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Abstract—Capturing structural information of a biological
molecule is crucial to determine its function and understand
its mechanics. X-ray Free Electron Lasers (XFEL) are an
experimental method used to create diffraction patterns (images)
that can reveal structural information. In this work we design,
implement, and evaluate XPSI (X-ray Free Electron Laser-
based Protein Structure Identifier), a framework capable of
predicting three structural properties in molecules (i.e., orien-
tation, conformation, and protein type) from their diffraction
patterns. XPSI predicts these properties with high accuracy in
challenging scenarios, such as recognizing orientations despite
symmetries in diffraction patterns, distinguishing conformations
even when they have similar structures, and identifying protein
types under different noise conditions. Our framework shows
low computational cost and high prediction accuracy compared
to other machine learning methods such as random forest and
neural networks.

Index Terms—machine learning, diffraction patterns, proteins,
autoencoder

I. INTRODUCTION

Proteins and other biological molecules are responsible for
many vital cellular functions, such as transport, signaling, or
catalysis, and dysfunction can result in diseases. Information
on the 3-dimensional (3D) structures of biological molecules
and their dynamics is essential to understand mechanisms
of their functions, leading to medicinal applications such as
drug design. To obtain such information, a variety of experi-
mental techniques have been developed. Since the 1950s, X-
ray crystallography has been the primary technique to obtain
structural information. Developments of X-ray free-electron
laser (XFEL) light sources offer a new possibility for imaging
biological systems. Its extremely strong X-ray laser allows
imaging of biological systems without crystallization, and
therefore, it can be applied to a wider variety of systems under
various physiological conditions. In addition, such a strong
light enables “single-shot” imaging, i.e., one can obtain a two
dimensional (2D) diffraction image of “radiation damage-free”
samples. If a sufficient number of these 2D diffraction patterns
is collected it is then possible to generate a 3D structure,
assuming the orientation of each diffraction pattern can be
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determined [1]-[3]. In addition, as bio-molecules are highly
dynamic, XFEL may also capture the molecule in different
conformations. In order to achieve high resolution structure
determination, it is also critical to identify the conformation
of the bio-molecules captured in a given diffraction image.

In this work we focus on identifying three structural prop-
erties of bio-molecules, orientation, conformation and protein
type, embedded in 2D diffraction patterns using machine
learning (ML) approaches. Orientation refers to the placement
of the incident beam with respect to a protein structure and
is defined by the three angles: ® (Azimuth), © (Altitude),
and ¥ (Rotation angle). Conformation determines the overall
shape of the molecule. Protein type refers to the identity of
the protein structure.

We present the design, implementation, and validation of
a software framework for the predictions of the structural
properties embedded in XFEL images. We call this framework
XPSI (XFEL-based Protein Structure Identifier). XPSI is a
framework that relies on ML methods such as an autoencoder
and the K-nearest neighbor method (KNN), to capture key
information that allows the identification of properties, such as
spatial orientation, protein conformation, and different protein
types from the diffraction patterns. Our framework comprises
four key modules: (i) a data pre-processing module to load,
crop, and normalize images; (ii) an autoencoder module to
extract diffraction pattern features; (iii) a ML module to model
and predict the three structural properties from the diffraction
patterns; and (iv) a validation module to measure the accuracy
of the predicted properties. We demonstrate the capabilities
of our framework by evaluating and quantifying the accuracy
when the framework is presented with challenging datasets
and combinations of structural protein properties. Moreover,
we provide a comparison analysis of our framework with other
cutting-edge methods in two fronts: prediction accuracy and
computational performance.

The contributions of this work are as follows:

o A framework to predict the three structural properties of

protein (i.e., orientation, conformation, and protein type)
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X-ray diffraction patterns;

o The validation of the prediction accuracy of XPSI for
challenging scenarios with symmetrical orientations, con-
formational similarity, and protein identification under
highly noisy conditions;

o The comparison of computational performance and pre-
diction accuracy of our framework versus other cutting
edge ML-based methods.

The paper is organized as follows, Section II describes the
generation of diffraction patterns and the protein’s structural
properties. Section III presents our framework. Section IV
demonstrates the capabilities of the framework for challenging
scenarios with noise and symmetry in the diffraction patterns,
high similarity of structural conformations, and multiple pro-
tein types. Section V quantifies the computational performance
and prediction accuracy in comparison with other cutting-
edge methods. Section VI summarizes findings and provides
directions for future work.

II. PROTEIN DIFFRACTION PATTERNS AND PROPERTIES

In this study, protein diffraction patterns obtained from
XFEL experiments are considered. We provide a short de-
scription of the experimental generation of diffraction patterns
and the data processing that is required to extract information
embedded in these diffraction patterns.

A. Experimental Protein Diffraction Patterns

In X-ray Free Electron Laser (XFEL) experiments, protein
molecules are shot with an X-ray beam and the scattering
from the protein is recorded in a diffraction pattern as il-
lustrated in Figure 1. The resulting diffraction patterns are
unique to each protein and contain 2D information on its
3D structure. Because the orientation of the proteins cannot
be controlled during the experiments, each 2D diffraction
pattern corresponds to a particular view of the protein, and
patterns are different even for the same protein 3D structure.
In addition, proteins are flexible. As such, differences in
diffraction patterns can also indicate a change in protein
conformation. Therefore, to extract 3D information on protein
structure, data processing and analysis of these low resolution
2D diffraction patterns is required. In addition, we should note
that the intensity of the XFEL beam directly affects the quality
of the images. Indeed, the signal to noise ratio decreases with a
lower intensity beam thereby affecting the quality (or amount
of information) of the image. Figure 2 shows three examples of
resolutions produced by varying intensities of the XFEL beam
(i.e., high, medium, and low). Specifically, in the figures, we
represent high, medium, and low beam intensities as 1 x 106
photons/um?/pulse, 1 x 10*® photons/um?/pulse, and 1 x 104
photons/pm?/pulse respectively.

B. Structural Properties

XFEL experiments can capture useful information of the
structure and dynamics of biomolecules which are essential
to elucidate their function. In this work, we are interested
in annotating diffraction patterns. Several factors have to be
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Protein diffraction
patterns examples
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Fig. 1: Experimental process to obtain diffraction patterns (i.e.,
images) from 3D proteins using the X-ray Free Electron Laser
(XFEL). Three examples of generated diffraction patterns are
shown on the right.
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Fig. 2: Three resolutions of images created from three varying
intensities of the incident beam (i.e., high, medium, and low)
and with associated noise level (i.e., low, medium, and high).

considered: i) orientation of the protein captured in a given
diffraction pattern, ii) the diversity in the protein structure
(conformation), and iii) the type of protein.

Orientation refers to the placement of the incident beam
with respect to a protein structure. It is described by the three
Euler angles: ¢ (Azimuth) = [-180,180], © (Altitude) = [0,
180], and W (Psi or rotation angles = [0, 360] [4]. Figure 3
shows two orientations of the same protein, each with their
own three angles (¢, ©, and V). The diffraction patterns

*oQ® 7@

(b) Orientation 2:
d, O, = 145,128,291

(a) Orientation 1:
P, O,¥ = 24,151,346

Fig. 3: Two different orientations for the same protein (i.e.,
Orientation 1 and Orientation 2).

can hide non-trivial symmetries associated with the Psi (¥)
rotation angle. Observed symmetries are due to the physics
associated with the diffraction process. For example, Figure 4
shows the same protein with two identical ® and © angles
but different W rotation angle (i.e., 45 degree and 225 degrees
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respectively). The two images look very similar despite the
different rotation angle, exposing the structural similarities
that may be present in the protein conformations.

100

(a) Protein A;
Conformation A;
P, ©,¥ =179,64,45

(b) Protein A;
Conformation A;
P, ©,¥ =179, 64,225

Fig. 4: Two diffraction patterns from the same protein type,
conformation, and first two angles (® and ©) with two differ-
ent rotational angles (V) that expose symmetry not present in
the protein structure.

Conformation is the shape adopted by a protein and is
caused by the rotation of the protein atoms around one or
more single bonds. The protein atoms can assume a large
number of possible spatial arrangements. Thus, XFEL may
generate diverse diffraction patterns. Figure 5 shows two
conformations (Conformation A and Conformation B) for the

same protein.
“@

-
(a) Conformation A;
P, O,¥ = 24,151, 346

(b) Conformation B;
d, ©,¥ = 34,139,106

Fig. 5: Two conformations for the same protein (i.e., Con-
formation A and Conformation B) generating two different
diffraction patterns.

Protein type refers to the type of amino acids composing a
protein. The 20 amino acids can be combined in different ways
to make a protein. Different proteins are composed by different
types and numbers of amino acids, and thus can assume differ-
ent conformation structures that result in different diffraction
patterns. Figure 6 shows two different proteins (i.e., Protein
A and Protein B) with their corresponding conformation and
orientation properties.

III. PROTEIN DIFFRACTION IDENTIFIER FRAMEWORK

One contribution of this paper is the design and implementa-
tion of the XPSI framework to identify the structural properties
of proteins (i.e., orientation, conformation, and protein type).
The framework comprises four key modules: (i) a data pre-
processing module to load, crop, and normalize images; (ii)
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-‘ B
(b) Protein B;

Conformation C;
P, O,¥ = 84, 32,82

(a) Protein A;
Conformation A;
P, O,¥ = 24,151,346

Fig. 6: Two different proteins with different conformations and
orientations (i.e., Protein type A and Protein type B).

an autoencoder module to extract diffraction pattern features;
(iii)) a ML module to model and predict the three structural
properties from the diffraction patterns; and (iv) a validation
module to measure the accuracy of the predicted properties.
Figure 7 presents the XPSI framework and its modules.

A. Data Pre-processing Module

The input to our framework is a set of diffraction patterns
(or images) that embed protein properties. The pre-processing
module loads the dataset generated either experimentally (i.e.,
using XFEL beams) or from simulations (i.e., by downloading
the proteins from PDB and using software such as Xmipp [5]
and spsim [6] to recreate realistic diffraction patterns). In-
dependently from the source of the diffraction patterns, the
module crops the images to a fixed size. This is needed
because not all the images in a dataset are the same size.
Furthermore, the module deals with the defined beam intensity
by performing a min-max normalization for which each pixel
in an image is mapped to either black or white. This is
needed to emphasize the embedded pattern. When generated
experimentally, the properties of the considered proteins are
not known a priori, and thus, the diffraction patterns are not
annotated with their orientation and conformation. The type
of protein is normally known. In this case, the pre-processing
module forwards the dataset to the prediction module in which
a model has been previously generated using, for example,
simulated datasets. Images from datasets generated through
simulations come annotated with the structural properties.
The pre-processing module separates the images from the
properties, converts the properties into metadata (i.e., labels),
and appends the labels to a file with the properties for the
entire dataset. The pre-processed dataset is forwarded to both
the function extraction module and the modeling module for
the model generation.

B. Feature Extraction Module

The pre-processed images are input to an autoencoder
comprising an encoder and a decoder. The encoder maps
an image into a tensor of dimension N, referred to as the
latent space. The decoder rebuilds the image from the latent
space. In our framework, the encoder architecture has three
convolutional layers each followed by a max pooling layer,
generating a matrix. A flatten layer transforms the matrix into
a 1D array. The flatten layer is followed by a dense layer to
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Fig. 7: The XPSI framework includes four modules: (i) a pre-processing module where the images are loaded, normalized,
and cropped; (ii) a feature extraction module where by using an autoencoder the images are compressed and represented in
a feature vector; (iii) a ML module where a KNN model is trained and tested to predict structural properties from pattern
datasets; and (iv) a validation of the predictions. *The testing dataset for prediction does not require labels, but may contain

them which can be used for the model validation.

obtain the feature vector. The decoder has the reverse structure
of the encoder. Figure 8 presents the encoder architecture. A

Encoder architecture
3

! i
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! 1 Vectors |1
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__________________________________________________ 5
Convolution layer, where i is the count of layers

Max pooling layer, where i is the count of layers
Flatten layer, where i is the count of layers

Dense layer, where i is the count of layers

Fig. 8: The encoder architecture is composed of convolution,
pooling, flatten and dense layers. The decoder has the reverse
structure of the encoder.

key aspect of this architecture is that the dimension of the
latent space has to be sufficient to faithfully reconstruct the
original image. The closer the reconstructed image is to the
original, the better the autoencoder is representing the image
in a compressed format (i.e., latent space). This module allows
users to select a latent space whose size is a trade-off between
the architecture’s accuracy and training time. To this end,
the module measures the average mean squared error (MSE)
between the reconstructed and the original images for different
latent space sizes. Users can select a suitable size with the
support of methods such as the elbow method, identifying
when variance of the error and the associated gain in accuracy
are not significant.
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C. Modeling and Prediction Module

This module performs two distinct tasks: the generation of
a model and the prediction of protein properties.

For the modeling, the module takes two inputs from a
simulated dataset: the labels defining the protein properties
(i.e., orientation, conformation, and protein type) from the pre-
processing module and the feature vectors from the feature
extraction module. Data is split into training and testing sets
that are used for the modeling and prediction, respectively. The
training dataset always includes labels. The testing dataset for
prediction does not require labels, but may contain them which
can be used for the model validation. Because the orientation
consists of three continuous values, while the conformation
and protein type consist of discrete values, the modeling
solves one regression and two classification problems. We
select a non-parametric algorithm, KNN, as the foundation
of our modeling because of its reported high accuracy in
both classification and regression problems and low execution
costs. Comparisons with more expensive methods such as
Random Forest are presented in Sec. V and support this
design decision. As a result, we use a KNN-angle regressor
for modeling the prediction of the angles of the orientation
and two KNN-classificators for modeling the prediction of
the different conformations and protein types, respectively.
The modeling executes these three KNN models for each
K € [2, M], with an incremental step and a maximum value
of K (M). The M value and incremental step are user-defined
parameters. An analysis of the root mean square error (RMSE)
of the degree allows the module to identify the most suitable
K number of neighbors. We use the randomized train-test split
technique for estimating the performance of KNN on unseen
data (i.e., data not used to train the model) [7]. To obtain a
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more robust validation, we run and validate each model for a
user-defined number of iterations. The final KNN model with
the selected K is the output passed to the prediction.

For the predictions, we use the KNN models with the
selected K and predict the three structural properties in either
the testing dataset, if the dataset was generated with simu-
lations, or the experimentally generated datasets otherwise.
These predictions are the final output of the Modeling and
Prediction module of our framework.

D. Validation Module

The validation module measures the accuracy of our frame-
work predictions for datasets generated with simulations. To
this end, the module uses two sets of metrics. For orientation
accuracy, which is represented in the three Euler angles
(®, 0, V), the module measures the error degree (ED) for the
first two angles and Psi difference (PD) for the third. The
error degree is defined as the distance between two points
on a sphere given ¢ (Azimuth) and © (Altitud), presented in
Eq. 1. The point (P2, ©2) represents the ground truth value
and (®1,0;) the predicted one.

\/sing(%?iel) + cos (61) cos (62) sin2(¢QT¢1)
The Psi difference is defined in Eq. 2 as the difference
between real and predicted Psi (V) angle. When predicting the
orientation (¢, 0, V), the lower the error degree and the Psi
difference, the more accurate XPSI is predicting the ®,0, ¥
angles.

€]

@)

For conformation and protein type predictions, the module
uses the accuracy metric in Eq. 3 that represents the ratio
of correct predictions (both true positives and true negatives)
over the total number of cases examined (i.e., true positives,
true negatives, false positives, and false negatives). When
predicting the conformation and the protein type, the higher
the accuracy, the better XPSI predicts these two properties.

TP+TN
TP+TN+FP+ FN

wTeal - ¢predicted

3

IV. FRAMEWORK ACCURACY FOR DIFFERENT SCENARIOS

Using our framework, scientists can plug in their dataset
and predict the dataset properties to answer their research
questions. To demonstrate the versatility of our framework, we
quantify and evaluate its ability to provide accurate predictions
when presented with challenging datasets and combinations of
structural protein properties.

A. Data: Simulated Diffraction Patterns

We use two datasets from protein structures of elongation
factor 2 (EF2) and Ribosome. The datasets were generated
through simulations so that we can leverage the annotations
for the validation. Two conformations of EF2 with PDB ID
1nOu [8] and 1nOv [8] were downloaded from from Protein
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Data Bank [9] and used for the simulations. Two intermedi-
ate structures between 1nOu and 1nOv were generated using
iterative normal mode analysis [10]. We used the two con-
formations Ribosome (PDB IDs 4KJ9/4KJA and 4KJB/4KJC)
for the calculations [11]. Protein structures were rotated using
Xmipp [5] to simulate different beam orientations, and the
simulated XFEL diffraction patterns were generated using
spsim [6].

Furthermore, the images in the datasets were generated
with simulated different beam intensities: high (1 x 106
photons/pum?/pulse), medium (1 x 10*® photons/um?/pulse),
and low (1 x 10" photons/um?/pulse) for EF2; and
low (1 x 10 photons/wm?/pulse) and lower (1 x 10%3
photons/um?/pulse) for Ribosome. In our work, the beam
intensity serves as a proxy for noise in images: the lower the
beam intensity, the more noise appears in the pattern. There are
39,692 diffraction patterns per each conformation and beam
intensity for all datasets. Table I summarizes the datasets. The
diversity in the images in these datasets is representative of the
complexity of predicting the structural properties of a protein.

TABLE I: Characterization of the simulated dataset including
two protein types and multiple conformations, orientations,
and beam intensities.

Protein type | Conformation | Orientation | Beam intensity
high (116)
EF2 In0u, mov20, 1 15 0 g1 | medium (lel5)
mov53, 1nOve
low (lel4)
. low (lel4d)
Ribosome 9a, bc [®, ©,¥] Jower (lel3)

B. Setup: Evaluation Scenarios

To demonstrate the robustness and versatility of our frame-
work, we design three evaluation scenarios by selecting chal-
lenging combinations of properties and prediction tasks. Sce-
nario 1 challenges our framework to identify the orientation
of the proteins, even in the presence of symmetric patterns that
can obfuscate the prediction. Scenario 2 is designed to assess
whether our framework can differentiate between conforma-
tions with very similar, but not identical, structures of the same
protein. Finally, Scenario 3 targets our framework’s capability
to identify the protein identity by merging diverse datasets of
diffraction patterns with multiple orientations, conformations,
and protein types. We further increase the complexity of the
predictions by using images with different beam intensities. A
summary of the structural properties present in each scenario
is included in Table II.

We use the same methodology for each scenario: we ran-
domly split the data in 90% to generate the model (training)
and 10% to predict the protein properties (testing). For the
search of K in the model, we set the maximum value of K (M)
equal to 20 and an increment step equal to 1; we conduct 10
iterations per K. The prediction accuracy per trial is measured
on the testing dataset. Table III summarizes the outcome for
the three scenarios that are described in detail below.
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TABLE II: Summary of the evaluation scenarios. Each scenario uses a selection of datasets from Table I and includes the

targeted structural property.

Scenario Main Target Protein Type | Conformation Beam Intensity
1 Orientation EF2 InOu, 1nOvc high, medium, low
2 Conformation EF2 mov20, mov53 | high, medium, low
.. . EF2 1nOu, 1nOvc high, low
3 Protein identity Ribosome 9a, bc low

TABLE III: Validation results for the scenarios defined in Table II. For each scenario there are different beam intensities for
which the selected K is listed. Columns 4 and 5 are the validation metrics for orientation which indicate the percentile of the
testing dataset within that error. Columns 6 and 7 show the percentage of accuracy when predicting conformation and protein

type respectively. NA=Not Applicable.

. . . Error Degree | Psi Difference | Conformation | Protein Type
Scenario Beam Intensity K Selection (% of Data) (% of Data) Accuracy Accuracy
high K=2 < 10(95%) < 10(95%) 100%
1 medium K=8 < 10(75%) < 12(75%) 99% NA
low K=2 < 65(75%) < 35(75%) 92%
high K=2 < 10(95%) < 10(95%) 97%
2 medium K=2 < 10(75%) < 10(75%) 90% NA
low K=4 < 45(75%) < 35(75%) 80%
3 EF2 low, Ribosome low K=2 < 45(75%) < 10(75%) 86.5% 100%
EF2 high, Ribosome low K=4 < 10(95%) < 12(95%) 90% 100%

C. Scenario 1: Predicting Orientation in Symmetric Patterns

Identifying the orientation of a protein is challenging when
the diffraction pattern presents some degree of symmetry.
The symmetry in diffraction patterns is not caused by the
symmetry in the protein structure. Diffraction patterns are
approximately symmetric for any protein due to the physics
behind the diffraction process, as shown in Figure 4. In order
to evaluate the robustness of our framework to differentiate
a conformation and its 180-degree rotation, we use the EF2
dataset in Table I; the dataset includes symmetrical diffraction
patterns. We use our framework to identify the orientation
with rotation of the protein type EF2 for two conformations
(i.e., InOu and 1nOvc) and three beam intensities (i.e., high,
medium, and low).

The first row of Table III shows the validation results of
XPSI in Scenario 1. The framework validates the predictions
of the angles through measuring the error degree in Eq. 1 for
the first two angles, and the Psi difference in Eq. 2 for the
rotation angle. Table III shows the average error degree and
Psi difference of the testing dataset over the 10 iterations. We
visualize the error degree for the two first angles in Figure 9a
and the difference of the predicted versus the actual value
of the Psi angle in Figure 9b. The box-plots display the 5th
percentile, 25th percentile, 50th percentile (orange bar also
known as median), 75th percentile, and 95th percentile of the
testing dataset (i.e., 10% of the input data randomly selected).
For the high beam intensity dataset, XPSI predicts the first
two angles with an error degree equal or below 10° for 95th
percentile of the testing dataset and the Psi angle with a
difference of 10° for the 95th percentile of the dataset. The
predictions are very accurate when the beam intensity is high,
but they degrade as the patterns become noisier. However, our
framework is still able to provide an orientation estimation
when the rotation angle exposes symmetry in the diffraction
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patterns. Low beam intensity dataset is predicted with an
error degree below 60° for the 75th percentile of the testing
dataset and the rotation angle with a difference of 35° for
the 75th percentile of the testing dataset. This result shows
how our framework can estimate approximate angles even for
diffraction patterns with very low signals.

In this scenario, we also differentiate between the 1nOu and
1nOvc conformations. We observe that for high, medium, and
low beam intensity the framework identifies the conformation
with 100%, 99%, and 92% accuracy, respectively. The protein
type accuracy does not apply in this scenario since we have
only one protein type (EF2).

D. Scenario 2: Distinguishing Similar Conformations

The goal of this scenario is to demonstrate that our frame-
work is able to distinguish conformations even when they
have similar structures. Note that two conformations with
very similar structures yield diffraction patterns that are very
similar. We select the EF2 protein because we can generate
conformations with similar but not identical structures such
as mov20 and mov53. In Figure 10 we show the intermediate
structures of the protein type EF2, where mov20 and mov53
have almost indistinguishable conformations to the naked eye.
We generate a dataset of diffraction patterns with the three
beam intensities (high, medium, and low).

The second row of Table II shows the validation results for
Scenario 2. Our framework correctly identifies the conforma-
tions with 97%, 90%, and 80% accuracy for the high, medium
and low beam intensities, respectively. Figure 11 shows the
confusion matrices for the three beam intensities. The higher
the intensity of the beam, the higher the accuracy and the
less incorrectly classified patterns we have. Our framework is
able to correctly predict the conformation in 72.8% samples
even in the presence of the noise introduced by low intensity
beams. These results support that our framework is able to
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Fig. 9: Orientation error for the three beam intensities (high,
medium, and low) in Scenario 1 for two EF2 protein con-
formations (InOu and 1n0Ovc). The box-plot displays the 5th
percentile, 25th percentile, 50th percentile (orange bar also
known as median), 75th percentile, and 95th percentile of the
testing dataset (i.e., 10% of the input data randomly selected).

mov53

mov20

Fig. 10: The intermediate conformations of the EF2 protein.
The conformations mov20 and mov53 have a similar structure
but are not identical.

differentiate between conformations in challenging scenarios,
including almost indistinguishable conformations and noisy
data.
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Fig. 11: Confusion matrices for high, medium, and low beam
intensity when differentiating between mov20 and mov53
conformations. The confusion matrix indicates the number of
samples that were correctly predicted and the number that were
not.

E. Scenario 3: Identifying Proteins and Their Properties

The main goal of this scenario is to evaluate the capability
of our framework to identify protein identity in a general and
realistic set of diffraction patterns with multiple conformations
and orientations. This dataset includes diffraction patterns
from EF2 and Ribosome in two conformations each, and with
diverse orientations. We include low beam intensity datasets
for EF2 and Ribosome to make sure there is a level of noise
both proteins share.

The fourth row of Table II shows a 100% of protein
type identification accuracy in Scenario 3. This remarkable
result is accompanied by very high conformation accuracy.
Figure 12 shows the confusion matrix of the conformation
predictions. We observe that XPSI predicts 1nOu, InOvc,
9a, and bc with an accuracy of 88.3%, 85.2%, 92.3%,
and 80.2%, respectively. When predicting across all four
conformations, our framework delivers an average of 86.5%
of conformation accuracy. It is important to highlight that for
both cases the inaccurate prediction of the conformation is
made within the protein type, which indicates that there are
no cases in which the framework misidentifies conformations
from different protein types. These results show how our
framework is able to distinguish between conformations
from different protein types accurately. This facilitates
the understanding of the complex conformational dynamics
even when the conformations are from different protein types.
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Fig. 12: Confusion matrix for Scenario 3 with differentiating
between 1nOu, 1nOvc, 9a and bc conformations. The first two
conformations belong to the EF2 protein while 9a and bc
belong to Ribosome. We use the low beam intensity datasets
for both protein types. The confusion matrix indicates the
number of samples that were correctly predicted and the
number that were not.

The framework predicts the orientation for the diffraction
patterns of both protein types (EF2 and Ribosome). We
visualize the error degree and Psi difference for each protein
type in the testing dataset in Figure 13. The box-plots display
the 5th percentile, 25th percentile, 50th percentile (orange bar
also known as median), 75th percentile, and 95th percentile
of the testing dataset for each protein type (i.e., 10% of the
input data randomly selected). We observe in Figure 13a that
XPSI predicts the first two angles with an error degree equal
or below 70° and 10° for the 75th percentile of the EF2 testing
dataset and the 95th percentile of the Ribosome testing dataset,
respectively. In Figure 13b we present the Psi difference. XPSI
predicts the Psi angle with a difference equal or below 40°
and 6° for the 75th percentile of the EF2 and Ribosome
testing dataset, respectively. The Ribosome molecule is larger
in size than EF2 (=20 times). Therefore, it is more accurate
the prediction of orientation for Ribosome when both protein
types datasets have low beam intensity.

Since the EF2 is significantly smaller than ribosome, using
the diffraction patterns with stronger beam intensity, we can
imitate the situation where two proteins have similar size.
That is why, we test for the mixture of the diffraction patterns
of EF2 with high beam intensity and Ribosome with low
beam intensity. We obtain the same protein type accuracy of a
100%. Additionally, in Figure 14 the conformation prediction
accuracy increases compared to the low beam intensity case
for both protein types. Three conformations (1nOu, 1nOvc,
and 9a) are now predicted with an accuracy greater than
93.5%. Also, XPSI predicts the first two angles with an error
degree equal or below 10° for 95th percentile of the testing
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Fig. 13: Orientation error for Scenario 3 given each protein
type: EF2 and Ribosome. The box-plot displays the 5th
percentile, 25th percentile, 50th percentile (orange bar also
known as median), 75th percentile, and 95th percentile of the
testing dataset for each protein type (i.e., 10% of the input
data randomly selected).

data combining EF2 with high beam intensity and Ribosome
with low beam intensity. The Psi angle is predicted with a
difference equal or below 5° for 95th percentile of the testing
data combining EF2 with high beam intensity and Ribosome
with low beam intensity.

Our evaluation demonstrates that our framework (i) identi-
fies rotation in the diffraction patterns, even in the presence
of symmetry; (ii) differentiates between conformations with
similar, but not identical, structures of the same protein; and
(iii) identifies the type of a protein in a completely diverse
set of diffraction patterns with multiple conformations and
orientations. All of these capabilities are proven with different
beam intensities. As expected, the lower the beam intensity
the noisier the diffraction patterns, which affects the accuracy
of the predictions.

V. COMPARISONS WITH OTHER METHODS

We compare our framework in terms of its computational
costs and prediction accuracy to other existing ML methods:
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Fig. 14: Confusion matrix for Scenario 3 when differentiating
between 1nOu, 1nOvc, 9a and bc conformations. The first two
conformations belong to the EF2 protein type while 9a and bc
belong to Ribosome. We use the high beam intensity dataset
for EF2 and low beam intensity dataset for Ribosome.

Random Forest (RF) [12], [13] and Neural Networks (NN). We
select Scenario 1 (EF2 high beam intensity dataset with two
conformations and their rotational orientations) as comparison
benchmark since it allows us to perform regression and clas-
sification on the same dataset. This allows us to conduct a fair
comparison of the computational cost and prediction accuracy
of the different methods. We execute all our tests on the same
platform, a single node of an IBM Power9 cluster with 128
GB RAM and 1 NVIDIA Volta V100 GPU.

A. Cost of Feature Extraction for XPSI and RF

We compare the regression capability of the KNN method
in our framework to another broadly used method such as
RF. Both KNN and RF use feature vectors that we generate
with our feature extraction module (see Sec. III-B). In this
module we train our autoencoder for different sizes of the
latent space (LS) LS € [5,10,15,20,25,30, 35,40, 45, 50]
for 100 epochs with an adamax optimizer and a batch size
of 16. Figure 15 shows the mean squared error (MSE) for
each latent space; using the elbow method to select the latent
space. Based on the figure, we select a latent space of size
20; after a latent space of 20 the variance of the error and
the associated gain in accuracy are not significant. It takes
15h 27m to run these 10 autoencoders with different sizes of
latent space, for an average of 1h 32m for each autoencoder.
This feature extraction module is a one-time cost: the off-
line process runs once and the selected autoencoder with its
latent space is used by the modeling and prediction module in
Sec. III-C. This time is presented on Row 4 of Table IV.

B. Cost of Modeling and Prediction with XPSI and RF

Both KNN and RF are regression methods. Contrary to
KNN that predicts angles using neighbors information, RF
predicts angles based on the combination of multiple decision
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Fig. 15: Image reconstruction error for different sizes of the
latent space in the feature extraction module presented in
Sec III-B. Based on the elbow method, we select 20 as our

size of the latent space.

trees. The RF method is widely used in different applications
because of its high level of interpretability. We generate a RF-
based module performing both the modeling and prediction
similarly to our framework. In other words, we replace our
original modeling and prediction module in XPSI with the
RF-based module.

We feed the RF-based module with the labels defining the
protein properties (i.e., orientation, conformation, and protein
type) from our pre-processing module and the feature vectors
from our feature extraction module. As in XPSI, we split the
input dataset in 90% for training and 10% for testing. The
RF-based module builds a forest with a certain number 7" of
decision trees that are chosen from a user-defined list of values.
An analysis of the RMSE of the error degree allows the RF-
based module to identify the most suitable number of decision
trees to become the final RF model used for predictions. The
RF model is used to predict the orientations in the testing
dataset we used in Scenario 1. For both XPSI and the RF-
based modeling, we conduct 10 iterations for each value of
K and T respectively, where K is the number of neighbor in
our KNN and 7' is the number of decision trees in RF. We
measure the modeling time using KNN and RF in Scenario 1
(see Table IV).

In the table we observe that, for the modeling, it takes 4m
to generate the KNN-regressor model with K € [2,10] and
an incremental step of 1, while it takes 10h22m to build
five forests using RF with 7" € [10,50, 100, 500, 1000]. We
consider a larger number of decision trees in RF than the
number of neighbors in KNN to reduce any bias in the sampled
data used to generate forests. For the prediction, we measure
the time that takes the KNN model with K = 2 and the
RF model with 7" = 1000 to predict the orientation of the
testing dataset. These two values are selected because of their
lowest RMSE. KNN takes 1.37s to predict the orientations in
the testing dataset while RF takes 2.45s. For the prediction
accuracy, we observe that our KNN model predicts the two
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TABLE IV: Accuracy and computational performance comparison of XPSI, Random Forest (RF) and Evolutionary Neural
Architecture Search (NSGA-NET). ED: Error Degree, PD: Psi Difference, and CA: Conformation Accuracy.

Problem Type Regression Classification
Structural Property Orientation Conformation
Method XPSI [ RF XPSI NSGA-NET
Off-line process I5h27 m I5h27 m 20 h
Modeling Time 4m 10h22m 4.4 m 20.75 m
Prediction Time 1.37 s 245's 1.65s 1.90 s
Prediction Accuracy Eg;z }882;2 3 Eg;i Zggggéj g CA=100% | CA=100%

first angles (@ and ©) with an error degree (ED) below 10°
for the 95th percentile of the testing dataset, while RF does
it with a much larger error of 73°. The same applies for the
Psi difference (PD), where our model predicts the third angle
(¥) with a difference below 10° for the 95th percentile of the
testing dataset, while RF does it with a bigger difference of
48°. Overall, we observe that the RF-based module takes a
large amount of time for both modeling and prediction while
delivering less accuracy than our modeling and prediction
module.

C. Cost of Modeling and Prediction with XPSI and NNs

We compare the classification capability of our framework
to another broadly used ML method such as Neural Networks
(NNG5). Specifically, we measure time and accuracy to extract
features, generate a model, and predict protein conformations
with XPSI versus time and accuracy to execute a neural
architecture search (NAS) and use the best NN to model and
predict the same property.

Neural networks are a popular method for classification,
especially for image datasets. Finding suitable NNs is a time-
consuming process involving several rounds of hyperparameter
selection, training, validation, and manual inspection [14]. To
address this challenge, we select the Non-dominated Sort-
ing Genetic Algorithm for the Neural Network Architecture
Search (NSGA-NET) [15]. NSGA-NET conducts a neural
architecture search that automates the design of NN models
using multi-objective optimization (MOO). In this case, we
instruct NSGA-NET to generate NN models that maximize
classification accuracy while minimizing FLOPS during the
prediction stage for the purpose of maximizing computational
efficiency. NSGA-NET is evolutionary, and we run it for 10
generations with population and offspring size of 10. Thus, at
the end of the NAS we obtain 100 models that each train and
validate for 10 epochs. We choose an NN model that balances
conformation accuracy and computational efficiency, and we
train it to completion for 20 epochs.

Table IV shows the results of running XPSI and NSGA-NET
on Scenario 1 for classification of protein conformations. In
Row 4 of Table IV, we compare the one-time cost of executing
the feature extraction module with the one-time cost of the
neural architecture search (NAS). It takes 15h27m to extract
the features for XPSI while it takes NSGA-NET 20A to train
and validate different NNs in their search. Furthermore, we
observe that it takes 4.4m to generate the KNN-classificator
model with K € [2,10] and an incremental step of 1 while it
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takes 20.75m to train the selected NN model for 20 epochs.
For the prediction, we measure the time that takes XPSI
and NSGA-NET to classify the conformations in the testing
dataset. XPSI takes 1.65s while the NN model takes 1.9s.
Both XPSI and the NN models are able to classify protein
conformation of the testing data with 100% accuracy. How-
ever, the modeling time is shorter when using our framework
and its KNN model.

VI. CONCLUSIONS

We design, implement, and evaluate XPSI (X-ray Free
Electron Laser-based Protein Structure Identifier), a framework
capable of predicting three structural properties of proteins
(i.e., orientation, conformation, and protein type) from their
diffraction patterns. Our framework predicts orientation de-
spite symmetry in the diffraction patterns for the EF2 protein
with an error degree and Psi difference within 10° for the 95th
percentile of the testing dataset (unseen data) for high beam
intensity. Also, it predicts conformation with an accuracy of
97% even when the structural shapes of the conformations are
nearly indistinguishable. In addition, our framework identifies
between two protein types (EF2 and ribosome) with 100% in
a general and realistic set of diffraction patterns with multi-
ple conformations and orientations. The addition of imaging
factors in our experimental setup, such as beam intensity,
symmetric diffraction patterns, increases the complexity of
our data and prediction task. Therefore, employing new tech-
niques such as VAEs (Variational autoencoders) or end-to-end
deep learning frameworks are promising next steps for our
framework. As future work, we can improve prediction of the
orientation using a tiered approach, where first we identify the
protein type (the most accurate prediction we have), then filter
by conformation, and finally refine the orientation prediction.
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AVAILABLE JUPYTER NOTEBOOKS

The Jupyter Notebook implementing the XPSI framework can be
found at: https://github.com/TauferLab/XPSI.
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