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a b s t r a c t 
Neural Networks (NNs) are increasingly used across scientific 
domains to extract knowledge from experimental or compu- 
tational data. An NN is composed of natural or artificial neu- 
rons that serve as simple processing units and are intercon- 
nected into a model architecture; it acquires knowledge from 
the environment through a learning process and stores this 
knowledge in its connections. The learning process is con- 
ducted by training. During NN training, the learning process 
can be tracked by periodically validating the NN and cal- 
culating its fitness. The resulting sequence of fitness values 
(i.e., validation accuracy or validation loss) is called the NN 
learning curve. The development of tools for NN design re- 
quires knowledge of diverse NNs and their complete learning 
curves. 
Generally, only final fully-trained fitness values for highly ac- 
curate NNs are made available to the community, hamper- 
ing effort s to develop tools for NN design and leaving un- 
addressed aspects such as explaining the generation of an 
NN and reproducing its learning process. Our dataset fills this 
gap by fully recording the structure, metadata, and complete 
learning curves for a wide variety of random NNs through- 
out their training. Our dataset captures the lifespan of 60 0 0 
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NNs throughout generation, training, and validation stages. 
It consists of a suite of 60 0 0 tables, each table representing 
the lifespan of one NN. We generate each NN with random- 
ized parameter values and train it for 40 epochs on one of 
three diverse image datasets (i.e., CIFAR-100, FashionMNIST, 
SVHN). We calculate and record each NN’s fitness with high 
frequency—every half epoch—to capture the evolution of the 
training and validation process. As a result, for each NN, we 
record the generated parameter values describing the struc- 
ture of that NN, the image dataset on which the NN trained, 
and all loss and accuracy values for the NN every half epoch. 
We put our dataset to the service of researchers studying NN 
performance and its evolution throughout training and vali- 
dation. Statistical methods can be applied to our dataset to 
analyze the shape of learning curves in diverse NNs, and the 
relationship between an NN’s structure and its fitness. Addi- 
tionally, the structural data and metadata that we record en- 
able the reconstruction and reproducibility of the associated 
NN. 

© 2022 The Author(s). Published by Elsevier Inc. 
This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 
Subject Applied Machine Learning 
Specific subject area Neural network metadata and learning curve data 
Type of data Tabular data in TXT files. 
How the data were acquired The neural networks were generated, trained, and validated on the POWER9 

Summit supercomputer 1 using the PyTorch library (v. 1.3.1) and Python 
language (v. 3.6.10). 

Data format Raw 
Description of data collection The data consist of tables describing NNs and their learning curves. We 

generate each NN with random parameters and train it on an image dataset 
for 40 epochs, using stochastic gradient descent and cross entropy loss. For 
each NN, we record the randomized parameter values and image dataset used 
for training. Every half epoch throughout raining, we validate the NN and 
record its fitness. 

Data source location Summit Supercomputer at Oak Ridge National Laboratory Oak Ridge, TN, 
United States 

Data accessibility Repository name: Harvard Dataverse 
Data identification number: doi: 10.7910/DVN/ZXTCGF 
Direct URL to data: https://doi.org/10.7910/DVN/ZXTCGF 

Related research article A. Keller Rorabaugh, S. Caíno-Lores, T. Johnston, M. Taufer, Building 
high-throughput neural architecture search workflows via a decoupled fitness 
prediction engine. IEEE Transactions on Parallel and Distributed Systems, 2022, 
In Press. DOI 10.1109/TPDS.2022.3140681 [12] 

Value of the Data 
• The ubiquity of NNs has lead to significant investment in tools for NN design [1,2] . Devel- 

opment of such tools requires knowledge about diverse NNs and their learning curves (i.e., 
fitness throughout training) [3] . Existing NN repositories store only highly accurate NNs, to- 
gether with their final fitness values, and do not include the full NN learning curves [4,5] . 

1 https://docs.olcf.ornl.gov/systems/summit _ user _ guide.html#system-overview 
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Our dataset fills this gap by recording complete learning curves for a wide variety of random 
NNs. 

• Our data is relevant for researchers developing tools for NN design. Such tools include neu- 
ral architecture search [6–8] and methods for NN fitness prediction and training termination 
[9–11] . Learning curve data is essential to the development of methods for NN fitness mod- 
eling and prediction [3,12] . 

• Researchers can use our dataset to study evolution of NN fitness during training and iden- 
tify relationships between an NN’s structure and its fitness on a given image dataset. For 
example, a researcher can analyze specific columns from each NN table in order to study the 
relationship between particular design elements of the NNs (e.g. learning rate; batch size; 
number, order, and type of layers) and the learning curves. 

• Parametric modeling of learning curves is increasingly used to model and predict fitness in 
machine learning applications [3] . Statistical methods can be applied to our dataset to ana- 
lyze the shape of the learning curves. This enables researchers to identify families of func- 
tions that well model such curves and make informed choices about which modeling func- 
tions to employ in parametric modeling methods [12] . 

• Our data can advance effective searches for accurate NNs, which have a far-reaching impact 
on many fields. Accurate NNs can be used to extract structural information from raw mi- 
croscopy data [13] , detect IO interference in batch jobs [14] , predict performance of business 
processes [15] , predict soil moisture or maize yield [16] , detect rare transitions in molecular 
dynamics simulations [17,18] , analyze cancer pathology data [19] , and map protein sequences 
to folds [20] . 

1. Data Description 
We define a taxonomy of the random NNs that we generated and trained to build our dataset. 

Fig. 1 depicts the structure of our NNs. Each NN is composed of two sections, Feature Extraction 
and Classification . The Feature Extraction section of the NN consists of convolutional and non- 
linear layers; we alternate convolutional layers and non-linear layers such that each convolu- 
tional layer is followed by at least one and at most three non-linear layers before any other 

Fig. 1. Structure of Generated NNs. 
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convolutional layer is applied. The Classification section of the NN consists of fully connected 
layers, with possible dropout layers in between. 

Our data depict the lifespan of 60 0 0 NNs throughout generation, training, and validation 
stages, across 40 epochs of training, with fitness values captured every half epoch. The NNs 
are randomly generated using our taxonomy. The dataset consists of 60 0 0 tables, each with 28 
columns and 81 rows, together with a Python script that demonstrates how to load the data 
into a Pandas DataFrame and how to calculate and save metrics of interest like mean accuracy 
or the NN’s learning rate. The dataset is publicly available in the Harvard Dataverse repository: 
https://doi.org/10.7910/DVN/ZXTCGF . The data format is tabular: the information is organized in 
.txt files. Each.txt file contains a single table capturing the lifespan of one NN. Each table con- 
tains 81 rows and 28 columns. The first row stores the column names, and the remaining 80 
rows correspond to every half epoch throughout the lifespan of the NN, beginning at epoch 0.5, 
and ending at epoch 40. The columns correspond to the fitness data and the metadata that we 
track throughout the lifespan of the NNs. The first four columns contain training and valida- 
tion data of the NN; these values change throughout the lifespan of the NN, and hence these 
columns populate all rows. The remaining columns contain metadata describing the generation 
of the NN and its structure; these values do not change throughout the lifespan of the NN and 
thus are only recorded in the second row. From left to right the columns of each NN table are 
as follows: 
1. epochs : Elapsed epochs of training. 
2. trainLoss : Training loss at the given epoch. 
3. valLoss : Validation loss at the given epoch. 
4. valAcc : Validation accuracy percentage at the given epoch. Values range between 0 and 100. 
5. ID : Unique identifier of the NN described in the table. 
6. random_seed : The random seed used for NN generation. 
7. train_GPU : A boolean value indicating whether the NN is trained using the GPU. 
8. torch_set_deterministic : A boolean indicating whether pytorch’s “set_deterministic” flag is 

activated during training. 
9. dataset : The name of the image dataset on which the NN is trained. 

10. batch_size : Batch size used for NN training. 
11. loss_fn : The loss criterion used to calculate loss during training. 
12. optimizer : The optimizer used during training. 
13. learning_rate : The learning rate used for training the NN. 
14. momentum : The momentum value used for training the NN; if momentum is not used, the 

value is 0. 
15. dampening : The dampening value used for training the NN; if dampening is not used, the 

value is 0. 
16. weight_decay : The weight decay value used for training the NN; if weight decay is not used, 

the value is 0. 
17. layer_types : The type of non-linear layers following each convolution, reported in a hyphen 

separated list of integers. Each integer corresponds to one convolutional layer, and its value 
encodes the block of non-linear layers following that convolutional layer. The integers are 
recorded consecutively, beginning with the integer corresponding to the first convolutional 
layer. Table 1 depicts the block of non-linear layers encoded by each integer value. For ex- 
ample, layer_types = 1-5-2, would mean the first convolution is followed by a ReLU layer, 
the second convolution is followed by a ReLU layer and then a dropout layer, and the third 
convolution is followed by a pooling layer. 

Table 1 
Block of non-linear layers encoded by each integer value. 

integer 1 2 3 4 5 6 7 
encoded layers ReLu pooling ReLu, pooling dropout ReLU, dropout dropout, pooling ReLU, dropout, pooling 

https://doi.org/10.7910/DVN/ZXTCGF
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18. dropout_rate : The dropout rate to use for all dropout layers specified in “layer_types”. If no 

dropout layers are specified, the value is 0. 
19. convKernels : The kernels used for each convolutional layer, reported in a hyphen separated 

list of integers. Each integer is the kernel for one convolutional layer. Kernels are recorded 
consecutively, beginning with the first convolutional layer. 

20. convStrides : The strides used for each convolutional layer, reported in a hyphen separated 
list of integers. Each integer is the stride for one convolutional layer. Strides are recorded 
consecutively, beginning with the first convolutional layer. 

21. convPaddings : The padding values used for each convolutional layer, reported in a hyphen 
separated list of integers. Each integer is the padding value for one convolutional layer. 
Padding values are recorded consecutively, beginning with the first convolutional layer. 

22. poolKernels : The kernels used for each pooling layer, reported in a hyphen separated list of 
integers. Each integer is the kernel for one pooling layer. Kernels are recorded consecutively, 
beginning with the first pooling layer. If there are no pooling layers in the NN, then this 
entry is empty. 

23. poolStrides : The strides used for each pooling layer, reported in a hyphen separated list of 
integers. Each integer is the stride for one pooling layer. Strides are recorded consecutively, 
beginning with the first pooling layer. If there are no pooling layers in the NN, then this 
entry is empty. 

24. poolPaddings : The padding values used for each pooling layer, reported in a hyphen sep- 
arated list of integers. Each integer is the padding value for one pooling layer. The padding 
values are recorded consecutively, beginning with the first pooling layer. If there are no pool- 
ing layers in the NN, then this entry is empty. 

25. convFilters : The number of filters of each convolutional layer, reported in a hyphen separated 
list of integers. Each integer is the number of filters for one convolutional layer. The number 
of filters are recorded consecutively, beginning with the first convolutional layer. 

26. FC_dropout_rate : The dropout rate for dropout layers in the Classification section of the NN; 
if no dropout layers are added in Classification section, the value is 0. 

27. FC_dropout_layers : A hyphen separated list of integers denoting which fully connected lay- 
ers are followed by dropout layers. The integers represent boolean values–0 for False, 1 for 
True. The integers correspond to consecutive fully connected layers, beginning with the first 
one, where a value of 0 means the current fully connected layer is not followed by a dropout 
layer, and a value of 1 means the current fully connected layer is followed by a dropout layer. 

28. FCFilters : A list of the number of filters of each fully connected layer. The number of filters 
are reported in a hyphen separated list of integers. Each integer is the number of filters for 
one fully connected layer. The number of filters are recorded consecutively, beginning with 
the first fully connected layer. 
Our dataset amounts to 109.4MB of data distributed in 60 0 0 tabular files. Because of the sig- 

nificant size of the dataset, we do not include the full dataset in the text of this paper. The full 
dataset can be downloaded from our public Harvard Dataverse repository; a link is included in 
the Specifications Table under “Data Accessibility.” Table 2 gives an example of the first 3 rows 
of one of these 60 0 0 NN tabular.txt files: the first row contains the column names; the second 
row contains the training and validation data at epoch 0.5 as well as the metadata describ- 
ing generation of the NN and its structure; the third row contains the training and validation 
data at epoch 1.0. The remaining 78 rows contain training and validation data for each consec- 
utive half epoch up through 40 epochs; we do not include these rows in the paper because of 
space constraints. The full table can be found in our dataset. The NN represented in this ta- 
ble has unique ID “2021_02_15_12_18_09_100387” (row 2, column 5 of Table 2 ) and is trained 
on CIFAR-100 (row 2, column 9 of Table 2 ). The path to this table in our dataset is “CIFAR- 
100_models/2021_02_15_12_18_09_100387.txt”. 

Our dataset includes the python script DataLoader.py . This script shows how to load the tab- 
ular .txt files into a Pandas DataFrame, isolate columns of interest, perform computations (e.g. 
calculating max, min, or mean values of the accuracy or loss of an NN over its lifespan), aggre- 
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Table 2 
First three rows of an NN table. 

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 
Row 1 epochs trainLoss valLoss valAcc ID random_seed train_GPU ... 
Row 2 0.5 4.604796782661887 4.582063616775885 1.010404161664666 2021_02_15_12_18_09_100387 3,153,530,971 True 
Row 3 1.0 4.604823879167145 4.582446265802151 1.0304121648659463 

Column 8 Column 9 Column 10 Column 11 Column 12 Column 13 
... torch_set_deterministic dataset batch_size loss_fn optimizer learning_rate ... 

False CIFAR100 49 CrossEntropyLoss SGD 0.01005814462371971 
Column 14 Column 15 Column 16 Column 17 Column 18 Column 19 

... momentum dampening weight_decay layer_types dropout_rate convKernels ... 
0 0 0.05815562399917578 1-2-2 0 32-1-1 
Column 20 Column 21 Column 22 Column 23 Column 24 Column 25 

... convStrides convPaddings poolKernels poolStrides poolPaddings convFilters ... 
9-1-1 0-4-0 9-1 5-1 0-0 304-38-257 
Column 26 Column 27 Column 28 

... FC_dropout_rate FC_dropout_layers FCFilters 
0.23811313201015194 0 343-100 
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gate computations for all NNs into a single DataFrame, and save the aggregate calculated metrics 
in a .csv file. 
2. Experimental Design, Materials and Methods 
2.1. Neural Network Generation 

For each of our three image datasets (i.e., CIFAR-100, FashionMNIST, and SVHN) we gener- 
ate 20 0 0 NNs with random parameter values and train them on that image dataset, for a to- 
tal of 60 0 0 NNs described in our dataset. We generate each NN according to the structure in 
Fig. 1 with uniformly randomized parameter values from the intervals defined in Table 3 . 

Zooming into Table 3 , we generate three different sets of parameters (i.e., Feature Extraction 
Parameters, Classification Parameters, and Training Parameters). 
• Feature Extraction Parameters 

On each of our three image datasets, we generate 20 0 0 NNs, 20 0 each with x number of 
layers, for 1 ≤ x ≤ 10 . This ensures that the number of convolutional layers of the NNs is 
uniformly distributed between 1 and 10. For each convolutional layer, we randomize kernel, 
stride, and padding values, as well as the number of filters. 
Often, NNs are structured so that the number of filters for the convolutional layers increases 
with each layer. We generate some NNs whose convolutional filters increase sequentially, but 
we do not restrict our data to only NNs with this property. We achieve this by generating a 
random boolean for each NN that determines whether or not to increase the number of fil- 
ters in each sequential convolutional layer. Fig. 2 shows the process to randomize the number 
of filters for the convolutional layers of each NN, depending on the value of the boolean and 
the position of the layer in the NN. If the number of filters is not required to increase, then 
the number of filters for the last convolution C c is chosen uniformly in the range [ number of 
classes , 400], and the number filters for each convolution C i , i < c, is always chosen uniformly 

Table 3 
Parameters for NN generation. Values are uniformly randomized in the specified intervals. 

Parameter Values 
Feature Extraction Parameters 

Number of convolutional layers [1 , 10] 
Kernel [1 , dimension of input] 
Stride [1 , kernel] 
Padding [0, 5] 
Number of filters [ µa , 400] 

Number and type of non-linear layers in blocks N i [1, 30]; ReLU, dropout, pooling 
Dropout rate for dropout layers [0.1, 0.7] 
Pool kernel for pooling layers [1 , dimension of input] 
Stride for pooling layers [1 , pool kernel] 
Padding for pooling layers [0 , f loor(pool kernel/ 2)] 

Classification Parameters 
Number of fully connected layers [1, 5] 

Number of filters [0, 400] 
Dropout rate for dropout layers b [0.1, 0.7] 

Training Parameters 
Learning rate 10 p , p ∈ [ −6 . 0 , 0 . 0] 
Momentum b 10 p , p ∈ [ −6 . 0 , 0 . 0] 
Dampening b 10 p , p ∈ [ −6 . 0 , 0 . 0] 
Weight decay b 10 p , p ∈ [ −6 . 0 , 0 . 0] 
Batch size [25, 250] 

a Either µ = number of channels or µ = number of filters of C i −1 , depending on whether increasing number of filters 
is enforced. 

b These parameters are only taken into account if they are randomized to be true. 
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Fig. 2. Randomizing number of filters of each convolutional layer. 

Fig. 3. Randomizing training parameters. 
in the range [ number of image channels , 400]. Otherwise, if the number of filters is required 
to increase, then there are three possible cases: 
• The number of filters for the first convolution, C 1 , is always chosen uniformly in the range 

[ number of image channels , 400]. 
• The number of filters for the last convolution, C c , must be at least the number of classes 

in the image dataset. In addition, the number of filters must also be at least the number 
of filters of the previous convolution. 

• For the other intermediate layers, the number of filters for C i is chosen uniformly in [ num- 
ber of filters of C i −1 , 400 ]. 

As depicted in Fig. 1 , each convolutional layer is followed by non-linear layers random- 
ized from the following types: ReLU, dropout, or pooling. We randomize kernel, stride, and 
padding values for each pooling layer, and we choose a dropout rate to use for all dropout 
layers in the Feature Extraction section. 

• Classification Parameters 
We randomize the number of fully connected layers, and we generate a random boolean 
that determines whether or not to allow any dropout layers between pairs of fully connected 
layers. If the boolean is T rue , we randomize the dropout rate to use for all dropout layers 
in the Classification section. Then, for each fully connected layer except the final one, we 
generate a random boolean to decide whether or not to add a dropout layer after this fully 
connected layer. If the boolean is F alse , the dropout rate is 0, and we do not add any dropout 
layers in the Classification section. 

• Training Parameters 
We randomize the learning rate, momentum, dampening, and weight decay to use for train- 
ing the NN. As depicted in Fig. 3 a, for the training parameters momentum, dampening, and 
weight decay, we generate a random boolean to determine whether or not to activate that 
parameter. If the parameter is not activated, we set the parameter’s value to 0. 
Finally, we randomize the batch size to use for training. The procedure is given in Fig. 3 b. We 
randomize batch size uniformly between 25 and 250 and truncate the training image dataset 
to be divisible by batch size. Because we validate every half epoch, we also need the number 
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of samples in the truncated dataset to be divisible by twice the batch size. If this divisibility 
condition is not met, we re-randomize batch size until it is. 

2.2. Neural Network Training and Validation 
As noted earlier, each of our generated NNs is trained on one of three image datasets: CIFAR- 

100, F-MNIST, and SVHN. Each of these image datasets comes partitioned into training and test- 
ing sets; we use the training set for training the NNs and the testing sets for validating the NNs. 
The CIFAR-100 dataset contains 50,0 0 0 images for training and 10,0 0 0 images for testing. The 
F-MNIST dataset contains 60,0 0 0 images for training and 10,0 0 0 images for testing. The SVHN 
dataset contains 373,257 images for training and 26,032 images for testing. 

Each generated NN trains on the training set of one of these three datasets for a total of 40 
epochs. Every half epoch throughout training, the training loss is recorded and training is paused 
in order to validate the network on the testing set and record the NN’s validation accuracy and 
validation loss. After validation, training resumes for the next half epoch. All neural networks 
are trained using stochastic gradient descent. The loss criterion used is cross entropy loss. 
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