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Abstract

The discrete element method (DEM) is the most widely applied numerical tool to simulate triaxial test, a common geotechnical
test to measure the shear strength of soil. However, the typical DEM model uses sphere clusters to approximate soil particles,
which is not sufficiently accurate to simulate realistic soil particles. This paper shows the potential of using a physics engine
technique as a promising alternative to typical DEM method. Originally developed for simulating realistic physical and
mechanical processes in video games and computer-animated films, physics engines have developed quickly and are being
applied in scientific computing. Physics engines use triangular face tesselations to represent realistic objectives, which provides
higher accuracy to model realistic soil particle geometries. In this paper, physics engine is applied to simulate true triaxial
tests of Monterey No. 0 sand. The numerical results agree well with experimental results. This study provides DEM modelers
with the physics engine technique as another promising option to simulate realistic soil particles in geotechnical tests.
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1 Introduction
1.1 Background

Triaxial test is a widely used type of geotechnical test applied
to obtain the shear strength and stiffness of soil, which is very
important in foundation design [1]. Compared to the direct
shear test, another simple and common geotechnical test used
to determine the shear strength of soil, the triaxial test has sev-
eral advantages including the versatility of the failure plane,
uniform distribution of stresses along the shear plane, the
measurement of pore water pressures, and the controllability
of the drainage in the soil specimen [2]. These advantages
make the triaxial test a more versatile and reliable method
for soil shear strength determination.

Compared to conventional triaxial test, which assumes
the horizontal principal stresses 0> and o3 are equal to each
other, the true triaxial test is capable of independent control
of stresses in three perpendicular directions, making the test
more similar to real conditions where o, and o3 are different
[3]. However, the accessibility of actual true triaxial test is
limited by the high cost and complexity of true triaxial test
apparatus, along with the cost of human resources and time.
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Fig. 1 Realistic particle geometry representations. a Sphere clump with
1550 spheres. b Triangular face tessellation consisting of 5000 faces

These days, numerical methods, particularly the discrete
element method (DEM), are applied by geotechnical engi-
neers to simulate geotechnical tests including triaxial test.
Compared to conducting an actual triaxial test, DEM simu-
lation is a low-cost solution. Also, DEM simulation is able to
obtain microscope particle behavior including particle veloc-
ity, particle rotation, and inter-particle contact force during
simulation, which is intractable to measure in experiments
[4].

Typical DEM codes, such as Itasca PFC 2D/3D [5],
LIGGGHTS [6], and YADE [7] usually use clumps of over-
lapping spheres (Fig. 1a) to model realistic soil particles
because of the simplicity of contact detection and force cal-
culations. Researchers, including Matsushima et al. [8], Price
etal.[9], Ferellec and McDowell [10], Taghavi [5], and Zheng
and Hryciw [11], have worked on the generation of sphere
clumps. However, the sphere clump method cannot precisely
approximate particle geometries unless applying a very large
number of spheres, which becomes computationally highly-
expensive. For example, the sphere cluster in Fig. 1a contains
1550 spheres, but visible artificial bumpy surfaces can still
be observed.

The sphere clump method is not easily capable of approx-
imating small and sharp corners on realistic soil particles
[11]. However, these small and sharp corners are very impor-
tant features on soil particle surface to create inter-particle
locking and to reproduce the mechanical behavior of soils in
simulations. A particle shape factor, roundness (R), is pro-
posed by Wadell [12—14] to quantify the sharpness of corners.
When R of soils changes by 0.1 (ranging from O to 1), the crit-
ical friction angle of soils will change 1.7° [15] and the peak
friction angle will change 2.4° [16]. Such a large variance
will significantly affect the accuracy of simulations.

Since the inability of sphere clump method to preserve the
sharpness of corners limits its numerical accuracy when sim-
ulating realistic soil particles, research efforts have shifted to
integrate triangular face tessellations (Fig. 1b) in DEM sim-
ulations, rather than using a sphere clump approximation, to
improve the modeling accuracy of realistic soil particles. For
example, Latham et al. [17, 18] scanned realistic particles
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with three-dimensional X-ray computed tomography (3D X-
ray CT) and used triangular face tessellations to model these
particle geometries in DEM simulations. Govender et al.
[19-22] developed Blaze-DEM, a DEM code able to use
triangular face tessellations to model realistic particles, to
simulate the granular flow in a rotating drum. Recent com-
mercial DEM codes, such as Itasca PFC 6.0 [23] and Rocky
DEM [24], can also use triangular tessellations in the simu-
lation of realistic particles.

We want to stress that the goal of this paper is not to
replace any existing DEM codes such as PFC, LIGGGHTS,
and YADE, Blaze-DEM, Rocky DEM, or any other DEM
codes with physics engines. These existing codes represent
state-of-the-art platforms for DEM researchers and appli-
cations. The goal of this paper is to provide geotechnical
engineers with physics engine techniques as an alternative
option that they might consider using when working on sim-
ulations of granular soils.

1.2 Introduction of physics engines

In the area of computer graphics, simulations of rigid bodies
and their interactions are also important for creating immer-
sive experiences in video games and computer-animated
films. Therefore, an emerging technique, called physics
engine, has been developed to perform such simulations.
For example, in the popular video game Angry Birds, the
collisions among birds, pigs, and blocks are simulated by a
physics engine, called Box2D [25]. Recently, driven by the
rapid development and high competitiveness of the computer
gaming and movie industry, the accuracy, computational
speed, and functionalities of physics engine techniques have
significantly improved. Today, physics engines are increas-
ingly used as scientific computational platform in various
disciplines, including robotic control [26, 27], crowd sim-
ulation [28], biomedical engineering [29, 30], autonomous
vehicle research [31], virtual and augmented reality [32], and
psychological research [33].

The physics engine can use triangular face tessellations
to simulate irregular particle shapes, hence it has been intro-
duced in the area of geotechnical engineering as an alternative
of typical DEM simulation platform. Izadi and Bezujian
[34] simulated pluviation and vibration on three-dimensional
(3D) randomly-shaped realistic particles with Bullet physics
engine. Pytlos et al. [35] simulated biaxial compression
tests of two-dimensional (2D) realistic particles with Box2D
physics engine. Very recently, He and Zheng [36] simulated
oedometer tests on 3D realistic particles with PhysX engine
and He et al. [37] simulated direct shear tests with Project
Chrono.

As reviewed by Ivaldi et al. [38], now there are many
physics engines for researchers to use in scientific computa-
tion. We selected Project Chrono as the simulation platform
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in this paper for two reasons: Project Chrono can directly
use triangular face tessellations to model realistic soil parti-
cles and Project Chrono includes a soft contact model which
is suitable to simulate the mechanical behavior of granular
soils.

Most physics engines use a hard contact model or impulse-
based dynamics contact model [39]. However, DEM codes,
such as Itasca PFC 2D/3D, LIGGGHTS, and YADE, use a
soft contact model [40—44] to simulate inter-particle con-
tacts. He et al. [45] compared the formulations of hard and
soft contact models. Fleischmann et al. [49] has shown that
the multi-time-step tangential contact displacement history,
which is only integrated in soft contact model, is very impor-
tant for reproducing accurate results when simulating the
shearing behavior of soils. As the shearing behavior of soil is
very significant in triaxial test, we used Project Chrono, one
of the few physics engines integrating soft contact model, as
the simulation platform.

In this study, we applied Project Chrono to simulate true
triaxial tests with realistic soil particles. The soil particles
were first scanned by a 3D laser scanner, then the geome-
tries of these scanned realistic particles are imported into
Project Chrono to form realistic soil specimen. The stress—s-
train behavior in the simulation was rigorously compared
with actual experiment results, and the microscopic behavior,
including particle motions (displacements, velocities, and
rotations) and fabrics, were also obtained and analyzed.

2 Computational procedure of project
chrono

Project Chrono runs with a time-stepping procedure (Fig. 2),
which is introduced and described in detail in this section.

2.1 Contact detection

The contact detection method in physics engine includes a
broad phase and a narrow phase. In the broad phase, Project
Chrono searches for potentially contacting pairs of particles
and rules out particle pairs certainly not contacting from all
the particles in the simulations, to reduce unnecessary com-
putational time costs in the following narrow phase. This
method is called a sweep and prune algorithm [46].

Figure 3 illustrates the basic concept of the sweep and
prune algorithm. In Fig. 3a, each particle has its own axis-
aligned bounding box (AABB). The coordinates of corners
for all the AABBs are sorted in ascending order in both X
and Y directions in Fig. 3b. Then, Project Chrono sweeps
through both lists to search the overlaps of corner coordi-
nates. Potential contacts only exist if the AABBs overlap in
both axes. For example, in the X axis, the X coordinates of
boxes 2 and 3 overlap. In the Y axis, the Y coordinates of

START

Initialization

:

Collision detection by
sweep and prune algorithm

v

Contact force calculation with soft
contact model

v

Linear and angular velocities of
contacting particles (v, w)
calculations by Newton’s second

v

Position and orientation (x, 6)
updates by Euler integration

Next time step

Fig. 2 Computational procedure of Project Chrono

boxes 1 and 2, 1 and 3, and 2 and 3 overlap. Therefore, Boxes
2 and 3 overlap in both X and Y directions, so particles 2 and
3 are potentially contacting and pass the screening to the nar-
row phase. In 3D simulations, things are the same except the
AABBs are sorted in X, Y, and Z axes.

In the narrow phase, the potential contacting particles will
be evaluated by a Gilbert-Johnson-Keerthi (GJK) algorithm
[47], which is able to efficiently compute the minimum dis-
tance between two potential contacting particles (such as d
between particles 2 and 3 in Fig. 3a), to determine whether
those two particles are in contact. After identifying the con-
tacting particles, the contact force and then particle motions
will be computed with the contact model.

2.2 Formation of contact model in project chrono
Particle motions include linear and angular movements (see
Fig. 4). Based on Newton’s second law, linear and angular

movements are described as:

F = ma (D

M= 1B @)

where F, m, and a are the force on the particle, the mass, and
the linear acceleration of the particle, respectively; and M, I,

@ Springer
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Fig. 3 Illustration of the sweep
and prune algorithm

(a) Build AABB (axis-aligned bounding box)
“L” means left and low, “U” means right and top

Fig. 4 Illustration of particle
movements following Newton’s
second law

andf are the moment on the particle, the moment of inertia,
and the angular acceleration of the particle, respectively.

The linear and angular velocities, along with the parti-
cle displacement and rotation, are calculated iteratively. In
a semi-implicit Euler scheme, at time step ¢, the linear and
angular velocities can be determined as:

F; At
VitAr = Vi + aAt =v; + (3)
M; At
Orpar = @ + BAL = @ + 7 4

where At is the time step size used in the computation. Based
on linear and angular velocities, the particle displacement and
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(b) Sweep through X and Y list for
identifying overlapped bounding boxes

x = Particle position in X-Y-Z
coordination system

6 = Particle rotation in X-Y-Z
coordination system

v = Linear (or translational) velocity of
the particle

w = Angular velocity of the particle

m = Mass of the patrticle

I = Moment of inertia of the particle

F = Total force applied on the particle
M = Total torque applied on the particle

The bold font represents vector parameters
and regular font represents scalar parameters

rotation at any time step ¢ can be determined as:

&)

X+ Ar = Xp + Vi ar At

00nr = 0 + @ ar AL (6)
where x; and 6, are the particle displacement and rotation at
time step ¢, respectively.

Many soft contact models have been developed to deter-
mine interparticle contact forces [48]. The basic concept
of these soft contact models is fundamentally the same.
Overlaps between particles at contacts are allowed, and the
magnitudes of contact forces are determined by the time-
variant amounts of overlap.

The soft contact model used in Project Chrono is the
Hertzian model [49], which is also widely applied in DEM
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n and s are normal and tangential directions

f, and f, are normal and tangential contact forces
k, and k. are normal and tangential stiffnesses

1 is the interparticle friction coefficient

4 is the overlap distance in normal direction

d. is the overlap vector in tangential direction

I

Fig.5 Normal and tangential contact forces in soft contact model

codes. The Hertzian model is an analogy with a nonlinear
spring-dashpot system, where the spring represents the elas-
tic contact force and the dashpot governs the damping effect.
For two contacting particles, the elastic force is positively
correlated to the inter-particle overlap, while the damping
force is determined by the damping ratio and the relative
velocity. For example, two particles i and j are in contact in
Fig. 5a and b, and the inter-particle normal and tangential
contact forces f, and f; can be computed as:

f, = vV Reffs(kndn - Vnmeffvn) @)
f; = V Reff8(=kgds — ysmersVy) ()

where R, is the effective radius of curvature of two contact-
ing particles; § is the magnitude of overlap;k, and k; are the
normal and tangential stiffness constants; d,, and d; are the
normal and tangential overlap vectors at the contact point; y,
and y are the normal and tangential damping coefficients;
mey is the effective mass of two contacting particles; and v,
and v, are the normal and tangential components of relative
velocity at the contact point, respectively. With the masses

of two contacting particles as m; and m;, the effective mass
mep and effective radius of curvature R4 can be computed
as:

mim
Meff = m,TmJ ©)
Ross — RiR; (10)
TR+ R;

The relative velocity v and its normal and tangential com-
ponents v, and v, can be determined as:

v=(Vj+®; xr;)—(V; + 0; XT;) (11)
vV, = (v-n)n (12)
Vi =V —V, (13)

where v; and v; are the linear velocities of particles i and j;
w; and w; are the angular velocities of particles i and j; r;
and r; are the vectors pointing from the centers of masses
of particles i and j to the contact point; and n is the contact
normal vector. Then, the normal and tangential overlapping
vectors d,, and d, can be determined as:

d, =dn (14)
t t

d, = /Vsdt — (n-/vsdt)n (15)
o fo

where § is the magnitude of overlap, 7y is the time step at the
beginning of contact, and 7 is the current time step.

The tangential contact force f; can be determined using
Coulomb’s law of friction (stick—slip condition) as shown in
Fig. 5(b):

o ] if (5] < wlf,]

Ify| = .
i, | if £ > plf,]

(16)

where w is the friction coefficient. For low shear forces
(If sl< ulf »)), there is no relative motion between two particles
(stick). For high shear forces (If s|= ulf,1), there is relative
motion between two particles (slip).

3 Soil specimen digitization
Monterey No. 0 sand, which is composed of subrounded
to subangular grains comprising mainly quartz and feldspar

[50], is used in this research. The characteristics of this type
of sand are: mean diameter d,, = 0.45 mm, coefficient of

@ Springer
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Fig.6 Sample particles scanned by a 3D laser scanner

uniformity C,, = 1.53, specific gravity SG = 2.65, target rel-
ative density Dy = 97% (maximum void ratio epax = 0.860,
minimum void ratio epj, = 0.565) [3, 50].

Based on the grain-size characteristics and angularity of
the Monterey No. 0 sand, 500 sample particles scanned by
a 3D laser scanner were selected from our particle library
one by one, which are then stored as “STL” files (Fig. 6).
Then these particle geometries are replicated to fill a 76 x
76 x 76 mm true triaxial test box, which has the same size
as the soil specimen used in the true triaxial tests conducted
by Lade and Duncan [3]. The size of particle geometries was
magnified 10 times, otherwise, there would have been around
10,000,000 particles filling the triaxial test box, which greatly
exceeds the computational capability. Therefore, the mean
diameter of the scanned particles d,,” = 4.5 mm, and around
10,000 particles were applied in the simulations (Fig. 7).

4 Simulation setup

The simulation setup followed the experimental setup. The
particles were rained into the test box to create the simu-
lated specimen, which was then consolidated and vibrated
to reach a dense state (void ratio e = 0.57), and then pre-
stressed under the confining stress of 58.8 kPa. After that,
in the shearing stage, the vertical strain &; was constantly
increased at a strain rate of 10% s~!, until it reached 10%,
while the horizontal strains &, and €3 were controlled to apply
specific horizontal stresses to the specimen. As Fig. 7 shows,
the minimum horizontal stress is applied along x-axis, and
its value o3 = 58.8 kPa. Then, the intermediate horizontal
stress is applied along y-axis, and its value o> is dependent
on the intermediate principal stress ratio b [3], as:

p= 2% (17
o] — 03
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Fig. 7 Digitized soil specimen filled with scanned particles

Table 1 Simulation parameters of soft and hard contact models

Parameters Values
Particle density (kg/m®) 2650
Friction coefficient, u 0.75 [3]
Young’s modulus, E (Pa) 1.2 x 107
Poisson’s ratio 0.3
Normal contact stiffness, k, (N/m) 1012
Tangential contact stiffness, k; (N/m) 8 x 10!
Normal damping coefficient, y,, (s~1) 40
Tangential damping coefficient, y; (s~!) 20

Time step size, At (s) 1075

where o is the vertical stress which is dependent on the
vertical strain €.

The simulations were performed on a desktop computer
with an Intel Xeon E5-1620 3.6 GHz 8-Core CPU, 16 GB
memory, and an NVIDIA Quadro K620 GPU with 2 GB
graphic memory. The simulation time for each specimen was
about 4 h. The key modeling parameters are shown in Table
1. Specifically, the Young’s Modulus used here was around
1000 times smaller than the actual value, to maintain both
the stability of simulation and the accuracy of results [49].
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Fig. 8 Evolution of numerical and experimental stress—strain behavior with different b values

5 Results and discussions
5.1 Stress—strain behavior

From both numerical and experimental results (conducted by
Lade and Duncan [3]), evolution of stress ratio and volumet-
ric strain &, with increasing axial strain &1 and different b
values is shown in Fig. 8. Specifically, the stress ratio n is

defined as:
0] — 03
— 18
1 o1+ 03 (1%

Due to the limitation of experiment conditions, the exper-
imental data after the failure of specimen could not be
recorded. Thus, the simulation data go further than the exper-
iment data do. According to Fig. 8, the stress ratios from

@ Springer
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Fig.9 Summary of stress—strain behavior from simulations and actual experiments: a stress ratio from simulations; b volumetric strain curves with
different b values from simulations; ¢ Peak friction angles d Peak dilation angles from both simulations and actual experiments

experimental and numerical results have similar peak val-
ues, though the experimental stress ratios achieve their peak
values earlier with the increasing of b value. As for the volu-
metric strain ¢,,, the numerical and experimental results have
quite good matches when b equals to 0 and 0.15, while the
experimental ¢, raise earlier when b equals to 0.5, 0.75 and
1.

A summary of stress—strain behavior from simulation and
experimental results is shown in Fig. 9. According to Fig. 9a,
the peak stress ratio increases with b value first until b reaches
0.75, then decreases slightly. The relations between volumet-
ric strain ¢, and axial strain & are shown in Fig. 9b, which
shows the increase of the final volumetric strain with the
increase of b value.

@ Springer

In triaxial tests, the friction angle ¢ is dependent on the
stress ratio 7, as:

¢ = arcsin(n) (19)

Figure 9c shows the relation between peak friction angle
¢’ and b value from both simulation and experiment results.
In both results, the peak friction angle ¢’ increases with b
located in the range between 0 and 0.75, then decreases with
breaches 1, which agrees with the observation in Fig. 9a. The
agreement between numerical and experimental ¢’ is good,
with the maximum divergence of 1.3°.

According to Hanson [51], the dilation angle v can be
defined as:

(Asv/Ael) ) (20)

w = arcsin(m
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Fig. 10 Particle displacement
vectors with different b values

Figure 9d shows the relation between peak dilation angle
Y’ and b value from both simulation and experiment results.
In both results, the peak dilation angle v’ increases with the
increase of b value. Also, the agreement between numeri-
cal and experimental v’ values is good, with the maximum
divergence of 3°.

5.2 Particle motions

The displacement fields of all the particles with different
b values are shown in Fig. 10. Each arrow represents the
displacement vector of a particle. The color as well as the
length of bar represent the magnitude of the displacement.
According to Fig. 10, in all scenarios, particles close to top
corners tend to have larger displacements than the particles
close to the bottom-middle area, which is reasonable because
the moving boundaries in the simulation are the top and side

Displacement (x10-3 m)

(d) b=0.75

(e) b=1

boundaries. Also, with the increase of b value, particle dis-
placements get larger, and they tend to be mobilized along
x-axis. This is reasonable because the minimum stress is
along x-axis, and therefore the larger stresses occurring along
other directions are pushing the particles to move along the
direction with least resistance (x-axis).

The particle rotations can be quantified in the form of
quaternion. Assuming an object has a rotation 6 about a rota-
tion axis u = [uy,uy,u;], where uy,uy,u, are the components
of u along x, y, and z axes as shown Fig. 11, a quaternion Q
can be defined to represent the rotation of a particle:

=)
I
Il
—~
AN~ A~

DI DR D D~~—
SN—

q0 cos

~—

q1 U, Sin @1
a9 uy sin

~—

q3 U, sin

@ Springer
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Fig. 11 Illustration of particle rotation

Thus, with quaternion Q obtained by simulations, rotation
6 can be calculated as:

6 = 2 arccos(qo) (22)

The evolutions of average rotation (6 mean) values during
the shear stage with different b values are plotted in Fig. 12a,
and the final Opeqan values with different b values are plot-
ted in Fig. 12b. According to Fig. 12b, the final 6 pean value
increases with the increase of b value as expected, since the
larger b value leads to more violent movement in the speci-
men during the shear stage.

5.3 Fabrics

Soil specimen fabric can be quantified by scalar parame-
ters (such as coordination number, contact index, the average
branch vector length, etc.) and directional parameters (such
as spatial distributions of particle long axes, contact nor-
mals, branch vectors, etc.) [52]. The coordination number
and spatial distribution of contact normals are widely used
for analyzing fabric evolution in DEM simulations, and there-
fore these parameters in both contact models are obtained and
compared in this study.

5.3.1 Coordination numbers

The coordination number (CN) is quantified as the average
number of contacts of a single particle in a granular system.
Larger CN means stronger fabric formed in granular soils. If
the total number of particles isNV, in the soil specimen and
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the total number of contacts is N, the CN is defined as:

2N,
=3

CN (23)

The CNs with different b values are shown in Fig. 13a.
In all scenarios, CN values decrease with the shearing pro-
cess. This is because the soil specimens dilate when they are
sheared. Besides, higher b value leads to lower CN. This is
because higher b value causes larger dilation, looser speci-
men, and therefore, smaller CN as shown in Fig. 13b.

5.3.2 Contact normal distribution and anisotropy

Contact normals are vectors representing the normal direc-
tions of contact forces on contact points in a soil specimen.
The spatial distribution of contact normals can be plotted as a
3D rose diagram as shown in Fig. 14c—h. Each bar represents
the frequency of contact normals in this direction in the 3D
space.

Kanatani [53] showed that the rose diagram can be quan-
tified by a density function f(n):
fn) = %(1 + Dijninj + Dijuninjngm)(, j = 1,2,3)  (24)
where n; is the component of contact normal in axis i, and

Dj; and Djj; are the second order deviatoric tensor, and the
fourth order deviatoric tensors respectively:

2 1
Dij = 5\ b — 38 (25)

2 6 3
Djji = T <¢ijkl - §5ij¢k1 + g&'ﬁkl) (26)

where §;; is the Kronecker delta function:

li=j
S:i = 27
and ¢;; andg;j; are second order and fourth order fabric ten-
sors respectively:

N
1 c
0 =5 ’; nf'n” (28)

N,
1 &
¢ m=1

where N, is the total number of contact normals in the soil.

The contact normals for plotting the rose diagram are also
used to determine density function based on Egs. (24-29),
which is also plotted in Fig. 14c-h. The density function is
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essentially the best fitting surface of the 3D rose diagrams.
Both 3D rose diagram and density function illustrate the pre-
ferred direction of contact normals, but 3D rose diagram may
be easier for visual observation of the preferred direction.

Figure 14a plots 3D rose diagrams and density func-
tions of contact normals in the specimen before shear, while
Fig. 14b—f plot the diagrams after shear with different b val-
ues. According to Fig. 14, the distribution of contact normal
directions is highly isotropic in both x, y, and z axes before
shear stage as shown in Fig. 14a. After shear stage (Fig. 14b),
the distribution of contact normal directions is highly related
to the b value: When b = 0, most of the contact normals
are mobilized along the z-axis, while more contact normals
get mobilized along the y-axis with the increase of b value,
which is shown in the diagrams in Fig. 14b—f. This is reason-
able because the intermediate horizontal stress o increases
with the increasing of b value, making the specimen more
dense along the y-axis.

The second order fabric tensor ¢;; is a 3-by-3 matrix. Three
principal values (eigenvalues) of the fabric tensor are ¢1, @2,
and @3, which are commonly used for advanced geotechni-
cal analysis, such as development anisotropic constitutive
models and quantification of fabric anisotropy [54-58].
To measure the degree of fabric anisotropy, Barreto and

6 8 10 0.0 0.2 0.4 0.6 0.8 1.0

(b) b

O’Sullivan [59] proposed a generalized octahedral fabric fac-
tor based on @1, @2, and @3 values:

1 0.5
v=—l@-e -+ - GO

2

The evolutions of ¢1, @2, and @3 with different b values
are shown in Fig. 15a—e, and the evolution of ¥ with dif-
ferent b values during the shear stage are shown in Fig. 15f.
According to Fig. 15a—e, in every scenario, ¢1, ¢2, and ¢3
are very close to each other before the shear stage starts.
Then, the differences of these values increase in the strain
hardening stage, and then decrease in the following strain
softening stage. This agrees with the evolution of ¥ values
shown in Fig. 15f: ¥ values are close to zero when axial
strain £, = 0, then they increase until reaching their peaks
before decreasing in the residual state.

Specifically, in the final state (¢, = 10%), the ¢ value,
reflecting fabric strength along x-axis (with constant mini-
mum horizontal stress o), keeps near 0.29 no matter how b
value changes. In the meantime, the ¢, value reflecting fab-
ric strength along y-axis increases with the increasing of b
value, but it never exceed @3 value reflecting fabric strength
along z-axis, though it decreases with the increase of b value.

@ Springer
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Fig. 14 Rose diagrams and
density functions of contact
normals before and after shear
with different b values

(a) Before shear

(b) After shear

Before shear, ¥=0.01317

(d) ‘ .

After shear, b=0, ¥=0.11007

After shear, b=0.15, ¥=0.09899

20

After shear, b=0.5, ¥=0.08048

(9

After shear, b=0.75, ¥=0.07446

(h

After shear, b=1, ¥=0.06245

Therefore, the final difference between fabric tensor eigen-
values keeps decreasing with the increase of b value, which
agrees with Fig. 15f which shows that the final ¥ decreases
with the increase of b value.

5.4 Force chains

Force chains are a key feature of DEM for visualizing
the heterogeneity of granular systems under external loads,
which allow DEM researchers to directly observe micro
inter-particle force transmission and link micro and macro
mechanical behavior of granular soils. This study developed
functions that can be embedded into Project Chrono to plot
force chains. Figure 16 shows the chain forces in both con-
tact models with different shear strains. Each bar represents

@ Springer

an inter-particle contact force, the color as well as the size
of bar represent magnitude of the force, and the direction of
the bar represents the direction of the contact force. Accord-
ing to Fig. 16, before the shear stage starts, the directions of
contact force are highly randomly distributed, while after the
shear stage, most contact forces are mobilized in the vertical
direction, and the magnitudes of contact force increase a lot.
This makes sense because the axial stress o ; after shear stage
is much larger than the one before shear stage. Besides, the
magnitudes of contact force increase with the increase of b
value, for the increase of b value also means the increase of
the intermediate horizontal stress o .
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Fig. 15 a—e Evolutions of fabric
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6 Conclusion

This paper demonstrates the feasibility of using physics
engine techniques for simulating true triaxial tests of realis-
tic granular soils. A 3D laser scanner is used to scan realistic
soil particles for simulation. The realistic particles are repre-
sented as triangular face tessellations in the physics engine,
which precisely preserves particle geometries, especially the
small and sharp corners on the particles, which is critical
to reproducing the mechanical behavior of granular soils in
simulations.

This study demonstrates that Project Chrono is able
to yield stress—strain behaviors matching the experimental
results when simulating true triaxial tests of irregular real-
istic particles, as well as output the important parameters
for geotechnical analysis including particle displacements,
particle rotations, coordination numbers, contact normals,
contact forces, and force chains. Based on these parameters,
advanced geotechnical analysis such as fabric evolution can
be performed. The physics engine technique can be poten-
tially used as a discrete element simulator for simulating
realistic soil particles in geotechnical tests such as triaxial
tests.

@ Springer
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