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Abstract—Neural networks (NNs) are increasingly utilized
in high-throughput scientific workflows. In this context, NN
efficiency is essential for successful workflow management. We
use a multi-objective Neural Architecture Search (NAS), NSGA-
Net, to search for highly accurate NNs while optimizing for
efficient use of computational resources by minimizing FLoating-
point Operations Per Second (FLOPS). We define a domain-
agnostic methodology to generate NNs with the support of NSGA-
Net, select promising NNs that balance accuracy and FLOPS
usage, and refine a subset of NNs in order to curate networks
suitable for efficient data analysis. We apply this methodology to
a protein diffraction use case. Preliminary results show NNs that
efficiently classify conformation of proteins with a final accuracy
of 97.7% or higher and using only 187 FLOPS.

Index Terms—NSGA-Net, neural architecture search, NAS

I. MOTIVATION AND CONTRIBUTIONS

Modern high-throughput scientific workflows produce, man-
age, and analyze increasingly large amounts of data on high
performance computing (HPC) resources. Neural networks
(NNs) are a data analysis method that is currently being inte-
grated in many scientific workflows across multiple domains
because of their accuracy [1], [2]. The challenges associated
with the management of scientific workflows require NNs to be
not only accurate but also efficient in the use of HPC resources.
In this work, we explore how neural architecture search (NAS),
traditionally used to automate the process of finding near-
optimal NN models, can be leveraged to design NNs suitable
for efficient data analysis. Specifically, we define a domain-
agnostic methodology to generate, select, and refine NNs with
the support of NSGA-Net (Non-dominated Sorting Genetic Al-
gorithm Network) [3], a NAS implementation. NSGA-Net in-
corporates a multi-objective optimization (MOO) evolutionary
algorithm, distinguishing it from other NAS implementations
which are usually single-objective. We optimize for accuracy
by minimizing error and for efficiency by minimizing infer-
ence FLoating-point Operations Per Second (FLOPS). Note
that FLOPS usage per second is a measure of NN efficiency,
thus the lower the FLOPS value, the better. Preliminary results
with our methodology demonstrate accuracy and efficiency on
a use case of classification of protein diffraction patterns.

II. DOMAIN-AGNOSTIC METHODOLOGY

Our methodology is composed of three steps in which
we generate, select, and refine candidate NNs automatically

designed by the NAS to meet both accuracy and efficiency
objectives. These steps are domain-agnostic and can be applied
to any learning problem since they are based exclusively on
analysis of the NNs’ relative performance and efficiency.

Generation of candidate NN pool. To find NNs with max-
imum accuracy and efficiency, we use NSGA-Net’s “macro
search.” NSGA-Net implements a MOO algorithm, and its
macro search looks for an NN topology optimized for specified
objectives. We choose error and FLOPS as the objectives
to minimize. We run NSGA-Net for 30 generations with a
population and offspring size of 25, and with each NN trained
for 15 epochs. At the end of the run, NSGA-Net stores in an
output file the topology of each NN explored during the run,
as well as its accuracy and FLOPS. This constitutes the pool
of candidate NNs.

Selection of best NNs. Usually, the NNs with high accuracy
show a larger and more sophisticated architecture than NNs
with lower performance. These NNs have a larger number of
layers and larger number of neurons per layer, which implies a
higher arithmetic intensity during inference that translates into
a higher FLOP count. Consequently, accuracy and FLOPS are
conflicting objectives in which a trade-off must be studied.
Using the output accuracy and FLOPS for the explored NNs,
we construct a Pareto frontier to analyze the trade-off between
maximizing accuracy and minimizing FLOPS. The NNs in the
Pareto-optimal set are the best-performing and more efficient
NNs from the pool of NNs generated by NSGA-Net.

Refinement of best NNs. In order to find the best possible
NN we further refine a subset of the NNs in the Pareto-optimal
set. We establish a FLOPS cutoff point that lies below the
elbow region of the Pareto frontier. We train all NNs from the
Pareto frontier that are below that cutoff for 500 epochs. This
long and targeted training allows us to achieve accuracy that
is comparable to the elbow region of the Pareto frontier but
with a fraction of the FLOPS.

III. CASE STUDY: CLASSIFICATION OF PROTEIN
DIFFRACTION PATTERNS

We use our methodology to obtain an NN able to classify
the structure (i.e., conformation) of a protein from the pro-
tein’s diffraction pattern. Diffraction patterns are 2D images
generated by X-ray free electron laser (XFEL) experiments [4].
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Fig. 1. Example of protein diffraction images for each conformation.

Fig. 2. Pareto frontier of generation 30 NN architectures, indicating the region
to refine, which contains Pareto-optimal NNs 740, 729, and 736.

Structural properties of the protein—such as its conformation
and orientation—have been previously studied in diffraction
patterns through machine learning methods like KNN [5].
However, the performance of these methods has been evalu-
ated purely in terms of accuracy, and computational efficiency
has not been addressed. The availability of efficient and
accurate NNs for diffraction pattern datasets has the potential
to accelerate applications like 3D reconstruction [6]. The
dataset consists of 79,384 protein diffraction pattern images,
half of which represent the conformation 1n0u and the other
half represents the conformation 1n0vc, as shown in Fig. 1.

Generation of candidate NN pool. We apply NSGA-Net
to this dataset to observe and analyze the best generated NN
architecture that satisfies the two desired objectives: minimized
compute FLOPS usage during inference and maximized clas-
sification accuracy. Interfaces with NSGA-Net were adapted
to support the protein diffraction dataset. We run NSGA-Net
for 30 generations on the University of Tennessee Knoxville’s
Tellico cluster, an IBM Power9 (128 GB RAM) system with
2 NVIDIA Volta V100 GPUs. NSGA-Net completed the full
run in 166.5 hours. We ran NSGA-Net with population and
offspring size of 25, and as a result, 750 NNs were generated
across 30 generations.

Selection and refinement of candidate NNs. Figure 2
shows the accuracy and FLOPS of the candidate NN pool after
30 generations, and highlights the Pareto-optimal set in red.
We establish a cutoff FLOPS value of 200, so we select three
NNs for refinement (i.e., models 740, 729 and 736). Table I
shows a summary of the performance of these candidate

TABLE I
FLOATING POINT OPERATIONS PER SECOND (FLOPS), VALIDATION

ACCURACY BEFORE AND AFTER REFINEMENT, AND INFERENCE TIME FOR
CANDIDATE NN MODELS 740, 729, AND 736.

NN
model FLOPS

Accuracy
before

refinement

Accuracy
after

refinement
Inference
time (s)

740 0.016 57.1 57.1 0.407
729 169.125 92.4 97.7 1.161
736 187.125 94.6 98.1 1.250

models. Model 740 is extremely efficient and uses only 0.0161
FLOPS because it consists of a very small architecture with
only one node. However, these structural characteristics also
cause it to yield very low accuracy even after substantial
training. Models 729 and 736 gain 5.3 and 3.5 percentage
points in accuracy after full training for 500 epochs, which
makes their accuracy comparable to the accuracy shown by
NNs that double their FLOPS count.

IV. CONCLUSIONS AND RELEVANCE FOR ESCIENCE

We present a methodology to leverage NAS to obtain
accurate and efficient NNs. These NNs can be used in scien-
tific workflows and applications in need of efficient methods
for high-frequency analysis. The methodology simplifies the
process of developing a computationally efficient NN model
for a given dataset, and it can be applied to data coming from
any scientific domain.
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