that introduces other prediction strategies for NAS, such as Li et
al. [21], Domhan et al. [8], and Ru et al. [37]. In the previous work
of Olaya et al. [29], they created an open-source XPSI framework
that utilizes a traditional machine learning approach to identify
structural properties from 2D protein di�raction patterns to assist in
the 3D reconstruction and understanding of the protein’s structure.
With the use of k-Nearest Neighbors (kNN) and autoencoders for
feature extraction, their framework’s work�ow predicts di�erent
protein types, conformations, and protein orientations quickly and
e�ciently. However, getting to their �nal model required hundreds
of hours of intervention by machine learning specialists to tune
and achieve their most optimal model for this speci�c dataset. Their
work�ow also did not seek to minimize FLOPS usage.

Previous work by Patel et al. [31] further built upon the XPSI
framework by introducing the use of a modi�ed version of the
Non-dominated Sorting Genetic Algorithm for the Neural Network
Architecture Search (NSGA-Net) algorithm as presented by Lu et
al. [26] to perform classi�cation on the protein di�raction dataset.
Patel el al. [31] demonstrated the promise of NSGA-Net on this
dataset by generating a rather large pool of NNs and identifying a
couple of models that best achieved the goals of high accuracy and
energy e�ciency. Not unlike [2]’s work, this methodology did not
require manual tuning to be performed on the models individually,
making this methodology bene�cial to domain scientists who ei-
ther do not have the expertise to code ML models for their datasets
or have access to HPC machines. However, the NAS runtime was
highly time-consuming and not distributed. Rorabaugh et al. [18]
proposed a �tness prediction engine called PENGUIN that informs
the NAS search. It decouples the search and prediction strategies of
the NAS to allow for �exible and composable work�ows that utilize
parametric prediction modeling for highly e�cient training of each
model. Their engine’s e�ects were simulated on MENNDL [45]
with CIFAR-10, CIFAR-100, and SHVN datasets. These simulations
demonstrated PENGUIN ’s ability to reduce training time and costs
and increase throughput signi�cantly. Other uses of NAS on scien-
ti�c datasets can be seen in works such as Deep Emulator Network
SEarch (DENSE) [17]. The Deep Emulator Network SEarch (DENSE)
generates emulators for di�erent scienti�c simulation applications
[17]. NAS frameworks have also been used to perform predictive
modeling for cancer applications across large HPC machines with a
single Python library module [2]. However, these NAS frameworks
consume lots of time and compute resources that some domain
scientists cannot access. Some studies are working to improve the
performance estimation of NAS to help those with limited comput-
ing budgets. They aim to cut down the time it takes for the NAS to
complete the generation of models and save on carbon emissions
from each run. There are estimator methods that are based on dif-
ferent techniques, such as early-stopping during training [21] and
learning curve extrapolation [8]. Other methods utilize training
speed estimation measurements to estimate the �nal test perfor-
mance of models [37] to prove the connection between training
speed and generalization. In this work, we respond to work in this
scienti�c domain with an enhanced NAS work�ow to decrease wall
times and resource consumption.

6 CONCLUSIONS
This paper demonstrates the superior performance of the A4NN
work�ow over state-of-the-art machine learning methods and stan-
dalone NAS implementations for classifying protein conformations
from protein di�raction image datasets. In contrast to traditional
machine learning methods, we propose a modular, composable, and
distributed work�ow that can be generalized to other datasets and
NAS implementations than NSGA-Net and the protein di�raction
data used in this work. Compared to a standalone NAS such as
NSGA-Net, using A4NN reduces training epochs by up to 38%
and training times by up to 37%. We deliver high accuracy of
97%, 99%, and 100% across low-resolution, medium-resolution, and
high-resolution protein di�raction images. Furthermore, we deliver
54 GB of models and metadata in an open-access Dataverse com-
mons for the community to study the behavior of neural networks
in training. Data in the Dataverse commons can also be visualized
using the analyzer in A4NN to develop an intuitive understanding
of the qualities of successful NNs and support the reproducible
explainability of NN evolutions.

A4NN can be used to study the behavior of NN architecture lin-
eage and patterns, answering questions such as "Are there structural
similarities between successful architecture produced by NAS?",
"How can we visualize diverse neural architectures to identify pat-
terns in successful architectures?", "Which parametric functions
are best able to predict neural architecture �tness?" and "Is there
a signi�cant correlation between high FLOPS and high validation
accuracy?"

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
(NSF) under grant numbers 1841758 and 2223704, and IBM through
a Shared University Research Award. This work was additionally
supported in part by the FOCUS Establishing Supercomputing Cen-
ter of Excellence Project.

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Accelerating

Neural Architecture Search Using Performance Prediction. In Proceedings of the
NIPS Workshop on Meta-Learning. arXiv:1705.10823 [cs.LG]

[2] Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram
Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. 2019. Scalable
reinforcement-learning-based neural architecture search for cancer deep learn-
ing research. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis.

[3] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct Neural Archi-
tecture Search on Target Task and Hardware. arXiv preprint arXiv:1812.00332
(2018).

[4] Ryan Chard, Zhuozhao Li, Kyle Chard, Logan Ward, Yadu Babuji, Anna Woodard,
Steven Tuecke, Ben Blaiszik, Michael Franklin, and Ian Foster. 2019. DLHub:
Model and Data Serving for Science. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 283–292.

[5] Shanyu Chen, Zhipeng He, Xinyin Han, Xiaoyu He, Ruilin Li, Haidong Zhu, Dan
Zhao, Chuangchuang Dai, Yu Zhang, Zhonghua Lu, Xuebin Chi, and Beifang
Niu. 2019. How Big Data and High-performance Computing Drive Brain Science.
Genomics, Proteomics & Bioinformatics 17, 4 (2019), 381–392. Big Data in Brain
Science.

[6] Anshul Choudhary, John F. Lindner, Elliott G. Holliday, Scott T. Miller, Sudeshna
Sinha, and William L. Ditto. 2020. Physics-enhanced Neural Networks Learn
Order and Chaos. Phys. Rev. E 101 (Jun 2020), 062207. Issue 6. https://link.aps.
org/doi/10.1103/PhysRevE.101.062207

[7] Juan-Pablo Correa-Baena, Kedar Hippalgaonkar, Jeroen van Duren, Sha�q Ja�er,
Vijay R. Chandrasekhar, Vladan Stevanovic, Cyrus Wadia, Supratik Guha, and
Tonio Buonassisi. 2018. Accelerating Materials Development via Automation,

https://arxiv.org/abs/1705.10823
https://link.aps.org/doi/10.1103/PhysRevE.101.062207
https://link.aps.org/doi/10.1103/PhysRevE.101.062207

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Georgia Channing et al.

Machine Learning, and High-Performance Computing. Joule 2, 8 (2018), 1410–
1420.

[8] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding
up Automatic Hyperparameter Optimization of Deep Neural Networks by Ex-
trapolation of Learning Curves. In Proceedings of the 24th International Confer-
ence on Arti�cial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press,
3460–3468.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, and Sylvain Gelly. 2020. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Francisco Erivaldo Fernandes Junior and Gary G. Yen. 2019. Particle Swarm
Optimization of Deep Neural Networks Architectures for Image Classi�cation.
Swarm and Evolutionary Computation 49 (2019), 62–74.

[11] A. Gertych, Z. Swiderska-Chadaj, and Z Ma. 2019. Convolutional Neural Net-
works Can Accurately Distinguish Four Histologic Growth Patterns of Lung
Adenocarcinoma in Digital Slides. Scienti�c Reports 9, 1483 (2019).

[12] Jie Hou, Badri Adhikari, and Cheng Jianlin. 2018. DeepSF: Deep Convolutional
Neural Network for Mapping Protein Sequences to Folds. Bioinformatics 34:8
(2018), 1295–1303.

[13] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-keras: An e�cient neural
architecture search system. Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2019).

[14] Travis Johnston, Steven R. Young, David Hughes, Robert M. Patton, and Devin
White. 2017. Optimizing Convolutional Neural Networks for Cloud Detection. In
Proceedings of the Machine Learning on HPC Environments (MLHPC) (Denver, CO,
USA). Article 4, 9 pages.

[15] A. Kamilaris and F. Prenafeta-Boldú. 2018. A Review of the Use of Convolutional
Neural Networks in Agriculture. Journal of Agricultural Science 156:3 (2018),
312–322.

[16] Kirthevasan Kandasamy, Willie Neiswanger, Je� Schneider, Barnabás Póczos,
and Eric P. Xing. 2018. Neural Architecture Search with Bayesian Optimisation
and Optimal Transport. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems. NeurIPS, 2020–2029.

[17] M F Kasim, D Watson-Parris, L Deaconu, S Oliver, P Hat�eld, D H Froula, G
Gregori, M Jarvis, S Khatiwala, J Korenaga, and et al. 2021. Building high accuracy
emulators for scienti�c simulations with deep neural architecture search.Machine
Learning: Science and Technology 3, 1 (2021), 015013.

[18] Ariel Keller Rorabaugh, Silvina Caíno-Lores, Travis Johnston, and Michela Taufer.
2022. Building High-Throughput Neural Architecture Search Work�ows via a
Decoupled Fitness Prediction Engine. IEEE Transactions on Parallel and Distributed
Systems 33, 11 (2022), 2913–2926.

[19] Ariel Keller Rorabaugh, Silvina Caíno-Lores, Michael R. Wyatt II, Travis John-
ston, and Michela Taufer. 2021. Architecture Descriptions and High Frequency
Accuracy and Loss Data of RandomNeural Networks Trained on Image Datasets.

[20] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning Curve Prediction with Bayesian Neural Networks. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=S11KBYclx

[21] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. arXiv:1603.06560 [cs.LG]

[22] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 (2018).

[23] Chaoyue Liu and Mikhail Belkin. 2018. Accelerating SGD with Momentum for
Over-parameterized Learning. arXiv preprint arXiv:1810.13395 (2018).

[24] Chenxi Liu, Barret Zoph, MaximNeumann, Jonathon Shlens,Wei Hua, Li-Jia Li, Li
Fei-Fei, Alan Yuille, JonathanHuang, and KevinMurphy. 2018. Progressive Neural
Architecture Search. In Proceedings of the European Conference on Computer Vision
(ECCV).

[25] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. 2018. Hierarchical Representations for E�cient Architecture
Search. In Proceedings of the International Conference on Learning Representations.

[26] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik
Goodman, and Wolfgang Banzhaf. 2019. NSGA-Net: Neural Architecture Search
using Multi-Objective Genetic Algorithm. arXiv:1810.03522 [cs.CV]

[27] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2018. Neural
Architecture Optimization. In Advances in Neural Information Processing Systems
31. NeurIPS.

[28] Zhiping Mao, Ameya D. Jagtap, and George Em Karniadakis. 2020. Physics-
informed Neural Networks for High-speed Flows. Computer Methods in Applied
Mechanics and Engineering 360 (2020), 112789. https://www.sciencedirect.com/

science/article/pii/S0045782519306814
[29] Paula Olaya, Silvina Caino-Lores, Vanessa Lama, Ria Patel, Ariel Keller Rorabaugh,

OsamuMiyashita, Florence Tama, andMichela Taufer. 2022. Identifying structural
properties of proteins from X-ray free electron laser di�raction patterns. 2022
IEEE 18th International Conference on e-Science (e-Science) (2022).

[30] Gyunam Park and Minseok Song. 2020. Predicting performances in business
processes using deep neural networks. Decision Support Systems 129 (2020),
113191.

[31] Ria Patel, Ariel Keller Rorabaugh, Paula Olaya, Silvina Caino-Lores, Georgia
Channing, Catherine Schuman, Osamu Miyashita, Florence Tama, and Michela
Taufer. 2022. A methodology to generate e�cient neural networks for classi�ca-
tion of scienti�c datasets. 2022 IEEE 18th International Conference on e-Science
(e-Science) (2022).

[32] Robert M Patton, J Travis Johnston, Steven R Young, Catherine D Schuman, DonD
March, Thomas E Potok, Derek C Rose, Seung-Hwan Lim, Thomas P Karnowski,
andMaximAZiatdinov. 2018. 167-PFlops Deep Learning for ElectronMicroscopy:
From Learning Physics to AtomicManipulation. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC). 638–648.

[33] Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman,
Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Junghoon Chae, Le Hou,
Shahira Abousamra, Dimitris Samaras, and Joel Saltz. 2019. Exascale Deep
Learning to Accelerate Cancer Research. In 2019 IEEE International Conference
on Big Data (Big Data). 1488–1496.

[34] Hieu Pham,Melody Y Guan, Barret Zoph, Quoc V Le, and Je�Dean. 2018. E�cient
neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268
(2018).

[35] Rahul Ramesh and Pratik Chaudhari. 2022. Model Zoo: A Growing "Brain" That
Learns Continually. arXiv:2106.03027 [cs.LG]

[36] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. 2017. Large-scale Evolution of
Image Classi�ers. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70. ICML, 2902–2911.

[37] Binxin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin
Gal. 2021. Speedy Performance Estimation for Neural Architecture Search. https:
//arxiv.org/abs/2006.04492. arXiv:2006.04492 [stat.ML]

[38] Max Schwarzer, Bryce Rogan, Yadong Ruan, Zhengming Song, Diana Y. Lee,
Allon G. Percus, Viet T. Chau, Bryan A. Moore, Esteban Rougier, Hari S.
Viswanathan, and Gowri Srinivasan. 2019. Learning to Fail: Predicting Frac-
ture Evolution in Brittle material models using recurrent graph convolutional
neural networks. Computational Materials Science 162 (2019), 322–332. https:
//www.sciencedirect.com/science/article/pii/S0927025619301223

[39] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. 2021. Graph Neural
Networks in Particle Physics. Machine Learning: Science and Technology 2, 2 (Jan
2021), 021001. https://doi.org/10.1088/2632-2153/abbf9a

[40] Tiberiu Stan, Zachary T. Thompson, and Peter W. Voorhees. 2020. Optimizing
Convolutional Neural Networks to Perform Semantic Segmentation on Large
Materials Imaging Datasets: X-ray Tomography and Serial Sectioning. Materials
Characterization 160 (2020), 110119. https://www.sciencedirect.com/science/
article/pii/S1044580319304930

[41] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G. Yen. 2020. Evolving deep
convolutional neural networks for Image Classi�cation. IEEE Transactions on
Evolutionary Computation 24, 2 (2020), 394–407.

[42] Tom Viering and Marco Loog. 2021. The Shape of Learning Curves: a Review.
arXiv preprint arXiv:2103.10948 (2021).

[43] Guangyu Robert Yang and Xiao-Jing Wang. 2020. Arti�cial Neural Networks for
Neuroscientists: A Primer. Neuron 107, 6 (2020), 1048–1070.

[44] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bho-
janapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2019.
Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes. arXiv
preprint arXiv:1904.00962 (2019).

[45] Steven R. Young, Derek C. Rose, Travis Johnston, William T. Heller, Thomas P.
Karnowski, Thomas E. Potok, Robert M. Patton, Gabriel Perdue, and Jonathan
Miller. 2017. Evolving Deep Networks using HPC. Proceedings of the Machine
Learning on HPC Environments (2017).

[46] Xiaolong Zheng, Peng Zheng, Liang Zheng, Yang Zhang, and Rui-Zhi Zhang.
2020. Multi-channel Convolutional Neural Networks for Materials Properties
Prediction. Computational Materials Science 173 (2020), 109436. https://www.
sciencedirect.com/science/article/pii/S0927025619307359

[47] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learn-
ing transferable architectures for Scalable Image Recognition. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018).

https://openreview.net/forum?id=S11KBYclx
https://arxiv.org/abs/1603.06560
https://arxiv.org/abs/1810.03522
https://www.sciencedirect.com/science/article/pii/S0045782519306814
https://www.sciencedirect.com/science/article/pii/S0045782519306814
https://arxiv.org/abs/2106.03027
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/2006.04492
https://www.sciencedirect.com/science/article/pii/S0927025619301223
https://www.sciencedirect.com/science/article/pii/S0927025619301223
https://doi.org/10.1088/2632-2153/abbf9a
https://www.sciencedirect.com/science/article/pii/S1044580319304930
https://www.sciencedirect.com/science/article/pii/S1044580319304930
https://www.sciencedirect.com/science/article/pii/S0927025619307359
https://www.sciencedirect.com/science/article/pii/S0927025619307359

	Abstract
	1 Introduction
	2 Methodology
	2.1 Parametric Prediction Engine
	2.2 Workflow Orchestrator
	2.3 Lineage Tracker and Data Commons
	2.4 Analyzer
	2.5 Workflow Resource Manager
	2.6 User Interfaces

	3 Scientific Data and NAS Selection
	3.1 Protein XFEL Diffraction Dataset
	3.2 NAS and NSGA-Net.

	4 Evaluation
	4.1 Evaluation Parameters
	4.2 a4nn vs Standalone NAS
	4.3 Compute Performance and Scalability
	4.4 Comparison with State-of-the-Art Methods
	4.5 Data Lineage

	5 Related Works
	6 Conclusions
	Acknowledgments
	References

