
ARTICLE OPEN

Electron–phonon physics from first principles using the EPW

code
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Marios Zacharias 10, Xiao Zhang4, Nicola Bonini7, Emmanouil Kioupakis 4, Elena R. Margine 5 and Feliciano Giustino 1,2✉

EPW is an open-source software for ab initio calculations of electron–phonon interactions and related materials properties. The
code combines density functional perturbation theory and maximally localized Wannier functions to efficiently compute
electron–phonon coupling matrix elements, and to perform predictive calculations of temperature-dependent properties and
phonon-assisted quantum processes in bulk solids and low-dimensional materials. Here, we report on significant developments in
the code since 2016, namely: a transport module for the calculation of charge carrier mobility under electric and magnetic fields
using the Boltzmann transport equation; a superconductivity module for calculations of phonon-mediated superconductors using
the anisotropic multi-band Eliashberg theory; an optics module for calculations of phonon-assisted indirect transitions; a module for
the calculation of small and large polarons without supercells; and a module for calculating band structure renormalization and
temperature-dependent optical spectra using the special displacement method. For each capability, we outline the methodology
and implementation and provide example calculations.
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INTRODUCTION

The coupling between electrons and phonons is one of the most
intensively studied fermion–boson interactions in condensed
matter physics. It is responsible for a number of physical
phenomena in solids such as conventional superconductivity,
temperature-dependent resistivity in metals and mobility in
semiconductors, the formation of polarons, and phonon-assisted
optical processes, to name a few1,2. Predictive non-empirical
calculations of electron–phonon interactions play an essential role
in elucidating a variety of materials properties and their
temperature dependence.
During the past three decades, first-principles calculations of

electron–phonon interactions have been made possible by the
development of density functional theory (DFT)3,4 and density-
functional perturbation theory (DFPT)5–7. However, the computa-
tional cost of these calculations is high, as they involve the
evaluation of Brillouin zone integrals which typically require a very
fine sampling of the crystal momenta of electrons and phonons.
For instance, in DFPT calculations, every single phonon wavevec-
tor and vibrational mode requires the solution of Sternheimer-
type equations that carry a computational complexity comparable
to a DFT total energy calculation8. As a result, calculating
properties related to the electron–phonon interaction usually
entails a computational workload that is orders of magnitude
more costly than standard DFT calculations, thus rendering direct
ab initio calculations of these quantities challenging.

Several methods have been proposed to address this chal-
lenge1. Among those, one of the authors proposed to combine
DFPT with maximally localized Wannier functions (MLWFs)9 to
perform a physics-based interpolation via a generalized Fourier
transformation10. This method exploits the spatial localization of
the electron-phonon matrix elements in the Wannier representa-
tion and enables efficient calculations of electron–phonon matrix
elements on ultra-dense momentum grids while retaining the
accuracy of DFPT.
The EPW code builds upon this methodology to compute a

number of properties relating to electron–phonon interactions
and temperature-dependent materials properties. EPW is the first
open-source ab initio software devoted to electron–phonon
interactions and has been actively developed for over 16 years.
It was publicly released in 2010 under a GNU General Public
License (GPL)11 and is being distributed within the Quantum

ESPRESSO materials simulation suite12 since 2016. In addition to
EPW, several software projects have been developed in recent
years to address electron–phonon interactions, including: Per-
turbo13, elphbolt14, Phoebe15, and EPIq16. All these
packages rely on the same interpolation methodology employed
by EPW10.
Two prior manuscripts17,18 describe the status of the EPW code

until 2016. The present manuscript aims to describe progress on
the code that has occurred since 2016 as well as ongoing efforts,
leading to the latest EPW release. Added functionalities involve: a
magneto-transport module for the calculation of the conductivity
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in metals as well as the drift and Hall mobility in semiconductors; a
module for the calculation of small and large polarons without
using supercells; a module for the solution of the full-band
Eliashberg equations for superconductors; a module for calcula-
tions of phonon-assisted indirect optical processes; and a module
for calculations of finite-temperature electronic and optical
properties via the special displacement method. The code has
been refactored to keep up with contemporary developments in
high-performance computing (HPC) architectures, for example via
hybrid two-level message passing interface (MPI19) and Open
Multi-Processing (OpenMP20) parallelization, and parallel I/O via
parallel Hierarchical Data Format 5 (HDF521).
The manuscript is organized as follows. In the ‘Methods’ section

(located at the end of the manuscript), we describe the notation
employed throughout this manuscript, we review the conceptual
basis of electron–phonon interpolation using DFPT and MLWFs, and
we discuss the extension of this methodology to the case of polar
materials with long-range Coulomb interactions. In the ‘Results’
section, we describe the additional or expanded functionalities
available in the latest release of the EPW code. In particular, we
begin by discussing calculations of carrier transport within the ab
initio Boltzmann transport equation. We consider both electric and
magnetic fields, as well as phonon-limited and charged defect-
limited transport. Then we move to calculations of the super-
conducting critical temperature and superconducting gap function.
Here, we discuss elementary calculations based on the semi-
empirical McMillan equation, the isotropic Eliashberg theory, and
the fully-anisotropic full-band Eliashberg theory. Next, we outline
the methodology for computing small and large polarons from
DFPT without resorting to large supercells. We then proceed with
the formalism for the calculation of optical absorption spectra
including phonon-assisted indirect transitions. After these applica-
tions which are based on Wannier–Fourier interpolation, we
describe the special displacement method, which offers an
alternative and complementary strategy to computing
electron–phonon properties without employing Wannier–Fourier
interpolation. At the end of this section, we discuss recent advances
in computational algorithms, parallelization, and I/O, and we report
on parallel scaling benchmarks. In the ‘Discussion’ section we
discuss possible future directions for the EPW software project.

RESULTS

In this section, we provide an overview of additional or expanded
capabilities of the EPW code. In particular, we discuss how EPW

calculates carrier transport properties via the ab initio Boltzmann
transport equation (aiBTE), including both carrier-phonon and
carrier-impurity scattering; how the superconducting critical
temperature and superconducting gap are computed via the
solution of the Eliashberg equations; how we solve the ab initio
polaron equations to investigate small and large polarons without
using large supercells; and how we perform calculations of optical
absorption spectra in indirect-gap semiconductors by including
phonon-assisted optical transitions. We also describe an alternative
to Wannier interpolation to study electron–phonon interactions,
based on the special displacement method. Of these features, the
superconducting module has been enhanced and expanded with
respect to the previous release in 201618; all the other modules
described in the following have been developed ex novo since the
2016 release. The notations and conventions employed below are
described in detail in the ‘Methods’ section. In the same section, we
provide an overview of the Wannier–Fourier interpolation of
electron–phonon matrix elements.

Phonon-limited carrier transport using the ab initio
Boltzmann transport equation

Background and formalism. The calculation of the electronic
transport properties of metals and semiconductors is conveniently
dealt with by the ab initio Boltzmann transport equation (aiBTE).
The Boltzmann equation describes the non-equilibrium distribu-
tion function of electrons and holes in the presence of external
electric or magnetic fields2. It carries strong predictive power as
recently demonstrated for many common semiconductors22.
Although the Boltzmann formalism is usually derived within the
semi-classical approximation, the theory can rigorously be derived
from a non-equilibrium many-body Green’s function formalism
and is understood as the quasiparticle approximation to the
Kadanoff–Baym theory23–26.
The EPW code implements the linearized Boltzmann transport

equation, which describes the first-order response of the
distribution function to external fields and is suitable for
investigating the conductivity of metals and the low-field mobility
of semiconductors. In this section, we focus on the case of
phonon-limited transport properties. The extension to include
charged defects is discussed in the next section.
We consider homogeneous extended solids held at uniform

temperature, and carrier scattering by electron–phonon interac-
tions only, for now. Within the aiBTE, the linear response ∂Eβ f nk of
the carrier distribution function to an external electric field E is
given by22,27–41

∂Eβ f nk ¼ evnkβ
∂f 0nk
∂εnk

τnk þ 2πτnk
_

P

mν

Z

dq

ΩBZ
jgmnνðk;qÞj2∂Eβ fmkþq

´ ðnqν þ 1� f 0nkÞδðεnk � εmkþq þ _ωqνÞ
�

þðnqν þ f 0nkÞδðεnk � εmkþq � _ωqνÞ
�

:

(1)

In this expression, fnk is the electron distribution function, n
denotes a Kohn–Sham band index, and k is the electron
wavevector. ∂Eβ f nk is a short-hand notation for (∂fnk/∂Eβ)∣E=0,
vnkα= ℏ

−1∂εnk/∂kα is the intra-band velocity matrix element for
the Kohn–Sham eigenvalue εnk, and δ denotes the Dirac delta
function. gmnν(k, q) is the electron–phonon matrix element
describing the scattering from the state nk to the state mk+ q
via the phonon of branch ν and wavevector q (see the “Methods”
section for more details). The integral is over the Brillouin zone.
The temperature enters this equation via the Fermi–Dirac and
Bose–Einstein equilibrium distribution functions f 0nk and nqν,
respectively. The quantity τnk in Eq. (1) is the carrier relaxation
time, and is obtained from Fermi’s golden rule:

τ�1
nk ¼ 2π

_

P

mν

Z

dq

ΩBZ
jgmnνðk;qÞj2

´ ðnqν þ 1� f 0mkþqÞδðεnk � εmkþq � _ωqνÞ
h

þðnqν þ f 0mkþqÞδðεnk � εmkþq þ _ωqνÞ
i

:

(2)

The electrical conductivity tensor σαβ, which corresponds to the
variation of the current density with respect to the electric field, is
computed from ∂Eβ f nk using:

σαβ ¼ � e

Ω

X

n

Z

dk

ΩBZ
vnkα∂Eβ f nk; (3)

and the drift mobility is obtained from this expression upon
dividing by the carrier density nc:

μαβ ¼
σαβ

e nc
: (4)

These equations are valid for metals and for electrons or holes in
semiconductors taken separately. A common approximation to
the aiBTE is the relaxation time approximation, which consists of
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neglecting the second term on the right-hand side of Eq. (1). In
this case the mobility takes the simpler form:

μSERTAαβ ¼ � e

ncΩ

X

n

Z

dk

ΩBZ

∂f 0nk
∂εnk

vnkαvnkβτnk: (5)

We refer to this approximation as the “self-energy relaxation time
approximation” (SERTA) since the transport lifetime in Eq. (2)
corresponds to the quasiparticle lifetime, which is proportional to
the imaginary part of the electron-phonon self-energy1,22,24.
The electrical conductivity and the drift mobility described by

Eq. (1) can be measured by time-of-flight measurements or by THz
photo-conductivity measurements. In the case of Hall and De
Haas–Van Alphen measurements, an additional magnetic field B is
applied, and the resulting Lorentz force must be taken into
account in the aiBTE. In these cases, EPW solves the following
aiBTE equation22,24,32,42:

1� e
_
τnkðvnk ´BÞ � ∇k

� �

∂Eβ f nkðBÞ ¼ evnkβ
∂f 0nk
∂εnk

τnk

þ 2πτnk
_

P

mν

Z

dq

ΩBZ
jgmnνðk;qÞj2∂Eβ fmkþqðBÞ

´ ðnqν þ 1� f 0nkÞδðεnk � εmkþq þ _ωqνÞ þ ðnqν þ f 0nkÞδðεnk � εmkþq � _ωqνÞ
� �

:

(6)

The variation ∂Eβ f nkðBÞ is computed for magnetic fields sufficiently
small that their effect on the electronic and vibrational properties
can be ignored; accordingly, the Kohn–Sham energies, phonons,
and their couplings in the above equation are all evaluated for
B= 0. The application of a magnetic field in the direction B̂ results
in an orthogonal flow of the charge carriers which can be
described by the linear response of the mobility to the field:

μ
ð2Þ
αβ ðB̂Þ ¼ � lim

B!0

1

jBj
1

ncΩ

X

n

Z

dk

ΩBZ
vnkα∂Eβ f nkðBÞ � μαβ

" #

: (7)

From this expression, we obtain the Hall mobility in terms of the
drift mobility as follows:

μHαβðB̂Þ ¼
X

γ

rHαγðB̂Þμγβ ; (8)

where we have introduced the dimensionless Hall factor as22

rHαγðB̂Þ ¼
X

γδ

μ�1
αγ μ

ð2Þ
γδ ðB̂Þμ�1

δβ : (9)

Also in this case, one can simplify the solution of Eq. (6) by
ignoring the second term on the right-hand side. This choice leads
to the SERTA approximation in the presence of a magnetic field.

Computational considerations. EPW implements an iterative
solver to obtain ∂Eβ f nk from Eq. (1), with the possibility of Broyden
mixing43 to accelerate the convergence. The accurate evaluation
of Eqs. (3) and (4) is computationally demanding because it
requires the knowledge of ∂Eβ f nk for a dense set of k-points in an
energy window of the order of a few tens of meV around the
Fermi energy. In particular, since the scattering integral on the
right-hand side of Eq. (1) couples linear response coefficients at k
and k+ q points, the k-grid and the q-grid must be commensu-
rate. As this term is not evaluated in the SERTA approximation,
SERTA calculations can instead be performed using incommensu-
rate grids, including for example random and quasi-random
sampling31. It should be noted, however, that the SERTA
approximation tends to underestimate transport coefficients by
up to 50% as compared to the aiBTE22.
Regardless of the approximation chosen to calculate transport

coefficients, EPW exploits crystal symmetry operations to eliminate
symmetry-equivalent wavevectors in the solution of Eq. (1);
accordingly, ∂Eβ f nk is evaluated within the irreducible wedge of
the Brillouin zone. Furthermore, the solution of Eq. (1) is restricted
to the set of wavevectors for which both the initial and the final

electronic state lie within a user-defined energy window around
reference energy. In particular, the wavevectors k and q are
retained only if there exists a pair of bands m and n such that
∣εnk−Eref∣ < Δ and ∣εmk+q−Eref∣ < Δ, where Eref is reference energy
and Δ is the width of the window. In the case of metals, the
reference energy is set to the Fermi energy. In the case of
semiconductors, the Fermi energy is calculated from the user-
specified temperature and carrier concentration, using the
bisection method.
Magneto-transport calculations using Eq. (6) are harder to

converge than calculations without magnetic fields. The iterative
solution is initialized by using the result of Eq. (1) as a first
approximation for ∂Eβ f nkðBÞ, and the quantity ∇k∂Eβ f nkðBÞ
appearing on the left-hand side of Eq. (6) is evaluated via finite
differences. The correctness of the solution is tested by checking
for the conservation of the carrier density, which corresponds to
the condition

P

nk∂Eβ f nkðBÞ ¼ 0.
To ensure numerically accurate evaluation of transport coeffi-

cients with EPW, it is important to verify that results be converged
with respect to (i) the density of the Brillouin zone grids employed
in Eqs. (1) and (6); (ii) the density of the coarse grids used for the
Wannier–Fourier interpolation of the DFT and DFPT data22; (iii) the
Gaussian smearing employed to compute the Dirac delta functions
appearing in Eq. (1); and (iv) to check for the sensitivity of results to
lattice parameters, exchange and correlation functionals, and
pseudopotentials. To facilitate the convergence with respect to the
Gaussian smearing and the k-point sampling, EPW offers the
possibility of using the adaptive smearing method of ref. 44.

Application example. To demonstrate the implementation of the
transport module in EPW, we investigate the electron and hole
mobilities of cubic boron nitride, as well as the associated Hall
factors. We use the relativistic Perdew–Burke–Ernzerhof (PBE)
parametrization45 of the generalized gradient approximation to
DFT. The pseudopotentials are norm-conserving, generated using
the ONCVPSP code46, and optimized via the PseudoDojo
initiative47. We consider room temperature and low carrier
concentrations of 1013 cm−3. c-BN is a polar wide gap semicon-
ductor with isotropic Born effective charges Z�

B ¼ 1:91 e and
Z�
N ¼ �Z�

B; isotropic dynamical quadrupoles Qκ,αβγ=Qκ∣ϵαβγ∣
where ϵαβγ is the Levi–Civita tensor and Qκ an atom-dependent
scalar with values QB= 3.46ea0 and QN=−0.63ea0, where a0 is
the Bohr radius; and an isotropic high-frequency relative dielectric
constant ϵ∞= 4.5422. As will be discussed in Fig. 9, long-range
electron–phonon interactions are important in the case of c-BN.
Wannier functions are calculated separately for the valence and
the conduction band manifold in order to reduce the
computational cost.
Figure 1a shows the convergence of calculated mobilities with

the coarse grid of k-points used in the Wannierization procedure.
For this test, we employ a coarse q-point grid with half the
number of the k-points; and we employ identical fine grids with
503k- and q-points for the solution of Eq. (1); we use an energy
window Δ= 0.3 eV around the reference energy Eref set to the
band edge, and we employ adaptive smearing. This panel shows
that the mobilities are converged with an accuracy of 1% when
coarse grids with 183 and 143 points are employed for electrons
and holes, respectively. Figure 1b shows the convergence of
calculated mobilities with respect to the fine grids. We see that
both electron and hole mobilities are almost converged for grids
consisting of 2503 points. Generally speaking, the fine grid
required to achieve converged results depends on the effective
masses, with smaller masses requiring denser grids. As an
example, accurate calculations of the electron mobility of GaAs
require homogeneous grids of order 4003 points, while in the case
of AlAs or GaP 803 points are sufficient22 (see Table 1).
In Fig. 1c we show convergence curves for the mobility

evaluated in the SERTA approximation. In this case, the
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convergence with the density of points in the fine grids is much
slower than for complete aiBTE calculations. More importantly,
SERTA mobilities can differ by up to a factor of two from the
corresponding aiBTE results. The large difference between full
aiBTE calculations and SERTA seems to be a common trend in
polar materials22. For the same k- and q-point grids, the
computational saving afforded by the SERTA approximation is
minimal; therefore, we recommend using SERTA only when the
use of commensurate grids is too demanding, for example in the
case of systems with many atoms in the unit cell. Figure 1d, e
show the computed Hall factors for electrons and holes in c-BN,

respectively. The Hall factor in the SERTA approximation appears
to be close to the full aiBTE result, which is expected since it is
defined as the ratio of two mobilities (see Eq. (9))48.
In Fig. 1(f) we analyze the role of the Gaussian smearing parameter

in the calculations. To this end, we compute the electron mobility of
c-BN as a function of grid size, for varying smearing parameter. It is
seen that the size of the grid necessary for convergence increases
when decreasing the smearing in the few meV’s range. On the other
hand, the use of adaptive smearing affords fast convergence even
for smaller grid sizes. Based on this comparison, adaptive smearing is
the computationally most convenient strategy.

Fig. 1 Calculations of phonon-limited carrier mobility using EPW. a Convergence test for the electron and hole mobilities of c-BN with
respect to the number of k-points on the coarse grid. The number of q-points is set to half the number of k-points. b Convergence of
mobilities w.r.t. the number of grid points on the fine grids. The number of q-points is set to be the same as the number of k-points. c Same as
in b, but this time for calculations within the SERTA approximation. d and e Hall factors of c-BN for electrons and holes, as a function of the
number of points on the fine grids, for the full aiBTE and the SERTA approximation, respectively. The number of q-points is set to be the same
as the number of k-points. f Dependence of the electron drift mobility of c-BN with the Gaussian smearing.
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Defect-limited carrier transport using the ab initio Boltzmann
transport equation

Background and formalism. Electron–phonon interactions are the
dominant scattering mechanism in high-purity single crystals with
low defect concentration, typically up to 1015 cm−3 49. In
tetrahedral semiconductors and a host of other materials, charged
defects are ubiquitous since dopant elements are employed to
introduce free carriers50. Donors release electrons to the conduc-
tion band, thus becoming positively charged defects; similarly,
acceptors release holes into the valence band, and become
negatively charged defects. In either case, the impurity generates
a long-ranged Coulomb potential that scatters charge carriers. This
scattering mechanism tends to dominate over electron–phonon
processes at high doping concentrations.
There exist popular semi-empirical relations to estimate the

effect of ionized impurity scattering on carrier transport in
semiconductors, such as the Brooks–Herring51 and
Conwell–Weisskopf52 formulas. However, these expressions rely
on simplified parabolic band models and do not carry predictive
power in the case of materials with multi-band or multi-valley
band extrema. First-principles calculations offer a modern alter-
native to these earlier approaches, and have achieved consider-
able success in recent years53–56. The EPW code implements a
module for charged defect scattering based on a randomized
distribution of point charges. This approach is described in detail
in ref. 57 and summarized below.
For convenience we rewrite the aiBTE from Eq. (1) in the more

compact form:

�evnkβ
∂f 0nk
∂εnk

¼
X

m

Z

dq

ΩBZ
τ�1
mkþq!nk ∂Eβ fmkþq � τ�1

nk!mkþq ∂Eβ f nk

� �

;

(10)

where the quantity τ�1
nk!mkþq is the partial scattering rate from the

Kohn–Sham state nk to the state mk+ q. In the case of
electron–phonon scattering, τ�1

nk!mkþq is obtained from Eq. (2)
by removing the summation over m and the integral over the
Brillouin zone, i.e.

P

m

R

dq=ΩBZ. When both electron–phonon
scattering and charged impurity scattering are taken into account,
the partial scattering rate is written as the sum of the individual
partial rates

1

τnk!mkþq

¼ 1

τ
ph
nk!mkþq

þ 1

τ
imp
nk!mkþq

; (11)

where the superscripts refer to carrier-phonon (ph) and carrier-
impurity (imp) scattering, respectively. In EPW, the carrier-impurity

partial scattering rate 1=τ imp
nk!mkþq is calculated under the

following simplifying approximations: (i) each impurity is
described by an idealized point charge, embedded in the
dielectric continuum of the host material; (ii) the scattering rate
from each impurity is evaluated within the first Born approxima-
tion; (iii) defects are sufficiently diluted that the scattering rates
from different impurities are additive; (iv) impurities are randomly
distributed, and this random distribution is formally taken into
account by using the Kohn and Luttinger ensemble average58.
Within these approximations, the charged impurity scattering rate
reads57:

1

τ
imp
nk!mkþq

¼ Nimp
2π

_

e2

4πϵ0

4πZ

Ω

� �2
X

G≠�q

jhψmkþqjeiðqþGÞ�rjψnkij2

jðqþ GÞ � ϵ0 � ðqþ GÞj2
δðεnk � εmkþqÞ;

(12)

where Nimp is the number of impurities per crystal unit cell
(dimensionless), Ze is the charge of each impurity, and ϵ

0 is the
static relative dielectric constant tensor. The scattering rate in Eq.
(12) takes into account the DFT electronic band structure and the
lattice screening, including possible dielectric anisotropy. The
main advantage of this model as compared to explicit calculations
of charged defects in supercells is that it can be used system-
atically without requiring detailed knowledge of the defect
physics and energetics in each material.

Computational considerations. In the EPW code, the scattering
rate given in Eq. (12) is added to the electron–phonon scattering
rate using Eqs. (11) and (10), and the aiBTE is solved as already
described for the phonon-limited mobility. The computational
overhead as compared to phonon-only calculations is minimal.
In Eq. (12), the sum over G-vectors is handled via a Gaussian

filter, as described in the “Methods” section; the reader is
referred to that section for more details. The overlap integrals
between the initial and final Kohn–Sham states appearing in
Eq. (12), 〈ψmk+q∣e

i(q+G)⋅r∣ψnk〉, are evaluated by means of the
unitary Wannier function matrices described in the Methods.
The integral over the scattering wavevectors q in Eq. (10) of

the impurity scattering rates given in Eq. (12) contains a singular
∣q∣−4 term that is not integrable. This issue is resolved by
introducing the screening of the defect potential by free carriers
released upon ionization. To this end, we replace ϵ

0 in Eq. (12)
with the total dielectric function:

ϵ
0
tot ¼ ϵ

0 þ q2TF
q2

I; (13)

where I denotes the identity matrix, and qTF is the Thomas–Fermi
wavenumber obtained from the long-wavelength limit of the
Lindhard function49,56,59:

q2TF ¼
e2

4πϵ0

4π

Ω
2
X

n

Z

dk

ΩBZ

∂f 0nk
∂εnk

�

�

�

�

�

�

�

�

: (14)

Temperature enters this expression via the equilibrium
Fermi–Dirac distribution of the electrons or holes, f 0nk .
The concentration of charged defects is an external input

parameter in these calculations. In the case of ionized impurities in
semiconductors, it is also possible to use a simple estimate for the
fraction fii of ionized impurities at a given temperature by using
the impurity energy level in the gap εd

49,56,60.

f 2ii ¼ max 1;
1

nd Ω

X

n

Z

dk

ΩBZ
f ðεnk � εdÞ

 !

; (15)

where f is the Fermi–Dirac distribution and nd is the total
concentration of defects that may thermally ionize.
Owing to the ∣q∣−4 scaling of the ionized-impurity scattering

matrix elements, achieving convergence in the presence of
impurities is slightly more demanding than for calculations of

Table 1. Typical size of fine grids employed in EPW calculations.

EPW module Typical size of fine Brillouin zone
grid

Minimum Maximum

Phonon-limited transport 80 × 80 × 80 400 × 400 × 400

Impurity-limited transport 100 × 100 × 100 180 × 180 × 180

Superconductivity 60 × 60 × 60 120 × 120 × 120

Polarons 3 × 3 × 3 50 × 50 × 50

Phonon-assisted absorption 32 × 32 × 32 48 × 48 × 48

Special displacement method 3 × 3 × 3 10 × 10 × 10

In the case where the fine grids for k- and q-points differ, we indicate the

size of the denser grid. These values are only indicative and correspond to

the examples mentioned in the ‘Results’ section, which refer to simple

semiconductors, metals, and insulators with 2–4 atoms per unit cell. For

systems with larger unit cells, the fine grids would have to be downscaled

accordingly.
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phonon-limited mobility. For example, in recent calculations of
carrier mobilities in Si, GaP, and SiC, fine grids with 1003, 1003, and
1803 points were necessary, respectively57 (see Table 1).

Application example. To illustrate the impurity scattering cap-
ability of EPW, we calculate the mobility of electrons and holes in
silicon as a function of both temperature and dopant concentra-
tion. We consider coarse Brillouin zone grids with 123k-points and
63q-points, and fine grids with 1003 points. We use the PBE
functional45 and ONCV pseudopotentials46,61, and we include
spin–orbit coupling for the valence bands. We account for
quadrupole corrections using the procedure described in the
Methods section.
Figure 2a shows the calculated electron mobility of silicon as a

function of temperature. When considering phonon scattering
only, our calculations are in very good with measurements on
high-purity silicon62. Upon introducing ionized impurity scattering,
the electron mobility at 100 K decreases from 11,813 to
4725 cm2 V−1 s−1 for a dopant concentration of 1.75 × 1016 cm−3,
and to 1769 cm2 V−1 s−1 for a dopant concentration of
1.3 × 1017 cm−3. These calculations agree well with experimental
data63. At higher temperatures, the reduction in the mobility due
to impurity scattering is less significant since phonons provide the
dominant scattering mechanism. The hole mobility in Fig. 2b
exhibits a similar trend. Upon introducing ionized impurity
scattering, the hole mobility at 100 K decreases from 8877 to
2884 cm2 V−1 s−1 for a dopant concentration of 2.4 × 1016 cm−3,
and to 1056 cm2 V−1 s−1 for a dopant concentration of
2.0 × 1017 cm−3. Also in this case, the agreement with experi-
mental data is very good63.
Figure 2c shows the calculated electron mobility of silicon at

300 K, as a function of ionized impurity concentration. Up to a
dopant concentration of 1016 cm−3, phonon scattering dominates
and the mobility is relatively insensitive to impurity scattering.
Beyond this concentration, the mobility decreases sharply and
approximately as the inverse of the impurity density, in line with

Eq. (12). The calculations agree well with experiments up to an
impurity concentration around 1018 cm−364. Beyond this concen-
tration, it is expected that additional mechanisms such as two-
impurity scattering and plasmon scattering65 will further reduce
the mobility. The hole mobility, which is shown in Fig. 2d, follows a
similar trend. The calculated hole mobility at low doping,
603 cm2 V−1 s−1, slightly overestimates the experimental range
450–500 cm2 V−1 s−1; this effect can be traced to the under-
estimation of the heavy hole mass by DFT31. Upon increasing the
impurity concentration, the mobility decreases following the same
trend as for the electrons. These calculations agree well with
experiments64,66 and with previous first-principles calculations56.

Phonon-mediated superconductivity using the ab initio
Eliashberg theory

Background and formalism. First-principles calculations of
phonon-mediated superconductors are primarily based on three
approaches, namely semi-empirical methods based on the
McMillan formula67, the ab initio Eliashberg theory68,69, and the
density-functional theory for superconductors70–73. The EPW code
implements the former two approaches. In this section, we briefly
review methods based on the McMillan formula, and then we
describe the Eliashberg formalism and its implementation.
The superconducting critical temperature Tc can be estimated

using the semi-empirical McMillan equation in Allen–Dynes
form74:

kBT
AD
c ¼ _ωlog

1:2
exp

�1:04ð1þ λÞ
λ� μ�ð1þ 0:62λÞ

� �

; (16)

where kB is Boltzmann’s constant, μ* is the semi-empirical
Coulomb pseudopotential, ωlog is the logarithmic average of the
phonon frequencies, and λ is the electron–phonon coupling
constant, as defined in ref. 1. The parameter μ* is largely material
independent, for a large class of superconductors a value in the
0.1-0.15 range being typically required to fit the experimental

Fig. 2 Calculations of phonon- and impurity-limited carrier mobility using EPW. a Mobility of silicon as a function of temperature, for the
following three cases: phonon scattering only (black disks and lines); phonon and ionized impurity scattering, with an impurity concentration
of 1.75 × 1016 cm−3 (indigo disks and lines), and with a concentration of 1.3 × 1017 cm−3 (green disks and lines). Experimental data for the
same concentrations are shown as diamonds of the same color62,63,219. b Same as in (a) but for the hole mobility of silicon. The impurity
concentrations are 2.4 × 1016 cm−3 (indigo) and 2.0 × 1017 cm−3 (green), respectively. c Electron mobility of silicon at 300 K, as a function of
ionized impurity concentration: black disks and lines are calculations, black diamonds are experiments64,66. d Same as in (c) but for the hole
mobility.
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Tc
74–76. Note that for very strong coupling (λ > 1.5), in ref. 74 two

correction prefactors f1 and f2 are introduced in Eq. (16) to better
estimate the critical temperature in this regime.
In addition, the code allows the user to calculate the critical

temperature using a more recent prescription based on a machine
learning approach77:

TML
c ¼ fωf μT

AD
c ; (17)

where the correction factors fω and fμ are given by

fω ¼ 1:92
λþ ωlog=ω2 � ðμ�Þ1=3

λ1=2 expðωlog=ω2Þ
� 0:08; f μ ¼

6:86 expð�λ=μ�Þ
λ�1 � μ� � ωlog=ω2

þ 1:

(18)

In these expressions, ω2 is the square root of the second moment
of the normalized weight function g(ω)= 2α2F(ω)/(ωλ), with α2F
being the Eliashberg spectral function, as defined in ref. 1.
Equations (16) and (17) are useful for preliminary calculations but
do not carry the predictive power of the ab initio Eliashberg
theory.
The Eliashberg theory68,69 describes the superconducting phase

transition by means of finite-temperature Green’s functions. In this
theory, superconducting pairing arises from an attractive
electron–electron interaction mediated by phonons, which is
partly compensated by the inter-electron Coulomb repulsion. The
Eliashberg theory can be formulated as a Dyson equation for a
generalized 2 × 2 matrix Green’s function via the Nambu-Gor’kov
formalism78,79. The off-diagonal elements of this matrix describe
Cooper-pair amplitudes in the superconducting state and are
related to the superconducting gap function. These elements
become nonzero below the critical temperature, marking the
transition to the superconducting state. It is standard practice to
expand the pairing self-energy using Pauli matrices τ̂i (i= 0,…, 3)
as follows75,80–86:

Σ̂nkðiωjÞ ¼ i_ωj 1� ZnkðiωjÞ
� �

τ̂0 þ χnkðiωjÞτ̂3 þ ϕnkðiωjÞτ̂1; (19)

where iωj= i(2j+ 1)πT is the fermionic Matsubara frequency with j
being an integer, T is the absolute temperature, Znk(iωj) is the mass
renormalization function, χnk(iωj) is the energy shift, and ϕnk(iωj) is
the order parameter. This self-energy is expressed in terms of the
electron Green’s function using the Migdal approximation87 for
the electron–phonon contribution, and the GW approximation for
the electron–electron contribution88,89. Using Eq. (19) inside the
Dyson equation for the electron Green’s function yields a set of
coupled equations for Znk, χnk, and ϕnk:

ZnkðiωjÞ ¼ 1þ kBT

ωjNðεFÞ
X

mj0

Z

dq

ΩBZ

ωj0Zmkþqðiωj0Þ
θmkþqðiωj0Þ

λðnk;mk þ q;ωj � ωj0Þ;

(20)

χnkðiωjÞ ¼ � kBT

NðεFÞ
X

mj0

Z

dq

ΩBZ

εmkþq � μF þ χmkþqðiωj0Þ
θmkþqðiωj0Þ

λðnk;mk þ q;ωj � ωj0Þ;

(21)

ϕnkðiωjÞ ¼
kBT

NðεFÞ
X

mj0

Z

dq

ΩBZ

ϕmkþqðiωj0Þ
θmkþqðiωj0 Þ

λðnk;mk þ q;ωj � ωj0Þ � NðεFÞVnk;mkþq

� �

;

(22)

having defined the auxiliary function:

θnkðiωjÞ ¼ _ωjZnkðiωjÞ
� �2 þ εnk � μF þ χnkðiωjÞ

� �2 þ ϕnkðiωjÞ
� �2

:

(23)

In Eqs. (20)–(23), N(εF) is the density of states (DOS) per spin at the
Fermi level, μF is the chemical potential, and the quantities Vnk,mk

+q denote the matrix elements of the screened Coulomb
interaction W between electron pairs, as given in refs. 90,91. The

anisotropic electron–phonon coupling parameters λðnk;mk þ
q;ωj � ωj0Þ appearing in these equations are calculated as

λðnk;mk þ q;ωj � ωj0Þ ¼
NðεFÞ
_

X

ν

gmnνðk;qÞj j2 2ωqν

ðωj � ωj0 Þ2 þ ω2
qν

:

(24)

Equations (20)–(23) are supplemented by a statement of particle
number conservation, which determines the chemical potential84:

Ne ¼
X

n

Z

dk

ΩBZ
1� 2kBT

X

j

εnk � μF þ χnkðiωjÞ
θnkðiωjÞ

" #

; (25)

where Ne is the number of electrons per unit cell. Equations
(20)–(25) are referred to as the anisotropic full-bandwidth (FBW)
Eliashberg equations92 since they explicitly take into account
scattering processes involving electrons with energies and
momenta that are not restricted to the vicinity of the Fermi
surface. To find the temperature-dependent superconducting gap,
in EPW these equations are solved iteratively for different
temperatures; the highest temperature for which a non-trivial
solution exists (ϕnk ≠ 0) is the superconducting critical tempera-
ture Tc. Below this temperature, the superconducting gap Δnk is
given by

ΔnkðiωjÞ ¼ ϕnkðiωjÞ=ZnkðiωjÞ : (26)

The numerical solution of Eqs. (20)–(25) is computationally
demanding. A common simplification of these equations consists
of restricting the energy range close to the Fermi level75,80–86,93. In
this approach, it is assumed that the DOS within this energy
window is constant. It can be shown that, within these
approximations, the energy shift χnk vanishes and the requirement
in Eq. (25) is automatically satisfied. As a result, only two equations
for Znk and ϕnk need to be solved self-consistently:

ZnkðiωjÞ ¼ 1þ πkBT
NðεFÞωj

P

mj0

Z

dq

ΩBZ

ωj0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_
2ω2

j0 þ Δ
2
mkþqðiωj0Þ

q

´ λðnk;mk þ q;ωj � ωj0Þδðεmkþq � εFÞ;
(27)

ZnkðiωjÞΔnkðiωjÞ ¼ πkBT
NðεFÞ

P

mj0

Z

dq

ΩBZ

Δmkþqðiωj0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_
2ω2

j0 þ Δ
2
mkþqðiωj0Þ

q

´ λðnk;mk þ q;ωj � ωj0 Þ � NðεFÞVnk;mkþq

� �

δðεmkþq � εFÞ:
(28)

These equations are referred to as the anisotropic Fermi surface
restricted (FSR) Eliashberg equations18,85.
To extract physical quantities of interest, such as the tunneling

density of states and the heat capacity, the gap function on the
real frequency axis is required75,81,82. In the EPW code, the
continuation of Δnk(iωj) from the imaginary to the real axis is
performed either using Padé approximants94,95, or using the exact
analytic continuation of ref. 96, as described in ref. 85.
Accounting for the Coulomb repulsion in the Eliashberg equations

requires the evaluation of the matrix elements Vnk,mk+q. While this is
feasible in principle, it is common practice to replace the product
N(εF)Vnk,mk+q with the semi-empirical Morel–Anderson pseudopo-
tential μ�c

97. In this approach, the value of μ�c is linked to the cutoff
frequency ωc for the Matsubara summation on the imaginary axis,
with ωc typically set to ten times the maximum phonon frequency
ωph. Note that when converting between the μ* in Allen–Dynes
formula in Eq. (16) and μ�c , a ratio ωc/ωph of ten is often used74. In
EPW, μ�c is specified by the user as an external parameter, and in
many applications, values in the range μ�c ¼ 0:1-0.2 yield reasonable
agreement with experiments. More recently, first-principles calcula-
tions of μ�c as a Fermi surface average of Vnk,mk+q have been used in
conjunction with EPW91,98–100.
In the case of simple superconductors which do not exhibit

significant anisotropy, it may be a good approximation to neglect the
band and momentum dependence of the superconducting gap. In
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these cases, instead of Eqs. (20)–(25), it is possible to solve a
simplified version of the equations where all properties are averaged
over the Fermi surface76,101–103. The relations are referred to as the
isotropic Eliashberg equations:

ZðiωjÞ ¼ 1þ kBT

NðεFÞωj

Z

dεNðεÞ
X

j0

ωj0Zðiωj0Þ
θðε; iωj0Þ

λðωj � ωj0Þ; (29)

χðiωjÞ ¼ � kBT

NðεFÞ

Z

dεNðεÞ
X

j0

ε� μF þ χðiωj0Þ
θðε; iωj0Þ

λðωj � ωj0Þ; (30)

ϕðiωjÞ ¼
kBT

NðεFÞ

Z

dεNðεÞ
X

j0

ϕðiωj0Þ
θðε; iωj0Þ

λðωj � ωj0Þ � μ�c
� �

; (31)

Ne ¼
Z

dεNðεÞ 1� 2kBT
X

j

ε� μF þ χðiωjÞ
θðε; iωjÞ

" #

; (32)

where the counterpart of Eq. (23) is

θðε; iωjÞ ¼ _ωjZðiωjÞ
� �2 þ ε� μF þ χðiωjÞ

� �2 þ ϕðiωjÞ
� �2

: (33)

In Eqs. (29)–(31), λðωj � ωj0Þ is a momentum-averaged version of
Eq. (24):

λðωj � ωj0Þ ¼
1

NðεFÞ½ �2
X

m;n

Z

dk

ΩBZ

Z

dq

ΩBZ
λðnk;mk

þq;ωj � ωj0Þδðεnk � εFÞδðεmkþq � εFÞ:
(34)

Similar to the anisotropic case, Eqs. (29)–(31) can also be reduced
to a set of two equations for Z(iωj) and ϕ(iωj), under the same
conditions as discussed for Eqs. (27) and (28).

Computational considerations. Solving Eqs. (20)–(25) or the
simplified version Eqs. (27) and (28) is computationally demanding
because a fine sampling of electron-phonon processes near the
Fermi surface is required. In addition, due to the implicit form of
these equations, the k- and q-point grids must be commensurate. To
accelerate calculations, EPW exploits crystal symmetries so that the
gap function and related quantities are only computed for k-points
in the irreducible wedge of the Brillouin zone, and only electronic
states within a small energy window centered at the Fermi energy
are considered. Numerical tests show that converged results are
obtained when this energy window is of the order of a few times the
maximum phonon energy. In general, grids with an average point
density Δk ~ 0.02Å−1 and Δq ~ 0.04Å−1 are sufficient to converge
the superconducting gap85,91,104, but denser meshes may be
required for superconductors with complex Fermi surfaces. As an
example, 1202 and 403k-point grids and 602 and 203q-point grids
were used to describe the two-gap structure of bilayer C6CaC6 and
the single-gap structure of bulk CaC6, respectively

91 (see Table 1).
One further complication in the solution of the Eliashberg

equations is that all quantities depend on Matsubara frequencies.
The Matsubara frequencies are proportional to the absolute
temperature, therefore superconductors with low Tc require a larger
number of frequencies within the same energy range. While it is
common to set the Matsubara frequency cutoff to ten times the
maximum phonon frequency85,86,101,105,106, we recommend always
performing convergence tests with respect to this parameter. In EPW,
the number of Matsubara frequencies can be reduced using a sparse
sampling scheme whereby only a subset of frequencies is retained
with a density that decreases logarithmically with the Matsubara
index. The grid density is controlled by an adjustable parameter;
using the default setting for this parameter, EPW yields a ~30%
reduction of Matsubara frequencies, while keeping all the low-
est ~40% of frequencies. Numerical tests show that this approach
preserves the accuracy of more expensive full-grid calculations.
FBW Eliashberg calculations are computationally more demanding

than FSR calculations. In particular, to determine the chemical
potential from Eq. (25) one needs a Matsubara frequency cutoff of at
least a few times the Kohn–Sham energy window, leading to a
considerable increase in computational cost. To circumvent this
issue, the default behavior of EPW is to keep the chemical potential
fixed at the Fermi level unless it is instructed by the user to solve Eq.
(25). In this case, careful convergence tests with respect to the
Matsubara frequency cutoff are warranted.

Application example. To demonstrate the implementation of the
superconducting module in EPW, we investigate the super-
conducting properties of hexagonal niobium diselenide (2H-
NbSe2). 2H-NbSe2 exhibits a superconducting phase transition and
a charge density wave instability below 7.2 and 33 K, respectively;
both phases are driven by a strong momentum-dependent
electron-phonon coupling107–112. For brevity, in this section, we
focus on superconductivity and ignore the lattice instability.
We employ the PBE exchange and correlation functional45 and

the optB86b-vdW van der Waals functional113–116, as well as ONCV
pseudopotentials46,61 including semi-core electrons for Nb. We
use a plane waves kinetic energy cutoff of 80 Ry, Γ-centered
24 × 24 × 12 k-point and 6 × 6 × 4 q-point coarse grids, and
Methfessel–Paxton smearing117 of 0.025 Ry. The optimized lattice
parameters are a= 3.46Å and c= 12.57Å, in good agreement
with the experimental data a= 3.43 Å and c= 12.55 Å108.
The Eliashberg equations are solved on a uniform 60 × 60 × 40

k-point and 30 × 30 × 20 q-point fine grids. We consider energy
windows of 0.4 and 0.8 eV, Matsubara frequency cutoffs of 0.4, 0.8,
and 1.2 eV, and a Coulomb pseudopotential of μ�c ¼ 0:2. The Dirac
deltas in the FSR approach are replaced by Gaussians of width
50 meV.
Figure 3a shows the band structure and DOS of 2H-NbSe2. Three

bands cross the Fermi level. This system exhibits soft phonons along
the ΓM direction109,111,112, which are stabilized by anharmonic
effects109. Here, for simplicity, we avoid soft phonons by slightly
increasing the electronic smearing to 0.025 Ry in phonon calcula-
tions, as shown in Fig. 3b. The same panel also shows the
distribution of the electron–phonon coupling strength as described
by the Eliashberg spectral function α2F. Figure 3c shows the
anisotropic gap function color-coded on the Fermi surface of 2H-
NbSe2. We find a highly anisotropic two-gap structure: the high-gap
region corresponds to the Fermi arcs around the K point, and the
low-gap region corresponds to the Γ-centered pockets. These results
are similar to previous calculations for the related compound NbS2

98.
Figure 3d shows the energy distribution of the superconducting gap
function Δnk for various temperatures. The gap is seen to close
gradually with increasing temperature, vanishing at the critical
temperature Tc= 19 K. The calculated critical temperature over-
estimates the experimental value of 7.2 K, consistent with prior
calculations for bulk and monolayer transition metal dichalcogen-
ides98,109,112,118–120. The calculations in Fig. 3d are performed within
the FBW Eliashberg approach, with the chemical potential set to the
Fermi energy. Calculated gap values for energy windows of 0.4 and
0.8 eV are very similar, therefore in the following we only consider
the former. Figure 3e shows the sensitivity of the superconducting
gap to the chemical potential: by requiring particle number
conservation via Eq. (25), the chemical potential shifts by 25meV
with respect to the Fermi energy, and the critical temperature
slightly increases, by <1 K. In Fig. 3f we perform the same test, but
this time with a wider energy window, obtaining similar results.
In Fig. 3g we also compare the FBW Eliashberg approach with the

FSR approach, which is approximately 30% faster for the system
under consideration. The critical temperatures calculated from these
approaches agree within 0.5 K. This finding relates to the DOS of 2H-
NbSe2 being slowly varying within a few hundred meV’s around the
Fermi energy. Larger differences are expected for systems with
rapidly varying DOS, such as for example the high-Tc hydride
superconductors105.
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When using a logarithmic Matsubara frequency grid, the results
are essentially unaffected as shown in Fig. 3h. At the same time, the
sparse Matsubara grids afford a significant computational saving of
almost a factor of two.

Polarons and electron self-trapping

Background and formalism. An important manifestation of
electron-phonon interactions is the formation of polarons. The
polaron is a quasiparticle consisting of an electron or a hole
dressed by a distortion of the crystal lattice. The lattice distortion
can be interpreted as a cloud of virtual phonons accompanying
the electron or hole. In the presence of strong electron–phonon
coupling, the electron or hole can become trapped in the lattice
distortion that it produced; this configuration is referred to as a
self-trapped polaron121–123.
In the context of first-principles calculations, the formation of

polarons has generally been investigated by means of DFT
calculations of an excess charge added to a large supercell. When
the calculation is initialized with a localized distortion of the
crystal lattice, it may be energetically favorable for the electron or
hole to localize around this distortion, leading to the formation of
a polaron124–130. This approach faces two challenges: first, the
existence of polaronic states and their formation energy are very

sensitive to the choice of the exchange and correlation functional;
second, the size of the supercells required to obtain converged
energies and wavefunctions may be prohibitive.
In the EPW code, these challenges are overcome by recasting

the polaron problem into the solution of a coupled nonlinear
system of equations for the energy, wavefunction, and atomic
displacements associated with the polaron131–134. The founding
principle of this methodology is that the DFT formation energy of
the polaron can be expressed as a self-interaction-free functional
of the polaron wavefunction ψ(r) and the atomic displacements in
the polaronic state Δτκαp

132 (all symbols are defined in the
‘Methods’ section):

ΔEf ¼
Z

drψ�ðrÞĤ0

KSψðrÞ þ
X

καp

Z

dr
∂V0

KS

∂τκαp
jψðrÞj2Δτκαp

þ 1

2

X

καp

κ0α0p0

C0
καp;κ0α0p0ΔτκαpΔτκ0α0p0 ;

(35)

where Ĥ
0

KS and C0
καp;κ0α0p0 are the Kohn–Sham Hamiltonian and the

matrix of interatomic force constants in the ground-state structure
without the polaron, and the integrals are over the Born–von
Kármán (BvK) supercell. Variational minimization of this energy
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Fig. 3 Eliashberg calculations for phonon-mediated superconductors in EPW. a Band structure and DOS of 2H-NbSe2. b Phonon dispersion
relations, phonon density of states (blue line), Eliashberg spectral function α2F (solid red line), and cumulative electron-phonon coupling
strength λ (dashed red line) of 2H-NbSe2. In (a), the bands obtained by Wannier interpolation are shown in dashed red lines. c Momentum-
resolved superconducting gap of 2H-NbSe2, color-coded on the Fermi surface220 and evaluated at 2 K [same dataset as in (d)]. d Energy
distribution of the superconducting gap of 2H-NbSe2 as a function of temperature, calculated using the FBW Eliashberg approach, chemical
potential set to the Fermi energy, and a Matsubara frequency cutoff of 0.4 eV. The energy window is 0.4 eV for the black line, and 0.8 eV for the
red line. e Gap function of 2H-NbSe2 obtained from the FBW approach using fixed chemical potential (black line) and variable chemical
potential (blue line). The energy window and Matsubara cutoff are both 0.4 eV. f Same as in (e), but using a Matsubara cutoff of 1.2 eV.
g Comparison between the gap functions obtained with the FBW approach (black line) and the FSR approach (blue). Both the energy window
and the Matsubara cutoff are 0.4 eV. h Same as in (g), but using a sparse Matsubara frequency grid. The dashed lines in d–h represent averages
of the gap distributions.
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functional leads to the coupled system of equations:

Ĥ
0

KS ψðrÞ þ
X

καp

∂V0
KSðrÞ

∂τκαp
Δτκαp ψðrÞ ¼ ε ψðrÞ ; (36)

Δτκαp ¼ �
X

κ0α0p0
ðC0Þ�1

καp;κ0α0p0

Z

dr
∂V0

KSðrÞ
∂τκ0α0p0

jψðrÞj2 ; (37)

where V0
KS is the Kohn–Sham potential in the ground-state

structure without polaron, and ε represents the quasiparticle
excitation energy of the polaron133,134. To avoid performing
calculations in large supercells, in EPW Eqs. (36) and (37) are
rewritten more conveniently in terms of Kohn–Sham states,
phonons, and electron–phonon matrix elements evaluated in the
primitive unit cell of the crystal. To this aim, the wavefunction is
expanded on the basis of Kohn–Sham states:

ψðrÞ ¼ 1
ffiffiffiffiffiffiffi

Nuc
p

X

nk

Ankψnk ; (38)

and the atomic displacements are expanded on the basis of lattice
vibrational eigenmodes:

Δτκαp ¼ � 2

Nuc

X

qν

B�qν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

2Mκωqν

s

eκα;νðqÞeiq�Rp : (39)

With these definitions, Eqs. (36) and (37) become a nonlinear
system of equations for the polaron coefficients Ank and Bqν:

2

Nuc

X

qmν

Bqν g
�
mnνðk;qÞ Amkþq ¼ ðεnk � εÞAnk ; (40)

Bqν ¼
1

Nuc

X

mnk

A�
mkþq

gmnνðk;qÞ
_ωqν

Ank : (41)

These relations are referred to as the ab initio polaron equations.
The polaron formation energy in Eq. (35) can be expressed in
terms of the polaron coefficients Ank and Bqν as

132

ΔEf ¼
1

Nuc

X

nk

jAnkj2ðεnk � εCBMÞ �
1

Nuc

X

qν

jBqνj2_ωqν ; (42)

where εCBM is the Kohn–Sham eigenvalue of the conduction band
minimum. This expression holds for electron polarons; in the case
of hole polarons, εCBM is replaced by the eigenvalue of the valence
band maximum, and the first term on the right-hand side of Eq.
(42) acquires a minus sign. Equations (38), (39), and (42) provide
the real-space wavefunction of the polaron, the accompanying
atomic displacements, and its formation energy.

Computational considerations. The solution of Eqs. (40) and (41)
require the knowledge of the Kohn-Sham energies εnk, the
phonon frequencies ωqν, and the electron-phonon matrix
elements gmnν(k, q). All of these quantities are calculated by EPW

using Wannier–Fourier interpolation as described in the Methods.
The solution of the coupled system of equations is performed
using an iterative procedure as follows. First, Ank is initialized in
order to compute Bqν via Eq. (41). Then, Eq. (40) is solved by
constructing and diagonalizing the effective Hamiltonian

Hnk;n0k0 ¼ εnkδnk;n0k0 �
2

Nuc

X

ν
Bk0�kν g

�
n0nνðk; k0 � kÞ : (43)

The set of solution coefficients Ank is used again in Eq. (41), and
the process is repeated until convergence is achieved.
The initialization of the coefficients Ank is achieved by using a

Gaussian function in reciprocal space centered around the band
extremum. Alternatively, a polaron solution from a previous
calculation can be used. In the construction of the effective
Hamiltonian matrix in Eq. (43), we set the gauge condition
eκα;νð�qÞ ¼ e�κα;νðqÞ135. This condition ensures that B�qν ¼ B�qν , so

only half of the Bqν coefficients need to be evaluated at each
iteration. In addition, for parallel execution, we set a global gauge
for all interpolated Kohn–Sham wavefunctions and vibrational
eigenmodes. The diagonalization of the effective Hamiltonian is
performed via the Davidson method136 as implemented in
Quantum ESPRESSO. The convergence of the iterative procedure
is tested by evaluating the atomic displacements in real space via
Eq. (39) and comparing these real-valued vectors between
successive iterations. In the case of polaron calculations, choosing
a fine Brillouin zone grid with N × N × N points implies that one is
studying polarons in a periodic BvK supercell consisting of
N × N × N unit cells. The formation energy of an isolated polaron
is obtained by taking the limit of N→∞. For large enough N, we
observe that the formation energy scales as 1/N, which is
consistent with the Makov–Payne asymptotic expansion of the
energy of a point charge in a periodic cell132,137. Based on this
observation, to obtain the energy of an isolated polaron, we
perform a Makov-Payne extrapolation to the limit of infinite
supercell size. Generally speaking, we find that for small polarons
the wavefunction shape is converged already for BvK supercells of
the order of 5 × 5 × 5 unit cells, while for large polarons it is
necessary to use supercells that are large enough to fully contain
the polaron density. While there is no formal upper limit to this
size, the largest BvK supercell sizes that we employed are up to
50 × 50 × 50 for the large electron polaron in NaCl (see Table 1).
To visualize the polaron, EPW expresses the wavefunction as a

linear combination of maximally localized Wannier functions:

ψðrÞ ¼
X

mp

Ampwmðr� RpÞ; (44)

where the coefficients Amp are obtained from the solution vectors
Ank via the Wannier–Fourier transformation:

Amp ¼
1

Nuc

X

nk

eik�RpU
y
mnkAnk ; (45)

and Umnk is the unitary matrix that generates the smooth Bloch
gauge [Eq. (64) of the “Methods” section]. The inversion of this last
relation also allows one to interpolate the coefficients Ank
throughout the Brillouin zone, which is useful to visualize how
specific bands contribute to the polaron wavefunction (Fig. 4).

Application example. To demonstrate the implementation of the
polaron module in EPW, we investigate the electron and hole
polarons in rocksalt NaCl, a prototypical polar insulator that hosts
small hole polarons called VK centers138,139. We perform calcula-
tions using the PBE exchange and correlation functional45, ONCV
pseudopotentials47, and a planewaves kinetic energy cutoff of
150 Ry. Ground-state and lattice-dynamical calculations are
performed using a 12 × 12 × 12 uniform and unshifted Brillouin
zone mesh for both k- and q-points. The Kohn–Sham states,
phonons, and electron-phonon matrix elements that are needed
to solve Eqs. (40) and (41) are generated on Brillouin zone grids
with up to 50 × 50 × 50 points by Wannier–Fourier interpolation.
To this end, we use three Wannier functions to describe the Cl-3p
states in the valence band, and one Wannier function to describe
a single conduction band formed by the Na-3s states. The use of
additional valence or conduction bands only brings negligible
changes to the polaron formation energy. In order to obtain the
polaron formation energies in the limit of infinite supercell size,
we solve Eqs. (40) and (41) for N × N × N k- and q-point grids with
increasing N, and we perform a linear extrapolation of the energy
vs. 1/N curve. Figure 4a shows an isosurface of the calculated
wavefunction of the electron polaron in NaCl. The formation
energy of this polaron in the infinite supercell limit is 37meV; with
a radius of 147Å, this polaron spans several tens of crystalline unit
cells. The wavefunction is isotropic and can be described as a
combination of Na-3s orbitals modulated by an approximately
Gaussian envelope.
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In Fig. 4b we show the atomic displacements associated with the
electron polaron of Fig. 4a. For clarity we only show the displacement
of the Cl ions. The ions tend to move away from the center of the
electron wavefunction, consistent with the fact that the electron
polaron tends to repel anions. Figure 4c shows an isosurface of the
calculated hole polaron of NaCl. The formation energy in the dilute
limit is 820meV, indicating a strongly bound polaron. Consistent with
the large formation energy, we find a very small polaron of radius
6Å, which is comparable to the lattice parameter of 5.69Å. This
polaron consists primarily of a single 3p orbital centered on Cl and
oriented along the [100] direction. The accompanying atomic
displacements are shown in the same panel. As expected from the
negative charge of the polaron, the largest displacements are found
for the Na cations which tend to move away from the polaron center.
In Fig. 4d we overlay the coefficients ∣Ank∣

2 with the band structure
in order to determine which electronic states contribute to the
electron (blue) and hole (orange) polaron. In the case of the electron
polaron, only electrons near the bottom of the conduction band
contribute; the narrow distribution of Ank near k= 0 is consistent
with the large spatial extent of the electron polaron in real space.
Conversely, the hole polaron draws weight from the entire Brillouin
zone, in line with the strong localization in real space. Similarly, in Fig.
4e we show the coefficients ∣Bqν∣

2 on the phonon dispersion
relations. The electron polaron is primarily driven by long-wavelength
longitudinal-optical phonons and longitudinal acoustic phonons,
while the hole polaron is driven mostly by short-range optical modes.
These spectral weight distributions suggest that the electron polaron
in NaCl should be classified as a Fröhlich-type140 polaron, while the
hole polaron should be classified as a Holstein-type polaron141.

Phonon-assisted indirect absorption

Background and formalism. The EPW code has the capability to
compute, from first principles, optical absorption spectra in
indirect band gap semiconductors by including phonon-assisted

optical transitions within second-order time-dependent perturba-
tion theory. Phonon-assisted transitions involve two virtual
processes, namely the absorption of a photon, and the absorption
or emission of a phonon, in either order. In this section, we outline
the general formalism to describe these processes142,143.
We consider a linearly polarized electromagnetic wave with

vector potential of amplitude A0, frequency ω, and polarization
vector e. In the following equations, the long-wavelength limit and
the corresponding electric dipole approximation are understood.
Second-order time-dependent perturbation theory states that the
transition rate of an electron from an initial Kohn–Sham state nk to
a final state mk+ q involving a photon and a phonon qν is142:

Wmnνðk;q;ωÞ ¼ 2π
_
e2A2

0

P

β¼± 1

e � ½S1;mnνðk;qÞ þ S2;mnνβðk;qÞ�
�

�

�

�

2

´ δðεmkþq � εnk � _ωþ β_ωqνÞ:
(46)

In this equation, β=+1 and−1 represent phonon emission and
absorption processes, respectively. S1,mnν(k, q) and S2,mnνβ(k, q) are
the transition amplitudes for the processes illustrated in Fig. 5a:
S1,mnν(k, q) refers to a process whereby the electron absorbs a
photon, and then absorbs or emits a phonon; S2,mnνβ(k, q)
describes a process whereby phonon absorption/emission takes
place, followed by the absorption of a photon. Explicit expressions
for these amplitudes are:

S1;mnνðk;qÞ ¼
X

j

gmjνðk;qÞvjnðkÞ
εjk � εnk � _ωþ iη

; (47)

S2;mnνβðk;qÞ ¼
X

j

vmjðk þ qÞgjnνðk;qÞ
εjkþq � εnk þ β_ωqν þ iη

; (48)

where vmn denotes velocity matrix elements between the
Kohn–Sham states and the sum extends to all possible occupied

Fig. 4 Calculation of small and large polarons with EPW. a Isosurface plot of the wavefunction of the electron polaron in NaCl. Na atoms are
in silver, Cl atoms are in green. b Displacements of the Cl atoms associated with the electron polaron shown in (a). The displacements are
exaggerated for clarity. c Isosurface plot of the hole polaron in NaCl, and associated atomic displacements. The displacements are
exaggerated for clarity. d Spectral weights of the electron (blue) and hole (orange) polaron of NaCl, superimposed to the band structure. The
size of the circles is proportional to ∣Ank∣

2. e Spectral weights of the electron (blue) and hole (orange) polaron of NaCl, superimposed to the
phonon dispersion relations. The size of the circles is proportional to ∣Bqν∣

2.
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and unoccupied states. The energy η is a small parameter to avoid
singular denominators. From the transition rates Wmnν(k, q; ω), we
obtain the imaginary part of the dielectric function by summing
over all possible transitions in the Brillouin zone and in the band
manifold142,143:

Im ½ϵðωÞ� ¼ 2 πe2

ϵ0Ω
1
ω2

P

mnν;β¼±1

Z

dk

ΩBZ

Z

dq

ΩBZ
je � ½S1;mnνðk;qÞ þ S2;mnνβðk;qÞ�j2

´ Pmnνβðk;qÞδðεmkþq � εnk � _ωþ β_ωqνÞ;
(49)

where the factor of two results from the electron spin in the case
of spin-unpolarized systems; this factor is omitted in the case of
calculations including spin–orbit coupling. The quantities Pmnνβ(k,
q) contain the temperature-dependent Fermi–Dirac and
Bose–Einstein distributions as follows:

Pmnνβðk;qÞ ¼ nqν þ
1þ β

2


 �

f nkð1� fmkþqÞ � nqν þ
1� β

2


 �

ð1� f nkÞfmkþq:

(50)

In Eq. (49), the scalar quantity ϵ(ω) represents the projection of the
dielectric tensor along the polarization direction e of the electric
field. For easier comparison with experimental measurements,
after we obtain the imaginary part of the dielectric function from
EPW, we calculate the absorption coefficient using142:

αabsðωÞ ¼ ω Im½ϵðωÞ�
c nðωÞ ; (51)

where n(ω) is the real part of the refractive index and c is the
speed of light. n(ω) can be calculated from the standard relations
between the dielectric function and the refractive index144. In this
case, the real part of the dielectric function can be obtained by
performing a Kramers–Kronig transformation of Im[ϵ(ω)] and
applying a rigid shift to match the value of ϵ(ω= 0) computed
from DFPT using Quantum ESPRESSO. Alternatively, n(ω) can be
taken from experiments143.

Computational considerations. In the optics module of EPW, the
imaginary part of the dielectric function is calculated using Eq. (49).

The summation over virtual states in Eqs. (47) and (48) are restricted
to the manifold of valence and conduction bands included in the
Wannierization procedure. The Dirac delta functions appearing in
Eq. (49) are replaced by Gaussian functions or Lorentzian functions
with a finite broadening. The small parameter η in Eqs. (47) and (48)
are used to avoid singular denominators which arise if, for a given
photon energy ℏω, direct transitions are resonant with indirect
transitions. These situations are encountered, for example, at the
onset of direct transitions, i.e. when the photon energy matches the
direct gap. In these situations, the dielectric function and the
absorption spectrum become sensitive to the choice of η: too small
an η leads to a divergence of the spectrum, and too large an η leads
to an excessive broadening. To probe the sensitivity of the spectra
to this parameter, the optics module of EPW calculates Im[ϵ(ω)] for a
range of broadening parameters between 1meV and 0.5 eV. Efforts
are currently ongoing to eliminate these spurious singularities: we
believe that they arise from an intrinsic limitation of second-order
perturbation theory when direct and indirect transitions are in
resonance; a more general theory that correctly describes these
resonances is under development145.
In Eqs. (47) and (48), the velocity matrix elements are sensitive

to the details of the electronic structure. For accurate calcula-
tions, it is preferable to include GW quasiparticle corrections to
the Kohn–Sham eigenvalues89. These corrections require a
renormalization of the velocity matrix elements to preserve
the f-sum rule of optical transitions146,147. In the EPW code, this
renormalization is carried out by evaluating the velocity via
finite differences. To this end, we consider quasiparticle energies
and Kohn–Sham eigenvalues evaluated on k-point grids slightly
offset along the Cartesian directions. The renormalized velocity
matrix elements are given by147

vQPmn;αðkÞ ¼
εQPmkþδq

α

� εQPnk�δqα

εKSmkþδqα
� εKSnk�δqα

vKSmn;αðkÞ; (52)

where δqα is a small wavevector along the Cartesian direction α, of
magnitude 10−3 × 2π/a (a is the lattice parameter).
To achieve convergence in calculations of indirect phonon-

Fig. 5 Indirect phonon-assisted optical absorption spectra with EPW. a Calculated band structure of silicon including GW quasiparticle
corrections (lines). The energy is referred to the top of the valence bands. The marks are measured energies of critical points: cross: ref. 158;
diamond: ref. 89; filled triangle: ref. 221; filled square: ref. 222; open triangle: ref. 157. b Calculated phonon dispersion relations of silicon (lines).
Neutron scattering data are shown as disks160 and filled triangles161. c Calculated imaginary part of the dielectric function of silicon (line)
including phonon-assisted processes. The squares represent experimental data from ref. 223. d Calculated absorption coefficient of silicon. The
circles are measurements from ref. 224.
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assisted optical absorption spectra, Brillouin zone grids with
40 × 40 × 40 points have been employed in previous work on
silicon143, as well as in more recent work on silicon and
diamond145 (see Table 1). In addition, convergence of the
phonon-assisted optical spectra for cubic boron arsenide148 and
cubic silicon carbide149 was achieved with Brillouin zone grids of
32 × 32 × 32. When free-carrier absorption is considered, denser
grids are required for converged spectra. For example, a grid of
48 × 48 × 48 is needed for converged phonon-assisted free-carrier
absorption spectra in silicon150.

Application example. To demonstrate the implementation of the
optics module in EPW, we examine phonon-assisted optical
absorption in silicon. Gound-state DFT calculations are performed
using the PBE exchange and correlation functional45, ONCV
pseudopotentials46,61, a planewaves kinetic energy cutoff of
60 Ry, and a 6 × 6 × 6 Brillouin zone sampling of both the k-point
grid and the q-point grid. The optimized DFT lattice parameter is
a= 5.478 Å, similar to previous studies151–153.
We evaluate quasiparticle corrections on a 6 × 6 × 6 k-point grid

within the GW method using the BerkeleyGW code154. The GW-
corrected band gap is 1.31 eV, which slightly overestimates the
experimental value of 1.12 eV at room temperature155, but agrees
well with prior work using similar settings89. The resulting
quasiparticle band structure is shown in Fig. 5a. Our calculations
agree well with experimental measurements at several critical
points89,156–158, shown by marks in the figure. In Fig. 5a we also
show representative optical transitions leading to the amplitudes in
Eqs. (47) and (48). The fundamental gap is indirect, between the top
of the valence band at the Γ point and the bottom of the
conduction band near the X point. To correctly describe optical
transitions near the fundamental gap, it is essential to include
phonon-assisted processes. Figure 5b shows calculated phonon
dispersion relations, which agree well with prior calculations by us18

and other groups159, as well as experimental data160,161 (solid
symbols). Figure 5c shows the imaginary part of the dielectric
function, as obtained from Eq. (49) using 32 × 32 × 32 fine k- and q-
point grids. The temperature is set to 300 K, and the Dirac delta
functions in Eq. (49) are approximated via Gaussians of width
50meV. In this plot, a rigid shift of−0.19 eV is applied in order to
match the GW band gap to the measured gap of silicon at room
temperature (1.12 eV)155. Figure 5d shows the related optical
absorption coefficient from Eq. (51). This calculation requires the
real part of the frequency-dependent refractive index, for which we
used experimentally measured values from ref. 162 for simplicity.
Our calculated spectra agree very well with experiments in the

photon energy range between the indirect gap and the direct gap at
3.3 eV. Beyond the lineshape, the magnitude also agrees well with
the experiment over several orders of magnitude, with the theory
underestimating the experimental data by 50% at most. This residual
underestimation might be related to the rigid shift of the band gap,
which we did not include in the velocity renormalization expressed
by Eq. (52), and to the fact that electron–phonon matrix elements are
slightly too weak in DFT as a result of the band gap problem1,163.

Special displacement method

Background and formalism. The EPW package contains a set of
standalone modules, the ZG toolkit, for calculating finite-
temperature properties including quantum zero-point effects via
the special displacement method (SDM)164–166. The special
displacement method is a supercell-based approach that is
distinct from and complementary to the Wannier–Fourier inter-
polation method employed in all previous sections. The founding
principle of this method is that the effects of electron–phonon
couplings on the electronic and optical properties of extended
solids can be captured by performing calculations for a large
supercell where the atoms have been displaced away from their

equilibrium crystallographic sites. The displacements are chosen in
such a way that the corresponding atomic configuration
represents the best single-point approximant to the quantum
thermal distribution of the atomic coordinates165.
Under the approximations of adiabatic Born–Oppenheimer

decoupling and harmonic lattice, the quantum thermal average of
an electronic or optical property described by the observable O
can be written as165

OðTÞ ¼
Y

qν

Z

dxqνdyqν
πu2qν

e�jzqν j2=u2qνOðfτκαpgÞ; (53)

where q runs over the set of wavevectors in a uniform Brillouin zone
grid which excludes time-reversal invariant points and time-reversal
partners. In Eq. (53), zqν denote normal mode coordinates with real
part xqν and imaginary part yqν. u

2
qν ¼ ð_=2M0ωqνÞð2nqν þ 1Þ is the

mean-square displacement for the oscillator qν with Bose–Einstein
occupation nqν; O({τ}) is the property of interest, such as for example
the Kohn–Sham eigenvalues, density of states, or optical absorption
spectrum, calculated for the set of atomic coordinates {τκαp}. The
relation between these coordinates and the normal coordinates zqν,
which is required to carry out the integral in Eq. (53), is provided in
ref. 165.
In the special displacement method, the configurational average

expressed by Eq. (53) is approximated by a single calculation for an
optimum configuration:

OðTÞ ’ Oðfτ0καp þ ΔτZGκαpgÞ; (54)

where τ0καp represent atomic coordinates in the DFT ground-state
at zero temperature, and the optimum ‘ZG’ displacement is given
by165

ΔτZGκαp ¼
ffiffiffiffiffiffiffiffiffiffiffi

M0

NpMκ

s

2
X

qν

Sqνuqν Re eiq�Rpeκα;νðqÞ
� �

: (55)

As in Eq. (53), the summation is restricted to q-points from a
uniform Brillouin zone grid which are not time-reversal invariant
and are not time-reversal partners. This partitioning is described in
Appendix B of ref. 1. The quantities Sqν appearing in Eq. (55) are
signs (±1) determined by the ZG module so as to guarantee that
the resulting displacements make Oðfτ0καp þ ΔτZGκαpgÞ the best
possible approximant to Eq. (53). In the thermodynamic limit of a
large supercell, the ZG displacements reproduce the exact mean-
square anisotropic displacement tensors, which are given by167

Uκ;αα0ðTÞ ¼
_

2Mκωqν

X

ν

Z

dq

ΩBZ
eκα;νðqÞe�κα0;νðqÞ ð2nqν þ 1Þ: (56)

In the same limit, a single evaluation of the property
Oðfτ0καp þ ΔτZGκαpgÞ tends to the exact thermal average in Eq. (53).
In the case of non-periodic systems, such as for example
nanocrystals and quantum dots, these equations are replaced by
their Γ-point only versions164,168,169.
The special displacement method is similar in spirit to

computing thermodynamic averages using path-integral molecu-
lar dynamics170, but it differs insofar as a single calculation is
required to evaluate the average instead of many molecular
dynamics snapshots. In this method, electron–phonon couplings
are included non-perturbatively through the changes of the
Kohn–Sham energies and wavefunctions caused by the ZG
displacements. The method can be applied to compute any
property that can be expressed by means of a Fermi Golden Rule,
such as for example temperature-dependent band structures,
density of states, and optical spectra. The main limitation of this
approach as compared to the Wannier–Fourier interpolation
method employed in the preceding sections is that, being an
adiabatic theory, fine spectral features on the scale of the phonon
energy are averaged out. Conversely, its main advantage is that it
is easy to use as it requires a single DFT calculation.
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The Kohn–Sham energy eigenvalues generated by the special
displacement method capture temperature renormalization and
quantum zero-point effects at the same level as the adiabatic
Allen–Heine theory of temperature-dependent band structures171.
The calculation of the imaginary part of the dielectric function
including temperature effects, zero-point corrections, and
phonon-assisted indirect processes, is performed by evaluating:

Im½ϵðωÞ� ¼ 2πe2

ϵ0m2
eΩsc

1

ω2

X

cv

Z

dK

ΩBZ;sc
jhψcKje � p̂jψvKij2δðεcK � εvK � _ωÞ;

(57)

where Ωsc and ΩBZ,sc are the volumes of the supercell and the
supercell Brillouin zone, respectively, the summations over v, c
refer to valence and conduction states, and K is a wavevector of
the supercell Brillouin zone. This expression contains both direct
and indirect optical transitions: the indirect transitions are hidden
in the dependence of the wavefunctions ψvK and ψcK on the ZG
displacement. Similarly, this expression includes temperature
renormalization via the dependence of the energies εvK and εcK
on the ZG displacements164.

Computational considerations. Calculations using the special
displacement method proceed as follows. First, one performs
phonon calculations for the crystalline unit cell (not the supercell)
using standard DFPT on a coarse uniform Brillouin zone grid. From
this calculation, the phonon frequencies and eigenmodes are
computed on a finer Brillouin-zone grid with N1 × N2 × N3q-points
using standard interpolation of the force constant matrix8. Then
the ZG displacement within a supercell consisting of N1 × N2 × N3

unit cells is evaluated at the temperature T via Eq. (55). The desired
property is finally computed with this supercell, with the atoms
displaced according to ΔτZGκαp. The special displacements are
generated by the ZG module; the procedure is computationally
inexpensive and is performed serially.
The ZG toolkit provides several codes to analyze the results of

supercell calculations performed with special displacements, for
example, Brillouin-zone unfolding of temperature-dependent
band structures from the supercell to the unit cell, the density
of states, electronic spectra, and vibrational spectra.
Band unfolding is performed using the procedure outlined in

ref. 172, which consists of determining the spectral function in the
primitive Brillouin zone by projecting the wavefunctions of the
supercell into the wavefunctions of the unit cell. In practice, the
spectral density for the wavevector k at the energy ε is obtained
as

AkðεÞ ¼
X

mK

PmK;k δðε� εmKÞ; (58)

where the spectral weights PmK,k are given by

PmK;k ¼
X

Gsc

jcmKðGsc þ k � KÞj2: (59)

Here, cmK denotes planewaves coefficients of supercell wavefunc-
tions, and Gsc denotes reciprocal lattice vectors of the supercell.
Equation (59) refers to norm-conserving pseudopotential imple-
mentations. The ZG module includes additional terms that are
required in this expression when using ultrasoft and PAW
(projector augmented-wave) pseudopotentials165,169. A similar
unfolding strategy is employed to analyze lattice dynamics, as
well as X-ray and neutron diffuse scattering intensities accounting
for multiphonon interactions173.
The supercell size required to achieve converged results in

calculations employing the special displacement method depends
on the target property. For example, to compute optical spectra
over a broad photon energy range, supercells of size 4 × 4 × 4 unit
cells are typically sufficient. However, to obtain accurate phonon-
induced band gap renormalization, say within a 10meV accuracy,
supercells as large as 10 × 10 × 10 may be required165 (see Table 1).

Application example. To demonstrate the implementation of the
ZG module, we investigate the temperature-dependent band
structure renormalization and phonon-assisted optical absorption
spectra of silicon and BaSnO3. We perform calculations using the
local density approximation (LDA) for the exchange and correla-
tion174,175 and ONCV pseudopotentials46,61. We use a planewaves
kinetic energy cutoff of 40 Ry for silicon and 120 Ry for BaSnO3,
and 6 × 6 × 6 uniform k-point grids for ground-state calculations.
With these settings, we obtain indirect and direct band gaps of
0.49 and 2.56 eV for silicon, respectively, and indirect and direct
band gaps of 1.06 and 1.55 eV for BaSnO3, respectively. We
perform calculations of dynamical matrices on 4 × 4 × 4 q-point
grids in both cases and use the ZG module to generate
displacements in 3 × 3 × 3 supercells. The signs Sqν appearing in
Eq. (55) are determined by minimizing the error descriptor in Eq.
(54) of ref. 165 with a dimensionless threshold η= 0.1, after
enforcing a smooth Berry connection between vibrational
eigenmodes across the Brillouin zone165. Kohn–Sham energies in
the structures with ZG displacements are calculated using a
12 × 12 × 12 uniform K-point grid in the supercell Brillouin zone,
and 108 unoccupied states. For calculations of dielectric functions,
we use up to 200 randomly generated K-points in the supercell
Brillouin zone, as well as 27 and 135 conduction bands for silicon
and BaSnO3, respectively. All Dirac deltas are replaced by
Gaussians of width 30 meV.
Figure 6a shows the joint density of states (JDOS) of silicon at

0 K (red) and 300 K (blue), as calculated using the special
displacement method. For comparison, the JDOS computed for
the DFT ground state structure is also shown in green. We see
that, upon including electron-phonon interactions via the special
displacements, even at 0 K the JDOS is red-shifted with respect to
the DFT ground state. This is a manifestation of the zero-point
band gap renormalization176. Upon increasing temperature, the
onset of the JDOS further red-shifts. This temperature-induced
band gap narrowing is referred to as the Varshni effect177. The
horizontal offset between the JDOS for the DFT ground state
structure and the JDOS computed with special displacements at
0 K yields a zero-point renormalization of 50 meV, in good
agreement with prior work178,179. More accurate values can be
calculated by increasing the supercell size164,165. The band gap
renormalization can also be computed without using the JDOS; to
this end, one needs to evaluate the Kohn–Sham eigenvalues at
the supercell K-points that unfold onto the wavevectors of the
band extrema in the Brillouin zone of the unit cell.
Figure 6b and c report color maps of the electronic spectral

functions of silicon and BaSnO3 at 0 K calculated using the special
displacement method. For comparison, the band structures in the
DFT ground state are overlaid with these color maps. These maps
can directly be compared to angle-resolved photoelectron
spectroscopy data. From these images, we identify numerically
the quasiparticle band structures by extracting the spectral peaks.
In the case of silicon, the valence band maximum blue-shifts by
32meV with respect to ground-state DFT, and the conduction
band red-shifts by 18 meV. The resulting gap renormalization of
50meV is in agreement with the value determined in Fig. 6a via
the JDOS. In the case of BaSnO3, Fig. 6 shows a zero-point
renormalization of the band gap of 10 meV; however, we
emphasize that this value is not fully converged, and larger
supercells, as well as corrections for Fröhlich couplings180, are
necessary to obtain accurate data.
Figure 6d reports a convergence test of the imaginary part of

the dielectric function of silicon, as computed with the special
displacement method. In this calculation, we keep the supercell
fixed, and we increase the number of random K-points in the
supercell Brillouin zone. It is seen that the dielectric function
converges relatively rapidly with the number of points and full
convergence is achieved with 200 points when the Dirac delta
functions in Eq. (57) are replaced by Gaussians with 30 meV width.
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Clearly, a larger smearing would require fewer K-points.
In Fig. 6e we compare the imaginary part of the dielectric

function of silicon computed in the DFT ground state structure
(red) with the special displacement method (blue). We see that the
special displacements correctly capture phonon-assisted indirect
optical transitions in the energy range between the indirect gap
and direct gap of silicon. This approach provides an alternative
strategy for computing optical spectra to Eq. (49) implemented in
the indirect optics module of EPW. In the special displacement
method, both temperature-dependent band structure renormali-
zation and phonon-assisted processes are included on the same
footing. Figure 6f shows the imaginary part of the dielectric
function of BaSnO3 at 0 K (blue) and 300 K (green), including
phonon-assisted processes. For comparison, we also show the
calculation using the DFT ground-state structure (red), which
misses phonon-assisted transitions. The spectra compare well with
prior work using the special displacement method181.

Implementation and HPC benchmarks

In this section, we describe some of the implementation and
parallel programming models of EPW. We first outline the
computational workflow and basic capabilities of EPW. Then we
describe our recent efforts to prepare EPW for exascale HPC
systems with a focus on an explorative implementation of a
highly scalable parallelization scheme, hybrid two-level MPI, and

OpenMP parallelization. We present benchmarking results which
demonstrate that, with this improved parallelization strategy,
EPW can run at nearly full scale on the pre-exascale HPC system
Frontera at the Texas Advanced Computing Center (TACC).
Finally, we describe the I/O strategy employed in this explorative
implementation, which is based on XML (eXtensible Markup
Language) and HDF5 file formats. We emphasize that EPW

continues to evolve with changes and improvements, and the
reader is referred to the EPW website for its most up-to-date
features and functionalities182.

Computational workflow and basic capabilities. The EPW code is
logically partitioned into two components. The first component
serves as an interface to the PWscf and PHonon codes of
Quantum ESPRESSO. The code imports ground-state charge
density and wavefunctions with computational parameters from
prior runs with pw.x, and dynamical matrices, variations of the
Kohn–Sham potentials, and vibrational mode pattern files from a
prior phonon calculation with ph.x. All these quantities are
evaluated on coarse k- and q-points grids, and the phonon
wavevectors are restricted to the irreducible wedge of the
Brillouin zone. Then the code calls Wannier90 in library mode
to calculate the unitary rotation matrices Umnk [Eq. (64) of the
“Methods” section] needed to transform Bloch states into
maximally localized Wannier functions. Subsequently, the code
unfolds the irreducible wedge of the phonon Brillouin zone into

Fig. 6 Applications of the special displacement method implemented in the ZG module. a Square root of the JDOS of silicon evaluated
with atoms in the DFT ground-state structure (red); using special displacements at 0 K (blue); and using special displacements at 300 K (green).
The red-shift of the JDOS with respect to the ground-state structure signals the quantum zero-point correction to the band gap (0 K curve)
and its temperature renormalization (300 K curve), respectively. b Electron spectral function of silicon calculated with the special displacement
method at 0 K, along the ΓX path in the Brillouin zone. The black disks indicate the band structures calculated in the crystalline unit cell with
the DFT ground-state geometry. c Electron spectral function of BaSnO3 was calculated with the special displacement method at 0 K, along the
ΓR path in the Brillouin zone. The black disks indicate the band structures calculated in the crystalline unit cell with the DFT ground-state
geometry. d Convergence of the imaginary part of the dielectric function of silicon at 0 K with respect to the number of random K-points used
to sample the Brillouin zone of the supercell. e Imaginary part of the dielectric function of silicon calculated with the atoms in the DFT ground-
state structure (red), and by using special displacements at 0 K (blue). A scissor shift of 0.64 eV is employed to match the experimental gap225.
f Imaginary part of the dielectric function of BaSnO3 calculated with the atoms in the DFT ground-state structure (red), and by using special
displacements at 0 K (blue) and 300 K (green). The vertical dashed lines indicate the direct and indirect band gap energies. A scissor shift of
1.91 eV is employed to match the experimental gap226.
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the full zone, evaluates electron–phonon matrix elements on
coarse k- and q-point grids, and it transforms the Hamiltonian,
dynamical matrices, and electron–phonon matrix elements into
the Wannier representation. At this point, the code can print
relevant quantities for subsequent runs with epw.x, and it can
continue to the interpolation part. The interpolation engine of
EPW carries out Wannier interpolation of the Hamiltonian,
dynamical matrices, and electron–phonon matrix elements on
fine k- and q-point grids after reading these quantities in the
Wannier representation, and then it calculates electron–phonon-
related properties on these grids.
The current snapshot of the code supports spin-unpolarized

and non-magnetic spin–orbit calculations; work is currently in
progress to extend the code to the cases of spin-polarized and
non-collinear magnetic cases. Regarding pseudopotentials (PPs),
norm-conserving (NC) PPs are supported. Since both ultrasoft PPs
and the PAW method violate fundamental symmetry relations that
the electron–phonon matrix elements must fulfill183, extending
the current NCPP implementation to these cases poses some
challenges. We will proceed to these extensions in future releases.

Parallelization. At the time of writing of this manuscript, we
witness the launch of the first supercomputer entering the
exascale computing era, namely Frontier at Oak Ridge National
Laboratory; additional exascale systems are currently being
deployed worldwide. Exascale HPC systems are characterized by
many-core and heterogeneous architectures. Since 2020, we have
made efforts to ready EPW for the exascale transition. In the
following, we describe one strategy that we are currently
exploring, a hybrid two-level MPI/OpenMP parallelization scheme,
which makes EPW work seamlessly and efficiently on many-core
architectures.
Historically EPW has adopted a one-level parallelization over the

electron wavevectors (k-point parallelization) via MPI. This strategy
has three shortcomings, which lead to an early saturation of the
speedup with the number of cores in large-scale calculations: (i)
There is an upper bound for the number of total MPI tasks which
guarantees good scalability; this bound is determined by the
number of k-points. (ii) As the number of MPI tasks increases, the
overhead cost associated with MPI communications, in particular
collective communications, increases. (iii) Due to the internal buffers
of MPI, the memory overhead also increases with the number of MPI
tasks. To address these issues, we are exploring the extension of the
one-level parallelization over k-points to the hybrid two-level MPI
and OpenMP parallelization over both k- and q-points.
In the hierarchical two-level MPI and OpenMP parallelization

strategy, the total MPI tasks are partitioned into two levels of MPI
groups, each consisting of a set of MPI tasks; in the lowest level,
OpenMP parallelization is employed within each MPI task. For
example, the total MPI tasks are first divided into k- or q-point pools,
and each pool is further divided into q- and k-point pools,
respectively. Each q- or k-point pool contains a set of MPI tasks,
and OpenMP parallelization is employed within each MPI task. The
parallelization option employed in the upper-level pool (over k-
points or q-points) is chosen so as to maximize the calculation
efficiency.
As compared to the one-level parallelization, the hierarchical two-

level MPI and OpenMP parallelization can reduce the number of MPI
tasks in each MPI communicator group, thereby reducing the
overhead cost for collective MPI communication as well as the
memory footprint due to the internal buffers of the MPI library.
OpenMP parallelization can further reduce the memory footprint
associated with replicated memory allocations in the code. This
strategy enables increased flexibility in distributing the computa-
tional workload over a large number of cores.
To demonstrate the scaling behavior of EPW, we perform strong-

scaling tests for the two-gap superconductor MgB2. We evaluate
electron-phonon matrix elements on 150 × 150 × 150 k- and q-point

grids (Fig. 7). These calculations are performed on the Frontera
supercomputer at TACC. Frontera consists of 8368 nodes, each
equipped with two Intel Xeon Platinum 8280 ("Cascade Lake”)
processors with 28 cores per processor. To minimize statistical
fluctuations in these benchmarks, we execute each calculation four
times, and we average the resulting Wall times. Figure 7 shows that
using this parallelization scheme, we achieve ~92% of the ideal
speedup up to 448,000 cores in the evaluation of the
electron–phonon matrix elements.
The hybrid two-level MPI and OpenMP parallelization scheme is

controlled by three parameters that can be optimized to achieve
maximum parallel scaling efficiency: the number of upper-level MPI
tasks, the number of lower-level MPI tasks, and the number of
OpenMP threads per MPI task. In the benchmarks shown in Fig. 7,
we fix the number of k-point pools to 250, by varying the number of
q-point pools depending on the number of cores. With this choice,
we are able to achieve near-ideal speedup on extreme scaling tests;
we expect that a speedup even superior to 92% could be achieved
upon further optimization of the parallelization parameters We also
point out that, in large-scale runs, I/O time dominates the total Wall
time. To overcome this I/O bottleneck, we employ a low-I/O mode
whereby memory is exploited as much as possible and minimum
usage of storage media is made.
Our strategy for OpenMP parallelization is to use threaded

versions of scientific libraries such as Intel MKL and Cray LibSci,
rather than explicitly using OpenMP directives throughout the code.
For the benchmarks reported in Fig. 7, we find that exceeding 7
OpenMP threads per MPI task worsens the performance. Therefore
we use 4 OpenMP threads per MPI task, and we make all threads
belonging to the same MPI task reside in the same non-uniform
memory access (NUMA) domain.

Structured I/O. Recently we have been investigating the use of
XML and the HDF5 data formats. Both formats can describe
hierarchical data and are self-describing, flexible, and portable. For
small to medium-sized data, the XML format is used; for large binary
data, the HDF5 file format is used in parallel. In previous versions of
EPW, several large arrays were read or written via per-process I/O or
parallel MPI I/O. The former quickly overwhelms the file systems in
large-scale calculations by generating a large number of files; the
latter is not easily portable. Both issues can be addressed for large-
size binary data by employing parallel I/O via parallel HDF5.

Fig. 7 Extreme scaling benchmarks of EPW. Strong-scaling test for
the evaluation of the electron–phonon matrix elements of MgB2.
These tests were performed using EPW v6-alpha available at
ref. 227.
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We note that parallel I/O performance heavily depends on the
details of file systems and the parallelization settings. For instance, in
the case of the LUSTRE file system, the number and size of stripes
play an essential role in achieving high performance. In the case of
the ROMIO implementation of MPI-IO, identifying optimum para-
meters in large-scale runs is nontrivial and requires systematic
experimentation on HPC systems.

DISCUSSION

Since the last technical paper in 201618, the EPW code has
considerably expanded in scope, to the point of becoming a
robust and efficient software platform for developing, testing, and
deploying methods addressing electron–phonon physics and
related materials properties. It is then natural to ask which
components and functionalities are still in need of improvement,
what are emerging directions in this area, and more generally
what comes next for the EPW project.
On the functionality front, we expect to continue expanding the

capabilities for transport, superconductivity, polarons, and optics
described in the ‘Results’ section. For example, the transport
module is based on the steady-state linearized Boltzmann
transport equation; here, it would be desirable to generalize the
methodology to high-field transport and to time-dependent
driving fields. Similarly, in the superconductivity module, the
treatment of electron–electron repulsion could be improved by
seamlessly integrating EPW with standard GW codes. The study of
polaron physics from an ab initio many-body perspective is just
beginning, therefore we can expect a number of developments in
this area, from the study of polaron transport to their optical
properties and their relation with the theory of band structure
renormalization. Calculations of phonon-assisted optical transi-
tions are currently restricted to optical absorption spectra, but the
formalism can just as well be employed for investigating related
phenomena such as for example Auger–Meitner recombina-
tion184. Beyond these core modules of the EPW project, we
anticipate growth in the calculation of electronic and optical
properties using the special displacement method within the
EPW/ZG code; for example, the current implementation focuses
on harmonic systems, but generalizations to strongly anharmonic
systems have recently been proposed185.
On the accuracy front, we anticipate that future work will focus

on improving the precision of the Wannier interpolation method
that is the basis for EPW. For example, methods that take
dimensionality into account in the interpolation of the
electron–phonon matrix elements will be essential to perform
predictive and reliable calculations of transport, optics, super-
conductivity, and polarons in 2D materials186,187. Furthermore, it
would be highly desirable to improve the predictive power of the
DFPT electron–phonon matrix elements before even proceeding
to Wannier–Fourier interpolation; a recent proposal to employ the
GW method to calculate many-body corrections to the DFPT
matrix elements offers a promising path toward this goal188.
On the front of HPC, we envision continuing the current effort

to enable EPW for exascale computing architectures. In addition to
the hybrid MPI/OpenMP parallelization, it will be necessary to
leverage diverse GPU architectures and to enable the code for
large-scale runs that will become possible with the exascale
supercomputers that are being deployed worldwide.
Another important direction will be to enhance the interoper-

ability of EPW with other major electronic structure software
packages such as Abinit189, VASP190, Siesta191, and GPAW192.
As several codes currently use the information generated by EPW

for a variety of post-processing tasks, it will make sense to develop
standardized data structures that adhere to the FAIR data
principles.
Regarding the programming model, transitioning toward

object-oriented programming (OOP) will be useful due to the

potential for high modularity, extensibility, and reusability, which
will facilitate flexible and sustained software development193. We
expect that targeted use of OOP will greatly increase the efficiency
and productivity in the development and maintenance of code194.
Alongside these developments, we anticipate increased atten-

tion to the issue of automation and the capability of performing
electron–phonon calculations at scale for high-throughput
approaches, data science, and artificial intelligence/machine
learning (AI/ML) applications.
In summary, in this manuscript, we provided a comprehensive

update on the current status, functionalities, and performance of
the EPW code, we offered an overview of possible future directions
for this and similar codes. We hope that, beyond capturing a
snapshot of the current status of the EPW project, the present
manuscript will contribute to making advanced electron–phonon
calculations more accessible and more widely used in computa-
tional materials discovery and design.

METHODS

The key element of any calculation of electron-phonon interac-
tions and related materials properties is the electron–phonon
matrix element. The EPW code employs physics-based
Wannier–Fourier interpolation to compute electron-phonon
matrix elements accurately and efficiently and uses these matrix
elements as the starting point for advanced many-body calcula-
tions of electronic, optical, and transport properties of solids
including temperature dependence and phonon-assisted quan-
tum processes.
In the following we introduce the notations and conventions

employed throughout the manuscript, we provide a brief over-
view of the general principles of Wannier–Fourier interpolation of
electron–phonon matrix elements, and we outline the extension
of this interpolation scheme to the case of polar materials. A more
comprehensive description of this methodology including
detailed derivations can be found in ref. 10.

Notation and definitions

In the study of the electronic structure and lattice dynamics of
crystalline solids, infinitely extended crystals are described by
considering a periodic BvK supercell. This supercell consists of
Nuc= N1 × N2 × N3 primitive unit cells of the crystal and is subject
to periodic boundary conditions. The pth unit cell within the BvK
supercell is identified by the direct lattice vector Rp, with
p= 1,…, Nuc. The dual lattice of the direct lattice vectors Rp in
reciprocal space defines a uniform grid of Nuc= N1 × N2 × N3

wavevectors in the Brillouin zone. Throughout the manuscript, we
use k and q to denote electron and phonon wavevectors in the
crystal Brillouin zone, respectively, and K to denote electron
wavevectors in the Brillouin zone of the BvK supercell.
We use ψnk to indicate the eigenfunctions of the DFT Kohn-

Sham Hamiltonian ĤKS, and εnk the corresponding eigenvalues.
This wavefunction is periodic and normalized over the BvK
supercell, and can be expressed in the Bloch form:

ψnkðrÞ ¼
1
ffiffiffiffiffiffiffi

Nuc
p unkðrÞeik�r; (60)

with unk being a lattice-periodic function normalized in the
primitive unit cell of volume Ω. The position vector of the atomic
nucleus κ belonging to the unit cell identified by Rp is
τκp ¼ Rp þ τκ , with τκ being the position vector within the
primitive unit cell. The components of this vector along the
Cartesian directions α= 1, 2, 3 are denoted by τκαp.
Vibrational eigenmodes and eigenfrequencies are obtained by

diagonalizing the dynamical matrix, which is computed via DFPT
using Quantum ESPRESSO12. In turn, the dynamical matrix is the
Fourier transform of the interatomic force constants Cκαp;κ0α0p0 , that
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is the Hessian of the DFT total energy in the atomic coordinates.
The relation between interatomic force constants and dynamical
matrix is135

Dκα;κ0α0ðqÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MκMκ0
p

X

p

eiq�RpCκα0;κ0α0p; (61)

where Mκ is the mass of the κth nucleus. The eigenvalues and
eigenvectors of the dynamical matrix are denoted by ω2

qν and
eκα,ν(q), respectively, and the index ν runs from 1 to 3M where M is
the number of atoms in the primitive cell. ωqν corresponds to the
vibrational frequency, and eκα,ν(q) is the normal mode of vibration
or polarization vector.
The electron–phonon matrix element is defined by1,10

gmnνðk;qÞ ¼ humkþqjΔqνv
KSjunki; (62)

where the integral is evaluated over the unit cell, and the lattice-
periodic component of the variation of the Kohn–Sham potential
is given by

Δqνv
KS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

2M0ωqν

s

X

καp

e�iq�ðr�RpÞ
ffiffiffiffiffiffi

M0

Mκ

r

eκα;νðqÞ
∂ VKSðrÞ
∂τκαp

: (63)

In this expression, M0 is an arbitrary reference mass introduced for
convenience. MLWFs are defined in terms of Bloch states as9

wmpðrÞ ¼ wm0ðr� RpÞ ¼
1

Nuc

X

nk

eik�ðr�RpÞ Unmk unkðrÞ; (64)

where Unmk is a unitary matrix in the indices m and n.
Throughout the manuscript, we used interchangeably the

notation

1

Nuc

X

k

or

Z

dk

ΩBZ
(65)

to indicate summations or integrals over the Brillouin zone. The
quantity ΩBZ on the right indicates the Brillouin zone volume.
The unitary matrix Unmk appearing in Eq. (64) is determined by

requiring that the functions wmp(r) be as localized as possible195,
i.e. MLWFs9. The computation of these unitary matrices is
performed by minimizing the spatial spread of the resulting
Wannier functions9. This procedure is notoriously challenging
since the spread functional exhibits multiple local minima,
especially in the case of entangled electron bands. In practice,
the construction of optimal MLWFs often requires fine-tuning of
several computational parameters, such as the inner and outer
energy windows, and the projections used to initialize the
minimization algorithm. Historically, this optimization has often
been performed by using chemical intuition, and sometimes a
trial-and-error approach.
In an effort to enable more systematic construction of MLWFs

for high-throughput calculations and data-driven materials
research, several strategies have been developed, such as for
example those of refs. 196,197. These strategies fall into two
categories, one relying on the projectability concept198, and the
other on the selected-columns-of-the-density-matrix (SCDM)
method199,200. The former approach relies on the projectability
of Bloch states on pseudo-atomic orbitals associated with the
pseudopotentials; the projectability metric of each Bloch state is
used to downselect the band manifold for subsequent minimiza-
tion of the spread functional. The latter approach does not rely on
the pseudo-atomic orbitals or other choice of initial projections
but generates an optimal set of states from the columns of the
density matrix via QR decomposition with column pivoting.
Both approaches are very promising and bring Wannier

functions one step closer to complete automation. Nevertheless,
some challenges remain. For example, to automatically construct
Wannier functions and achieve high-quality Wannier interpolation,
both strategies require the use of all the occupied valence bands

(except for low-lying semi-core states) as well as a few empty
conduction bands for metallic or semi-metallic systems. In systems
with medium-sized to large unit cells, the number of bands thus
identified may be relatively large, and this will make EPW
calculations more demanding because the number of operations
required to obtain electron-phonon matrix elements scales with
the square of the number of Wannier functions. Therefore, more
work will be needed in the future to achieve automation whilst
preserving calculation efficiency.

General principles of Wannier interpolation of
electron–phonon matrix elements

The localized nature of MLWFs provides the basis for accurate and
efficient interpolation of Kohn–Sham wavefunctions and ener-
gies201. This is achieved by expressing the Kohn–Sham Hamilto-
nian in the Wannier representation, and noting that the
Hamiltonian matrix elements decrease rapidly with the distance
between the Wannier function centers. The Hamiltonian matrix
elements in the Wannier representation are195

HmnðRpÞ ¼ hwm0jĤjwnpi ¼
Z

sc
drw�

m0ðrÞĤwn0ðr� RpÞ : (66)

Using Eq. (64), these matrix elements can be expressed in terms of
the Kohn–Sham Hamiltonian in the Bloch representation Hm0n0ðkÞ:

HmnðRpÞ ¼
1

Nuc

X

m0n0k

e�ik�RpU
y
mm0kHm0n0ðkÞUn0nk ; (67)

where the matrix Umnk is the same as in Eq. (64). Once Hmn(Rp) has
been determined, Eq. (67) can be inverted to generate Hm0n0ðkÞ
anywhere in the Brillouin zone.
Similarly to the electronic case, the dynamical matrix can be

expressed in the phonon Wannier representation as10

Dκα;κ0α0ðRpÞ ¼
1

Np

X

qμν

e�iq�Rpeyκα;μðqÞDμνðqÞeκ0α0;νðqÞ ; (68)

where Dμν(q) is the matrix element of the dynamical matrix in the
Bloch representation for phonons. Once Dκα;κ0α0ðRpÞ has been
determined, this relation can be inverted to obtain the phonon
eigenvectors and eigenvalues anywhere in the Brillouin zone; this
is a standard procedure employed to compute phonon dispersion
relations7,202.
Equations (67) and (68) can be generalized to the case of

electron–phonon matrix elements by considering Fourier trans-
forms for both the Kohn–Sham states and for the vibrational
eigenmodes. The resulting electron–phonon matrix elements in
the Wannier representation are given by10:

gmnκαðRp;Rp0Þ ¼
1

N2
uc

X

k;q

e�iðk�Rpþq�Rp0 Þ
X

m0n0ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mκωqν

_

r

eyκα;νðqÞU
y
mm0kþqgm0n0νðk;qÞUn0nk :

(69)

Once the gmnκαðRp;Rp0Þ have been computed, this relation can be
inverted to generate electron-phonon matrix elements anywhere
in the Brillouin zone.
Equations (67)–(69) constitute the backbone of the interpola-

tion engine of EPW. In practice, the interpolation module of EPW
reads in the DFT electron density, dynamical matrices, and
variations of the Kohn–Sham potential evaluated by Quantum

ESPRESSO on a coarse Brillouin zone grid; computes the
Kohn–Sham wavefunctions and electron–phonon matrix elements
on this grid; calls the Wannier90 code in library mode to obtain
the Wannier matrices in Eq. (64); transforms Hamiltonian,
dynamical matrix, and electron–phonon matrix elements in the
Wannier representation; and interpolates all these quantities onto
arbitrarily dense k- and q-point grids. A qualitative schematic of
this process is shown in Fig. 8.
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Treatment of long-range electron–phonon interactions

In semiconductors and insulators, the ionic displacements
associated with a phonon can induce a variation of the
Kohn–Sham potential that is long-ranged in nature. As a result,
the electron–phonon matrix element gmnν(k, q) associated with
longitudinal–optical (LO) phonons becomes singular in the long-
wavelength limit q→ 0. More specifically, in any material
exhibiting non-vanishing Born effective charges, the matrix
elements associated with LO phonons diverge as q/∣q∣2 at small
q. In these cases, the assumption of locality that underpins the
methodology described in the previous section ceases to hold,
and the Wannier interpolation procedure needs to be modified to
correctly capture the singularity.
The singularity in the matrix element can be dealt with by

considering a multipole expansion of the Kohn–Sham potentials
resulting from individual atomic displacements. The first order in
this expansion is the dipole potential203, which scales as q/∣q∣2 and
is responsible for the well-known Fröhlich electron–phonon
interaction204. The modification of the electron–phonon inter-
polation method to include long-range effects consists of
separating short-range and long-range parts in the matrix
elements, as follows:

gmnνðk;qÞ ¼ gSmnνðk;qÞ þ gL;Dmnνðk;qÞ þ gL;Qmnνðk;qÞ; (70)

where the first term on the right-hand side is the short-range
component, the second term is the dipole component, and the
third term is the quadrupole component. Additional multipoles
could be considered, but the dipole and quadrupole terms already
lead to very accurate results. The dipole matrix element gL;Dmnνðk;qÞ
was derived in refs. 205,206 and reads:

gL;Dmnνðk;qÞ ¼ i
4π

Ω

e2

4πϵ0

X

κ

_

2Mκωqν


 �1=2
X

G≠�q

e�iðqþGÞ�τκ
P

pUmpkþqþGU
y
pnk

ðqþ GÞ � ϵ1 � ðqþ GÞ ðqþ GÞ � Z�
κ � eκνðqÞ:

(71)

In this expression, ϵ0 is the vacuum permittivity, ϵ1 is the high-
frequency dielectric tensor of the material, G represents a
reciprocal lattice vector, Z�

κ is the Born effective charge tensor of
the atom κ, the bracket indicates the integral over the BvK
supercell, and we use the notation a ⋅ B ⋅ c= ∑αβaαBαβcβ. The
unitary matrices Umnk in Eq. (71) are the Wannier transformation

obtained following the standard procedure207,208 and coming from
the q+G→ 0 limit of the overlap integrals between Kohn–Sham

wavefunctions hψmkþqjeiq�rjψnki ¼
P

pUmpkþqU
y
pnk þOðqÞ. This

matrix element reduces to the standard Fröhlich interaction204

when one considers parabolic electron bands and a dispersionless
LO mode in a cubic material186,205. This term is of the order of
∣q∣−1. The quadrupole contribution is the second term of the
multipole expansion of the Kohn–Sham potential and is of the
order of ∣q∣0. The corresponding matrix element gL;Qmnνðk;qÞ was
derived in refs. 40,41,187,209,210 and reads:

gL;Qmnνðk;qÞ ¼ 4π
Ω

e2

4πϵ0

P

κα

_

2Mκωqν

� �1=2
P

G≠�q
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´
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βγ

1
2Qκ;αβγðqβ þ GβÞðqγ þ GγÞ

P

p
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"

� Z�
κ;αβðqβ þ GβÞ

P

sp

UmskþqþGðqγ þ GγÞ AW
spk;γ þ huW

sk jVHxc;Eγ juW
pk i

� �

U
y
pnk

#

:

(72)

In this expression, Qκ is the dynamical quadrupole tensor211,
VHxc;Eγ ðrÞ is the self-consistent potential induced by a uniform
electric field Eγ along the Cartesian direction γ41,187, AW

spk;γ ¼
�ih∂uW

sk =∂kγjuW
pk i is the Berry connection, and uWpk is the smooth

Bloch basis187. In EPW, the calculation of the Berry connection
term is automatically activated for quadrupole calculations when
the velocity matrix is computed in the Wannier representation, cf.
Eq. (27) of ref. 22. This term can be non-negligible in particular for
materials where the quadrupole tensor Qκ vanishes by symmetry,
such as SrO187. The V Hxc ;E term has been implemented in
Abinit40,41,212 and EPW187,213 and has been tested for Si, GaP,
GaAs, SrO, h-BN monolayer, MoS2 monolayer, and InSe monolayer.
In all these cases, it was found that the contribution from this term
represents <0.1% of the total quadrupole correction41,187. Since
this term is very small and its implementation is rather
cumbersome, it has not been included in public releases of
these codes.
The calculation strategy employed by EPW is as follows. First, the

complete matrix elements gmnν(k,q) are evaluated on coarse k and q
grids using DFPT. Second, the long-range contributions gL;Dmnνðk;qÞ

Phonon dynamical matrices 

& potential variations on 

coarse grid

Rotation matrices for 

Wannier functions

Calculation of matrix 

elements on coarse grid

Initialization for Wannier 

function transform on 

coarse grid

Transform electrons, 

phonons, matrix elements 

to Wannier basis

Interpolate from Wannier 

basis to Bloch basis on 
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Compute physical 
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displacement method: 

Temp.-dependent bands, 
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scattering 
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    ZG.xElectron 

wavefunctions

& eigenvalues 
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Fig. 8 Schematic overview of the interpolation engine of EPW and its relation to the Quantum ESPRESSO and Wannier90 codes. The
EPW/ZG module is a stand-alone supercell-based set of codes, as described in the “Results” section.
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and gL;Qmnνðk;qÞ are subtracted from the DFPT matrix elements using
Eqs. (71) and (72), leaving out the short-range component gSmnνðk;qÞ
on the coarse grids. Third, the standard Wannier electron–phonon
interpolation of ref. 10 is applied to the short-range component only.
And fourth, the long-range contributions are added back using Eqs.
(71) and (72) on the fine k and q grids.
The infinite sum over the G vectors in Eqs. (71) and (72) ensure

the periodicity of the matrix elements in reciprocal space. In
practical calculations, this sum might be computationally
demanding to converge. In principle, periodicity could be
enforced by including only one reciprocal lattice vector in the
sum, namely ~Gq such that jqþ ~Gqj ¼ minG jqþ Gj. However, this
choice introduces derivative discontinuities in gL;Dmnνðk;qÞ at the

Brillouin zone boundaries, which in turn cause spurious oscilla-
tions in the interpolation of gSmnνðk;qÞ. We illustrate this point in
Fig. 9a–d, focusing on the longitudinal-optical (LO) phonon of
cubic boron nitride (c-BN).
An alternative strategy to avoid the sum over G is to cut off the

interaction range in Eqs. (71) and (72) using a Gaussian filter,
exp½�ðqþ GÞ � ϵ1 � ðqþ GÞ=4α�. This choice finds motivation in
the Ewald summation method that is commonly employed to
evaluate the non-analytic contribution to the dynamical matrix in
polar materials7,8,202. It was employed in previous versions of EPW as
well as in other codes13,40,206, and it avoids derivative discontinuity.
However, it does not preserve the periodicity of the matrix elements
in reciprocal space, which is required by the periodic gauge. In EPW,

Fig. 9 Accurate computation of long-range electron–phonon matrix elements with EPW. a Brillouin zone of c-BN, the system used in this
example. b–d Full, long-range and short-range electron–phonon matrix elements, respectively, for the LO phonon mode along the q-path
shown by the green line in (a). The red lines are for the choice of including only the dominant reciprocal lattice vector in the G sums. The dark
blue lines correspond to the choice of applying a Gaussian filter, the procedure implemented in EPW. Circles are the reference data from
explicit DFPT calculations. e Sensitivity of the interpolation on the α parameter of the Gaussian filter. f Number of G vectors included in the
sum as a function of α, and g corresponding maximum relative error with respect to DFPT reference data. h Comparison between the
descriptor Dν(k= 0, q) obtained from direct DFPT calculations (white circles) and from Wannier interpolation: without including long-range
contributions (red line); including the dipole term (orange line); and including both dipole and quadrupole terms (blue line). In each case, the
corresponding corrections to the phonon dynamical matrix are also included. i Zoom over the area highlighted in (h), focusing on the LA
phonon mode.
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to maintain the periodicity of the matrix elements, we sum over a
shell of G vectors centered around ~Gq , and then apply the Gaussian
filter. Figure 9c shows how this procedure yields periodic and
smooth long-range matrix elements with the correct behavior next
to the singularities, and enables accurate interpolation of the
complete matrix elements, as shown in Fig. 9b.
The α parameter in the Gaussian filter is chosen in such a way as

to ensure accurate interpolation (which requires large α) whilst
using as few G vectors as possible in Eqs. (71) and (72) (which
requires small α). In Fig. 9e we compare the interpolated matrix
element gmnν(k, q) to explicit DFPT calculations, for different
values of α, with the reciprocal space summation restricted to
those G vectors such that ðqþ GÞ � ϵ1 � ðqþ GÞ<56α. With this
choice, only G-vectors yielding a value of the Gaussian filter larger
than expð�14Þ ’ 10�6 are included in the sum. We find that when
α is chosen to match the size of the Brillouin zone [α= 1 (2π/a)2, a
is the lattice parameter], good interpolation is achieved. We note
that, for layered materials, more G vectors are automatically
included in the sum along the perpendicular direction due to the
anisotropy of the dielectric tensor. For completeness, in Fig. 9f we
show how the number of required G vectors increases with α, and
in Fig. 9g we show the interpolation error in the matrix elements
as a function of α. We emphasize that, since EPW implements this
Gaussian filter, caution should be used when extracting dipolar
and quadrupolar matrix elements from EPW for separate post-
processing, because gL;Dmnνðk;qÞ and gL;Qmnνðk;qÞ have the expected
q-dependence only at long wavelength.
Figure 9h, i illustrate the importance of describing dipole and

quadrupole interactions using Eqs. (71) and (72), for the case of
c-BN. To facilitate the comparison between the interpolation
results and explicit DFPT calculations for long-wavelength acoustic
modes, we use the following descriptor which removes the factor
ω
�1=2
qν from the matrix element and averages over electronic

degeneracies:

Dνðk;qÞ ¼
1

_NW
2ρΩ_ωqν

X

mn
jgmnνðk;qÞj2

h i1=2
: (73)

Here, the sum over bands is carried over the NW states in the Wannier
manifold and ρ is the mass density of the crystal. Dν(k, q) has units of
energy divided by length and can be thought of as a deformation
potential of sort. In Fig. 9h, i, we choose the manifold composed by
the top three valence bands of c-BN, and set k= 0. We see that the
dipole term is necessary to correctly describe the singular behavior of
the LO phonon at long wavelength, and the quadrupole term is
necessary to correctly describe the discontinuous behavior of the
longitudinal acoustic (LA) phonons at a long wavelength [see
expanded view in Fig. 9i]. The inclusion of both terms guarantees a
high-quality interpolation of the electron-phonon matrix elements
across the entire Brillouin zone. In particular, in this example, we find
that the deformation potential calculated by including dipole and
quadrupole terms agrees with direct DFPT calculations within
0.01 eV/Bohr (<1% of the maximum value) for the LA mode of
c-BN along the ΓL line near the zone center. In refs. 22,187 a number of
additional comparisons between the present method and direct
DFPT calculations are discussed for standard three-dimensional (3D)
and two-dimensional (2D) semiconductors.
The EPW code also implements long-range corrections for the

phonon dynamical matrix by computing dipole–dipole,
dipole–quadrupole, and quadrupole–quadrupole terms as dis-
cussed in refs. 7,8,202,211. Systematic tests of the interpolation
procedure described in this section are provided in ref. 22.
The expressions for the long-range dipole and quadrupole

contributions to the electron–phonon matrix elements are given in
Eqs. (71) and (72) are for 3D bulk crystals. Several generalizations of
these expressions to the case of 2D materials and the transition
from 3D to 2D have been proposed during the past few
years186,187,213–216. In the first of such generalizations214, the authors
obtain the long-wavelength limit of polar electron–phonon

couplings in 2D by evaluating the average dielectric polarization
of a 2D slab enclosing the layer and removing the interaction
between periodic replicas via Coulomb truncation. In ref. 215, the
authors additionally consider the contributions to the polar matrix
elements arising from out-of-plane dipoles and demonstrate an
improvement in the interpolation accuracy. In addition to these
studies, more recent work by some of us focused on including
quadrupole corrections for 2D materials187 and on establishing the
connection between polar matrix elements in 3D and 2D
materials186. In particular, in ref. 187, the 2D long-range matrix
elements to quadrupolar order are given by

gL;2Dmnν ðk;qÞ ¼
_

2ωqν


 �1
2X

κα

eκα;νðqÞ
ffiffiffiffiffiffi

Mκ

p
X

G≠�q

X

sp

UmskþqþGhuWskþqþGjV
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qþGκαjuWpkþqiU

y
pnk;

(74)

where the 2D long-range scattering potential to first order in q is

VL;2D
qκα ðrÞ ¼ πe
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(75)

where S is the unit-cell area, and the dielectric functions appearing
at the denominators are

~ϵkðqÞ ¼ 1þ 2πf ðjqjÞ
jqj q � αk � q; (76)

~ϵ?ðqÞ ¼ 1� 2πjqjf ðjqjÞ α?: (77)

In these expressions, αk and α⊥ are macroscopic polarizabilities in-
and out-of-plane, respectively, and f ðqÞ ¼ 1� tanhðqL=2Þ is a
range-separation function and the distance L is determined
according to Eq. (63) of ref. 187. The 2D extension of the overlap
integral is provided in Eqs. (46) and (47) of ref. 187. This formulation
also uses Coulomb truncation and generalizes the previous
approaches of refs. 214,215 to the case of quadrupole corrections.
In the approach of Ref. 186, the authors propose a unified
formulation of polar electron–phonon interactions in 3D and 2D
that reduces to the approach of refs. 206,217 in 3D, and to the
approach of refs. 214,215 in 2D. The theory is developed along the
same lines as in ref. 217, by evaluating the potential of point
dipoles resulting from the atomic displacements. The key
difference is that, in this case, the dipoles belong to a supercell
consisting of a dielectric stack where one component is the
material under consideration, and the other is a homogeneous
dielectric (or vacuum). By solving this electrostatic problem, the
authors obtain the following matrix element:

gmnνðk;qÞ ¼ e2

2ϵ0ϵ1;envΩ

_

2ωqν

� �1=2
P

G≠�q

humkþqþGjunki
qk þGkj j

P

κ

M�1=2
κ e�iðqkþGkÞ�τκk

´

P

αβ

Z�
κ;αβeκβ;νðqÞ δα;k iðqþ GÞαKðq þ G; τκzÞ � δα;z

∂KðqþG;τκzÞ
∂τκz

h i

;

(78)

where ϵ
∞,env is the dielectric constant of the homogeneous

dielectric surrounding the 2D material, and K(q+ G, τκz) is a kernel
that depends on the thickness of the 2D layer and the surrounding
medium, as well as their dielectric constants. The expression for K
is given by Eq. (A1) of ref. 186. The main practical difference
between this formulation and other approaches is that it can be
used without the need for Coulomb truncation.
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