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Summary

Microbial enzymes can address diverse challenges such as degradation of toxins. However, if the
function of interest does not confer a sufficient fitness effect on the producer, the enzymatic
function cannot be improved in the host cells by a conventional selection scheme. To overcome
this limitation, we propose an alternative scheme, termed ‘partner-assisted artificial selection’
(PAAS), wherein the population of enzyme producers is assisted by function-dependent feedback
from an accessory population. Simulations investigating the efficiency of toxin degradation reveal
that this strategy supports selection of improved degradation performance, which is robust to
stochasticity in the model parameters. We observe that conventional considerations still apply in
PAAS: more restrictive bottlenecks lead to stronger selection but add uncertainty. Overall, we
offer a guideline for successful implementation of PAAS and highlight its potentials and
limitations.

Introduction

The vast diversity of bacterial and fungal enzymes offers potential solutions to many current
challenges, including the removal of toxic compounds. Recycling complex compounds is an
integrated part of the life-style for many bacteria and fungi. The same enzymes can potentially
target and remove toxins that contaminate our food, water, and environment. One hurdle in
employing native bacterial and fungal enzymes is that the function they are adapted for may not
match the degradation of our toxins of interest. As a result, the detoxification performance will not
meet the demands for practical applications. How can we improve such enzymatic functions?
Selection for improved activity would be a clear choice, but what if enzymatic activity against
such toxins is a secondary function, where toxin presence or degradation has no direct impact on
the growth of bacterial or fungal cells that produce the enzyme?

An illustrative example is the bacterial degradation of mycotoxins—fungal produced food
contaminants that are toxic to consume. There are several bacteria and fungi that have already been
identified to carry enzymes that degrade mycotoxins '°. However, at least in some cases, the
presence of the toxin has little impact on the growth of bacterial cells, posing a challenge for
selection. To show an example of such a situation, we have measured the growth rate of
Rhodococcus erythropolis under different concentrations of aflatoxin G2 (AFG2) in the culture
(Fig S1). Even though R. erythropolis is known to degrade aflatoxins ¥, AFG; has little positive
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or negative impact on its growth rate.

To implement a selection scheme for improving secondary microbial functions, such as
detoxification of AFGz by Rhodococcus, the detoxification performance should be linked to the
detoxifier’s growth properties. We propose adding an “assisting” partner population that provides
the feedback from the toxin to the detoxifier (Fig 1). Community evolution has recently been
revisited for its potential to improve community functions °!!. Here we take a slightly different
approach by designing a community to select for a desired microbial function. We assume here
that we have a library of variants with different quantitative traits, and our selection scheme favors
variants with the best detoxification properties.

Results

Indirect selection of toxin degraders by interaction with an assisting population

We consider a scenario in which a toxin T, is degraded by a ‘degrader’ species D, but the toxin
has little impact (positive or negative) on the growth properties of D cells. To enable selection of
cells with improved detoxification efficiency, we introduce an assisting population, A, satisfying
the following requirements (Fig 1, left): A is inhibited by T and provides a benefit to D, but the
direct impact of D on A (i.e. in the absence of toxin) is negligible. Degradation of the toxin in
coculture of A and D, alleviates growth inhibition of A thus increasing the positive influence of A
on D. The positive feedback between A and D confers selective advantage of variants of D that
better degrade T. In each round of the proposed selection scheme (Fig 1, right), the ancestral A is
paired with evolved D from a previous round, thereby focusing the evolutionary pressure on D.
The interaction with A, enables selection of the best-performing D variants at each round (Fig 1,
right). Variation among different droplets arise from variations within the D population from
previous rounds of selection as well as random mutations (either natural or induced). The benefit
of exclusive propagation of the evolved D is two-fold: (1) Avoiding the acquisition of toxin
resistance by A that would, in turn compromise the selection of improved degraders, and (2)
simplifying the population dynamics by reverting to the ancestral population of A at the beginning

of each cycle, relieving some of the anticipated restrictions on the scope of community evolution
12

To assess the feasibility and potential efficiency of the selection scheme in Fig 1, we employed a
population model (termed Implnt) that accounts for the effects of A on D, D on T, and T on A
(Methods-Model 1). These types of effects are likely applicable to diverse microbial systems (see
Materials and Methods for more details and references). For simplicity, we assume that the rate of
growth and carrying capacity of the assisting population A decrease with increasing concentration
of the toxin T (consistent with '3716). We also assume that the rate of toxin degradation is
proportional to the density of the degraders D, and that changes in toxin concentration lead to
proportional changes in the growth rate and carrying capacity of A 7. Fig. 2 provides an example
for the simulated dynamics of A, D and T, starting with a given concentration of toxin and low
densities of the populations A and D (compared their densities at carrying capacity). It
demonstrates constant rate of growth of A accompanied by accelerated growth of D and reciprocal
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decrease in the toxin concentration leading to its complete depletion before the populations A and
D reach their saturation levels.

To assess the adequacy of the Impint model for analyzing the dynamics in this system, we
compared the results of this model to the results of two additional models that explicitly
incorporate, either the T-degrading enzyme produced by D (ExpEnz, Methods-Model 2), or the A-
derived resource supporting the growth of D (ExpRes, Methods-Model 3). We found that the
ImpInt model adequately approximates the dynamics of the more explicit ExpEnz and ExpRes
models (Figs S2 and S3), except for the case of very strong enzymatic degradation of the toxin.
For simulations outside the regime of strong degradation, we therefore used the simpler Impint
model, whereas for simulations within this regime, one could use a modified implicit model
(ImpLD, Methods-Model 4), in which the toxin is degraded only by growing D cells (Fig S4).

Geometric mean of A and D population sizes determines culture usability

We next sought to investigate the range of co-culture conditions permitting over 50% reduction of
toxin concentration within the time scale of observation (direct derivation of conditions satisfying
the toxin degradation criterion is provided in the Methods section). We found that the propensity
to satisfy this condition increases with higher initial densities of A and D (Fig 3A) and that the

geometric mean of the initial densities of A and D (,/AyDy) is a good predictor of the ability to
degrade the toxin within a given time (Fig 3B). An initially high density of either of A or D can
therefore compensate for low initial density of its partner.

Despite other sources of stochasticity, selection based on total cell density leads to
improved detoxification

The main premise of our proposed PAAS scheme is that effective detoxification will be translated
into improved overall culture growth (measured as the total cell density)—a trait that can be readily
selected on. To assess the efficacy of such an approach, we computationally examined whether
variants with better detoxification rates would be selected using PAAS. To create a more realistic
situation, we assumed that in addition to the detoxification rate, other properties of the population
(including their growth rates, carrying capacities, inhibition coefficient of A by T, and growth
support coefficient of D by A) also varied stochastically (see Table 2). We then simulated many
conditions (n=10000 instances) with random assignments of these variables and examined the
traits in the output.

First, we found that the detoxification rate (dp) showed a positive association with overall cell
density, measured in total cell density (Fig 4A). Additionally, the overall detoxification
performance was correlated with the total cell density, as expected (Fig 4B). To examine the
efficacy of selection, we compared the distributions of the detoxification rates before selection and
after selecting the top 10% instances with the highest total cell densities. This selection in PAAS
clearly exhibits a preference for higher detoxification rates (Fig 4C). These results confirm the
capability of PAAS to select for improved detoxifiers. Additionally, PAAS offers the advantage
that cell density as the primary trait of interest is relatively easy to measure, compared to direct
measurements of the toxin concentration, e.g. through fluorescence '¥, ELISA, or HPLC !°%°,
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Effective detoxification selection is sensitive to the timing of propagation

To assess the efficacy of the selection scheme, we used detox improvement as a measure of
improvement in function, defined as the average detoxification rate of selected instances compared
to that of initial instances. We first assessed how the initial composition of the coculture affected
detox improvement. Interestingly, the selection performance—as estimated by detox
improvement—was higher in a particular range of initial densities (Fig 5A). Further investigation
revealed that this range corresponded to initial cell densities that resulted in T being mostly, but
not completely, degraded. In fact, examining the data based on the residual T after 60 hours of
simulated growth showed a clear trend with detox improvement being maximum around 1%
residual T and dropping to lower values when residual T was much higher or lower (Fig 5B). This
trend is intuitively expected; with too little or too much degradation, there is little information for
resolving which cultures are performing well for degradation. We additionally examined the effect
of the time between inoculation and passage and the results, consistent with the effect of initial
density (Fig 5), that low, but not too low, residual T leads to the best detox improvement (Fig S5).

Detoxification selection depends on the population bottleneck

Selection is expected to depend on the size of the bottleneck. With a more stringent bottleneck (i.e.
selecting more extreme cases), the expectation is to get more extreme phenotypes, but at the risk
of added uncertainty of losing the best performers. We asked if the same considerations applied to
the PAAS scheme. We constructed 100 samples of the PAAS scheme, with n = 100 instances of
coculture (with stochastic parameters as in Table 2) in each of the samples. For each of these cases,
we enforced a range of bottlenecks, from choosing the top 1% total cell density, to choosing the
top 30%. The results showed that, as expected, the outcome of less stringent bottlenecks was more
consistent, but on average led to lower improvement (Fig 6A). Defining bottleneck stringency as
the fraction of the total number of instances to the instances selected, we saw a saturable
improvement with more stringent bottlenecks (Fig 6B). Importantly, the uncertainty in detox
improvement was directly related to how stringent the bottleneck was, with 0pottieneck =

v Npottieneck> ad Nyporrienecke @S the size of the selected instances in the bottleneck (Fig 6C).
Overall, these trends follow the expectations for a standard selection scheme.

Stochasticity in other cell traits can disrupt effective selection in PAAS

Stochasticity in other parameters is one of the main factors that can potentially derail the PAAS
selection scheme by muddying which cultures are the best detoxifiers. We examined how different
parameters correlated with the total cell density as our main selection criterion (Fig S6). We then
asked how much stochasticity in other parameters can be tolerated in PAAS. For this, we examined
a range of different values of standard deviations for the parameters listed in Table 2. We found
that excessive stochasticity in other traits could mask the detoxification performance of the
cocultures (Fig 7). This was evident as the correlation between detoxification rate and the total cell
density (i.e. our criterion for selection) is lost when stochasticity in other traits is large (Fig 7A).
As a result, our selection for improved detoxification is no longer effective in such cases (Fig 7B).
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Discussion

We investigated the capabilities and limitations of a partner-assisted artificial selection scheme to
select for functions of interest that have no significant impact on the growth properties of cells that
provide them. We introduced an assisting population that created a feedback between the function
of interest (e.g. degradation of a toxin) and the growth properties of the microbial cells that provide
that function. To investigate the potentials and limits of PAAS, we examined a system consisting
of a toxin degrader, along with an assisting population that was sensitive to the toxin of interest
and beneficial to the degrader population. As a proxy for evolutionary dynamics, we examine how
different variants fare in a single round of growth within a droplet. The choice of droplets as a
platform limits the interactions between different variants of the evolving toxin degrader
population. Additionally, the ability to choose best-performing droplets simplifies the overall
selection scheme.

We found that selection for total cell density can lead to improved detoxification rates. This
selection is most effective if it happens when detoxification is close to complete, so that there is
enough discrimination between degraders with different performance. We see that bottleneck
considerations in PAAS largely mirror our expectations in standard selection schemes. A more
stringent bottleneck leads to a saturating improvement in detoxification performance, but at the
cost of more uncertainty. Finally, we observe that too much stochasticity in other traits can mask
the performance of toxin degradation and interfere with PAAS selection.

Do successive cycles of the proposed selection improve the detoxification performance?
Answering this question will address whether assessing the performance in a single cycle is a
reasonable proxy for the overall selection scheme. To answer this question, we simulated the
process of successive cycles of selection, outlined in Fig 1: after each round of selection, we
inoculated new droplets with the D cells selected from the best-performing droplets and ancestral
A cells for another round of selection. The results suggest that these successive cycles lead to
further improvement in detoxification, although the improvement slows down in later selection
cycles (Fig S7). Importantly, how heritable the traits are will have a sizeable impact on the
improvement in the following selection cycles because the randomness added on at the end of each
cycle can undo some of the progress made towards better detoxification performance in previous
rounds. As expected, when A and D evolve together, selection for A’s resistance to the toxin
disrupts the selection for improved detoxification (Fig S8).

For practical implementation, we note that initial population sizes and the timing of selection can
be used as effective design parameters. One major decision for designing an effective PAAS is the
choice of bottleneck stringency; our in silico model suggests that PAAS is similar to a standard
selection scheme in terms of how a more stringent bottleneck leads to stronger, but more uncertain,
selection. Another major decision is the treatment of other sources of stochasticity. Among
stochastic parameters that could interfere with selection, the growth rates of A and D appear to
play major roles (Fig S6). Since the A population is reintroduced at the beginning of each round
(Fig 1, right), a pre-adaptation step to maximize its growth rate can significantly reduce the
variability in this trait. In contrast, the growth rate of D, as long as it does not come at the cost of
loss of detoxification capabilities, could be considered a desired trait to select for.
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Limitations of Study

In our treatment of different traits, we have assumed that such traits are independent of each other.
However, some correlation between these traits is possible, for example a positive or negative
correlation between the growth rate and carrying capacity of cells 2!. If known, such correlations
can be directly incorporated into the model for a more realistic representation of stochasticity. As
an example, we have included a tradeoff between the detoxification rate (dp) and the carrying
capacity (Kp) of population D to account for the possibility of better detoxification coming at a
cost. This idea resembles the cost of providing a benefit by the associated microbes included in a
model of host-microbe interactions put forward by van Vilet and Doebeli 22. Our results suggest
that our previous conclusions hold with a weak tradeoff, but a strong tradeoff can disrupt this
selection scheme (Fig S9). The reason is that when dp and Kp are strongly anticorrelated, best
detoxifiers no longer correspond to the highest total cell density.

Some of the previous reports (e.g. Doulcier ef al. > and Xie et al. °) have discussed the details of
community composition and its role on selection. In our case, the trajectory of community
dynamics appears insensitive to the details of the population composition (Fig S10). Therefore, we
have not entered into detailed analysis of the impact of relative abundances on the outcome.

One of the assumptions in our model is that there is little direct impact on A by D, be it positive
or negative. This can be controlled to some extent by choosing A that satisfies this assumption or
by adjusting the resources in the environment. We expect results similar to the condition examined
in this manuscript with weakly positive or negative impact on A by D. Strong positive or negative
impact on A by D can change the community properties. Extreme exploitation conditions could
drive A out of the community and disrupt PAAS. In contrast, strong mutualism is expected to
stabilize the population dynamics ** and lead to a more balanced performance regardless of the
initial conditions.

The construction of PAAS communities is conceptually similar to the “Helper-Manufacturer”
communities examined by Xie and colleagues »° with one main difference: the Helper-
Manufacturer system is based on commensalism, whereas the Assist-Detox system is based on
mutualism. We believe some of the basic concepts and considerations for artificial selection,
including those discussed in detail in ?°, are shared between the two systems. However, for the
specific goal of detoxification, the stronger bond between the partners in mutualism leads to
stronger selection and expedites the process of finding improved detoxifiers.

Overall, we propose that PAAS can be utilized as an additional tool to expand the power of
selection to situations where the function of interest has little influence on the growth properties
of the provider of that function. We recognize that an actual implementation will likely involve
adjusting the scheme to the specifics of a system of interest. Our simplified model presented in
this work offers a baseline to build upon.
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Figure legends

Fig 1. An assisting population A can generate a positive feedback for D from the toxin T. The
overall scheme and the specific requirements are shown on the left. On the right, a conceptual
selection scheme is illustrated in which cycles of coculture (with ancestral A and evolved D) leads
to improved detoxification performance of D. We envision a droplet-based implementation where
D is clonal within each culture but different droplets contain different variants of D.

Fig 2. The assisting and degrading populations can grow together and degrade the toxin of
interest. The dynamics of population densities (A) and the toxin concentration (B) are shown after
incorporating all interactions. In the example shown here, populations A and D are assumed to be
initially at 10° cells/ml and the initial toxin concentration is 10 pg/ml. All relevant parameters are
listed in Table 1. The Implnt model is used for this simulation.

Fig 3. Usability of A-D cocultures depend on the geometric mean of the initial A and D
population densities. (A) Surveying a range of initial A and D population densities shows that an
increase in the initial density of one can compensate for a drop in the initial density of the other
one to maintain usability for toxin removal. (B) Examining the final T concentrations suggest that
the geometric mean of the initial A and D population densities is the main determinant of usability
and detoxification performance. Final T concentrations are taken from the simulations at 72 hours.
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In all cases the initial toxin concentration is 10 pg/ml. All relevant parameters are listed in Table
1. The ImpInt model is used in these simulations.

Fig 4. A survey of many (n=10000) simulated instances with stochastic parameters shows
that PAAS allows us to select for improved detoxification as a secondary function. (A) Scatter-
plot of all instances shows a positive correlation between the detoxification rate and total cell
density. The red trend line is estimated based on the average total cell densities at low and high
detox rates. (B) Total cell density is also tightly linked to the effectiveness of detoxification. (C)
Comparing the distributions of the detoxification rates before selection and after selecting the top
10% instances with the highest total cell densities shows that PAAS favors improved
detoxification. Final T concentrations are taken from the simulations at 46 hours. In all cases the
initial toxin concentration is 10 pg/ml. All relevant parameters are listed in Table 1 and stochastic
properties are listed in Table 2. The ImpInt model is used in these simulations.

Fig 5. For optimal selection, most, but not all, of the toxin should be degraded at the time of
selection. (A) Mean detox improvement (defined as the average of detoxification rates at the end
of a round divided by its initial value) is plotted as a function of initial population densities of A
and D. (B) Mean detox improvement data in (A) is plotted as a function of the final residual T,
showing an optimal performance around 1% residual T at the end of each round. For each data
point, 1000 instances were sampled, with stochastic parameters listed in Table 2. Final T
concentrations are taken from the simulations at 60 hours. In all cases the initial toxin concentration
is 10 pg/ml. All relevant parameters are listed in Tables 1 and 2. The Impint model is used in these
simulations.

Fig 6. Improvement in detox, as a function of population bottleneck. (A) The distribution of
detox improvement values is shown when different fractions of the top cases with the highest cell
density are selected within a round. More stringent selections can potentially yield higher detox
improvement, but at the risk of more uncertainty. (B) Error bars are standard deviations (n = 100).
Red curve is a fit into the data, with the form y = 1 + (yf — 1) x/(x + x;), where y; = 1.3 and
xs = 5. (C) Red curve is a linear fit into the data, y = mx, where m = 2.7. Final T concentrations
are taken from the simulations at 72 hours. In all cases the initial toxin concentration is 10 pg/ml.
All relevant parameters are listed in Table 1. The ImpInt model is used in these simulations.

Fig 7. Stochasticity in other traits can interfere with PAAS efficiency. (A) Correlation between
total cell density and detoxification rate decreases as stochasticity in other traits increases.
Correlation coefficient is calculated using all instances of cocultures with parameters picked from
corresponding random variables. Stochasticity is defined as the ratio of ¢ to u (see Table 2) and
the same value is used for all random variables except dp for which o/ is fixed at 0.2. Error bars
are standard deviations calculated using the top 10% of instances selected based on total cell
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density. (B) Detox improvement decreases with more stochasticity in other traits. Here, error bars
depict bootstrap 95% confidence intervals using 100 samples of PAAS. Top 10% of the instances
with the largest total population densities are selected for calculating detox improvement. All
relevant parameters are similar to Fig 4 and listed in Tables 1. The ImpInt model is used in these
simulations.

STAR Methods
Resource Availability
Lead Contact

Further information and requests for resources and codes should be directed to and will be fulfilled
by the lead contact, Babak Momeni (momeni@bc.edu).

Materials availability
This study did not generate new unique reagents.
Data and code availability

e Growth rate characterization data reported in this paper will be shared by the lead contact
upon request.

e All original codes have been deposited at Zenodo and are publicly available as of the date
of publication. DOIs are listed in the key resources table.

¢ Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.

Method Details
Bacterial growth characterization

Rhodococcus erythropolis (DSM 43066) was grown from the frozen stock in glucose-yeast-malt
(GYM) at 28° C with continuous shaking (240 rpm) for 24 hrs before starting the experiments. For
the growth characterization experiment, R. erythropolis was cultured in basal Z medium: KH2PO4
(1.5 g/L), K2HPO4 x 3H20 (3.8 g/L), (NH4)2SO4 (1.3 g/L), sodium citrate dihydrate (3.0g/L),
FeSOq4 (1.1 mg/L), glucose (4.0 g/L), 100x vitamin solution (1 mL), 1000x trace elements solution
(1 mL), 1 M MgClz (5§ mL), 1 M CaCl; (1 mL), and 100x amino acid stock (10 mL). AFG: stock
(Cayman Chemical) was dissolved in LC-MS grade methanol to the final concentration of 1
mg/mL. AFG; was then introduced into the growth cultures at different concentrations by further
diluting the stock in methanol to keep the total methanol concentration fixed across all cases.

Final volumes of 150 pl per well were used in standard flat-bottom 96-well plates. A BioTek
Synergy Mx multi-mode microplate reader was used to monitor optical density of cells at 600 nm.
Reads were taken at 5 min intervals over 48 hrs. Cultures usually started at an initial OD of 0.01
and were continuously shaking between reads. Five replicates were used per condition. Only the
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internal wells of the 96-well plate were used for samples, and the peripheral wells of the plate were
filled with sterile water to contain evaporation.

Growth rates were calculated using a Matlab code that extracted the data from text files generated
by BioTek Synergy Mx. The function *fit logistic’ (written by James Condor, and available
at https://www.mathworks.com/matlabcentral/fileexchange/41781-fit_logistic-t-q) was used to
estimate the growth rates from OD readings.

Models and equations

There are three assumptions shared in our models. (1) The growth rate of assisting population A
linearly decreases as the T concentration increases . (2) The growth rate of A and its carrying
capacity proportionally change at different concentrations of an inhibitor !”. This trend is observed
in other studies, for example in the response of Salmonella to tetracycline '>!*, response of E. coli
to streptomycin '3, and response of Acetobacter to acetic acid 1. (3) Detoxification rate of T is
proportional to the density of the detoxifying population D.

For the first assumption, there are numerous examples that show the decrease in growth rate at
higher concentrations of an inhibitor. A few examples are shown in the Supplementary Information
of Ref. [21], such as the response of Staphylococcus aureus to acetic acid and erythromycin and
the response of Escherichia coli to various antibiotics. The biological justification of this
relationship is that cell inhibition mechanisms often slow down basic cellular processes such as
DNA replication or protein synthesis machinery and thus decrease the growth rate.

Regarding the second assumption, in addition to the impact of toxins on the growth rate of species,
cells have to invest more energy and resources to undo the harmful effects of the inhibitor (e.g.
produce more DNA polymerase, produce more ribosomes, or activate efflux pumps to excrete the
toxin). This additional investment reduces the overall resources available to the cell and thus leads
to a lower carrying capacity when more toxins are present. In Ref. !, this trend is quantitatively
shown for several bacterial isolates from the human nasal passage. This trend is also observed in
other studies, for example in the response of Salmonella to tetracycline '*!“, response of E. coli to
streptomycin ', and response of Acetobacter to acetic acid '°.

For the third assumption, regardless of the exact details of the detoxification mechanism, it is
expected that with more D cells the detoxification will proportionally increase. There could be
exceptions to this assumption when for example quorum sensing affects D’s response, or when
crowding reduces the overall performance. Nonetheless, the baseline assumption, which is
expected to apply in the majority of cases is that total detoxification per unit time is proportional
to the density of D cells.

To capture the main features proposed in our model, it suffices that both growth rate and carrying
capacity decrease at higher T concentrations. Nonetheless, we have made more specific
assumptions in our model based on known properties that are both realistic and simple to represent.

Model 1: Implicit interaction effects (ImpInt)
In this simplified model, we assume logistic growth for the A and D populations. The toxin T is
assumed to modulate both the growth rate and the carrying capacity of the population A. Growth
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rate and carrying capacity of population D is capped by the benefits supplied by population A.

dA 4

= 0= orD) (1= o) A W
dbD . &

== mm(TD,SAA) (1 - AKD/KA) b (2)
dT

== —dpDT ®

Here D and A4 are the densities of A and D populations, respectively, and 7 is the concentration of
the toxin T. In Eq. (2), the maximum growth rate is presented as min(rp, s4A). This choice is
made to cap the growth rate to the intrinsic maximum growth rate, rp, which prevents the
unrealistically high values of population growth rate when the support supplied by A is abundant.
The motivation is that under such a situation the overall growth rate of D will be limited by another
bottleneck such as the time required for duplicating the DNA. The same form of equations is used
in the following in Model 2 and Model 4.

Model 2: Explicit enzyme effect (ExpEnz)

In this model, the T-degrading enzyme (produced by D) is explicitly included. Compared to Impint,
rather than direct detoxification of T by D, D produces the enzyme E which degrades T. We have
also included an explicit term for intrinsic enzyme decay in our equations.

dA 4
— = (ra — prT) (1 - W)A @

D min(rp,S,A) (1 S— )D (5)

dt AKp/Ka

dE D
=D (1-7%) - 8 (6)

dar

e —dgET (7)

Model 3: Explicit resource effect (ExpRes)

In this model, the resource R, produced by A and supporting the growth of D, is explicitly included.
We assume a standard Monod-type growth for D on R as its main limiting resource. The
consumption of R by D is also assumed to be proportional to the biomass generated by the growing

D population.

dA -

— = (ra — prT) (1 - W)A ®
dR da R

T Br ac 9p (R+KR) b v
dD R

ac D (R+KR) b "
4 _ 4. DT (b

dt
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Model 4: Implicit interaction effects, live degradation (ImpLD)

In this modified phenomenological model, we assume that only growing D populations contribute
to the detoxification. This will capture cases where the enzyme decay is large and thus
detoxification stops when there is no growth and enzyme production by D cells.

dA A

— = a—prT) (1 - m)t‘l (12)
dD . D

o= min(rp, s4A) (1 - AKD/KA) D (13)
dT D

L =—dpp(1- AKD/KA) T (14)

Simulations

Numerical simulations were performed using MATLAB. Source codes along with descriptions of
parameters are available at https:/github.com/bmomeni/partner-assisted-artificial-selection.
(cross-referenced at https://doi.org/10.5281/zenodo.8041025)

Parameters and their values

Unless otherwise stated, Table 1 lists the values of parameters used in our simulations. The order-
of-magnitude of values are inferred from experimental characterization of aflatoxin G2
detoxification by Rhodococcus species.

Random variables

Table 2 lists the distributions used for different random variables used to include stochasticity in
our simulations. For all normal random variables, we used the built-in random function in Matlab,
with relevant parameters (e.g. ‘uniform’ for a uniform distribution and ‘normal’ for a normal
distribution). To generate skew normal distributions for growth rates, we used the following

transformation based on two independent random variables x; and x, picked from a Normal
distribution V'(0,1).

_alxq|+x,

Xsn Vita? (13)

Here a is the skew parameter in the distribution. The distribution is more skewed towards small
(/large) values, when a is negative (/positive).

Quantifications and statistical analysis

Bootstrap confidence intervals are calculated using the bootci function in Matlab, with mean as
the target function.

Estimated time for detoxification

To assess usability, we need to calculate if within the span of our observations there is a significant
drop in the toxin concentration. We limit our discussions to weak detoxification cases here,
because only such cases are relevant for the determination of usability within the observation time


https://github.com/bmomeni/partner-assisted-artificial-selection
https://doi.org/10.5281/zenodo.8041025

445  t,ps. Additionally, we assume that D and 4 (densities of A and D populations, respectively) are
446  away from their respective carrying capacities in these conditions, and that the growth of D is
447  limited by the support of A. Thus, the equations will be simplified to

448 2~ (14— prT)A (16)
dD

449 2 = 544D (17)
dT

450 e = —d,DT (18)

451  We further approximate (r, — p;T) as (r, — pyT,) during this time, with the assumption that the
452  decrease in T is small in cases that are marginally viable. Therefore,

453 A(t) = Agexp[(ra — prTolt] = Ao[1 + (ra — prTo)t] (19)
454  Then
dD
455 T SaDAG[1 + (14 — prTy)t]
d
456 Eln(D) ~ SaA0[1 + (ry — prTp)t]
1 2
457 D(t) = Dyexp [SAAO (t +5 (ry — prTo)t )] (20)

458  Since we assume that changes in D are small within the observed time-scale t,,¢, we thus get
1 2
459 D(t) ~ D, [1 + 54l (t+3 (ru — prTo)t )] Q1)

460  Using this estimate, we can calculate T as

1dT 1 2
461 7r = ~doDo |1+ sadot +554A0(ra = prTo)t
d 1 2
462 Eln(T) = —dpD, [1 + 5440t + ESAAO(TA — prTolt ]
463 T(8) = Toexp {~dpDo [t + 35440 + S 54Ao(ra = prTo)E |} (22)

464  The threshold for the culture to be functional (i.e. at least 50% detoxification) is

T(t 1 1
465 (Eobs) _ exp{—dpDo |tons + 55 Aotons” +=Salo(ra — ppTo)toss | < 0.5
Tg 2 4 6
1 , 1 5
466 dp Do [tobs + ESAAOtobs + ESAAO(TA = prTo)tops ] > 0.69
1 1 0.69
467 e5aA0(Ta = PrTo)tobs’ + 2 Salotons” + tops — ap; >0 (23)
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With (14 — prT,) > 0 this third-degree polynomial is monotonic, with a single positive solution
for t,ps. If (ry — prTy) < 0, the first-order derivative of this third-degree polynomial has one
positive and one negative zeros, and since the value of the function is negative at t,,s = 0, again
there will be a single positive solution for t ;.

Deriving the conditions for usability

Starting from the equations for ImplInt,

dA
U _ o1 - )
dt (4= prT) Ka(1 = prT/74)
dD— n( A)(l )D
dr ~ THID %A AK,/K,
dT— dpDT
e~ P

We focus on conditions that would determine the minimum requirements for usability. We note
that if the observation time is long enough, all cultures will be viable in this formulation (the fixed
point has 4 and D at their saturation densities and 7 at zero). A more realistic representation is
obtained if we add an explicit death rate (§) for population decline in the absence of growth.

dA A

a = 0= prD) (1= amrs) A - o4 @4
ab , D

e min(rp,S,A) (1 — AKD/KA) D — 6D (25)
ar

= = —dyDT (26)

We separate the analysis into three regimes (Fig S10):

(1) ry — prTy > 0 and small §
In this regime, the A population will exponentially increase from the beginning. In turn,
the D population will increase with an increasing rate. From Eq. (23), we find that for

e e (1 0.69 .. .
usability, it is sufficient if min {ESAAO(TA — pTTO)tobS3,%sAAOtob52,tobs} > ——. This
DYo

confirms our intuition that usability is achieved if the observation time is large enough, the initial
detoxification by D is fast enough, or A adequately supports the growth of D.

(2) ry — prTy > 0 and large &
In this regime, the A population will slowly grow but the culture is viable only if the growth
can support the growth of D before it goes extinct. The time-scale for decay of D (i.e. §)
becomes critical in this case and the system is expected to be viable if A grows rapidly
enough within the time span of t, = 1/8 In(Dy /D, ), where D, is the extinction density
for population D. This will be satisfied if s4A, exp[(ry — prT — 8)t,] > & or in other

terms when s44, exp [w In(Dy/ Dext)] >4



498 (3) TA - pTTO < O

499 In this regime, the A population will decline and can only be rescued if detoxification by
500 D is rapid enough. The time-scale for decay of 4 is approximately 1/(prTy — 14 + ) and
501 the system is expected to be viable if either In(2) /min(rp, syA) < 1/(prTy — 14 + 6) (i.c.
502 the doubling time of D is short) or 1/dpDy < 1/(prTy — 14 + ) (i.e. detoxification
503 happens rapidly).

504 Tables

505 Table 1. Typical parameter values for the model.

Parameter | Description Value
tr Total simulation time per round 60 hr
Ty Maximum growth rate of population A 0.2 hr'!
0 Maximum growth rate of population D 0.22 hr'!
K, Maximum carrying capacity of population A 108 cells/ml
Kp Maximum carrying capacity of population D 3x108 cells/ml
pr Inhibition coefficient of T against A 0.003 ml/(pg-hr)
Sa Growth coefficient of A in supporting D 10" ml/(cells-hr)
dp Detoxification rate of T removal by D 10 ml/(cells-hr)
dg Detoxification rate of T removal by E 10® ml/(U-hr)
Np Production rate of enzyme E by D 2.5x10° pU/(cells'ml)
Br Production rate of resource R by A 0.2 fmole/(cells-hr)
Ky Monod coefficient for growth of D on R 0.2 uM
ap Consumption rate of resource R by D 0.07 fmole/cell
O Decay rate of enzyme E 0.02-0.5 hr’!

506
507 Table 2. Different random variables and their distributions in a typical artificial selection
508  simulation.

Random variable | Distribution Value

I Skew-normal U =1y4; 0 =0.02r4; skew o =-3
I'p Skew-normal U =1p; 0 =0.02rp; skew o = -3
Ky Normal u=Ky; 0 =0.02K,

Kp Normal u = Kp; o0 =0.02K,,

Pr Normal U =pr; 0 =0.02pr

Sa Normal u =sy; 0 =0.02s,

dp Normal u= dp;o=0.2d,

509
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Figure S1. Growth rate of detoxifying strains such as Rhodococcus erythropolis is minimally affected
by the presence of aflatoxins, highlighting the challenge of natural selection for improved
detoxification, related to Figure 1. Different concentrations of AFG; (dissolved in methanol) are added
to basal Z culture medium (see Materials and Methods, Bacterial growth characterization) inoculated with
R. erythropolis at an initial cell OD of 0.01. Cultures are allowed to grow and the initial growth rate of R.
erythropolis is estimated from the increase in OD over time (as a proxy for cell density). None of the growth
rates at 10, 20, or 50 pg/ml of AFG, were statistically different from the no-toxin control (t test, p>0.3). For
comparison, the upper limit of practically relevant concentrations of AFG; (around 1 pg/ml) is marked by
an arrow as a point of reference to show that even at much higher AFG, concentrations the impact on growth
rate of R. erythropolis populations is minimal.
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Figure S2. The simplified ImpInt model can adequately approximate a more mechanistic model that
explicitly includes the degrading enzyme (ExpEnz), related to Figure 2. A.) Population dynamics of A
and D using the ExpEnz model matches the ImpInt model at a relatively low enzymatic detoxification rate
of F = 0.02/hr. B.) The temporal variations of the toxin follow a similar trend in both ExpEnz and ImpInt
models (6E = 0.02/hr). C.) Population dynamics of A and D using the ExpEnz model matches the ImplInt
model at a intermediate enzymatic detoxification rate of §E = 0.06/hr. D.) The temporal variations of the
toxin follow a similar trend in both ExpEnz and ImpInt models (6§E = 0.06/hr). The equations behind ImpInt
and ExpEnz models can be found in the Methods section (Model 1 and Model 2, respectively). The
detoxification rate in Implnt is adjusted to match the dynamics of T offered by ExpEnz.



612

613
614
615
616
617
618
619
620

621

=10 -
E
{ 2° |
3 d 6 _
c
8
i £ 4 |
E X, |
=
0 |
0 20 40 60 80
Time (hrs) Time (hrs)

2 I I I I

O

Resource conc. (UM)
—
= tn
| ]
1 |

e
th
T
I

1 1 1 1
20 40 60 80
Time (hrs)

o

o

Figure S3. The simplified ImpInt model can adequately approximate a more mechanistic model that
explicitly includes the resource or metabolite that mediates how population A supports population D
(ExpRes), related to Figure 2. A.) Population dynamics of A and D using the ExpRes model qualitatively
matches the ImpInt model. B.) The temporal variations of the toxin follow a similar trend in both ExpRes
and ImpInt models. C.) Production and depletion of the resource produced by A and consumed by D is
shown. The equations behind ImpInt and ExpRes models can be found in the Methods section (Model 1
and Model 3, respectively). The detoxification rate in ImplInt is adjusted to match the dynamics of T offered
by ExpRes.
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Figure S4. When enzyme decay rate is large, a modified implicit model that assumes detoxification
only by growing D cells (ImpLD) can adequately approximate the model that explicitly includes the
degrading enzyme (ExpEnz), related to Figure 2. A.) Population dynamics of A and D using the ExpRes
model qualitatively matches the ImpLD model. B.) The temporal variations of the toxin follow a similar
trend in both ExpEnz and ImpLD models. C.) Temporal profile of the enzyme concentration in the ExpEnz
model is shown. The equations behind ImpLD and ExpEnz models can be found in the Methods section
(Model 4 and Model 2, respectively). The detoxification rate in ImpLD is adjusted to match the dynamics
of T offered by ExpEnz. We note that ImpInt no longer matches the dynamics of T from ExpEnz when the
enzyme decay rate is very high.
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Figure S5. For optimal selection, most, but not all, of the toxin should be degraded at the time of
selection, related to Figure 5. A.) Detox improvement (defined as the average of detoxification rate at the
end of a round divided by its initial value) is plotted as a function of detoxification time. Error bars show
standard deviations calculated among 50 independent instances. B.) Detox improvement data in (A) is
plotted as a function of the final residual T, showing an optimal performance around 1% residual T at the
end of each round. For each data point, 1000 instances were sampled, with stochastic parameters listed in
Table 2. Initial A and D densities are 10° cells/ml each. In all cases the initial toxin concentration is 10
ug/ml. All relevant parameters are listed in Tables 1 and 2, except K4 = 2x107 cells/ml and Kp = 6x107
cells/ml. The ImpInt model is used in these simulations. All the parameters match those in Fig 5.
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Figure S6. Stochasticity in growth rates of A and D as the major contributors to the total cell density
can interfere with detoxification selection, related to Figure 7. We survey n=3000 simulated instances
with stochastic parameters to evaluate how stochasticity in parameters affects PAAS selection. In scatter
plots, total cell density in each instance is plotted with respect to one of the following phenotypic
parameters. A.) Growth rate of A. B.) Carrying capacity of A. C.) Growth rate of D. D.) Carrying capacity
of D. E.) Growth coefficient of A in support of D. F.) Inhibition coefficient of T against A. Scatter-plots
show that among different parameters, 74 and rp are the most influential in determining the total cell, and
can thus interfere with our ability to select for improved detoxification. Total cell density is found from
simulations at 46 hours. The initial toxin concentration is 10 pg/ml. All relevant parameters are listed in
Table 1 and stochastic properties are listed in Table 2. The ImpInt model is used in these simulations.
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Figure S7. Successive rounds of selection can lead to improved detoxification, related to Figure 7. We
survey n=10000 simulated droplets in each cycle, starting from an initial population of A and D with
random properties listed in Tables 1 and 2. Within each cycle, we simulate the growth of culture inside
droplets with an initial toxin concentration To= 10 pg/ml. At 48 hours, we select the top 10% of the droplets
that have the highest total populations densities (A+D). From these droplets, evolved D is separated from
A and is mixed with ancestral A to inoculate the next cycle of selection. A.), the entirety of the process is
schematically shown. B.) We calculated ‘detox improvement’ (the average of detoxification rates at the end
of a cycle divided by its average value in the ancestral population) over different selection cycles. We
assumed that the properties of D cells are mainly driven by inheritance, but are also affected by random or
induced variations. Mathematically, Xinoci = f * Xfinari-1 + (1 — hf) * Xinoc,0» Where Xipoc; is the
random variable corresponding to any property of D cells inoculating droplets in the selection cycle i and
Xfinat,i 1 the random variable corresponding to that property after the selection cycle i. We observe that
successive selection shows diminishing returns but still can improve the detoxification. This benefit is
weaker when the inheritance coefficient is smaller. C.) By examining the distribution of different traits of
D over successive cycles, we note that selection for the carrying capacity of D limits the improvement of
detoxification rates. Nevertheless, improvements in growth properties of D (rp and Kp) and improvements
in the detox rate (dp) lead to improved overall detoxification performance. The Impint model is used in
these simulations.
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Figure S8. When A and D evolve together, selection for A’s resistance to the toxin disrupts the
selections of improved detoxification, related to Figure 7. We survey n=10000 simulated droplets in
each cycle, starting from an initial population of A and D with random properties listed in Tables 1 and 2.
Within each cycle, we simulate the growth of culture inside droplets with an initial toxin concentration Ty
= 10 pg/ml. At 48 hours, we select the top 10% of the droplets that have the highest total populations
densities (A+D). From these droplets, evolved D and evolved A cells are used to inoculate the next cycle
of selection. A.) The entirety of the process is schematically shown. B.) We calculated ‘detox improvement’
as well as changes in the population composition at the end of each selection cycle. In these simulations,
hs = 0.9. We observe that selection for more resistance of A to the toxin (lower pr) reverts the
improvement in detoxification (higher dp). C.) By examining the distribution of different traits of D and A
over successive cycles, we note that the lineage with more resistance to the toxin outcompetes and replaces
the lineage with better detoxification rate. The ImpInt model is used in these simulations.
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Figure S9. Tradeoff between traits can interfere with detoxification selection, related to Figure 7. We
survey n=10000 simulated instances to evaluate how tradeoff in parameters affects PAAS selection. We
intentionally introduced tradeoff between Kp and dp, in the form of Kp = (1-¢)Kpo + @K pm[ 1-(dpo-dpm)/dpm).
Here Kpy and dppare random variables with properties listed in Tables 1 and 2, dpx is the average value of
dpo, and @ is a free parameter that determines the strength of correlation between Kp and dp in each instance.
A.) For ¢ = 0.01, 0.1, and 0.9, describing examples of weak, intermediate, and strong correlation,
respectively, the relation between sampled Kp and dp values are shown. B.) Total cell density is tightly
linked to the effectiveness of detoxification in the weak tradeoff case (¢ = 0.01, left) but not in the strong
tradeoff case (¢ = 0.9, right). C.) Scatter-plot shows a positive correlation between the detoxification rate
and total cell density in the weak tradeoff case (¢ = 0.01, left) but the correlation turns negative when the
tradeoff is strong (¢ = 0.9, right). D.) Comparing the distributions of the detoxification rates before selection
(top, grey) and after selecting the top 10% instances with the highest total cell densities (bottom, pink)
shows that PAAS favors improved detoxification in the weak tradeoff case (¢ = 0.01, left) but not when the
tradeoft is strong (¢ = 0.9, right). Final T concentrations are from simulations at 46 hours. The initial toxin
concentration is 10 pg/ml. The ImpInt model is used in these simulations.
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Figure S10. Coculture dynamics is insensitive to the initial ratios of A and D population densities,
related to Figure 7. We followed the population dynamics in the two-dimensional space of A and D
densities, starting from a range of initial A and D densities. Overall, the outcomes appear largely
independent of the details of the initial population ratios. A.) With r, — prTy > 0 and small death rates of
A and D (here 0.005/hr), the trajectories of the population dynamics are independent of the initial density
of A. Additionally, all cases remain viable. B.) With 4, — p;T, > 0 and at higher death rates of A and D
(here 0.05/hr), lower initial densities of A may not be viable (assuming extinction when density of D reaches
0.1 cells/ml). This is because D goes extinct before A grows enough to support it. C.) With r, — p;Tp < 0,
density of A declines over time and usability is only possible when the population size of D is large enough
to detoxify the culture for A before A goes extinct (not shown here; see “Conditions for Usability”). All
parameters are listed in Table 1, with the exception of pr = 0.03 ml/(ug-hr) assigned in part (C).



