M)
)
Check for
updates

Parsimony: Enabling SIMD/Vector Programming

in Standard Compiler Flows

Vijay Kandiah
vijayk@u.northwestern.edu
Northwestern University, USA

David Nellans
dnellans@nvidia.com
NVIDIA, USA

Abstract

Achieving peak throughput on modern CPUs requires maxi-
mizing the use of single-instruction, multiple-data (SIMD) or
vector compute units. Single-program, multiple-data (SPMD)
programming models are an effective way to use high-level
programming languages to target these ISAs. Unfortunately,
many SPMD frameworks have evolved to have either overly-
restrictive language specifications or under-specified pro-
gramming models, and this has slowed the widescale adop-
tion of SPMD-style programming. This paper introduces
Parsimony (PARallel SIMd), a SPMD programming approach
built with semantics designed to be compatible with multiple
languages and to cleanly integrate into the standard optimiz-
ing compiler toolchains for those languages. We first explain
the Parsimony programming model semantics and how they
enable a standalone compiler IR-to-IR pass that can perform
vectorization independently of other passes, improving the
language and toolchain compatibility of SPMD programming,.
We then demonstrate a LLVM prototype of the Parsimony
approach that matches the performance of ispc, a popular
but more restrictive SPMD approach, and achieves 97% of
the performance of hand-written AVX-512 SIMD intrinsics
on over 70 benchmarks ported from the Simd Library. We
finally discuss where Parsimony has exposed parts of exist-
ing language and compiler flows where slight improvements
could further enable improved SPMD program vectorization.

CCS Concepts: « Software and its engineering — Com-
pilers; Semantics; - Computer systems organization —
Single instruction, multiple data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’23, February 25 — March 1, 2023, Montréal, QC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0101-6/23/02...$15.00
https://doi.org/10.1145/3579990.3580019

Daniel Lustig
dlustig@nvidia.com
NVIDIA, USA

186

Oreste Villa
ovilla@nvidia.com
NVIDIA, USA

Nikos Hardavellas
nikos@northwestern.edu
Northwestern University, USA

Keywords: Parallel Computing, Vectorization, Code Trans-
lation, Single-instruction Multiple-data, Compiler Design

ACM Reference Format:

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos
Hardavellas. 2023. Parsimony: Enabling SIMD/Vector Programming
in Standard Compiler Flows. In Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
’23), February 25 — March 1, 2023, Montréal, QC, Canada. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3579990.3580019

1 Introduction

Achieving high computational performance on modern CPUs
often requires making effective use of those CPUs’ SIMD or
vector units. Although single-thread performance scaling
has slowed in recent years, single-instruction, multiple-data
(SIMD) and vector ISAs continue to be an area of active inno-
vation [28, 29, 44]. SIMD/vector registers are getting wider,
with 512b registers already in widespread use. New ISA ex-
tensions such as x86 AVX-512 [9], ARM SVE [42], and the
RISC-V “V” extension [35] continue to introduce instructions
with richer computational power. For many workloads, these
innovations can translate directly into improved throughput;
however, targeting these new ISAs remains a major challenge
for developers and toolchain providers alike.

Programming approaches targeting CPU SIMD/vector
units fall broadly into three categories today. The simplest
approach for programmers is auto-vectorization of serial
code. This works well for some applications [33] but can
partially or completely fail to vectorize in other cases [31].
Moreover, the serial semantics of loops do not allow users to
express synchronization points across loop iterations. This
restriction makes it impossible to express operations such
as “shuffles”, which are often performance-critical to par-
allel workloads. A second approach is explicit SIMD/vec-
tor programming. This approach takes many forms includ-
ing inline assembly, low-level C intrinsics, or pre-packaged
SIMD-optimized libraries such as Enoki [47] or SLEEF [40].
Forcing developers to write low level code that explicitly
maps the SIMD-amenable portions of their problem onto
differing hardware ISAs is tedious, error-prone, and burden-
some. The third approach is using a single-program, multiple

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

data (SPMD) programming model that assumes a fixed num-
ber of threads or program instances executing in parallel.
SPMD programming models such as ispc [30] have already
proven effective at extracting good performance from CPU
SIMD/vector units while retaining a user-friendly interface.
Unfortunately, current SPMD frameworks have made pro-
gramming model decisions that make it difficult to express
certain classes of algorithms and hard to integrate their com-
pilation logic into existing compiler flows. For example, al-
though ispc [30] delivers great performance, it requires writ-
ing programs in a custom “C-like” programming language
as well as using a specialized standalone compiler infrastruc-
ture (derived from LLVM [16]); this increases the burden of
adopting it into large projects. Another example, still from
ispc, is the size of the thread “gang”! which is specified
using a compiler flag. This approach is far from ideal. For in-
stance, in a 512b SIMD architecture, a gang size of 16 would
be ideal for 32b values, but inefficient for 8b values. A gang
size of 64 would be ideal for 8b values but add tremendous
register pressure with 32b values. Having to select a single
gang size for the entire compilation unit makes performance
tuning difficult. Similarly, while threads in an ispc gang
execute in synchronous fashion, later innovations in GPU
SPMD programming models such as CUDA [26] have depre-
cated such “warp-synchronous” programming approaches in
order to improve the soundness of the threading model [25].
As such, the goal of Parsimony is to introduce a well-
defined SPMD programming model and compiler flow that
efficiently targets a CPU’s SIMD/vector units while remain-
ing compatible with standard programming models, lan-
guages, and compiler toolchains. As shown in Figure 1, Par-
simony’s design starts at the language semantics level and
is designed to be compatible with any number of front-end
language syntax choices. A Parsimony-compatible language
must only introduce the ability to conceptually instantiate a
programmer-specified set of threads—using the term “thread”
in the semantic sense, not necessarily as a true operating
system (OS) thread. Inter-thread communication is permit-
ted, but only when obeying standard inter-thread commu-
nication rules. Thus, Parsimony must expose efficient “hor-
izontal synchronization” operations to facilitate synchro-
nization within gangs. Due to this primarily single-threaded
model, the code can pass through any standard optimization
flow in the compiler. Vectorization instead occurs through a
standalone IR-to-IR transformation pass that translates the
SPMD-annotated function(s) into architecture-independent
vector IR. Each architecture’s standard back-end can then
optimize the translated IR for the target ISA as it sees fit.
Overall, the contributions of this work are as follows:

1. We present Parsimony, a well-specified programming
model and compiler framework fully compatible with
standard language semantics and compiler flows.

1A “gang” in ispc is a group of concurrent program instances.

187

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos Hardavellas

Under-Specified Specialized Languages,

Parsimony

Vectorizers, e.g., RV e.g., ispc
Language Syntax [Standard] [Custom] [Standard]
Rigorous but Rigorous
SPMD Semantics Unclear over-constrained (threads w/ explicit
(gang-synchronous) horizontal ops)
. Compiler Full-Custom Compiler
Vectorization Method q
Pass Compiler Pass

Figure 1. Existing SPMD vectorizers are effective but have
shortcomings. Whole-Function Vectorization [13] and Re-
gion Vectorizer (RV) [21] do not clearly specify their in-
tended semantics. Others (e.g. ispc) are overly-restrictive
and hard to integrate into large projects. Parsimony targets
well-defined SPMD semantics compatible with standard com-
pilers, while achieving similar performance targets.

2. We demonstrate a prototype implementation of Par-
simony in LLVM, with performance results showing
that our SPMD variant performs as well as state-of-the-
art SPMD frameworks (i.e., ispc) and custom AVX-512
code, without requiring the use of a specialized pro-
gramming language or compiler.

3. We identify places where improvements/extensions to
LLVM’s IR would facilitate better integration of SPMD
flows, and we provide takeaways for how languages
and language extensions like C++ and OpenMP can in-
tegrate the Parsimony approach to SPMD for improved
performance and programmer productivity.

. We publicly release our Parsimony compiler frame-
work and benchmarks to facilitate further research.

2 Background and Motivation

SIMD ISA extensions employ a fixed-width SIMD register file
and an instruction set that operates on fixed-width operands,
e.g., 128b, 256b, or 512b in the case of x86 AVX-512 [9]. Con-
versely, “vector” ISA extensions such as ARM SVE [42] and
RISC-V “V” [35] employ a vector-length-agnostic (VLA) in-
struction set that allows for implementations with different
vector widths to support the same ISA. For example, ARM
SVE supports hardware vector width implementations that
can vary between 128b and 2048b in 128b increments. This
enables pre-compiled code to run seamlessly across the sup-
ported vector widths without requiring recompilation. In this
paper, unless otherwise specified, we use the terms “SIMD”
and “vector” interchangeably as the differences between
these approaches are important only if programmers are
using low-level intrinsics, and are generally not significant
if being targeted by a SPMD-style program.

The currently mainstream techniques to leverage SIMD
and vector instruction sets and extract SIMD-level paral-
lelism on CPUs are briefly discussed below.

Auto-Vectorization: In classical loop auto-vectorization,
the compiler attempts to transform a region of serial code
(usually a loop) into a block of vector instructions [1, 23,

Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows

45]. To do this, it relies on algorithms such as alias anal-
ysis as well as target-dependent heuristics to determine
whether vectorization would be both legal and profitable.
While this approach requires little to no additional program-
mer effort, auto-vectorization is opportunistic and is gener-
ally limited by the level of sophistication of the compiler’s
analysis abilities. As such, it tends to produce highly vari-
able performance characteristics across systems. Language
extensions such as C++ std::execution::unseq [41] or
OpenMP #pragma omp simd [27] aim to improve the effi-
ciency of auto-vectorization by providing user annotations
or hints to the compiler, e.g., to ignore cases where the com-
piler cannot prove there are no loop-carried dependencies;
however, many of the same fundamental challenges remain.

Vectorization remains an active area of research. Outer-
loop vectorization [24] focuses on loops that are not the in-
nermost in a hierarchy. This introduces additional challenges,
as it raises the probability that there will be divergent control
flow among outer loop instances. SLP vectorization [15, 32] is
another auto-vectorization technique that combines similar
independent scalar instructions to form vector instructions.
Hence it offers more flexibility than loop vectorization be-
cause it does not just target parallelism across loop iterations.
Additionally, auto-vectorization is performed on serial loops,
and serial loops do not allow programmers to express hori-
zontal communication between iterations.

Low-Level Intrinsics: SIMD/vector intrinsics are small
functions that map nearly 1:1 to assembly instructions for
a particular ISA. Manually inserting SIMD/vector intrinsics
requires significant low-level programmer effort and is inher-
ently non-portable. Nevertheless, due to the limitations of
the other programming approaches described in this section,
libraries aiming for peak performance often contain exten-
sive use of intrinsics in spite of the engineering costs [34].

SIMD Libraries: Libraries like enoki [47] and SLEEF [40]
shift code portability into a library-supported layer for dif-
ferent architectures. While using SIMD libraries does make
the source code more readable than the lower level intrinsics
approach, similarly high performance can be achieved only
if the source code can be expressed in terms of the limited
set of exposed APIs that are specified by these libraries.

Dedicated SPMD Languages: SPMD-on-SIMD program-
ming models such as ispc [30] generate multiple conceptual
program instances that operate on different data from scalar
C-like code. Each instance of the program is then mapped to
a different SIMD lane to extract parallelism. While such pro-
gramming models are very appealing to efficiently utilize the
CPU SIMD/vector units, their use of non-trivial keywords
like “varying” and their reliance on non-standard compila-
tion toolchains has limited their widespread adoption.

2.1 Mapping SPMD Programs to SIMD/Vector Units

When viewed through the lens of a SPMD program, both
SIMD and vector ISA extensions enable traditional data-level

188

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

128 bits
a |1‘5|1‘4|1‘3|1‘2|1‘1|1‘0|?IE‘KITIE‘SI?I?I?I%I‘1|(‘J|
b [15]14]13]12J11J10] 9[8[7[6[5]4[3]2]1]0]

A A B

c [15]1413]12J11J10f 9[8[7[6[5]4[3]2]1]0]

Lane 0 to 15 in ¢ = corresponding lane in a + corresponding lane in b

(a) A “Vertical” add instruction operating independently within each lane.

128 bits
input [15]14]13]12]11]10] 98] 7]6]5]4]3]2]1]0]
1]

output

Each lane in output gets its value from any lane 0 to 15 in input

(b) A “Horizontal” shuffle operation permitting any-to-any lane output.

Figure 2. SIMD/Vector operations can occur both per-lane
and across lanes in high performance ISAs.

parallel operations through “vertical” operations in which
multiple logical “lanes” all operate independently. The num-
ber of lanes that can concurrently execute in hardware is
thus a function of the SIMD/vector width and the data width
of the operand being operated upon. For example, Figure 2a
shows a SIMD add instruction performing a vertical addition
of two 8-bit values across 16 lanes of two input 128b registers.
In contrast, “horizontal” instructions operate across the lanes.
For instance, a shuffle instruction exchanges values across
a single SIMD/vector input register as shown in Figure 2b.
Modern SIMD/vector ISAs also include complex instructions
that are neither purely vertical nor purely horizontal. For ex-
ample, AVX-512 includes instructions that perform a vertical
operation in combination with a horizontal operation (e.g.,
vpsadbw [9]). Such instructions are harder for compilers to
target, but recent work [3] has improved the situation.

An enabling feature of modern SIMD and vector ISAs that
allows for efficient SPMD programming is the support for
masked execution with per-lane predication of execution
output. The predication mask registers have one bit per lane
and masked-off lanes will not modify their sub-portion of
the output register used by the SIMD instruction. This fine-
grained predication is critical when mapping programs onto
a single thread executing SIMD instructions even though the
SPMD threads diverge along different control flow paths.

2.2 Motivating Improved SPMD Semantics

In the examples below, we analyze variants of a simple pro-
gram that copies data from each position in an array into
an adjacent array position. This program is not as innocent
as it may seem; it highlights several interesting subtleties
that can arise in SPMD programming model decisions and
exposes compiler implementation issues that may appear.

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

1 // OpenMP version

2 template<typename T,
3 void foo(T* a) {

4 #pragma omp simd
5 for (unsigned i = 0; i
6 T tmp = alil;

7 // data race! cannot synchronize
8 ali+1] = tmp;

9 }

10 3}

Listing 1. OpenMP maintains serial execution semantics.

unsigned N>

< N; i++) {

1 // ispc version (limited support for templates)
2 void foo(uniform int al[]) {

3 foreach(uniform i : @ ...
4 int tmp = alil;

5 // implicitly gang-synchronous!

6 // correct only if N <= compile time gang size
7 ali+1] = tmp;

N o

Listing 2. ispc code is “gang-synchronous”.

Listing 1 presents a version of the program written in
C++ with OpenMP. As required by most #pragma imple-
mentations, the program semantics can be fully understood
by ignoring the #pragma: e.g., each loop iteration reads the
value of a[i] and writes it to a[i+1], where the latter is then
read during the next loop iteration. However, the OpenMP
#pragma allows the compiler to legally ignore loop-carried
dependencies that can be difficult to analyze (though in this
case, the dependency is obvious). Note that it does not specify
that a loop-carried dependency must be ignored. Ignoring
it would allow all loop iterations to first perform the load
before any iteration performs its store; i.e., it would allow
vectorization of the loop. Specifying this type of synchro-
nization requires explicitly breaking the single loop into two.
While doing so would be straightforward in this program, it
becomes complex or impossible in larger regions. Meanwhile,
there is no way to clearly specify the intended interpretation
of the program as written. Some compilers will take advan-
tage of the pragma and vectorize the code in spite of the
loop-carried dependency. Others will choose not to vectorize
in order to maintain the original single-threaded semantics.

An ispc version of the same program is shown in Listing 2.
Due to ispc’s gang-synchronous execution model, ispc
requires all threads in the gang to execute the load before
any thread executes its store. However, in ispc, the gang
size is a compilation flag that is tightly coupled with the
ISA SIMD width of the target machine. Programmers can
access it through the programCount variable, but not set it.
Therefore, the correctness of this code changes depending
on the relationship between gang size and N. This is less than
ideal from a programming model perspective.

Listing 3 now demonstrates how the running example
would be written using Parsimony, using #psim syntax as
one example of how to demarcate an explicit SPMD parallel

189

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos Hardavellas

1 // Parsimony version:
2 template<typename T, unsigned N>
3 void foo(T* a) {
! #psim gang_size(N) {

5 uint64_t i = psim_get_lane_num();
6 T tmp = alil;

7 psim_gang_sync();
3 ali+1] = tmp;

// explicit!

10 3}
Listing 3. Parsimony makes gang size and horizontal
synchronization explicit.

1 // Parsimony version:

» template<typename T, unsigned N>

3 void foo(atomic<T>* a) {

4 #psim gang_size(N) {

5 uint64_t i = psim_get_lane_num();

6 ali].fetch_add (1, memory_order_relaxed);

7 a[i+1]. fetch_add (1, memory_order_relaxed);

8 3

9 3}
Listing 4. Example showing how “gang-synchronous”
behavior can break compiler optimizations legal for single-

threaded code.

region. Described in more detail in Section 3, Parsimony com-
patible code explicitly instantiates a programmer-specified
number of independent threads that can be grouped into
gangs. The gang size need not match the hardware’s SIMD
width; the compiler back-end can map any gang size onto
any target ISA. Because the number of threads is specified at
the program level, a developer can reason about program cor-
rectness strictly based on the programming model. There is
no requirement to know the compiler options being specified
nor the SIMD/vector width of future hardware the program
will be executed on. As with modern GPUs [26], but dif-
fering from ispc, Parsimony eschews a gang-synchronous
programming model and instead requires the programmer
to explicitly synchronize across a gang when needed. This
makes it easier to incorporate standard sequential semantic
compiler passes and facilitates the possible adoption of more
flexible forward progress guarantees in the future.

Listing 4 presents a different example showing how a gang-
synchronous programming model can introduce semantics
incompatible with standard compiler optimizations in lan-
guages such as C++. Because the example operations are
atomics, there are no concerns about data races regardless
of the actual execution order in hardware. A typical single-
thread compiler optimization pass can tell that the atomics
are performed to two adjacent non-aliasing addresses. There-
fore, it would be legal for the compiler to reorder the atom-
ics arbitrarily. However, in a gang-synchronous model, all
threads in the gang are required to perform the first atomic
before any thread in the gang performs the second atomic.
Therefore, the second atomic in each thread must read the
result written by the first atomic from the adjacent thread
(except at the boundary condition). To preserve this semantic,

Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows

: |
Scalar Region Conventional

—

Standard execution, l C/FH.
in-order . START SPMD Region compilation
SPMD Region

Gang 0 Gang 1
SPMD semantics i 1 i + i 1 i Compiles to
with explicit gLi L | SIMD/vector
synchronization Horizontal code

Operations

Scalar Region

Standard execution,
in-order

1 END SPMD Region Conventional
C/C++

compilation
Figure 3. The Parsimony SPMD programming model.

the compiler cannot reorder the atomics. Hence, optimiza-
tion passes capable of reordering memory operations in cases
such as this have to be explicitly disabled, modified, or spe-
cialized, making it difficult to integrate “gang-synchronous”
SPMD models with modern vectorizing compiler flows.

The examples above show three important takeaways that
motivate Parsimony’s design. First, the semantics of a SPMD
programming model should be well-defined in a way that the
programmer can reason about at the language level, i.e., the
semantics should not depend on any compile-time flags. Sec-
ond, designing the semantics independently from the syntax
allows the SPMD semantics to be integrated into widely used
languages, facilitating adoption. Finally, the SPMD semantics
should strive to be compatible with standard single-thread
semantics to facilitate integration into standard compiler
flows. The next section explains Parsimony’s programming
model and how it meets all of these goals.

3 Parsimony Programming Model

Parsimony is a general-purpose SPMD programming model
designed to integrate cleanly into any programming lan-
guage that supports threading and shared memory seman-
tics. For explanatory purposes and in our implementation,
we use standard C++ as the target language; however, the
same principles extend to other languages.

In Parsimony’s SPMD programming model, which is de-
picted in Figure 3, a SPMD region is a region of code in
which a fixed number of conceptually independent threads
are created. The SPMD region executes within the parent
thread. This means the threads are conceptually “forked” at
the start of the region and “rejoined” at the end of the region,
where the parent thread continues its execution. However,
no threads are actually forked in an operating system sense;
the “fork” and “join” describes the threads’ behavior within
the language semantics. Within each thread, standard intra-
thread sequencing rules apply.

Threads are also grouped into gangs of a fixed size, deter-
mined by the programmer as part of the syntax declaring
the parallel region. This allows different SPMD regions in a

190

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

1 void foo(uint32_t* a, uint32_t* b) {

2 #psim gang_size (16) num_spmd_threads(N) {
3 size_t i = psim_get_lane_num();

4 if (alil + i < b[i]) {

5 alil += 1;

6 }
7 b[i] =
8 }

9 }

Listing 5. Parsimony syntax, as embedded in C++.

psim_shuffle_sync<uint32_t>(alil], i + 4);

program to operate on different gang sizes, which is useful
when differing functions operate on data structures having
different element sizes. This differs from ispc’s approach,
which specifies the size of the gang using a target-dependent
compiler flag. Also unlike ispc, Parsimony threads are not
“gang-synchronous”; there is no implicit synchronization be-
tween threads at every sequence point (i.e., before or after
each statement). As mentioned earlier, this choice provides
more optimization and scheduling flexibility to the compiler.

In Parsimony, synchronization between threads is instead
performed using explicit horizontal operations. In contrast
to auto-vectorization of loops or other language constructs
such as std: :execution: :unseq, which is the current C++
standard recommendation for code targeting SIMD units [41],
Parsimony threads may also communicate through memory
using standard inter-thread memory ordering rules. As long
as data races between threads are avoided, communication
through memory is well-defined behavior.

Parsimony guarantees concurrency and weak forward
progress among threads in each gang: if all threads individu-
ally make forward progress, then all threads in the gang will
eventually make forward progress. This rule is necessary to
ensure that horizontal operations behave correctly. However,
Parsimony does not provide global forward progress guar-
antees, e.g., if one thread in a gang is waiting on a spinloop
that will be signaled by another thread in the same gang,
then the stalling thread may block the progress of the en-
tire gang. Additionally, there is no guarantee of concurrency
or forward progress among different gangs. These restric-
tions are tighter than those in place on modern GPUs [25]
which support a single-instruction multiple-thread (SIMT)
programming model. GPUs may have hardware-assisted in-
dependent thread scheduling [25], whereas Parsimony relies
on a more restricted forward progress model to ensure that
there is no need for a software implementation of concepts
such as SIMT convergence stacks [6, 17] or launching of
multiple OS threads to enable thread preemption.

Listing 5 shows the syntax we have used to prototype
Parsimony and employed in the examples in this paper. These
syntax choices are not fundamental and could be adapted
as needed for different languages/frameworks. As shown,
a SPMD region is identified with the #psim construct and
prefixed with syntax indicating the gang size (gang_size)
as well as the number of total threads (num_spmd_threads)
or gangs (num_spmd_gangs). This gang size can take any

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

compile-time constant value; there is no dependency on the
hardware vector width. The last gang may be partially full
depending on whether the number of threads is a multiple of
the gang size. The user can obtain the unique thread number
within the SPMD region using psim_get_thread_num(),
the gang number with psim_get_gang_num(), and the lane
number within the gang with psim_get_lane_num().

To allow further compiler optimization, the user can call
psim_is_tail_gang() and psim_is_head_gang() to ex-
plicitly identify the first and the last gang in the region.
This is unique and important because the first and last gang
are typically used to perform operations on the boundary of
data structures. Hence, more expensive boundary condition
checks are often performed there and a programmer may
not want to burden all threads with performing those. The
compiler can use this information to automatically extract
the first and last gang into a copy of the function that is sepa-
rate from the rest, so that the boundary condition checks can
be optimized away from the non-boundary gang execution.
Parsimony provides no guarantee of ordering among gangs,
so depending on the compiler implementation they can be
executed sequentially, out of order, and/or in parallel.

The body of the SPMD region automatically captures
variables from outside the region by reference, as needed;
the SPMD region itself takes no explicit arguments. SPMD
threads may contain any arbitrary language constructs, in-
cluding arbitrary control flow or memory access patterns,
subject to standard language semantics. Parsimony also pro-
vides a set of APIs for operations not typically exposed in
standard language APIs, such as saturating math operations
and horizontal shuffle and data exchange operations.

The choices described above were made to facilitate the
use of a standalone IR-to-IR vectorization pass that can be
integrated easily into standard language toolchains. The next
section describes the implementation details of such a pass.

4 Parsimony Compiler Implementation

We now describe how Parsimony SPMD semantics integrate
into a typical compiler flow and our prototype that mani-
fests these concepts. We use LLVM for our implementation,
though these concepts should generalize to other compilers.

The overall flow for Parsimony compilation works as fol-
lows, with each step described in further detail below. First,
the program is compiled from source into the compiler’s
intermediate representation (IR) by the compiler front-end.
The front-end is modified only in two ways: to support SPMD
semantics within the source language as needed, and to dis-
able any early-stage auto-vectorization that might occur by
default. Second, the new Parsimony IR-to-IR vectorization
pass is added to the middle-end optimization process. This
new pass vectorizes the SPMD regions and is the core of the
Parsimony design. Finally, the IR is translated to machine-
specific assembly using the unmodified compiler back-end.

191

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos Hardavellas

1 // Original source code, before extraction

2 void foo(intx a) {

3 // code before...

4 #psim gang_size(G) num_spmd_threads(N) {

5 // SPMD region code

6 }

7 // code after...

8 }

9 LI IIITIIIII PN

11 // After extraction

12 void foo(intx a) {

// code before...

14 for (unsigned i = @; i
15 if (i + G <=N) {
foo_extracted_full (/*captured varsx*/);

< N; i += G) {

17 } else {

18 foo_extracted_partial (/*captured varsx*/);
19 }

20 }

21 // code after...

22 }

// SIMD annotation: gang size G

24 inline void foo_extracted_full(/xcaptured vars=*/) {

// SPMD region code

26 }

27 // SIMD annotation: gang size G

inline void foo_extracted_partial(/*xcaptured varsx/) {
29 if (thread_id < N) {

30 // SPMD region code

31 }

32}

Listing 6. An abstracted representation of the SPMD region
extraction process performed by the front-end.

4.1 Front-End

The job of the compiler front-end within Parsimony is to
produce a list of SPMD regions to be vectorized by the
middle-end. We assume that the vectorizer operates at the
level of whole functions, and as such, the front-end must ex-
tract SPMD regions from serial code into standalone SPMD-
annotated functions. The vectorized function can later be
re-inlined by the back-end in order to avoid the overhead
of an extra function call. The SPMD annotation attached to
the function must record relevant metadata such as the gang
size and the total number of threads executing that region
as specified by the Parsimony programming model.

Our prototype implements SPMD function extraction by
piggybacking on Clang support for the extraction of #pragma
omp parallel code regions. OpenMP parallel regions are
implemented in Clang by outlining the parallel region into a
standalone function, implicitly capturing any needed vari-
ables being referenced. After function extraction, the Parsi-
mony front-end re-intercepts the OpenMP thread fork API
and replaces it with a loop around a call to the Parsimony-
vectorized function(s). This loop, which iterates over all of
the gangs in the region, is specialized based on whether the
total number of threads is known to be an exact multiple of
the gang size and whether there are calls to APIs such as
psim_is_head_gang() or psim_is_tail_gang(). Listing 6
shows a stylized example of the front-end flow.

Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows

4.2 Middle-End Vectorizer

The Parsimony vectorization phase is responsible for vector-
izing SPMD-annotated functions generated by the front-end.
This phase follows a flow similar to many existing vector-
izers [13, 21, 30] but is tailored specifically to Parsimony’s
flavor of SPMD semantics. It is important to note that ex-
isting vectorizers often rely on being placed at a particular
point within a bespoke sequence of optimization passes [10],
whereas Parsimony’s vectorization pass can be placed any-
where in the optimization pipeline. Parsimony’s middle-end
flow starts with the analysis of the scalar code, followed by
transformation into vector code, as described below.

4.2.1 Control Flow and Mask Calculation. An SPMD
annotation indicates that the function must be translated
into a version in which G independent threads execute the
function in SIMD fashion, where G is the gang size. The vec-
torized function’s control flow must account for the possibil-
ity that the conceptually independent threads can diverge
along different control flow paths. Capturing this divergent
behavior requires the SIMD thread to reach all control flow
branches executed by any of the conceptual SPMD threads.
Threads that are not currently actively executing any par-
ticular control flow path need to be masked off so as to not
disturb the values in those threads’ lanes of the vector values.

Parsimony uses the following process to calculate its vec-
torization masks. First, it uses pre-existing LLVM support for
“structurizing” the control flow graph into a state where all
forward control flow consists only of “if-then” patterns? [20].
Then, similar to prior work [13], two masks are prepared for
each basic block: an entry mask and an active mask. In loop
headers, the entry mask represents the mask of threads that
entered the loop, and hence those which must also collec-
tively exit the loop once all threads have finished iterating. In
other basic blocks, both masks are identical. The active mask
for each basic block is calculated as the logical-AND of the
predecessor’s entry mask and (if applicable) the condition
on the branch at the end of the predecessor block. Loops also
receive a dedicated mask for each exit; threads incrementally
update these masks as they exit the loop. Once all threads
have reconverged at the loop exit, the exit masks are used to
steer subsequent control flow.

4.2.2 Shape Analysis. Shape analysis is a blanket term
for various techniques described in literature as stride, affine,
uniform, convergence, or divergence analysis [4, 18, 36, 37].
Shape analysis attempts to track patterns in all SPMD threads’
copies of a single variable. For example, if the compiler can
prove that a variable will always have identical contents
in all SPMD threads, then it is uniform. If the compiler can
prove that a variable will always be equal to some base value

This pass assumes the control flow is structured. For unstructured control
flow, partial linearization [21] could be used.

192

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

common to all threads plus a per-thread offset that is some
fixed multiple of the thread number, then it is strided.

Shape analysis is critical to the performance of vectorized
code in several ways. First, uniform values can be stored in
scalar registers and be operated on by scalar instructions
which can improve latency, throughput, and/or register pres-
sure in many CPU architectures. Second, uniform branches
can also be translated into scalar branches, thus decreasing
execution of fully masked dead code paths. Finally, shape
analysis is crucial to the selection of efficient memory ac-
cess instructions. The naive vectorization of a load and store
instruction where each SPMD thread may be accessing un-
related memory addresses generate a SIMD gather or scatter
operation. SIMD gathers and scatters are very slow on most
modern CPUs—often no faster than performing each indi-
vidual serialized scalar accesses. However, if the shape of
the addresses accessed can be proven to be either uniform
or strided, the compiler can generate highly efficient scalar
or packed SIMD operations, respectively.

Parsimony classifies all value shapes into one of two cate-
gories: indexed or varying. Indexed values can be represented
as a fixed common base value that may or may not be known
at compile time, plus a per-thread offset that must be known
at compile time. The common base values are maintained as
scalar values in the IR, but the offsets are stored as metadata
within the compiler. Varying values are those which are not
indexed; these are stored as vector values in the IR. Note
that both uniform and strided values are subsets of indexed
values; the broader indexed category allows for more shape
patterns to be captured, thus enabling more optimization.

Parsimony’s shape analysis iterates on a per-instruction
basis. Constants and function arguments are marked uni-
form. Calls to Parsimony APIs have operation-dependent
shapes. For example psim_get_lane_num() is indexed with
stride 1, while psim_get_num_threads() is uniform. The
shape of each instruction is calculated by applying the se-
mantics of the instruction to the shapes of its operands and
then, if possible, interpreting the result as a new indexed
value. If this is not possible, the output shape is marked as
varying. If an instruction’s input operand is not immediately
available, e.g., due to a circular dependency within a loop,
then the calculation proceeds speculatively but optimisti-
cally; the process then advances iteratively, recalculating
any speculated shapes, until the result converges.

For example, consider an integer add instruction applied to
two indexed operands with values (apgse+a;) and (bpgse+b;),
respectively, where ap,se and bpgse are the common base val-
ues and g; and b; are the offsets for lane i. Addition produces

(abase + ai) + (bbase + bl) = (ahase + bbase) + (ai + bi)s

which can easily be interpreted as a new indexed value. Inte-
ger multiplication produces

(ahase X bbase) + (ai X bhase) + (bl X abase) + (ai X bl)

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

This value can only be interpreted as indexed if apqs. and
bpase are known at compile time [36]. Otherwise, the two
middle addends are neither common across all lanes nor
per-lane values that are known at compile time.

For many instructions, the ability to classify a shape as
indexed depends on certain facts about the input operands.
For example, for a logical-AND operation, the outcome

(abase + ai)&(bbase + bl) = (abase&bbase) + (ai&bbase)

holds if b is a uniform negative power of two and a is an
even multiple of —b, but may not hold otherwise. To enable
this, some vectorizers also track metadata about properties
such as variable alignment manually [30].

Parsimony performs shape analysis with the help of the z3
SMT solver [22] in two phases. In an offline phase, a large set
of conditional shape transformations (such as shown above
for logical-AND) are verified for correctness. At compilation
time, known facts about IR values are tracked as z3 model
constraints and a particular shape transform is applied only
after verifying that its preconditions are satisfied by the
operands. Although verifying the transformations can be
slow, checking the preconditions takes just fractions of a
second, so this online checking imposes negligible compile-
time overhead. This two-phase validation of transformations
allows any new proposed transformation to be rigorously,
yet easily, verified before being deployed in Parsimony.

4.2.3 Instruction Transformation. Transformation is
the step where each instruction in the original scalar func-
tion is converted into the form it will take in the vectorized
function. Most instructions will be vectorized, but some may
remain scalar, e.g., if operating only on indexed values. We
describe the handling of various instruction types below.
Arithmetic instructions are converted into vector form if
their output shape is varying. For example, an instruction

%2 = mul nsw i32 %0, %1

operating on varying values %0 and %1 and producing vary-
ing value %2 will be transformed into

%2 = mul nsw <G x 132> %0, %1

where G is the gang size. Arithmetic instructions operating
on and producing only indexed values remain scalar, as only
their common base value is stored at runtime.

In alloca instructions (stack allocation), the original size
is multiplied by the gang size and pointer types are adjusted
accordingly. A more optimized implementation could also
(where possible) swizzle the data layout from array-of-structs
into struct-of-arrays to avoid unnecessary gather/scatter
operations on stack-allocated values [30].

Memory instructions are converted into a number of forms
dependent on the shape of their address operands. Loads
from a uniform address remain as regular scalar loads into
uniform values. Stores to a uniform address are racy, un-
less only one thread is active; Parsimony chooses to emit
a compile time warning then chooses one active thread to

193

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos Hardavellas

perform the scalar store. Loads from, or stores to, an address
which is indexed with offset stride equal to the size S of the
scalar type being accessed are converted into packed vector
loads or stores of G X S consecutive bytes, respectively. These
packed operations are typically an order of magnitude more
efficient than gather/scatter on all CPUs we have tested with
Parsimony. Loads and stores of indexed values with other
forms of stride may be converted into a packed load/store
plus shuffle operation(s) if the indices remain within a par-
ticular bound (in our implementation, 4X the gang size), as
the accesses plus the extra shuffle(s) are still faster than per-
forming gather/scatters. However, loads or stores of varying
values must be converted into gather/scatter operations. All
vector memory accesses are masked by the thread block’s
active mask to ensure that inactive lanes do not clobber data
in memory or perform out-of-bounds accesses.

Branch instructions with varying values used as the con-
dition are transformed into non-conditional branches to the
originally-taken branch. This ensures that all paths through
the CFG, potentially taken by any thread, will be properly
evaluated. This can be further optimized by explicitly check-
ing at runtime if any thread takes the branch and following
the not-taken branch if none do. Prior projects have chosen
to do this both implicitly [21] or explicitly via keywords
such as ispc’s cif [30]. Branch instructions with uniform
condition values remain as conditional branches.

The behavior of function call transformations depends on
the callee. Calls to Parsimony intrinsic functions are imple-
mented to match the semantics of that function. In many
cases, e.g., for psim_get_thread_num(), the function can
be replaced by a scalar or vector constant. Calls to functions
with known vector interfaces can be made directly, adjust-
ing for API peculiarities as needed (e.g., only some gang
sizes may be available). Annotations analogous to #pragma
omp declare simd [27] could be used to indicate that any
standalone function should be vectorized and exported. Our
prototype currently supports the SLEEF math library [40],
but we envision generalizing this in the future. Calls to scalar
functions that cannot be inlined are transformed into a se-
rial loop of scalar calls by each active thread individually.
This is another way in which the lack of gang-synchronous
execution requirements makes Parsimony code easier to
compose, as separately-compiled scalar functions cannot be
transformed to execute in gang-synchronous fashion.

¢ nodes that have varying output values and are the join
point for two forward edges must be converted into select
operations. This operation picks the contents of each lane in
the output vector value individually, based on the active mask
of whichever predecessor is the ‘then’ block in the ‘if-then’
pattern that the entire CFG was earlier adapted into. This
step is the key to ensuring that live values are not clobbered
by unmasked arithmetic instructions executed by active and
inactive lanes in the CFG predecessors. Other ¢ nodes can
be transformed just as regular arithmetic instructions are.

Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows

4.3 Back-End

Once the vectorization pass has completed, the result can be
passed to any number of other optimization passes and then
to the unmodified compiler back-end. As part of this process,
the IR will in most cases be further simplified. The back-end
is also responsible for unrolling each vector instruction if
the IR instruction’s vector width (i.e., usually the gang size)
does not match the width of the instructions available on the
target. For example, with a gang size of 32 and a target ISA
with 512b vector registers, an integer add IR operation on
32b ints (32x32b=1024b) would reduce down to two 512b
SIMD assembly add instructions. The back-end is free to
schedule these instructions however it chooses, subject to
not breaking the semantics of horizontal operations.

Our Parsimony prototype focuses on x86 and AVX-512.
We explored support for ARM SVE, but LLVM support for
vector length-agnostic ISAs in general is less mature than for
AVX-512, so we leave an evaluation on SVE as future work.

5 Evaluation Methodology

We evaluate the Parsimony prototype on two benchmark
suites. First, we ported the ispc benchmark suite to Parsi-
mony enabled C++. Comparing to ispc allows us to quan-
tify if ispc’s more restrictive SPMD model enables better,
worse, or similar performance to the more general Parsi-
mony SPMD model. We adapted the ispc versions into Par-
simony maintaining the same algorithms. Second, we ported
72 benchmarks from the Simd Library [8], a popular high-
performance image processing and machine learning library.
This suite contains multiple versions of each benchmark,
including serial and hand-coded versions specifically opti-
mized for SIMD/vector ISA back-ends using manually-tuned
low-level intrinsics. Due to pragmatic limitations such as
the Simd Library making heavy use of templates and custom
C++ datatypes, we were unable to port these benchmarks to
ispc—demonstrating the need for maintaining language and
compiler level compatibility in SPMD programming systems.

Our IR-to-IR Parsimony pass is based on LLVM 15.0.1 [20]
and our auto-vectorization comparisons were performed
with LLVM’s default vectorization (loop + SLP) pipeline. We
also compared against various research and production auto-
vectorizers, but elide the results because the broad trends
were similar to LLVM’s auto-vectorization, despite some vari-
ations in individual benchmarks. We compiled the ispc code
with the latest release version of ispc (v1.18.0) [11] with de-
fault compilation flags. For all results, we report averages col-
lected over five workload executions on a Intel® Xeon® Gold
6258R CPU with AVX-512 support compiled with Clang op-
tions -03 -march=native -mprefer-vector-width=512.
All experiments are single-threaded from the OS’s point of
view because Parsimony’s SPMD design focuses on efficient
SIMD/vector execution within a core.

194

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

<
-6 14 - .
= ispc Parsimony
2w 12
© N
Es 9 |
o9 — — —
2g HE H I
g
£ ¢ HE B EH H B
£ ‘E‘ 2 - — — — — — —
(] 0 T T T T T
E é S e° e \ \\
2 ot o< o0 o N < O =

8 . o Poge 303\?, %e“:, \«56\ e\‘o‘o’& o GQON\

O \o W PG W

\ -

Q) Ni© Q?/‘\\'(\

ispc Benchmarks

Figure 4. Parsimony and ispc performance compared to
LLVM Auto-vectorization.

6 Experimental Results

Figure 4 shows the performance of Parsimony and ispc on
7 ispc benchmarks [30] normalized to the baseline LLVM
15.0.1 auto-vectorized serial implementation. Parsimony and
ispc achieve a geomean speedup of 5.9 and 6 relative to
auto-vectorization respectively. Parsimony closely matches
ispc’s performance on all benchmarks except Binomial
Options, for which Parsimony achieves 0.71x of ispc’s per-
formance. We narrow this performance gap down to ispc’s
use of its built-in SIMD math library function pow. Our Par-
simony prototype uses the SLEEF [40] math library for math
functions such as pow, and SLEEF’s implementation of pow
for x86 AVX-512 is 2.6X slower. This performance differ-
ence is not inherent to the ispc or Parsimony SPMD design
choices. This demonstrates that gang-synchronous and non
gang-synchronous SPMD designs can achieve nearly iden-
tical performance on modern architectures. Therefore, we
conclude that there is no performance penalty for choosing our
easier-to-adopt non-synchronous SPMD semantics.

To demonstrate the robustness of the Parsimony approach,
Figure 5 shows the performance of Parsimony SPMD im-
plementations, auto-vectorized serial C++ implementations,
and hand-written AVX-512 implementations of 72 Simd Li-
brary benchmarks normalized to un-vectorized scalar imple-
mentations. LLVM’s Auto-vectorization yields a geomean
3.46x speedup over LLVM’s scalar baseline, while Parsimony
yields a geomean 7.7x speedup; this results in a geomean
2.23% speedup for Parsimony over auto-vectorization. Fur-
thermore, the handwritten AVX-512 intrinsics implemen-
tations perform negligibly better than Parsimony, as Par-
simony achieves a geomean 0.97x performance relative to
handwritten implementations. From these results, we con-
clude that Parsimony’s flavor of SPMD semantics is capable of
delivering near-peak SIMD performance without requiring pro-
grammers to resort to architecture-specific low-level intrinsic
programming. Moreover, Parsimony manages to achieve high
performance while having a 7x average code reduction rel-
ative to handwritten implementations while ensuring code
portability with good compiler and language compatibility.

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

[
o
o

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos Hardavellas

=
o

to Scalar LLVM
=

Performance Normalized
o

"The Simd Library" Benchmark Number

Hand-written AVX-512 (Geomean: 7.91)

Parsimony (Geomean: 7.70)

«LLVM Auto-vectorization (Geomean: 3.46)

Figure 5. Speedup over LLVM scalar compilation, i.e., with vectorization disabled, on 72 Simd Library benchmarks.

7 Discussion

For pragmatic reasons Parsimony uses a small number of
architecture-specific IR constructs during instruction trans-
formation. We envision that important, common operations
such as “multiply and return upper half” will be included
as general-purpose compiler IR constructs in the future in
order to further decouple vectorization from architectural
constraints. For existing instructions that are neither purely
horizontal or vertical, we explored exporting language level
APIs with higher-level portable abstractions. For instance,
we abstracted the AVX-512 vpsadbw instruction, which accu-
mulates the sum of absolute differences of 8b values in sets
of eight lanes from the input register into a single 16b value
shared by 8 lanes, using an opaque data structure added
to the Parsimony programming API that could have multi-
ple back-end implementations. For other instructions which
may truly be unique to a particular ISA, developing a clean
general-purpose exposure for them up through the program-
ming model would be an interesting area of future work.

Parsimony’s SPMD programming model differs from other
contemporary parallel language approaches in several impor-
tant ways. C++ uses std: :execution: :unseq to describe
loops in which iterations are not related by the “sequenced
before” relationship that otherwise orders operations within
the same thread. Unfortunately, concurrent accesses by unse-
quenced evaluations to the same address are racy and hence
have undefined behavior. Similarly std: :execution: :par
allows spawning of threads to execute instances, but de-
scribes instances as indeterminately-sequenced, implying
that there is no concurrency between iterations assigned
to the same thread, which precludes horizontal operations
with high-performance ISA support from being used. This
could be resolved by introducing a std: :execution: : spmd
execution policy relying on Parsimony SPMD semantics and
horizontal operations and other relevant SPMD APIs. Like-
wise, OpenMP #pragma omp simd and OpenACC pragmas
generally maintain serial semantics and hence also do not
permit horizontal operations. These languages could sim-
ilarly introduce keywords or annotations for interpreting
loops as to be executed using Parsimony SPMD semantics,
but these would likely no longer use #pragma notation, as
pragmas are generally meant to be safe to ignore.

195

8 Related Work

Compiler auto-vectorization has a long history [1, 14, 38, 39,
46]; loop vectorization and superword-level parallelism (SLP)
vectorization are well researched classical optimizations that
are enabled in many compilers today. Traditional loop vector-
ization has seen numerous advances such as outer-loop vec-
torization [24] and vectorization for interleaved [23] and mis-
aligned [5] data access patterns. SLP vectorization [2, 15, 32]
has been developed as a more flexible approach to loop vec-
torization. In contrast to these, Parsimony does not need to
extract SIMD/vector parallelism from source code for vec-
torization thanks to its explicitly parallel SPMD semantics.
SPMD programming models with data parallel languages
such as ispc [30] and ones with C++ SIMD extensions such
as Sierra [19] have well-defined SPMD semantics but are
more restrictive than Parsimony’s proposed semantics. Prior
work has also studied the use of GPU-focused SPMD pro-
gramming models to target CPU SIMD units 7, 43]. Compiler
passes such as the Whole Function Vectorizer (WFV) [13]
support vectorization of arbitrary functions using SPMD-like
semantics and Moll and Hack [21] extend this to support arbi-
trary unstructured control flows. However, unlike Parsimony,
these passes do not provide precisely defined semantics.

9 Conclusion

SPMD programming within mainstream languages is an ef-
fective method of programming a CPU’s SIMD/vector units
rather than relying on custom languages or low-level intrin-
sic programming. In this work we demonstrate that introduc-
ing more rigorous semantics can facilitate the adoption of
SPMD into widely-used general-purpose programming lan-
guages and toolchains. Our Parsimony compiler prototype
shows that such rigor comes with little cost; code written
using Parsimony semantics matches the performance of code
written using ispc and AVX-512 assembly intrinsics.

Acknowledgments

The authors thank Matt Pharr and the anonymous reviewers
for their helpful feedback. This work was partially funded by
NSF awards CCF-2119069, CCF-2028851, and CNS-1763743.

Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows

A Artifact Appendix
A.1 Abstract

The artifact [12] comprises the source code of our prototype
Parsimony compiler framework, our modified copy of the
Simd Library and ispc benchmark suite, including the source
code of the benchmarks we ported to Parsimony-enabled
C++, the source code of several simple Parsimony correctness
tests, and supporting scripts. The artifact is available publicly
through an archived repository.

In the artifact, we include documentation that provides
instructions for building our prototype compiler and using
it to generate binaries for Parsimony-enabled C++ bench-
marks. Additionally, the artifact includes documentation for
the provided Parsimony API feature set, the Parsimony com-
pilation flow, and instructions for extending the Parsimony
API feature set. The artifact can be used to reproduce the
key Parsimony results shown in Figures 4 and 5.

A.2 Artifact check-list

e Algorithm: A LLVM-based compiler framework for Parsi-
mony, a SPMD programming model. Parsimony-enabled C++
implementations of benchmarks from the ispc benchmark
suite and the Simd Library.

e Program: C++ benchmarks including ispc and Parsimony-
enabled C++ implementations from the ispc benchmark
suite and the Simd Library.

e Compilation: Clang 15.0.1, ispc 1.18.0, and GCC 8.5.0.

e Data set: All data sets used in the experiments are publicly
available and are also included in the artifact repository.

e Run-time environment: Red Hat Enterprise Linux 8.7.

e Hardware: Intel®Xeon®Gold 6258R CPU server or other
similar system with x86 AVX-512 (avx512bw) support.

e Execution: There should be no other application running
on the system during performance profiling. Performance
profiling for the LLVM scalar, LLVM auto-vectorized, Parsi-
mony, and Hand-written AVX-512 implementations of the
72 Simd Library benchmarks takes 20 minutes to complete.
Performance profiling for the ispc, Parsimony, and LLVM
auto-vectorized implementations of the 7 ispc benchmarks
takes 10 minutes to complete. All benchmarks are single
threaded and are run serially one after the other.

e Metrics: The artifact reports execution time in milliseconds
for the 72 Simd Library benchmarks and clock cycle counts
for the 7 ispc benchmarks.

e Output: Figures 4 and 5. The artifact also provides an excel
sheet that contains the raw data collected from the authors’
machine which were used to generate these two graphs.

e Experiments: The artifact includes a set of scripts and
instructions to start from cloning the Parsimony repository,
building the prerequisites, building the Parsimony compiler,
building and running the Simd Library and ispc bench-
marks, and finally generating Figures 4 and 5.

¢ How much disk space required (approximately)?: 10 GB.

e How much time is needed to prepare workflow (ap-
proximately)?: Building the prerequisites, including LLVM

196

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

15.0.1, and building the Parsimony compiler and benchmarks
can take 30 minutes in total.

e How much time is needed to complete experiments
(approximately)?: Performance profiling for the 72 Simd
Library benchmarks and the 7 ispc benchmarks can take 30
minutes in total.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: Apache License
v2.0 with LLVM Exceptions.

o Workflow framework used?: The LLVM pass framework
is used in the Parsimony compilation flow. The build and run
frameworks in the Simd Library and ispc benchmark suites
are used for building Parsimony-enabled C++ benchmarks
and for the performance profiling of these benchmarks.

e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
7524279

A.3 Description

A.3.1 How to access. The artifact described in this paper is
archived on Zenodo at https://doi.org/10.5281/zenod0.7524279 un-
der an Apache License v2.0 with LLVM Exceptions. The tarball
file parsimony_artifact.tgz downloaded from Zenodo can be
decompressed with “tar -xvf parsimony_artifact.tgz” to cre-
ate a directory Parsimony/. We refer to this Parsimony/ directory
below as the archived artifact repository. We also provide the Parsi-
mony artifact as a public GitHub repository at https://github.com/
NVlabs/Parsimony-CGO23. Interested users should refer to the
GitHub repository for the latest version of Parsimony.

A.3.2 Hardware dependencies. The prototype Parsimony com-
piler needs to be built and run on a system with x86 AVX-512
support (specifically avx512bw) such as Intel®Xeon®Gold 6258R
CPU.

A.3.3 Software dependencies. The Parsimony prototype com-
piler requires Clang/LLVM 15.0.1 to build. Parsimony also requires
Z3Prover (v4.11.2) and Sleef(v3.5.1). ispc compiler v1.18.0 was used
to compile the ispc implementations of benchmarks presented in
Figure 4. The full list of software dependencies is provided in the
README . md file in the archived artifact repository.

A.3.4 Data sets. All data sets used in the experiments are from
the publicly available Simd Library repository and ispc benchmark
suite, and are also included in the archived artifact repository.

A.4 Installation

A thorough setup guide for Parsimony is available at the README . md
file in the archived repository.

A.5 Experiment workflow

The primary experiment consists of running and collecting per-
formance measurements for Parsimony-enabled C++, LLVM auto-
vectorized, ispc, LLVM scalar, and hand-written x86 AVX-512 im-
plementations of benchmarks from the Simd Library and ispc
benchmark suite. A thorough experiment workflow for the artifact
is available at the README . md file in the archived repository.

A.6 Evaluation and expected result

The process to generate Figures 4 and 5 after cloning the archived
artifact repository involves the following primary steps:

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

Building all necessary prerequisites.

Building the Parsimony compiler.

Building the Simd Library and ispc benchmark suite.
Collecting performance measurements for various imple-
mentations of the 72 Simd Library benchmarks and the 7
ispc benchmarks.

o Placing the collected results into the provided excel sheet to
generate Figures 4 and 5.

These steps are explained in greater detail at the README . md file in
the artifact repository.

In the generated Figure 4, the geomean performance of Parsi-
mony implementations of ispc benchmarks relative to the geomean
performance of ispc implementations of the same should be > 90%.
Similarly, in the generated Figure 5, the geomean performance of
Parsimony implementations of Simd Library benchmarks relative
to the geomean performance of hand-written x86 AVX-512 imple-
mentations of the same should be > 90%. These results show that
Parsimony implementations achieve performance parity with ispc
and hand-written AVX-512 implementations of ispc benchmarks
and Simd Library benchmarks respectively.

A.7 Experiment customization

The compiler/README.md file in the archived artifact repository
provides documentation of the current Parsimony API feature set,
the Parsimony compilation flow, and insight into extending the
Parsimony API feature set. This document is provided as a starting
point for porting more benchmarks to Parsimony-enabled C++, and
for extending Parsimony.

References

[1] Randy Allen and Ken Kennedy. 1987. Automatic translation of For-
tran programs to vector form. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 4 (1987), 491-542.

Yishen Chen, Charith Mendis, and Saman Amarasinghe. 2022. All
You Need is Superword-Level Parallelism: Systematic Control-Flow
Vectorization with SLP. In Proceedings of the 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implemen-
tation. 301-315.

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amaras-
inghe. 2021. VeGen: a vectorizer generator for SIMD and beyond. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 902-914.

Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintao Pereira,
and Wagner Meira Jr. 2011. Divergence analysis and optimizations. In
2011 International Conference on Parallel Architectures and Compilation
Techniques. 320-329.

Alexandre E Eichenberger, Peng Wu, and Kevin O’brien. 2004. Vec-
torization for SIMD architectures with alignment constraints. ACM
SIGPLAN Notices 39, 6 (2004), 82-93.

Wilson WL Fung and Tor M Aamodt. 2011. Thread block compaction
for efficient SIMT control flow. In 2011 IEEE 17th International Sympo-
sium on High Performance Computer Architecture. 25-36.

Michael Haidl, Simon Moll, Lars Klein, Huihui Sun, Sebastian Hack,
and Sergei Gorlatch. 2017. Pacxxv2+ RV: an LLVM-based portable
high-performance programming model. In Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC. 1-12.

Thar Yermalayeu et al. 2019. The Simd Library. https://github.com/
ermig1979/Simd. Accessed: 2022-1-9.

Intel. 2022. Intel® 64 and ia-32 architectures software developer’s man-
ual - Volume 1-4. https://cdrdv2.intel.com/v1/dl/getContent/671200.
Accessed: 2022-1-9.

—_
N=)
—

197

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos Hardavellas

[10] Intel. 2022. ispc: Intel SPMD Program Compiler. https://github.com/
ispc/ispc/blob/v1.18.0/src/opt.cpp#L466. Accessed: 2022-1-9.

[11] Intel. 2022. ispc: Intel SPMD Program Compiler. https://github.com/

ispc/ispc/releases/tag/v1.18.0. Accessed: 2022-1-9.

Vijay Kandiah, Daniel Lustig, Oreste Villa, David Nellans, and Nikos

Hardavellas. 2023. Artifact for CGO’23 paper "Parsimony: Enabling

SIMD/Vector Programming in Standard Compiler Flows". https://doi.

org/10.5281/zenodo.7524279

Ralf Karrenberg. 2015. Whole-function vectorization. In Automatic

SIMD vectorization of SSA-based control flow graphs. 85-125.

David J. Kuck, Robert H. Kuhn, Bruce Leasure, and Michael Wolfe. 1980.

The Structure of an Advanced Vectorizer for Pipelined Processors. In

Proceedings of the 4th International Conference on Computer Software

and Applications (COMPSAC). 709-715.

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword

level parallelism with multimedia instruction sets. ACM SIGPLAN

Notices 35, 5 (2000), 145-156.

Chris Lattner. 2002. LLVM: An Infrastructure for Multi-Stage Optimiza-

tion. Master’s thesis. Computer Science Dept., University of Illinois at

Urbana-Champaign, Urbana, IL.

Yunsup Lee, Vinod Grover, Ronny Krashinsky, Mark Stephenson,

Stephen W Keckler, and Krste Asanovi¢. 2014. Exploring the De-

sign Space of SPMD Divergence Management on Data-Parallel Ar-

chitectures. In Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). 101-113.

Yunsup Lee, Ronny Krashinsky, Vinod Grover, Stephen W Keckler, and

Krste Asanovi¢. 2013. Convergence and Scalarization for Data-Parallel

Architectures. In Proceedings of the 2013 IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO). 1-11.

Roland Leifla, Immanuel Haffner, and Sebastian Hack. 2014. Sierra:

a SIMD extension for C++. In Proceedings of the 2014 Workshop on

Programming models for SIMD/Vector processing. 17-24.

LLVM Community. 2022. LLVM 15.0.1. https://github.com/llvm/llvm-

project/releases/tag/llvmorg-15.0.1. Accessed: 2022-1-10.

Simon Moll and Sebastian Hack. 2018. Partial control-flow lineariza-

tion. ACM SIGPLAN Notices 53, 4 (2018), 543-556.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT

solver. In International conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. 337-340.

Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization

of interleaved data for SIMD. ACM SIGPLAN Notices 41, 6 (2006),

132-143.

Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revisited

for short simd architectures. In Proceedings of the 17th international

conference on Parallel architectures and compilation techniques. 2—11.

NVIDIA Corporation. 2017. NVIDIA Tesla V100 GPU architec-

ture. https://images.nvidia.com/content/volta-architecture/pdf/volta-

architecture-whitepaper.pdf. Accessed: 2022-1-9.

NVIDIA Corporation. 2022. NVIDIA CUDA C Programming

Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html. Accessed: 2022-1-9.

OpenMP Architecture Review Board. 2013. OpenMP Application

Program Interface Version 4.0. https://www.openmp.org/wp-content/

uploads/OpenMP4.0.0.pdf. Accessed: 2022-1-9.

Philippos Papaphilippou, Paul HJ Kelly, and Wayne Luk. 2021. Ex-

tending the RISC-V ISA for exploring advanced reconfigurable SIMD

instructions. arXiv preprint arXiv:2106.07456 (2021).

Kariofyllis Patsidis, Chrysostomos Nicopoulos, Georgios Ch Sirakoulis,

and Giorgos Dimitrakopoulos. 2020. RISC-V2: A Scalable RISC-V

Vector Processor. In 2020 IEEE International Symposium on Circuits and

Systems (ISCAS). 1-5.

Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-

performance CPU programming. In 2012 Innovative Parallel Computing

(InPar). 1-13.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows

(31]

(34]

(35

—

(36]

(37]

(38

—

(39]

Angela Pohl, Biagio Cosenza, Mauricio Alvarez Mesa, Chi Ching Chi,
and Ben Juurlink. 2016. An evaluation of current SIMD programming
models for C++. In Proceedings of the 3rd Workshop on Programming
Models for SIMD/Vector Processing. 1-8.

Vasileios Porpodas, Alberto Magni, and Timothy M Jones. 2015. PSLP:
Padded SLP automatic vectorization. In 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 190-201.
Oliver Reiche, Christof Kobylko, Frank Hannig, and Jiirgen Teich. 2017.
Auto-vectorization for image processing DSLs. In Proceedings of the
18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems. 21-30.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In
2021 USENIX Annual Technical Conference (USENLX ATC 21). 551-564.
RISC. 2021. RISC-V "V" Vector Extension. https://github.com/riscv/
riscv-v-spec/releases/tag/v1.0. Accessed: 2022-1-9.

Diogo Sampaio, Rafael Martins, Sylvain Collange, and Fernando
Magno Quintao Pereira. 2012. Divergence analysis with affine con-
straints. In 2012 IEEE 24th International Symposium on Computer Ar-
chitecture and High Performance Computing. 67-74.

Diogo Sampaio, Rafael Martins de Souza, Caroline Collange, and Fer-
nando Magno Quintdo Pereira. 2014. Divergence analysis. ACM
Transactions on Programming Languages and Systems (TOPLAS) 35, 4
(2014), 1-36.

Randolph G. Scarborough and Harwood G. Kolsky. 1986. A vectorizing
Fortran compiler. IBM Journal of Research and Development 30, 2 (1986),
163-171.

Paul B. Schneck. 1972. Automatic Recognition of Vector and Parallel
Operations in a Higher Level Language. ACM SIGPLAN Notices 7, 11

198

[40]

[41]

[42]

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

(1972), 45-52.

Naoki Shibata and Francesco Petrogalli. 2020. SLEEF: A Portable
Vectorized Library of C Standard Mathematical Functions. IEEE Trans-
actions on Parallel and Distributed Systems 31, 6 (2020), 1316-1327.
Standard C++ Foundation. 2020. ISO International Standard ISO/IEC
14882:2020(E) — Programming Language C++. https://isocpp.org/std/
the-standard. Accessed: 2022-1-9.

Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, et al. 2017. The ARM scalable vector
extension. IEEE micro 37, 2 (2017), 26-39.

[43] John A Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike

[44]

[45]

[46]

[47]

Murphy, Ziang Hu, and Wen-mei W Hwu. 2010. Efficient Compilation
of Fine-Grained SPMD-Threaded Programs for Multicore CPUs. In
Proceedings of the 8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 111-119.

Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu,
and Luca Benini. 2019. Design and evaluation of SmallFloat SIMD
extensions to the RISC-V ISA. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 654-657.

Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira
Rosen. 2009. Polyhedral-model guided loop-nest auto-vectorization.
In 2009 18th International Conference on Parallel Architectures and
Compilation Techniques. 327-337.

Dorothy Wedel. 1975. Fortran for the Texas Instruments ASC System.
ACM SIGPLAN Notices 10, 3 (1975), 119-132.

Wenzel Jakob. 2019. Enoki: structured vectorization and differentia-
tion on modern processor architectures. https://github.com/mitsuba-
renderer/enoki. Accessed: 2022-1-9.

Received 2022-09-02; accepted 2022-11-07

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Mapping SPMD Programs to SIMD/Vector Units
	2.2 Motivating Improved SPMD Semantics

	3 Parsimony Programming Model
	4 Parsimony Compiler Implementation
	4.1 Front-End
	4.2 Middle-End Vectorizer
	4.3 Back-End

	5 Evaluation Methodology
	6 Experimental Results
	7 Discussion
	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

	References

