
Building High-Throughput Neural Architecture
Search Workflows via a Decoupled Fitness

Prediction Engine
Ariel Keller Rorabaugh, Silvina Caı́no-Lores ,

Travis Johnston , and Michela Taufer , Senior Member, IEEE

Abstract—Neural networks (NN) are used in high-performance computing and high-throughput analysis to extract knowledge from
datasets. Neural architecture search (NAS) automates NN design by generating, training, and analyzing thousands of NNs. However,
NAS requires massive computational power for NN training. To address challenges of efficiency and scalability, we propose PENGUIN,
a decoupled fitness prediction engine that informs the search without interfering in it. PENGUIN uses parametric modeling to predict
fitness of NNs. Existing NAS methods and parametric modeling functions can be plugged into PENGUIN to build flexible NAS
workflows. Through this decoupling and flexible parametric modeling, PENGUIN reduces training costs: it predicts the fitness of NNs,
enabling NAS to terminate training NNs early. Early termination increases the number of NNs that fixed compute resources can
evaluate, thus giving NAS additional opportunity to find better NNs. We assess the effectiveness of our engine on 6,000 NNs across
three diverse benchmark datasets and three state of the art NAS implementations using the Summit supercomputer. Augmenting these
NAS implementations with PENGUIN can increase throughput by a factor of 1.6 to 7.1. Furthermore, walltime tests indicate that
PENGUIN can reduce training time by a factor of 2.5 to 5.3.
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1 INTRODUCTION

NEURAL networks (NN) are powerful models that are
increasingly used in traditional high-performance com-

puting (HPC) scientific simulations and new research areas,
such as high-performance artificial intelligence and high-
throughput data analytics, to solve problems in physics [1],
materials science [2], neuroscience [3], and medical imag-
ing [4] among other domains. Finding suitable NNs is a time-
consuming process involving several rounds of hyperpara-
meter selection, training, validation, and manual inspection.
Neural architecture search (NAS) automates the process of
finding near-optimal models for a given dataset, but it comes
at a high training cost involving thousands of NNs on a large
number of HPC resources. For instance, conventional NAS
algorithms exhibit prohibitive computational demand where
training of eachNN to convergence is the main bottleneck [5],

[6]. A single NAS run on a small dataset of one or two peta-
bytes can require HPC systems with thousands of accelera-
tors [1]. A training run of a large language model such as
BERT takes more than 80 hours on 16 TPUv3 AI accelerator
hardware [7], and training a visual transformer requires
decades of compute time on a TPUv3 [8]. For even larger
datasets, scientists must allocate significant time on the larg-
est compute resources available (in the range of tens of
thousands of GPU hours [1]) to conduct a single search of
NN models. Furthermore, in the early stages of NAS, up to
88% of NNs fail to learn [9], wasting expensive compute
resources.

In current literature there are multiple strategies to
conduct NAS, including random searches, grid searches,
hyper-parameter sweeps, reinforcement learning, evolu-
tionary optimization, gradient-based optimization, and
Bayesian optimization [10], [11]. Many NAS implementa-
tions rely on built-in “truncated training”—a fixed termina-
tion criterion where each NN is trained for a set number of
epochs; fixed termination criteria result in wasting expen-
sive HPC resources [12], [13], [14], [15]. Advanced NAS
implementations use a fitness prediction strategy and
dynamically terminate training each NN once the fitness
prediction is calculated [16], [17], [18]. NAS implementa-
tions that employ fitness prediction embed their prediction
strategy in their search process, resulting in a tightly cou-
pled search and prediction solution. Tight coupling between
search and prediction strategies mean that NAS cannot be
optimized without heavily interfering in a given NAS
implementation. By decoupling search and prediction and
creating a flexible fitness prediction method, we make NAS
optimizations portable across problems and datasets, and
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simultaneously increase NAS implementations’ throughput
and efficiency. We implement this decoupling approach
and its flexible fitness prediction via our engine PENGUIN,
which plugs into existing NAS implementations, informing
each search without interfering in it.

Our solution decouples search and prediction strategies
by augmenting NAS implementations with our PENGUIN
engine to build flexible and composable NAS workflows.
PENGUIN uses a parametric modeling approach to predict
NN fitness early in the training phase; it functions indepen-
dently of the NN architecture, the particular NAS imple-
mentation, and the target dataset. NAS can leverage
PENGUIN’s fitness predictions to terminate training NNs
early, thus increasing throughput and exploring a larger
space of candidate models in a scalable way. PENGUIN can
plug into existing NAS implementations to augment their
searches. Any NAS whose search strategy includes training
NNs and making decisions that depend on NN fitness can
use PENGUIN (see Table 1 for examples).

Not only can PENGUIN be plugged into a variety of dif-
ferent NASes, but PENGUIN itself can use any parametric
function for modeling NN fitness. By tailoring the function
parameter values to the NN’s fitness data, PENGUIN con-
structs a fitness model; it then extrapolates from the model
to predict future fitness of the NN. Table 2, adapted from
Viering and Loog [25], lists a variety of parametric func-
tions, including several exponential and power functions,
that have been successfully used for modeling learning
curves in a variety of machine learning problems. Any of
these functions can be plugged into PENGUIN’s fitness
modeling method, as can custom user-defined parametric
functions.

We perform a case study in which we evaluate the accu-
racy of PENGUIN’s predictions, and its throughput gain, as
compared to three different unaugmented NAS implemen-
tations (i.e., MENNDL [19], EvoCNN [12], and NSGA-
Net [15]). By augmenting each of these NAS implementa-
tions with PENGUIN and a parametric function from
Table 2, we can save 39% to 86% of training epochs, result-
ing in an increase in throughput by a factor of 1.6 to 7.1.
Furthermore, we measure the actual training walltime
speedup that can be attained by augmenting MENNDL

with PENGUIN and observe a decrease in training time by a
factor of 2.5 to 5.3 compared to the unaugmented NAS.

2 BUILDING A DECOUPLED NAS WORKFLOW

Designing an NNmanually is time-consuming and prone to
human bias, often resulting in sub-optimal models. NAS
exploits supercomputing resources to automate the NN
architecture design, alleviating the architecture tuning bar-
rier. NAS selects NN models from a search space, trains
them on the target dataset, evaluating their fitness (e.g., vali-
dation accuracy or loss), and uses the fitness information to
generate new NNs. NAS implementations can be supported
by strategies that provide predictions for NN fitness at a
given epoch in the future, enabling a NAS to truncate the
training process, compare the fitness predictions for differ-
ent NNs, and steer the search towards NNs that yield better
results faster. NAS implementations as found in the litera-
ture either do not use a prediction strategy, opting instead
for fixed truncated training where NNs are trained for a
statically-defined, fixed number of epochs and then com-
pared; or the NAS design involves a tight coupling between
the NAS search strategy and a particular prediction strat-
egy, as depicted in Fig. 1. The tight coupling imposes
restrictions to the generalization of predictions for different
NAS, datasets, and problems, requiring non-trivial, ad-hoc
tuning of the NAS implementation.

TABLE 1
Examples of NAS Implementations That Could Plug Into

PENGUIN

NAS Type Open
source

EvoCNN [12] evolutionary ✓
MENNDL [19] evolutionary "
NAS for image reconstruction
[20]

evolutionary "

psoCNN [13] particle swarm ✓
Hierarchical representation
[14]

evolutionary "

NSGA-Net [15] evolutionary ✓
Large-scale evolution [21] evolutionary "
Genetic CNN [22] evolutionary "
NASNet [23] reinforcement

learning
"

Auto-Keras [24] Bayesian ✓

TABLE 2
Examples of Parametric Functions for Learning Curve Modeling

Formula Trend Formula Trend

axb increasing c# ð#axþ bÞ#d increasing
axb þ c increasing c# ða=log ðxÞÞ increasing
a# bðc#xÞ increasing c# ðc# aÞeð#bxÞ increasing
alog ðxÞ þ c increasing ax#b decreasing
aeðbxÞ þ c increasing ax#b þ c decreasing
eðaþ

b
xþclog ðxÞÞ increasing #alog ðxÞ þ c decreasing

abþcxd

bþxd
increasing aeð#bxÞ þ c decreasing

c# beð#axdÞ increasing aeð#bxÞ decreasing
c# eð#axdþbÞ increasing #axþ b decreasing
c# eðx#bÞa increasing

Functions with an increasing trend model fitness types that increase as the NN
learns (e.g., accuracy). Functions with a decreasing trend model fitness types
that decrease as the NN learns (e.g., loss).

Fig. 1. Overview of current NAS solutions and their tightly-coupled
search and prediction strategies.

2914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022



In contrast to current tightly-coupled NAS solutions, we
envision a workflow-oriented approach to the NAS prob-
lem, as depicted in Fig. 2. To this end, PENGUIN is designed
to be completely decoupled from any NAS, and its predic-
tion strategy is not tailored to a specific search strategy or
dataset, allowing portability across NAS and scientific
domains. PENGUIN can be utilized even by NAS imple-
mentations that already employ fixed truncated training,
allowing them to truncate training as soon as NN fitness
predictions are calculated by our engine.

Besides being NAS-agnostic, PENGUIN integrates a
framework for parametric modeling that adapts to different
NN fitness metrics. Parametric modeling of an NN’s fitness
involves fitting a parametric function (i.e., a function with
parameters to determine, for example, F ðxÞ ¼ axb þ c) to
the NN’s historical fitness data. This fitting process produ-
ces a function (e.g., fðxÞ ¼ 10x2 þ 5) that models the fitness
curve. The fitness model can then be used to extrapolate a
prediction for the fitness value at a given epoch in the
future, epred, by calculating the value of the model at that
epoch, fðepredÞ. As shown in Fig. 2, PENGUIN allows users
to plug in any desired parametric function (some examples
in Table 2).

PENGUIN’s design and interfaces provide users with the
building blocks to flexibly build NAS workflows from tools
and methods already available. The decoupled nature of
PENGUIN constitutes a crucial first step towards scalable
high-performance NAS workflows, since this decoupling
enables optimization of the resource allocation for each
component of the workflow, the component orchestration
and placement, and the mechanisms to exchange data effi-
ciently amongst them.

3 THE PENGUIN ENGINE

PENGUIN augments NAS to enable a modular NAS work-
flow in which the search strategy is fully decoupled from
the prediction strategy. PENGUIN is designed to plug into
any NAS method and run on dedicated resources concur-
rently with the NAS, informing the search without interfer-
ing in it. PENGUIN dynamically predicts the fitness each
NN could attain during the NN training phase and informs
the NAS of each NN’s predicted fitness.

The NAS selects NNs from the search space to explore
and trains those NNs. When a NAS plugs in PENGUIN,
periodically during training of each NN, the NAS passes
partially trained NNs to PENGUIN. PENGUIN then itera-
tively executes a three-step process depicted in Fig. 2. In
each iteration of the process, PENGUIN first validates the
NN and calculates its fitness (NN validation); then executes a
parametric modeling method in order to construct a model
for the NN’s fitness curve, and uses the parametric model to
extrapolate a prediction for the fitness the NN is expected to
attain at a given epoch in the future (Parametric modeling);
and finally determines whether the prediction has con-
verged, deciding whether to output the NN fitness predic-
tion to the NAS or continue the iterative process (Prediction
analyzer).

3.1 NN Validation
When classifying a scientific dataset, the dataset is divided
into a training set and a validation set. Both PENGUIN and
the NAS have knowledge of the location of the training and
validation sets, and they have capability to access these
data. The NAS trains the NNs on the training set and passes
partially trained NNs to PENGUIN every E epochs
throughout training, where an epoch means one cycle
through the training set. The value of the parameter E is
user-defined. In our tests, we let E ¼ 0:5, meaning that each
NN is passed to PENGUIN every 0.5 epochs throughout its
training. At each iteration, PENGUIN validates the NN M
and calculates its fitness fitV for the validation set at the cur-
rent epoch (e). We build an ordered list of these (epoch, fit-
ness) datapoints for the NN across the iterations of
PENGUIN. In the first iteration, we initialize the list with
the starting epoch and fitness values. In subsequent itera-
tions, we append the current (epoch, fitness) datapoint to
the ordered list.

3.2 Parametric Modeling
Given a parametric function, we attain a model for NN fit-
ness by determining values for the function parameters
using least squares regression. Specifically, we utilize
SciPy’s optimize.curve_fit (Curve Fit) method to find the
parameter values that best fit the ordered list of the NN’s

Fig. 2. Overview of our vision of a decoupled NAS workflow supported by PENGUIN. PENGUIN constitutes the core prediction engine that, given an
input NN provided by a NAS and a parametric function, outputs a fitness prediction that can be leveraged by a NAS.
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epoch and fitness data. The result is a function that models
fitness in terms of epochs. This function is then used to
extrapolate a fitness prediction for the NN at a given epoch
in the future.

3.2.1 Fitting the Parametric Function to Predict Fitness

Algorithm 1 shows the internal parametric modeling proce-
dure. All inputs and outputs of Algorithm 1 are defined in
Table 3. Given an NN M, the procedure takes as input the
current training epoch (e); the ordered list of (epoch, fitness)
values and predictions from previous iterations (H), also
called fitness history; the fitness value at the current epoch e
(fitV ); and a parametric function (F ), along with optional
bounds and initial values for the function’s parameters.

The first step in our parametricmodelingmethod is the cre-
ation of a new tuple of fitness metrics for the NN M at the
specified epoch (he). This tuple is inserted in the fitness history
H forM (Line 2) so that it is taken into consideration as a new
datapoint for the Curve Fit method. The rest of the steps
required to construct the fitness model f only take place if
there are enough datapoints to conduct the Curve Fit method.
The number of datapoints needed inH to proceed with curve
fitting, denoted Cmin, is equal to the degrees of freedom in the
parametric function (Line 3). This is the same as the number
of parameters to determine. For example, the parametric func-
tionF ðxÞ ¼ a# bc#x has three parameters anddegrees of free-
dom; thus it requiresCmin ¼ 3 datapoints.

Recall that the constant number of training epochs per
iteration of PENGUIN (E) is user-defined (see Section 3.1).
We multiply the epoch values in H by a rescaling factor r ¼
1=E in order to rescale H as a new list H0 in which the first
epoch value is 1 (Line 4), since this enables assigning gen-
eral bounds for the function parameters that do not depend
on the value of E. For example, if the NN is validated every
half epoch, the first epoch value is 0.5, so H is rescaled by
multiplying every value of e in the list by r ¼ 2. Then we
feed H0 to Sci-Py’s optimize.curve_fit method to find the

function f that best fits the historic fitness data for the NN
(Line 6). The function f is used to extrapolate a prediction
for the NN’s fitness at a given epoch in the future (epred).
The fitness the NN is predicted to attain at epoch epred is
given by fðepred ( rÞ ¼ fitP , where r is the rescaling factor
that was used for the epoch data. We append the value of
fitP to the fitness tuple for the current epoch (he) so that it
will be reflected in the fitness history (Line 9). As a result of
our modeling method, we output the updated history of fit-
ness calculations and predictions (H) for analysis by the
prediction analyzer.

Algorithm 1. Procedure for Parametric Modeling
Method

Input: Current training epoch (e); history of fitness values and
predictions (H); fitness value at epoch e (i.e., fitV ); paramet-
ric function to fit (F ); and minimum required cardinality
(Cmin)

Output: History of validation accuracy and predicted accuracy
(H), updated with the latest prediction fitP

1: procedure Predictor (e,H, fitV , F )
2: he  < M; e; fitV ; 0 >
3: H insertðheÞ
4: if jHj ) Cmin then
5: H0  rescale epochsðHÞ
6: ðb1; b2; . . . ; bmÞ optimize:curve fitðH0;F Þ
7: f  F ðb1; b2; . . . ; bmÞ
8: fitP  fðepred ( rÞ
9: H update predictionðH; he; fitP Þ
10: returnH

3.3 Prediction Analyzer
Each time the parametric modeling method receives a new
fitness measurement for an NN M at epoch e, it generates a
new fitness model f from the parametric function F , and it
uses the fitness model to compute a new prediction (fitP )
for the fitness the NN will attain at epoch epred. This fitness
prediction fitP is appended to the history of measured and
predicted fitness values H. The fitness model and its associ-
ated fitness prediction fitP vary from one iteration to the
next because new fitness measurements are calculated and
appended to H at each iteration, hence the parametric
modeling method has one more datapoint to use to con-
struct the fitness model with each iteration. The goal of the
prediction analyzer is to determine whether the iterative fit-
ness predictions for M have converged to a stable value,
which we denote by FITP . If so, the analyzer outputs the
final fitness prediction FITP , and PENGUIN’s iterative pro-
cess terminates. If not, the next iteration begins, and the NN
resumes training.

3.3.1 Parameterizing the Analysis

To guide the behavior of the prediction analyzer and its con-
vergence criteria, we rely on four parameters:

! N , the number of most recent fitness predictions to
consider

! t, the threshold describing how much variability is
tolerated to establish convergence and report a final
fitness prediction

TABLE 3
Symbols for Parametric Modeling Algorithm (Algorithm 1)

Symbol Definition

M NN identifier
e Current epoch in which the prediction is

calculated
H Ordered list of < M; e; fitV ; fitP > tuples, each

representing the fitness value fitV of an NNM
plus the fitness prediction fitP , calculated at a
specific epoch e

fitV Fitness value at current epoch e from NN
validation component

F Parameteric function to use for modeling
he Tuple of fitness metrics for NNM at epoch e
Cmin Minimum cardinality of the set F will be fitted to
r Epoch rescaling factor
ðb1; . . . ; bmÞ Parameter values of the fitness model f at epoch e
f Fitness model attained by determining

parameters for the parametric function F
epred Epoch in the future for which PENGUIN predicts

NN fitness
fitP Fitness NN is predicted to attain at epoch epred
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! E, the number of epochs per iteration
! epred, the epoch in the future for which PENGUIN

predicts NN fitness; also, the maximum number of
epochs an NN will train.

These engine parameters, summarized in Table 4, constitute
part of the input arguments for the prediction analyzer pro-
cedure and can be adjusted in PENGUIN to tune the overall
iterative process. Fig. 3 shows the trade-off for different
choices of the parameters N and t on sample subsets of each
of the benchmark datasets introduced in Section 4. This
figure motivates our choice of N ¼ 3 and t ¼ 0:5 because
these points are Pareto-optimal or near-Pareto-optimal on
all the trade-off curves.

The parameter E affects the ability of the parametric
modeling to successfully approximate the NN accuracy
curve. E impacts the granularity of the set of datapoints
used for fitting the parametric function; the smaller E is, the
more datapoints we will have. Therefore, E must meet a
trade-off between two constraints: it must be as small as
possible to maximize the number of datapoints to use for
constructing the parametric model, and it must be large
enough to avoid extrapolating local behavior to the whole
curve. This motivates our selection of E ¼ 0:5.

The parameter epred corresponds to the future epoch for
which PENGUIN predicts NN fitness. One can set epred to
any arbitrary value to match the epoch at which the user
would like to assess NN fitness. We set the parameter to
match the epoch of truncated training of the NAS that PEN-
GUIN is augmenting. By default, each of the NAS methods
evaluated in this paper (i.e., MENNDL [19], EvoCNN [12],
and NSGA-Net [15]) incorporate truncated training, termi-
nating training at 20, 10, and 25 epochs respectively. If
epoch epred is reached during PENGUIN’s iterative process,

the process terminates by outputting the actual fitness cor-
responding to that epoch.

3.3.2 Analyzing the Convergence of the Predictions

Algorithm 2 shows the internal procedure in our prediction
analyzer. Given an NN M, the procedure takes as input the
current training epoch (e), the history of fitness values and
predictions (H), and the four engine configuration parame-
ters described above. We first check if we have reached the
minimum number of epochs to assess convergence (Line 2).
If the answer is no, the number of tuples in H is not suffi-
cient to analyze whether the predictions are stable; we exit
the validation and continue with the next iteration. If the
answer is yes, we check for convergence of the iterative fit-
ness predictions. If convergence is achieved prior to reach-
ing epoch epred in training, then the final output fitness
prediction (FITP ) corresponds to the fitness predicted by
the tailored function in the current epoch (fitP ) (Lines 5, 8).
We define three conditions for reaching convergence:

! Condition 1: NN training must not have already
reached the epoch, epred, for which to predict fitness.

! Condition 2: The most recent fitness prediction (FITP )
must be within the range of valid fitness values. For
example, if fitness is measured by validation accu-
racy, the accuracy prediction must be less than or
equal to 100%. Otherwise, the prediction is not valid
to establish convergence (Line 6). This condition
ensures that we have a realistic value for FITP .

! Condition 3: TheN most recent fitness predictions are
all within the threshold t of their mean (Line 7). In
other words, for each of the N most recent predic-
tions pi, we checks ifmean# t * pi * meanþ t.

Algorithm 2. Procedure for Prediction Analyzer

Input: Current training epoch (e); history of fitness values and
predictions (H); configuration parameters

Output: Convergence status (converged)
Output: Fitness prediction (if convergence is acheived, pre-

dicted fitness (FITP ); if epred is reached, actual fitness calcu-
lated at epoch epred (fitV ))

1: procedure Analyzer e,H,N , E, epred, t
2: converged false
3: if e * N ( E then exit
4: if e ¼ epred then return fitV
5: FITP  fitP fromH in epoch e
6: if FITP is a valid fitness value then exit
7: if lastN fitV 2 H are within t then converged true
8: if converged is true then return FITP

9: else exit

Fig. 3. Trade-off for different choices ofN and t, indicating the values we use (N ¼ 3 and t ¼ 0:5) for the three benchmark datasets used in this paper
(i.e., CIFAR-100, Fashion MNIST, and SVHN).

TABLE 4
Symbols for Prediction Analyzer Algorithm (Algorithm 2)

Symbol Definition

e Current epoch in which the predictions are analyzed
H Ordered list of < M; e; fitV ; fitP > tuples, each

representing the validation fitness of an NNM plus
the fitness prediction fitP , calculated at a specific
epoch e

N Number of most recent fitness predictions to
consider in the analysis

E Number of epochs per iteration
epred Epoch in the future for which PENGUIN predicts

NN fitness
t Maximum fitness prediction variability allowed for

convergence
FITP Most recent fitness prediction for the NNM on

convergence
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There are three possible outcomes based on these condi-
tions. First, if all three conditions are true, it means the pre-
diction has converged. In this case, the prediction analyzer
returns the final prediction FITP with convergence status
true (Line 8). Second, if the first condition is not satisfied,
then the NN has already trained for epred epochs. In this
case, there is no need for a fitness prediction from PEN-
GUIN. Instead, we return as our final fitness prediction the
actual fitness value at epoch epred, fitV , with convergence
status false, indicating that PENGUIN’s prediction did not
converge prior to training for epred epochs (Line 4). Last, if
the first condition is satisfied , but either of the second or
third conditions is not met, then the prediction analyzer
procedure ends without returning a fitness prediction and
with convergence status false (Line 9).

Based on the output of the prediction analyzer, we can
establish the termination criteria for PENGUIN. If a fitness
prediction is returned, PENGUIN terminates and outputs
this value to the NAS. This can occur in two scenarios: either
we reached convergence and the output is the fitness predic-
tion FITP , or we reached epred and the output is fitV—the
actual fitness attained at epoch epred. We can distinguish
these cases by inspecting the value of the convergence status.
If no value is returned, then PENGUIN begins the next itera-
tion and resumes training the NN. As an example, Fig. 4
depicts the end result of this process for one of the NNs we
trained on the CIFAR-100 benchmark dataset [26]. The x-axis
indicates the number of training epochs, and the y-axis indi-
cates the fitness of the NN (accuracy in this example). The
dotted red line indicates the point at which the prediction
converges; this is when our engine outputs the fitness predic-
tion and terminates the iterative training process. In this
example, our engine terminates the iterative process and out-
puts the fitness prediction after 4 epochs. The fitness model
from the final iteration is graphed, along with the fitness
datapoints (validation accuracy in this example) for the NN
across epred epochs. Note that only the fitness values from the
first 4 epochswere used to construct the fitnessmodel.

4 CASE STUDY

We present a case study in which we use PENGUIN to
answer two questions from the perspective of a NAS plug-
ging in PENGUIN: (i) “How accurate are the predictions?”
and (ii) “What savings are gained?”

4.1 Experimental Setup
We apply PENGUIN to a set of approximately 6,000 NNs—
2,000 each trained on one of three widely used benchmark

datasets: CIFAR-100, Fashion MNIST, and SVHN—using a
parametric function of the form fðxÞ ¼ a# bðc#xÞ. Using the
Summit supercomputer at the Oak Ridge National Labora-
tory, we train our set of diverse NNs across these bench-
mark datasets.

4.1.1 Benchmark Dataset Characterization

To the best of our knowledge, there is no systematic charac-
terization of datasets used in evaluating ML methods in
HPC. This makes the assessment of the generality and
applicability of a method in the area of NN research a case-
driven discussion [27], [28], [29], [30], [31], [32] that is also
found in works tackling the problem of evolutionary NN
design [33], [34]. We contribute to the discussion by charac-
terizing three widely used datasets (i.e., CIFAR-100, Fashion
MNIST, and SVHN) in terms of the diversity of their attrib-
utes. Based on this diversity we use these benchmark data-
sets to evaluate our engine’s capability to predict the
accuracy of NNs. We identify five key attributes that dem-
onstrate the diverse nature of these benchmark datasets: the
number of samples, the number of classes, the number of
image color channels, the sample size [35], and the internal
balancing of the sample distribution per class, which is
known to affect the accuracy of NNs [36]. Table 5 summa-
rises these attributes and shows a sample from each bench-
mark dataset.

CIFAR-100 (C-100): This dataset was introduced in 2009
[26] as a subset of the 80 Million Tiny Images dataset [37],
aimed towards improving tasks of unsupervised training of
deep generative models. It is still one of the most popular
benchmark datasets in the field of computer vision due to
the manageable size of the dataset, the resolution of its
images, and its challenges for NN models [38], [39], [40].

Fashion MNIST (F-MNIST): This benchmark dataset [41]
serves as a replacement for the original MNIST dataset com-
prising ten classes of handwritten digits [42]. It shares the
same image and dataset size, data format, and structure of
training and testing splits with MNIST, making it a popular
benchmark dataset for NN models targeting computer
vision problems [43], [44], [45].

Fig. 4. Example of the fitness (accuracy) prediction and tailored function
given by PENGUIN for an NN trained on CIFAR-100.

TABLE 5
Characterization of C-100, F-MNIST, and SVHN

ySVHN also contains 531,131 samples that can be used as additional, easier
training data, which we did not use in our evaluation.

2918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022



SVHN: Like MNIST, SVHN [46] contains digits, but in
this case they are obtained from real-world house numbers,
and thus contain color information, various natural back-
grounds, overlapping digits, and other distracting features.
These characteristics make SVHN a more difficult bench-
mark dataset than MNIST, and as a result, SVHN is a very
popular benchmark dataset for NNs [47].

4.1.2 NN Generation

In the first stage of the search, many NAS implementations
generate the initial set of NNs randomly. We generate each
NN with uniformly randomized parameter values from the
intervals defined in Table 6 Our set of NNs represents the
NNs such a NAS would select from the search space to
explore. Each NN begins with a number of convolutional
layers. We randomize kernel, stride, and padding values for
each convolutional layer, as well as the number of filters.
This is followed by randomized non-linear layers of the
pooling, ReLU (rectified linear unit activation function), or
dropout types; we add fully connected layers at the end of
the network. For each NN, we generate a random boolean
that determines whether or not to include any dropout
layers between the fully connected layers. If the boolean is
true, then we generate a value for the dropout rate for these
layers. After each fully connected layer except the final one,
we randomly decide whether or not to add a dropout layer.
Finally, we randomize the learning rate, momentum, damp-
ening, and weight decay. In addition, we randomize the
batch size to use for training. We choose an integer uni-
formly between 25 and 250 and truncate the training bench-
mark dataset to be divisible by batch size. Because we
validate every half epoch, we need number of samples in
the truncated dataset to be divisible by twice the batch size.
If this divisibility condition is not met, we re-randomize
batch size until it is. This process assures the diversity of
our NN sets. As a result, we generate and train a set of

approximately 2,000 NNs for each one of the three
benchmark datasets (i.e., C-100, F-MNIST, and SVHN). We
produce a publicly available NN dataset containing archi-
tecture descriptions of these random NNs and metadata
describing each NN’s accuracy and loss at each half epoch
of training [48], [49].

4.1.3 NN Classification

When searching the space of possible NNs for a given data-
set, we deal with a wide range of parameter values that
define those NNs and that affect their capability to learn the
benchmark dataset. We classify our randomly generated
NNs based on their learning capability. A large number of
randomly generated NNs may be unable to learn. We call
such NNs never-learns. Generally, never-learns are able to
classify a single class from the benchmark dataset on which
they are trained, and they never learn to classify more than
one class. As a result, the accuracy value of never-learns
depends on the number of classes in the benchmark dataset
and whether or not those classes are balanced. We observe
that never-learns on C-100 have final accuracy values of
about 1% because C-100 contains 100 balanced classes;
never-learns on F-MNIST have final accuracy values of
about 10% because F-MNIST contains 10 balanced classes;
and never-learns on SVHN have varying final accuracy val-
ues up to about 20% because SVHN contains unbalanced
classes, and the largest class contains about 1=5 of the data
(in both the training and testing sets). Such behavior is con-
sistent with early stages of many NAS methods, when a
NAS generates a large set of random NNs for exploration,
and many of these NNs have very low accuracy.

We also observe that many NNs do not learn for several
epochs but eventually do begin to learn, in some cases
attaining quite high final accuracy. Because the accuracy of
these NNs does not increase for many epochs, they can be
incorrectly predicted to never learn. We call these NNs that
are incorrectly predicted to never learn because of a long
initial learning delay anomalies. Table 7 breaks down the
generated random NNs into these categories.

As noted earlier, the full set of trained NNs with many
never-learns reflects the type of networks expected in early
stages of NAS. As a NAS progresses, we expect to see fewer
and fewer never-learns and more better performing NNs.
To simulate later generations of NNs in a NAS, we create a
subset of NNs from this full NN set, keeping all learning
NNs and removing all the never-learns. Using Summit, we
evaluate our engine on both of these sets (i.e., with and
without never-learns) in order to see results that reflect how
our engine would perform in different stages of a NAS (e.g.,

TABLE 6
Parameters and Value Intervals for NN Generation

Parameter Values*

Number of convolutional layers ½1; 10,
Kernel ½1; dimension of input,
Stride ½1; kernel,
Padding [0, 5]
Number of filters [0, 400]
Number of non-linear layers [10, 30]
Type ReLU, dropout, pooling
Dropout rate for dropout layers [0.1, 0.7]
Pool kernel for pooling layers ½1; dimension of input,
Stride for pooling layers ½1; pool kernel,
Padding for pooling layers ½0; bpool kernel=2c,

Number of fully connected layers [1, 5]
Number of filters [0, 400]
Dropout rate for dropout layersy [0.1, 0.7]
Learning rate 10p, p 2 ½#6:0; 0:0,
Momentumy 10p; p 2 ½#6:0; 0:0,
Dampeningy 10p; p 2 ½#6:0; 0:0,
Weight decayy 10p; p 2 ½#6:0; 0:0,
Training batch size [25, 250]

*Values are uniformly randomized in the specified intervals.
yThese parameters are only taken into account if they are randomized to be true.

TABLE 7
Breakdown of Models in the Full NN Set

C-100 F-MNIST SVHN

Total number of NNs 1980 1910 1956
Never-learns 1673 1340 1684
Learns - anomalies 79 126 149
Learns - not anomalies 228 444 123
Anomalies as a percent of learning NNs 26% 22% 55%
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at the very beginning of the search and in subsequent
iterations).

4.1.4 Parameterized Function

In our case study, NN fitness is measured by validation
accuracy. We selected the parameterized function fðxÞ ¼
a# bðc#xÞ to use in PENGUIN’s parametric modeling
method. Our empirical observation indicates that during
the initial phase of training, NN accuracy curves tend to be
concave down and increasing, with the accuracy values
approaching a horizontal asymptote; the parametric func-
tion fðxÞ ¼ a# bðc#xÞ; b ) 1 shares these properties. We
choose this function because a preliminary comparison
with other functions showed that this specific function pro-
vides good results across the spectrum of datasets we are
considering, when fitness is measured by accuracy. Future
work will study function selection for more datasets and
types of fitness measurements (e.g., loss).

4.2 Accuracy
When addressing the first question of our case study, “How
accurate are the predictions?”, we must recall that a NAS pro-
cess involves generating NN models, evaluating their accu-
racy, selecting the best models at each step, and using these
best models to inform the next generation of models
(Section 1).

PENGUIN reports fitness predictions for all the gener-
ated NNs (Section 2), and a NAS can use these predictions
to select the best models. In other words, it is important for
PENGUIN to accurately identify the best NNs from among
the set generated by a NAS, as these are used to create the
next generation of NNs. Thus, in evaluating the accuracy of
our predictions, we compare the ground truth best x NNs
from all our generated NNs with the predicted best x NNs
as identified by PENGUIN for x ¼ 50; 100; and 150.

We use PENGUIN’s fitness predictions for all the NNs to
create a set of our engine’s predicted best x NNs. Recall that
PENGUIN predicts the fitness each NN is expected to attain
in the future, at epoch epred (Section 3.3.1). Thus, the ground
truth to compare with PENGUIN’s predictions is the actual
fitness of each NN at epoch epred. In our tests, in order to
identify the ground truth best x NNs, we allow all the NNs
to continue training and validating for epred epochs, even
after PENGUIN has reported fitness predictions for them.
The NNs that achieve the best validation fitness at epoch
epred of training are the ground truth best NNs. These are
also the NNs that the NAS PENGUIN is augmenting would
select as the best.

In this case study, we measure the accuracy of PEN-
GUIN’s predictions for the selected parametric function

using the sensitivity and specificity metrics, which measure
respectively the true positive rate and true negative rate of
the predicted best xNNs.

4.2.1 Sensitivity and Specificity

We measure the sensitivity (i.e., true positive rate) and the
specificity (i.e., true negative rate) of PENGUIN’s predicted
best x NNs for different values of x, for both the full NN set
and the subset of learning NNs only. Table 8 shows the sen-
sitivity values of PENGUIN’s predicted best x NNs; the sen-
sitivity values are similar for both NN sets. Across all our
experiments, for x values ranging from 50 to 150, the sensi-
tivity of PENGUIN’s predictions ranges between 0:56 and
0:87. In fact, in almost all of our experiments, the sensitivity
values are greater than or equal to 0:70. The exception to
this is F-MNIST when x ¼ 50, which has sensitivity values
of 0.56 and 0.58 for the full NN set and the set of learning
NNs only, respectively.

Table 9 shows the specificity of PENGUIN’s predicted
best x NNs for the full NN set and the subset of learning
NNs only. The specificity values show more variance for
these two NN sets because their sizes are different. Across
all our experiments on the full NN set, for x values ranging
from 50 to 150, the specificity of PENGUIN’s predictions
ranges between 0:98 and 0:99. For the subset of learning
NNs only, the specificity ranges between 0:66 and 0:97.

Fig. 5 zooms into the second row of Table 8 and the sec-
ond row of Table 9 for the full NN set depicting the accu-
racy predictions and actual accuracy values of all NN
models for each benchmark dataset. Specifically, the figure
indicates the true positives, true negatives, false positives,
and false negatives resulting from our prediction of the best
100 models. PENGUIN’s output accuracy predictions are on
the y-axis; actual accuracy is on the x-axis. PENGUIN’s
accuracy predictions are predicted using our parametric
modeling. Note that PENGUIN’s output prediction is the
accuracy each NN is expected to attain for epoch epred. The
actual accuracy is given by the observed accuracy values of
each NN at the epoch epred. In this case, we set epred ¼ 20
because the value is representative of the truncated training
used by cutting-edge NAS implementations like MENNDL.
Throughout our case study, actual and predicted accuracy
values are always compared for the same epoch; should
epred ¼ 10, then PENGUIN would predict the accuracy each
NN is expected to attain for epoch 10, and we would com-
pare these predictions with the actual values of the NNs at
epoch 10.

In Fig. 5, the purple triangles depict true positives (i.e.,
NNs that are correctly predicted to be in the top 100). The
grey plus signs depict true negatives (i.e., NNs that are

TABLE 8
Sensitivity of the Predicted Best x NNs

Full NN set Learning NNs only

x C-100 F-MNIST SVHN C-100 F-MNIST SVHN

50 0.70 0.56 0.70 0.70 0.58 0.70
100 0.85 0.77 0.77 0.86 0.77 0.77
150 0.87 0.81 0.73 0.87 0.81 0.73

TABLE 9
Specificity of the predicted best x NNs

Full NN set Learning NNs only

x C-100 F-MNIST SVHN C-100 F-MNIST SVHN

50 0.99 0.99 0.99 0.94 0.96 0.93
100 0.99 0.99 0.99 0.93 0.95 0.87
150 0.99 0.98 0.98 0.88 0.93 0.66
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correctly predicted not to be in the top 100). The blue circles
depict false positives (i.e., NNs that are incorrectly pre-
dicted to be in the top 100). The red squares depict false neg-
atives (i.e., NNs that are incorrectly predicted not to be in
the top 100). Because the x-axis indicates actual accuracy,
the most accurate NNs are the furthest to the right of the
figure, and the least accurate NNs are the furthest to the
left. We observe that the most accurate NNs from the set of
ground truth best NNs are true positives, and the ground
truth best NNs that are false negatives tend to be the least
accurate ones, with the exception of a few of the anomalies.
In the lower left corner of the figure, we see NNs with very
low actual accuracy and predicted accuracy; these are the
never-learns (i.e., NNs that never learn to classify more than
a single class). Parallel to the x-axis we see the anomalies; as
discussed in Section 4.1.2, these are NNs that have varying
levels of actual accuracy but are predicted to have very low
accuracy. They are NNs whose accuracy does not begin to
increase for many epochs, and therefore they are incorrectly
predicted to never learn. Part of our ongoing work involves
studying ways to distinguish between NNs that never learn
and these anomalies.

4.3 Gain
We answer the second question of our case study, “What
savings are gained?”, by using three metrics—number of
training epochs saved, throughput gain, and walltime
speedup—for each of the three benchmark datasets. We cal-
culate our gain using these metrics as compared to the train-
ing required to assess NN accuracy by three different state-
of-the-art NAS methods (i.e., MENNDL [19], EvoCNN [12],
and NSGA-Net [15]). MENNDL, EvoCNN, and NSGA-Net
are NAS implementations that all use built-in truncated
training for early termination of NN training. MENNDL ter-
minates training at 20 epochs, EvoCNN terminates training
always at 10 epochs, and NSGA-Net terminates training
always at 25 epochs. Additionally, MENNDL incorporates
its own dynamic built-in early termination criterion on top
of its truncated training, terminating training earlier if the
NN’s minimum training loss has not decreased for at least
10 epochs. We use the built-in training termination methods
of these NAS implementations as a baseline to compare
with the same NAS implementations when augmented by
PENGUIN.

4.3.1 Training Epochs Saved

We compare the epoch at which MENNDL, EvoCNN, and
NSGA-Net would terminate NN training if they were aug-
mented by PENGUIN versus the epoch at which each of
these NAS implementations would terminate training with-
out PENGUIN, using their built-in termination methods.
Any of the three NAS implementations, when augmented
by our engine, terminates training each NN when either
PENGUIN’s fitness prediction converges (as in Fig. 4),
avoiding the full training, or in the worst scenario at epred
epochs, where we set epred equal to the number of epochs
each NAS’s existing built-in truncated training ends (i.e., 20,
25, and 10 for MENNDL, EvoCNN, and NSGA-Net
respectively).

Table 10 lists the mean epoch when PENGUINwould ter-
minate training for each of our NN sets across the three
benchmark datasets with MENNDL. For the full NN set
(including never-learns), PENGUIN terminates training at
about epoch 4 on average. For the set of learning NNs only,
PENGUIN terminates training at about epoch 7.5 on aver-
age. Fig. 6 depicts the distribution of NNs according to the
percentage of training epochs saved by augmenting
MENNDL with PENGUIN, both for the full NN set and for
the subset of learning NNs only. Percentage of epochs saved
is denoted on the x-axis and percent of total NN samples on
the y-axis. The height of a rectangle denotes the percent of
total samples that save the indicated portion of training
epochs: taller rectangles to the right indicate that more sam-
ples save a larger percentage of epochs (i.e., there is a larger
region of avoidable training for these samples). The dashed
line indicates the mean percentage of training epochs saved.
We observe that for the full NN set (including never-learns),
across all three benchmark datasets, 60% to 75% of models
save more than 80% of the training epochs that would be
required by MENDDL’s early termination criterion. In fact,

Fig. 5. Predicted accuracy and actual accuracy for all NNs, indicating true positives, true negatives, false positives, and false negatives for the pre-
dicted best 100 models.

TABLE 10
Mean Epoch When NN Training Would be Terminated for PEN-

GUIN Augmenting MENNDL

C-100 F-MNIST SVHN

Full NN set 3.5 4 4.5
Learning NNs only 7.5 7.5 7
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for all three benchmark datasets, we cut the mean number
of training epochs needed to evaluate the networks by more
than 75%. We demonstrate respective mean savings of 82%,
78%, and 78% of the training epochs on C-100, F-MNIST,
and SVHN (indicated by the dashed lines in Figs. 6a, 6b,
and 6c), as compared to MENNDL unaugmented by PEN-
GUIN. For the set of learning NNs only, across all three
benchmark datasets, more than 40% of models save over
80% of the training epochs that would be required by
MENDDL’s early termination criterion. Overall, for all three
benchmark datasets, C-100, F-MNIST, and SVHN, we cut
the mean number of training epochs needed to evaluate the
networks by 63%-67%.

Similarly, we calculate the percentage of training
epochs saved by augmenting EvoCNN and NSGA-Net
with PENGUIN, for the same NN models and benchmark
datasets as above, and for both our full NN set and the set
of learning NNs only. For the full NN set (including
never-learns), across all three benchmark datasets, aug-
menting EvoCNN with PENGUIN would save 64% to 70%
of the mean training epochs needed, and augmenting
NSGA-Net with PENGUIN would save 82% to 86% of the
mean training epochs needed. For the set of learning NNs
only, across all three benchmark datasets, augmenting
EvoCNN with PENGUIN would save 39% to 40% of the
mean training epochs needed, and augmenting NSGA-Net
with PENGUIN would save 70% to 74% of the mean train-
ing epochs needed. These outcomes are not presented in a
figure because of space constraints.

Across both NN sets (i.e., the full NN set and the subset
of learning NNs only), all three benchmark datasets, and all
three NAS implementations, we measure average savings
of 39% or more as compared to the training epochs needed
without the use of PENGUIN. We expect to observe larger
savings in the earliest stages of NAS because we encounter
many never-learns and PENGUIN’s predictions stabilize
quickly. This is reflected in the average savings ranging
between 64% and 86% across all benchmark datasets and
NAS implementations on the full NN set. In the set of learn-
ing NNs only, which better represents later stages of NAS,
we see average savings ranging between 39% to 74%.

4.3.2 Throughput Gain

The ability of PENGUIN to predict NN model fitness early
in the training process has immediate implications in NAS.
As summarized in Section 4.3.1, we can anticipate reducing
required training epochs by about 64%-86% in early stages
of NAS and by about 39%-74% in later stages of NAS,
depending on the benchmark dataset and the NAS method.
The reduction in training epochs for individual NNs
increases the number of networks that can be explored and
evaluated using the same amount of wall time and compute
resources. Exploring more network structures gives a NAS
additional opportunity to find better NN models. Alterna-
tively, if a NAS has a fixed problem size (i.e., a set number
of models to explore), then one could evaluate those models
using fewer computational resources.

For the full NN set on C-100 in Fig. 6a, the mean savings
is about 80% or 4

5 ; this means PENGUIN evaluates the
models in 1

5 the computation needed by MENNDL. This
corresponds to a throughput gain of about 5" , allowing
5" the number of networks to be explored with the same
computational resources. In Fig. 6d, for the learning NNs
on C-100, the mean savings is about 63%; this means PEN-
GUIN evaluates the models in 37

100 times the computation
needed by MENNDL. This corresponds to a throughput
gain of about 100

37 , or 2:7" , allowing 2:7" the number of
networks to be explored with the same computational
resources. Thus, for C-100, augmenting MENNDL with
PENGUIN yields a throughput gain of between 2:7" and
5" . Similarly, augmenting MENNDL with PENGUIN
yields a throughput gain of between 2:7" and 4" on F-
MNIST and SVHN.

The same manner of computation demonstrates a
throughput gain of between 1:6" and 3:3" for EvoCNN,
across all benchmark datasets and both NN datasets, and a
throughput gain of between 3:3" and 7:1" for NSGA-Net,
across all benchmark datasets and both NN datasets.

4.3.3 Walltime Speedup

MENNDL’s built-in training termination leverages trun-
cated training in conjunction with a dynamic early

Fig. 6. Percentage of training epochs that would be saved by augmenting MENNDL with PENGUIN. (a) - (c): Full NN set, representing early stages of
NAS. (d) - (f): Learning NNs only, representing later stages of NAS.
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termination criterion. It ends training at 20 epochs, or earlier
if loss is stable over the past 10 epochs, making this NAS
implementation one of the most effective on HPC sys-
tems [1], [4]. We put PENGUIN to the test by comparing the
actual walltime of training our 6,000 NNs using MENNDL
with two termination scenarios: (i) with MENNDL’s built-in
training termination; and (ii) with PENGUIN augmenting
the termination decision. Fig. 7 shows the training walltime
in hours for the full NN set (Fig. 7a) and the set of learning
NNs only (Fig. 7b) for the two scenarios listed above and
the three benchmark datasets. When augmented by our
engine, MENNDL gains speedups of up to 5.3 times for the
full NN set and up to 3.1 times for the learning NN set com-
pared to its dynamic built-in termination. As noted in Sec-
tion 4.3.1, we expect to observe larger savings in the earliest
stages of NAS, represented by the full NN set, and smaller
savings in later stages of NAS, represented by the set of
learning NNs only. This is consistent with our observations
in Fig. 7—we see speedups of 4:3" to 5:3" on the full NN
set and speedups of 2:5" to 3:1" on the set of learning NNs
only.

Table 11 summarizes the gain from augmenting
MENNDL with PENGUIN. The first column gives the per-
centage of mean epochs saved. The second column shows
the theoretical speedup (i.e., throughput gain), we calcu-
lated based on the percentage of epochs saved—note how
the estimates are conservative because of rounding down.
The third column shows the actual wallclock time speedup
measured—in all cases the measured speedup is very close
to the theoretical speedup. To sum up, for the full NN set,
we observe theoretical speedup of 5" on C-100, 4" on F-
MNIST, 4" on SVHN, and measured speedup of 5:3" on C-
100, 4:5" on F-MNIST, and 4:3" on SVHN. For the set of
learning NNs only, we observe theoretical speedup of 2:7"
on C-100, F-MNIST, and SVHN, and measured speedup of

2:5" on C-100, 2:7" on F-MNIST, and 3:1" on SVHN. Our
measurements empirically confirm the effectiveness of
PENGUIN in drastically cutting the NN training time and
consequently increasing the training throughput on HPC
systems.

4.4 Applications of PENGUIN
The decoupling of search and prediction, and the flexible fit-
ness prediction method in PENGUIN, allow us to apply this
work in two directions.

First, we can plug different parametric functions into
PENGUIN to handle other types of fitness measurements
beyond accuracy. For example, a function based on expo-
nential decay rather than exponential growth could be used
when fitness is measured by loss.

Second, we can tune PENGUIN’s parametric modeling
for different problems with different datasets and fitness
measurements. There is no perfect alignment of NAS and
parametric function that works for every dataset and fit-
ness measurement. PENGUIN enables a user to test differ-
ent combinations of NAS methods and parametric
functions at small scale in order to find the best pairing of
NAS and parametric function for a given dataset and fit-
ness measurement. The search can then be scaled up
using the best NAS and parametric function for a given
problem.

Furthermore, by extending PENGUIN, we can capture
edge cases (i.e., models that never learn, models with anom-
alies, models with false negatives, and models that never
converge). Fig. 8 presents NN accuracy curves for four edge
cases, together with the predictions given by PENGUIN.
Specifically, Fig. 8a depicts a never-learn on C-100. In this
example, there is noise in the data, causing the accuracy to
alternate between values slightly larger than 1 and values
slightly smaller than 1, but at no point does the accuracy

Fig. 7. Training walltime for MENNDL versus training walltime for MENNDL augmented by PENGUIN.

TABLE 11
Gain from Augmenting MENNDL With PENGUIN

Full NN Set Learning NNs Only

Epochs Saved Theoretical Speedup Measured Speedup Epochs Saved Theoretical Speedup Measured Speedup

C-100 82% 5x 5.3x 63% 2.7x 2.5x
F-MNIST 78% 4x 4.5x 63% 2.7x 2.7x
SVHN 78% 4x 4.3x 67% 2.7x 3.1x
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begin to increase steadily. This NN is correctly classified by
PENGUIN as a never-learn. Fig. 8b depicts an anomaly on
the F-MNIST benchmark dataset. This NN is incorrectly
classified by PENGUIN as a never-learn because its accu-
racy does not begin to increase until after 9.5 epochs, and
PENGUIN stabilizes earlier (at 2 epochs). Fig. 8c is an exam-
ple of a false negative on C-100 (indicated by the red
squares in Fig. 5a). Fig. 8d shows an NN on F-MNIST where
the prediction of PENGUIN never converges. In this case,
the NN is not terminated early by PENGUIN and instead
trains for epred epochs—here 20 epochs as used for
MENNDL—and the actual observed maximum accuracy is
taken as the accuracy estimate for the NN. The cases where
PENGUIN’s predictions do not converge are the samples in
Fig. 6 with 0 percent of training epochs. The frequency of
each of these cases may be observed in Table 7, Figs. 6, and
5. These are examples of edge cases that we will target in
future work.

5 RELATED WORKS

Recent works have proposed different prediction strate-
gies. The two most common approaches for truncating
training are to train for a fixed but significantly reduced
number of epochs (e.g., 20 instead of 100s) [21], [50] or
to train until the maximum accuracy or minimum loss
has not improved for a user-specified amount of time
(e.g., if the maximum accuracy does not improve for 5
epochs). Such methods are commonly included in NN
software like Keras [51], and are built-in to many NAS
implementations, including the three NAS implementa-
tions in our case study.

There are a variety of works in the area of performance
prediction and extrapolating NN learning curves [52], [53],
[54], [55]. Some methods target hyperparameter search,
which involves finding the best hyperparameter configura-
tion for a given human-designed network but does not
explore different architectures [52]. Domhan et al. [52] and
Klein et al. [53] use probabilistic methods involving compu-
tationally expensive Markov Chain Monte Carlo sampling.
The approach of Swersky et al. [55] automatically pauses
and restarts training of models based on the predicted

trajectory of the loss curves. Baker et al. [54] extract features
from NNs to use in training a series of regression models to
estimate fitness. There are also a variety of works that use
parametric modeling of learning curves for machine learn-
ing problems.

The solution presented in this paper amplifies these
approaches with the design of a prediction engine, PEN-
GUIN, that allows the use of any parametric function to
model learning curves. Furthermore, PENGUIN is fully
decoupled from any NAS and can be plugged into existing
NAS to provide fitness models and predictions, regardless
of the NAS method or target datset.

6 CONCLUSION

This paper introduces PENGUIN, an engine that enables the
decoupling of NAS from fitness prediction strategies. PEN-
GUIN increases the computational efficiency of high-perfor-
mance and high-throughput NAS workflows and enables
portability of fitness prediction across NAS implementa-
tions and scientific domains. We present a case study using
three diverse datasets (i.e., CIFAR-100, FashionMNIST, and
SVHN) and three NAS implementations (i.e., MENNDL,
Evo-CNN, and NSGA-Net). We compared the number of
epochs, throughput, and walltime when these NAS meth-
ods would terminate training of the NNs using their built-
in truncated training versus when augmented by PEN-
GUIN. PENGUIN enabled a reduction in needed training
epochs by 39% to 86%, depending on the NN sets and the
benchmark dataset used. PENGUIN increases throughput
of explored NNs by a factor of 1:6" to 7:1" . Compared to
MENNDL, which serves as a cutting edge NAS implemen-
tation on HPC systems such as the Summit supercomputer,
PENGUIN achieves a walltime speedup between 2.5x and
5.3x.

In future work we will further quantify the impact of
PENGUIN for a broader range of NAS implementations, a
more diverse set of parametric functions, and a larger suite
of datasets.

Supplemental material available on Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2022.3140681.

ACKNOWLEDGMENTS

The authors would like to thank Danny Rorabaugh, Cather-
ine D Schuman, and Michael R. Wyatt II for their valuable
feedback.

REFERENCES

[1] R. M. Patton et al., “167-PFlops deep learning for electron micros-
copy: From learning physics to atomic manipulation,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2018, pp. 638–648.

[2] J.-P. Correa-Baena et al., “Accelerating materials development
via automation, machine learning, and high-performance com-
puting,” Joule, vol. 2, no. 8, pp. 1410–1420, 2018.

[3] S. Chen et al., “How big data and high-performance computing
drive brain science,” Genomic., Proteomic. Bioinf., vol. 17, no. 4,
pp. 381–392, 2019.

[4] R. M. Patton et al., “Exascale deep learning to accelerate cancer
research,” 2019, arXiv:1909.12291.

[5] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architec-
ture search on target task and hardware,” 2018, arXiv:1812.00332.

Fig. 8. Accuracy curve and prediction for edge cases (a) never-learn,
(b) anomaly, (c) false negative and (d) never-converge. NNs in (a) and
(c) trained on C100; NNs in (b) and (d) trained on FMNIST.

2924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

http://doi.ieeecomputersociety.org/10.1109/TPDS.2022.3140681.
http://doi.ieeecomputersociety.org/10.1109/TPDS.2022.3140681.


[6] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
neural architecture search via parameter sharing,” 2018,
arXiv:1802.03268.

[7] Y. You et al., “Large batch optimization for deep learning: Train-
ing bert in 76 minutes,” 2019, arXiv:1904.00962.

[8] A. Dosovitskiy et al., “An image is worth 16x16 words: Transform-
ers for image recognition at scale,” 2020, arXiv:2010.11929.

[9] T. Johnston, S. R. Young, D. Hughes, R. M. Patton, and D. White,
“Optimizing convolutional neural networks for cloud detection,”
in Proc. Mach. Learn. HPC Environ., 2017, pp. 1–9.

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, 2019.

[11] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural archi-
tecture search without training,” 2020, arXiv:2006.04647.

[12] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolu-
tional neural networks for image classification,” in IEEE Trans.
Evol. Comput., vol. 24, no. 2, pp. 394–407, Apr. 2020. [Online].
Available: https://github.com/yn-sun/evocnn

[13] F. E. Fernandes Junior and G. G. Yen, “Particle swarm optimiza-
tion of deep neural networks architectures for image classi-
fication,” Swarm Evol. Comput., vol. 49, pp. 62–74, 2019.

[14] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuo-
glu, “Hierarchical representations for efficient architecture
search,” in Proc. Int. Conf. Learn. Representations, 2018.

[15] Z. Lu et al., “Nsga-net: Neural architecture search using multi-
objective genetic algorithm,” in Proc. Genet. Evol. Comput. Conf.,
2019, pp. 419–427. [Online]. Available: https://github.com/
ianwhale/nsga-net

[16] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 19–35.

[17] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architec-
ture optimization,” in Proc. 32nd Int. Conf. Adv. Neural Inf. Process.
Syst. 31, 2018, pp. 7827–7838.

[18] K. Kandasamy, W. Neiswanger, J. Schneider, B. P!oczos, and E. P.
Xing, “Neural architecture search with bayesian optimisation and
optimal transport,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 2020–2029.

[19] S. R. Young et al., “Evolving deep networks using HPC,” in Proc.
Mach. Learn. HPC Environ., 2017, pp. 1–7.

[20] G. J. van Wyk and A. S. Bosman, “Evolutionary neural architec-
ture search for image restoration,” in Proc. Int. Joint Conf. Neural
Netw., 2020, pp. 1–8.

[21] E. Real et al., “Large-scale evolution of image classifiers,” in Proc.
34th Int. Conf. Mach. Learn., 2017, pp. 2902–2911.

[22] L. Xie and A. Yuille, “Genetic CNN,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2017, pp. 1388–1397.

[23] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8697–8710.

[24] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural archi-
tecture search system,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2019, pp. 1946–1956. [Online]. Avail-
able: https://autokeras.com/

[25] T. Viering and M. Loog, “The shape of learning curves: A review,”
2021, arXiv:2103.10948.

[26] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, Tech. Rep. TR-2009, 2009.

[27] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio, “Maxout networks,” in Proc. Int. Conf. Mach. Learn.,
2013, pp. 1319–1327.

[28] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Proc. 18th Int. Conf. Artifi. Intell. Statist., 2015,
pp. 562–570.

[29] W. Shi, Y. Gong, and J. Wang, “Improving CNN performance
with min-max objective,” in Proc. 25th Int. Joint Conf. Artif. Intell.,
2016, pp. 2004–2010.

[30] C. Song et al., “MAT: A multi-strength adversarial training
method to mitigate adversarial attacks,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, 2018, pp. 476–481.

[31] X. Han and Q. Dai, “Batch-normalized Mlpconv-wise supervised
pre-training network in network,” Appl. Intell., vol. 48, no. 1,
pp. 142–155, 2018.

[32] S. Li, W. Song, H. Qin, and A. Hao, “Deep variance network: An
iterative, improved CNN framework for unbalanced training
datasets,” Pattern Recognit., vol. 81, pp. 294–308, 2018.
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