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MULTIRATE EXPONENTIAL ROSENBROCK METHODS*

VU THAI LUANT, RUJEKO CHINOMONA?!, AND DANIEL R. REYNOLDS?

Abstract. In this paper we propose a novel class of methods for high-order accurate integration
of multirate systems of ordinary differential equation initial-value problems. The proposed methods
construct multirate schemes by approximating the action of matrix ¢ functions within explicit ex-
ponential Rosenbrock (ExpRB) methods, thereby called multirate EzpRB (MERB) methods. They
consist of the solution to a sequence of modified “fast” initial-value problems, which may themselves
be approximated through subcycling any desired initial-value problem solver. In addition to proving
how to construct MERB methods from certain classes of ExpRB methods, we provide rigorous con-
vergence analysis of these methods and derive efficient MERB schemes of orders 2 through 6 (the
highest-order infinitesimal multirate methods to date). We then present numerical simulations to
confirm these theoretical convergence rates and to compare the efficiency of MERB methods against
other recently introduced high-order multirate methods.

Key words. multirate time integration, exponential Rosenbrock methods, convergence analysis
MSC codes. 65L05, 65L06, 656M20, 65L20

DOI. 10.1137/21M1439481

1. Introduction. In this paper, we consider numerical methods to perform
highly accurate time integration for multirate systems of ordinary differential equation
(ODE) initial-value problems (IVPs). The primary characteristic of these problems is
that they are comprised of two or more components that on their own would evolve
on significantly different time scales. Such problems may be written in the general
additive form

(1.1) u'(t) = F(t,u(t)) := Fr(t,u) + Fs(t,u), t€ [to,T], wu(to)= uo,

where Fy and F; contain the “fast” and “slow” operators or variables, respectively.
Typically, due to either stability or accuracy limitations the fast processes must be
evolved with small step sizes; however the slow processes could allow much larger
time steps. Such problems frequently arise in the simulation of “multiphysics” sys-
tems, wherein separate models are combined together to simulate complex physical
phenomena [7]. While such problems may be treated using explicit, implicit, or mixed
implicit-explicit time integration methods that evolve the full problem using a shared
time step size, this treatment may prove inefficient, inaccurate, or unstable, depend-
ing on which time scale is used to dictate this shared step size. Historically, scientific
simulations have treated such problems using ad hoc operator splitting schemes where
faster components are “subcycled” using smaller time steps than slower components.
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A2 V. T. LUAN, R. CHINOMONA, AND D. R. REYNOLDS

Schemes in this category include Lie-Trotter [22] and Strang-Marchuk [21, 28] tech-
niques that are first- and second-order accurate, respectively. In recent years, however,
methods with increasingly high orders of accuracy have been introduced. Our par-
ticular interest lies in methods allowing so-called infinitesimal formulations, wherein
the fast time scale is assumed to be solved exactly, typically through evolution of a
sequence of modified fast IVPs,

V(1) = Fe(r,v) + g(7), 7€ [10,7¢], v(70) = o,

and where the forcing function g(7), time interval [ry, 7¢], and initial condition vy are
determined by the multirate method to incorporate information from the slow time
scale. In practice, however, these fast IVPs are solved using any viable numerical
method, typically with smaller step size than is used for the slow dynamics. While
both the legacy Lie-Trotter and Strang—Marchuk schemes satisfy this description,
each uses ¢g(7) = 0 and only couple the time scales through the initial condition vy.
The first higher-order infinitesimal multirate methods were the multirate infinitesimal
step (MIS) methods [26, 30], which allowed up to third-order accuracy. These have
been extended by numerous authors in recent years to support fourth and fifth orders
of accuracy, as well as implicit or even mixed implicit-explicit treatment of the slow
time scale [1, 3, 16, 25, 27].

Most higher-order (> 3) infinitesimal methods, including MIS, relaxed MIS [27],
extended MIS [1], multirate infinitesimal general structure additive Runge-Kutta
(GARK) [24, 25], and implicit-explicit multirate infinitesimal (MRI) GARK [3], place
no restrictions on the operators Fy and F,. The corresponding order conditions for
these methods are rooted in partitioned Runge-Kutta theory, to the end that the
number of order conditions grows exponentially with the desired order of accuracy,
to the effect that none of these methods have been proposed with order of accuracy
greater than four.

In previous work, we presented an alternate approach for deriving infinitesimal
multirate methods that was based on exponential Runge-Kutta (ExpRK) theory,
named multirate ExpRK (MERK) methods [16]. A particular benefit of this theory is
that ExpRK methods require fewer order conditions than partitioned Runge-Kutta
methods; however, to leverage this theory, MERK methods require that the fast time
scale operator is autonomous and that it depends linearly on the solution u; i.e., these
consider the IVP

(1.2) u'(t) = F(t,u(t)) = Lu+N(tu), telty,T], wu(to) = uo,

where the “fast” and “slow” components are Fy(t,u) = Lu and Fi(t,u) = N(t, u),
respectively. With this restriction in place, however, MERK methods have been
proposed with orders of accuracy up to five.

In this work, we address the case of a nonautonomous and nonlinear fast time scale
operator F(t,u) by proposing to use a dynamic linearization approach that updates
the operators £ and A within each time step. Nonlinear dynamical systems often
operate on multiple time scales away from equilibrium; hence linearization techniques
can offer important information on how such systems behave in the neighborhood of
equilibrium points. Near an equilibrium point the eigenvalues of the linearized system
often provide the necessary information on the time scale structure. Therefore, we
expect that the dynamic linearization approach that updates Lu (within each time
step) at the fast time scale will be applicable for any dynamical system wherein its
linearization captures the majority of the dynamics. In addition, as mentioned in
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MULTIRATE EXPONENTIAL ROSENBROCK METHODS A3

[11], a bad choice of fixed linearization (1.2) can lead to stability issues, for exam-
ple, if the numerical solution stays near an equilibrium point of the problem for a
long time. In such a case, MERK methods may require taking smaller time steps,
thereby causing computational inefficiency. This further motivates us to consider the
idea of linearizing (1.2) in each integration step in order to overcome these issues.
We leverage this dynamic linearization approach through building multirate schemes
from exponential Rosenbrock (ExpRB) methods. This new class of multirate schemes,
called multirate EzpRB (MERB) methods, approximates the action of matrix ¢ func-
tions within explicit ExpRB methods and consists of solving a sequence of modified
linear ODE-IVPs, which can be integrated using any desired ODE solvers. Moreover,
we establish an elegant convergence theory for MERB methods, allowing us to deter-
mine a minimum order of accuracy for the numerical methods needed for solving the
corresponding fast time scale IVPs. In addition to this theory, we generalize the co-
efficients for a number of high-order ExpRB methods and exploit their parallel stage
structure to derive efficient multirate methods of very high-order (including the first-
ever infinitesimal multirate method of order 6), with optimized numbers of modified
fast IVPs. Our numerical experiments show that these new proposed MERB schemes
are uniformly the most efficient when considering slow function calls (of particular in-
terest for multirate systems where the fast component is much less costly to compute
than the slow component) and thus are very competitive in comparison with recently
developed high-order multirate methods such as MERK and MRI-GARK.

The remainder of this paper is organized as follows. We first present the structure
of ExpRB methods (section 2.1). Then in section 2.2 we interpret the corresponding
ExpRB internal stages and time step approximations as exact solutions to modified
“fast” IVPs, thereby deriving MERB methods. In section 2.3 we present rigorous
convergence analysis for this family of newly proposed methods. Then in section 2.4
we construct specific multirate methods from this family for practical use and discuss
techniques for their numerical implementation in section 2.5. In section 3 we provide
detailed numerical results to compare the performance of the proposed methods with
the recent MERK methods of orders 3 through 5, as well as with third- and fourth-
order explicit MRI-GARK methods. Finally, we provide concluding remarks and
discuss avenues for future research in section 4.

2. MERB methods.

2.1. ExpRB schemes. ExpRB methods are constructed by linearizing the vec-
tor field F'(t,u) at each step along the numerical solution (¢, uy),

(2.1) ' (t) = F(t,u(t)) = Jou(t) + Vot + Ny (t, u(t))
with
oF OF
(2.2) In = %(tn,un)7 Vi = E(tn,un), Nyp(t,u) = F(t,u) — Jpu — Vpt.

We note that if (1.1) is in fact autonomous, i.e., v'(t) = F(u(t)), then this linearization
simplifies since V,, = 0 and N, (¢t,u) = Ny, (u) = F(u) — Jyu.

One can represent the exact solution to (2.1) at time ¢,+1 = ¢, + H as in [14] by
applying the variation-of-constants formula (also known as, Duhamel’s principle),
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H
W(tng1) = efInu(t,) +/ o (H=7)Jn (Vn(tn +7) + Np(tn + 7 ut, + T)))dT
0
(2.3) =eTny(ty) + Hpi(HJ, ) Vitn + H2po(HJ,)V,,
H
+ / W= N, (t, + T ulty + 7))dT,
0

where ¢, (Z) (Z = HJ,,) belong to the family of ¢ functions given by

1 H (H ) Z Tkil
2.4 7)) = — TE—d k>1.
(24 o) = g [ et E T an k>
Explicit ExpRB methods approximate the integral in (2.3) by using a quadrature rule
with nodes ¢; in [0,1] (¢ =1,...,) (c1 = 0). Denoting the resulting approximations
Up = u(ty,) and Uy, = u(t, + ¢;H), ExpRB methods may be written as
(2.5)
i—1
Uni = tn + c;H1 (G HT, ) F(tn, un) + GFH? @3 (¢i H I )V + H Y aij(HJn) Dy,

=2

Un1 = Un + Hepr (HT)F(ty, un) + H* 0o (HJn) Ve + H > bi(HJp) Dy,

=2
where
(26) Drn = Nn(tn + Cz’H7 Unz) - Nn(tn7 un)7

(¢=2,...,s) and where D,; = 0 [11, 14]. Here, the weights a;;(HJ,) and b;(HJ,)
are usually chosen (by construction) as linear combinations of the ¢y (¢, HJ,) and
vr(HJ,) functions given in (2.4), respectively. These unknown functions can be
determined by solving order conditions, depending on the required order of accuracy.

Remark 2.1 (order conditions). For later use, in Table 1 we recall the stiff order
conditions for ExpRB methods up to order 6 from [18]. We note that an ExpRB
method of order 6 only requires 7 conditions, which is much less than the 36 conditions
needed for explicit Runge-Kutta or ExpRK methods of the same order. This is the
advantage of the dynamic linearization approach (2.1) and can be understood by
observing from (2.2) that

ON,
Ju
This property significantly simplifies the number of order conditions, particularly for

higher-order schemes. A further consequence of (2.7) is that from (2.6) we have
D,,; = O(H?), meaning that ExpRB methods are at least of order 2.

(27) (tn; un) =0 and %(tna ’U,n) = 0.

2.2. A multirate procedure for ExpRB methods. Inspired by [16], we now
show how ExpRB schemes can be interpreted as a class of MIS-type methods. Namely,
we construct modified ODEs whose exact solutions correspond to the ExpRB internal
stages Up; (i =2,...,s) and the final stage w,+1.

LEMMA 2.2. Consider an explicit ExpRB scheme (2.5), where the weights a;;(H J,,)
and b;(HJ,) can be written as linear combinations of ¢y, functions,
Lij m;
k k
(2.8) aij(H1n) = > ol ou(ciH ), bi(HI,) =Y 80 on(H ),
k=1 k=1
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TABLE 1
Stiff order conditions for ExpRB methods up to order 6 (from [18]). Here Z, K, and M denote
arbitrary square matrices.

No. Order condition Order
1 Yiabi(2)c] = 2¢3(2) 3
Y2 bi(2)c} = 6pa(2)

_,bi(Z)ch = 245(2)
2bi(2) czK(zk Lair(2) % — cea(2)) =0
2 bi (Z)c = 120@6(2)
> o bi(Z)c 2M( alk(Z)? —c3p3(ciZ)) =
i bi(Z) CiK(Zk:Q az‘k(Z)y —clpa(ci2)) =

N O Ot e W N
S O O | Ot O

0
0

and where {;; and m; are some positive integers. Then, U,; and u,41 are the ezact
solutions of the (linear) modified differential equations

(29&) ’U:zi(T) = Jnvni(T) +pm'(7'), Unz(o) = Unp, 1= 2; sy S,
(2.9b) V1 (T) = JpUng1 (1) + qu(7), Vn41(0) = up ;

at the times 7 = ¢;H and 7 = H, respectively. Here, pn;(T) and g, (7) are polynomials
in T given by

(k)

LJ
(2.108)  Pai(7) = Ni(tn, un) + (t +Tvn+z > )T’H Daj,
— k=1 Z

S

(k)
(2.10b)  gn(7) = Np(tn, un) + (tn + 1)V + Z (Z ]—[klﬁ(l)!Tk_l> D,;.

Proof. The proof can be carried out in a very similar manner as in [16, Theo-
rem 3.1]. Here, we only sketch the main idea. First, we insert the ¢ functions from
(2.4) into (2.8) to get the integral representations of a;;(HJ,) and b;(HJ,):

. — ciH—7)Jy e R = |
(2.11a) aij(HJ,) = /0 e ; CHFG D dr,
(H—=7)J, s k-1
Inserting these into (2.5) shows that
CiH
(2.12a) Upi = e Tny, + / e(ciH_T)J"pm»(T)dT, 1=2,...,8,
0
H
. Upt1 =€ ""Upy + eV T g (T)dT,
2.12b . HJ, (H—71)J d
0

which clearly show that U,; = vni(¢;H) and upt1 = vpp1(H) by means of the
variation-of-constants formula applied to (2.9a) and (2.9b), respectively. d
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MERB methods. Starting from the initial value ug = u(t), Lemma 2.2 suggests
a multirate procedure to approximate the numerical solutions u,+1 (n =0,1,2,...)
obtained by ExpRB methods. Specifically, one may integrate the slow process (V,,t +
N, (t,u)) using a macro time step H and integrate the fast process (J,u) using a micro
time step h = H/m (where m > 1 is an integer representing the time scale separation
factor) via solving the “fast” ODEs (2.9a) on [0,¢;H] and (2.9b) on [0, H]. Let us
denote the corresponding numerical solutions of these ODEs as ﬁm (= vpi(c;H) =
U,:) and G417 (= vpg1(H) = up41). Then this multirate procedure consists in each
step of solving (2.9)—(2.10) with the initial value @, (@9 = ug). Since we must linearize
each step around the approximate solution ,, instead of the true value u,,, we denote
the approximations of J,,, V,, N,(t,u), and D,,; appearing in polynomials (2.10) as

(2.13a) Jp = %i(tn,any V, = %f(tn,an), No(t,u) = F(t,u) — Jou — Vipt,

(2.13b) DnJ = N, (t, + ¢ H, Um) Ny (tn, Gp).

Thus, starting with 49 = ug, for each time step t,, — t,,+1 we solve perturbed linear
ODEs fori =2,...,s,

(2.14) Yri(7) = Jntni (1) + Pni(7), T €[0,¢;H]|,  yni(0) = iy,
with
0 (k) R
(2.15)  Pni(7) = Ny (tn, @in) + (tn +7)Vp +Z > T (E T k=1 D,
j=2 \k=1 &
to obtain

Uni ~ ynz(CzH) ~ Uni(ciH) = Uni~
Then, using these approximations, we find

m; (k)
216) () = Nultns ) + (b + 1)V + 3 (Z Hﬁuf)> B

and solve one additional linear ODE

(217) y;H»l(T) = jnynJrl(T) + Cjn(T)v TE [0’ H]? yn+1(0) = ﬁna

to obtain the update
1 ~ Ynt1 (H) = vpp1(H) = upya.

Since this process can be derived from ExpRB schemes satisfying (2.8), we call the
resulting methods (2.14)(2.17) MERB methods. Note that, since Uy,; and 4,1 (0)
do not enter the MERB scheme, for the sake of completeness, one can define Ui =

Remark 2.3. Based on MERB’s formulation in (2.14)—(2.17), they have similar
structure to MERK methods. Hence, they can retain MERK’s interesting features,
including very few evaluations of the costly slow components, and they do not require
computing matrix functions as ExpRB methods do. The main difference is that at
each integration step MERB methods must update the linearization components Jn,
Vn, Nn, and f)nj. However, this increased cost may be balanced by the fact that, due
to the property (2.7), high-order MERB methods should require considerably fewer
modified ODEs than MERK methods of the same order (see section 2.4).
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MULTIRATE EXPONENTIAL ROSENBROCK METHODS A7

2.3. Convergence analysis of MERB methods.

2.3.1. Analytical framework. To analyze the convergence of MERB methods,
we employ the abstract framework of strongly continuous semigroups (see, e.g., [5, 23])

on a Banach space X. Throughout this paper, we denote the norm in X by || - ||. Let
oF

2.18 J=—(t

(218) O (1)

be the Fréchet partial derivative of F'. We make use of the following assumptions.
Assumption 1. The Jacobian (2.18) is the generator of a strongly continuous
semigroup e’ in X. This implies that there exist constants C and w such that

(2.19) e || < Ce“t, t >0,
and consequently ¢y (HJ), a;;(HJ), and b;(HJ) are bounded operators.

Assumption 2. The solution u : [tg,T] — X of (1.1) is sufficiently smooth with
derivatives in X, and F : [to,T] x X — X is sufficiently Fréchet differentiable in a
strip along the exact solution to (1.1). All derivatives occurring are assumed to be
uniformly bounded.

Stability bound. Since J, = %{(tn,an) arising in MERB methods changes at

every step and Jn & J,, we also employ the following stability bound (for the discrete
evolution operators on X) of ExpRB methods (see [11, section 3.3]) to have

n—k

=0

(2.20) <Cs, to<tp<t,<T.

The importance of this bound is that the constant Cg is uniform in k and n, despite
the fact that J,, varies from step to step.

2.3.2. A global error representation of MERB methods. Since MERB
methods (2.14)—(2.17) result in a numerical solution @41 which approximates the
numerical solution u,1; of ExpRB methods (as denoted above) at time ¢,41, we
will employ the local errors of ExpRB methods to analyze the global error of MERB
methods. Throughout the paper the following error notations will be used.

e Global error notation for MERB methods. We denote the global error at time
tn+1 of a MERB method as

(221) én+1 = an+1 — u(tn+1).

e Local error notation for ExpRB methods. We denote the local error at t,,41 of
the base ExpRB method as

(222) én+1 = ’L~Ln+1 — U(tn+1).
Here, t,4+1 is the numerical solution of the base ExpRB method obtained after

carrying out one step of (2.5) starting from the exact solution wu(t,) as the initial
value:
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(2.23a) i1 = e TTvu(ty)+Hoy (H T )Vt + H2po(H T,V

+ HZ bz(Hjn)Nn(tn + CiH; Unz)7

i=1
(2.23b) U, = eciHj"u(tn) + ciHcpl(ciHjn)f/ntn + C?H2<,02(CiHjn)‘~/n

i—1

+ HZ Qjj (Hjn)Nn<tn + CjH, ﬁnj),

=1

where
. Ja . r . . -
(2.24) J, = g—(tn,u(tn))7 vV, = aa—t(tn,u(tn)), Np(t,u) = F(t,u) — Jpu — Vpt.
U

Note that, from Lemma 2.2, (2.23) is equivalent to one step of the MERB scheme
starting from the exact initial value y,+1(0) = u(t,) (for which the solution of the
IVP (2.17) on [0, H] is “known” to be y,11(H) = tin41). Therefore, one can consider
that €,,41 is also the local error of MERB methods.

e Global error notation for approzimation of the IVP (2.17). As G411 = ynt1(H)
(the true solution of the ODE (2.17)), we denote the global error of an ODE solver
used for integrating (2.17) on [0, H] as

(2.25) Ent1 = Unt1 — Ynt+1(H).

e Global error notation for approximation of the IVP (2.14). Similarly, since Upi
is the numerical solution of (2.14) on [0, ¢; H] obtained by an ODE solver, let us denote
the global error of this approximation as

(2.26) €ni = Uni — Yni(c: H).
Note that, by applying the variation-of-constants formula to (2.17) and using (2.11b),

Yn+1(H) can be represented as

Y1 (H) = et + Hor (HJ) Vit + H2 o2 (HI)WVa + HS  bi(H )N (tn + ¢ H, Uni).

=1

In view of (2.21), (2.22), and (2.25), we can represent the global error of MERB
methods as

(227) én-i-l - an—i—l - ﬂ'n-l-l + én—i—l - én-i—l + (yn-i-l(H) - an-{-l) + én-i—l-

To keep our presentation in a compact form, we introduce

(228&) tni = tn + CiH,

(228b) Bn = Y1 (Hjn)Vntn + H‘P2(Hjn)f/n + Z bi(Hj7L)Nn(tni7 Unz)a
i=1

(2.28¢) By = o1(HJn)Vaty + Hpo(HJn)Ve + > bi(HJn) Ni(tnis Uni).-
=1

Using (2.28), we now derive a full expansion of (2.27), which shows how the global
error of MERB methods can be estimated by the sum of the propagated local er-
rors of ExpRB methods and the global errors of the ODE solvers used for (2.14)
and (2.17).
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THEOREM 2.4. The global error é,+1 of MERB methods (2.14)—(2.17) at time
tny1 can be expressed as

(2.29)

n . n ~ n n—k—1 ~
€ny1 = HGHJ"*]' - HGHJ"*J' uo + E H e [
j=0 j=0 =0

n (nk
k=0 7=0

e f e (1)

Errorl Error2

Error3 Errord

Proof. In view of (2.27), we first study the difference (yn41(H) — tp41). Using
(2.28b) and (2.25) (which implies @, = y,(H) + &,), we have

Y1 (H) = eMni, + HB, = My, (H) + e, + HB,.

Solving this recurrence relation (with yo(H) = u(ty) = ug) gives

(2.30)

(2.31)

Yn+1(H) = <H
0

R n—1 /n—k—1 . n n—k—1 R
HJﬂ_j)uO‘f'Z < H eHJn_j>ék+1+HZ < H eHJn—j)Bk
k=0 \ ;=0 k=0

Similarly, using (2.28¢) and (2.22), we can write @, in (2.23a) as

(2.32)

Tipy1 = e Tru(t,) + HB, = eHj"ﬂn - eHj"é'n + HB,,.

After solving this recurrence, we end up with

(2.33)

7:‘Ln—i-l -

=0

k=0 \ ;=0 k=0 \ ;=0

Subtracting (2.33) from (2.31) and inserting the result into (2.27) prove (2.29).

n n—1 /n—k—1 n n—k—1
(HeHj"j>uo - Z < H eHjnj>ék+1 JrHZ ( ]._.[ eHjnJ)Bk'

|

For the sake of completeness, we have set Hj;lo() (empty products of operators)
to equal the identity in the proof above. This will be used throughout section 2.3.
Next, we prove some preliminary results before estimating the global error é,,1.

2.3.3. Preliminary results and error bounds.

LEMMA 2.5. The term Errord in (2.29) can be further expressed as

(2.34)
Errord = H Z
k=0
where
Bk — By
(2.35)

n n—k—1 n—k—1 —k—
(i o s

Jj=0 Jj=0

- Z [(ps(H Ji) = 05 (H W) Vi + 5 (H Iy ) (Vi = Vi)t HI ™!

+Z i(HJy) = bs (HJk))Nk(tkiaﬁki)

+ Zbi(ij)(Nk(tkia Upi) = Ni(twi, Upi)).
i=1
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Proof. The derivation of (2.34) is straightforward by subtracting and adding the
same term [ | _éc Ve HJn—j B;, within the sum > oh_ol]in Errord. Also, by subtracting
(2.28¢) from (2. 28b) one can easily obtain (2.35). 0

To estimate Athe differencejn the~nonlinear terms at each internal MERB and
ExpRB stage, (Nk(tkl-, Ugi) — Ni(tgi, Um)) in (2.35), we first study the difference

(2.36) Epi = Upni — Uni.
Denoting
i—1
(237&) Anz = Clﬁpl(clHJn)Vntn + C%HQOQ(QHJn)Vn + Z aij (HJn)Nn (tnja Unj)a
j=1
i—1 L ~
(2.37b)  Ap; = cipr(ciHJn)Vatn + ¢ Hoa(ci HIn)Vi + > aij(HJn) Ny (tnj, Unj),
=1

we obtain the following result.

LEMMA 2.6. The difference between Um and U,; can be expressed as

(2.38) B = s+, 4 (eHn — e T Yy(t,) 4+ H(Ap; — Ay)
with
(2.39)
A~ ~ 2 A~ ~ ~ A A ~
Api = Ay = [(pe(ciHJn) = pe(ciHIn)) Vo + el HoTn) (Vi = Vi) | efti A H
=1
i—1

(aij (HJTL> - aij(HJn))Nn(tnja Unj)

+
LML

+ aij(HJ )(]\7 (n]vUnj)an(tnﬁUnj))-
J

Il
-

Here, én1 = Uy — Yn1(c1H) = Gy, — Yn1(0) =0 (due to ¢y =0), and thus Epy = ép.
Proof. From (2.36) and (2.26), we have

(2.40) Eni = éni + Yni(ciH) — Up;.

Using (2.37b), one can write U,; given in (2.23b) as

(2.41) Upi = eI (t,) + HA,;.

By applying the variation-of-constants formula to (2.14) and using (2.11a),

(2.42) Yni(cH) = Mg, + HA,; = e (6, 4 u(ty)) + HAp,

where A,,; is given in (2.37a). Inserting (2.41) and (2.42) into (2.40) gives (2.38). Simi-
larly to (2.35), the expression (2.39) can be verified by subtracting (2.37b) from (2.37a)

first and then adding and subtractlng to the result the same terms c¢;p1(¢; H J )V tn,
ZH 3 (c;HJp) Vi, and 30 agj(HJn )Nyt + ¢ H, Uy). 0
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Remark 2.7 (reasonable assumptions on é, and Em) In view of the expressions
(2.29) and (2.38), one can investigate how the global error é,4; = é,41(H) and the
difference Em = EA’m(H ) behave as the step size H approaches 0. First, it is clear
that limg_,o Errorl = 0 and limg_,g Errord = 0. Second, we note that, if the linear
ODEs (2.17) and (2.14) of the MERB scheme are solved with ODE solvers which have
convergence orders r and ¢ (using a micro time step h = H/m, m > 1), their global
errors behave as épy1 = O(h") = -LO(H"), &, = O(h9) = L O(H?), respectively.
Next, as for the local errors éxy1 of the ExpRB methods, in [19, section 3.3] it was
shown that these errors are at least proportional to H® (for free—without any order
conditions). In fact, the stiff order conditions for ExpRB methods of orders up to 6
have been derived so far [18, 20], meaning that é,11 = O(HP™1) (2 < p < 6). Putting
these together, we observe from (2.29) that

n n

1
. ~ . ~ _ . p+1 . r _
Jimy s = 32 (fim P fm ) = 3 (i, O™ i, Z00HT)) =0

Using this, we deduce from (2.38) that

1
lim E,; = lim &,; + lim é, = lim —O(H?) + hm én =0.
H—0 H—0 H—0 H—0 m4 —0

Therefore, henceforth we will reasonably assume that é,,; and EA’m remain in a suf-
ficiently small neighborhood of 0 for small step sizes.

Next, we prove several bounds needed to estimate the terms in (2.35) and (2.39).
To simplify our presentation within both this and the following subsections, we will
use C' as a generic constant that may have different values at each occurrence.

LEMMA 2.8. Under Assumption 2, the bound

(243) | Naltnis Uni) = N (tnis Uni) || < Ol Enill + CllJn = Jull + C| Vi = Vi
holds for all n and i as long as E,; remains in a sufficiently small neighborhood of 0.
Proof. First, we split

Nsplitl Nsplit2

Using (2.13a) and (2.24), we write the term Nsplit2 as

NSplitQ = (F(tm, U ) j U m) — (F(tni, Unz) — nUm' — Vntm')

(2.44) I 5
- (Jn - Jn)Uni + (V ) ni-

Expanding Z\Afn(t7 U) into a Taylor series expansion around (¢, ﬁm) gives
N,
(2.45) Nsplitl = / 5 " (tpis Uni + GEm)Ede
O ,L[/

Under Assumption 2, (2.43) follows by bounding || Nsplitl| + | Nsplit2||. O
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LEMMA 2.9. Under Assumptions 1 and 2, the bounds

(2.46a) 1 = Jull < Clleall, Vi = Vall < Cléall,
(2.46b) et — etn|| < Ctlénll, t>0,
(2.46¢) loe(tdn) = peltT)I < Ctlléall, 20,
(2.46d) 16:(H J) — bi(H )| < CH]ll,
(2.46¢) lagy (HJ) — gy (HT)|| < CHén

hold for alln, £, i, and j, as long as the global errors €, remain in a sufficiently small
neighborhood of 0.

Proof. Tt 1s straightforward to Verlfy (2.46a) by first noting that Jp — Jp =
a (tn, un) 8u Bt ultn)), Vi =V, = (tn, Uy ) — %—f(tn, u(ty)) and then expanding
6—(t u), 2 9E (t,u) in a Taylor series around (tn,u(ty)) (using with the integral remain-

der terms of O(]|é,]])). Next, we estimate the difference between the two semigroups
tJ J
e

S "11:"‘11

» and e’/ in a similar manner as in [19, Lemma 4.2]. Namely, it is observed that
e'/n is the solution of the IVP

w'(t) = Jyw(t) = Jow(t) + (J, — J)w(t), w(0) = 1.
Applying the variation-of-constants formula to this IVP gives

R - 1 - R
otdn _ otdn — t/ eQ=OtTn(j ] )etndg.
0

Therefore, (2.46b) follows directly from (2.19) and (2.46a) (the first bound). Using
this, (2.46¢)—(2.46¢) follow from using (2.4) and (2.8) (see also [19, Lemma 4.3]). 0O

Using the results from Lemmas 2.6, 2.8, and 2.9, we obtain the following result.

COROLLARY 2.10. Under Assumptions 1 and 2, the estimate

S
(2.47) 1By, = Bell < Y Cligwsll + Cllell
j=1
holds for all k, as long as Ey; and the global errors € remain in a sufficiently small
neighborhood of Q.
Proof. Using Lemmas 2.9 and 2.8, one can bound (2.35) as

(2.48) |Br — Byl < C||ekH+CZHEsz
i=1

Next, we apply Lemma 2.6 (with n = k) to get Ey; and then estimate it by using
(2.19) and Lemma 2.9 (the bound (2.46b)):
(2.49) 1Bl < llénill + Cliéxll + Hl| Ars — Arill
Again using Lemmas 2.9 and 2.8, the bound on | Agi — Agi|| (see (2.39)) is similar to
(2.48). Inserting this into (2.49) and using Fj; = éj finally show that

i—1
(2.50) 1Ewill < lléwill + Clléxll + ) Cliéxsl-

j=1

It is clear now that (2.47) follows from (2.48) and (2.50). d
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Finally, we give a technical lemma, which can be later used to estimate the term
Errorl appearing in (2.29).

LEMMA 2.11. Let {Z;}}_ and {Y;}7_ be two sequences of operators on X (the
state space). We have

n n n n—k—1 n
251) [ Ze - [[Yes =D ( 11 Zn_j> (Zk — Yk)< 11 Yn_j>.
j=0 §=0

k=0 \ ;=0 j=n—k+1

Proof. By adding and subtracting H;:()l Zy,—;Yo and then H;:g Zy—;YoY1, the
left-hand side of (2.51) can be written as

n—1 n—2
( 11 Zn_]-) (Zo — Yo) + ( 11 Zn_j> (Z1 —=Y\)Yo+ (ZnZnr... 2o — Yy, Yy 1 ... Y2)Y Y.
j=0 j=0

We continue adding and subtracting (H;:Ok_l Zn—j)ITj=p_py1 Yn—j) in this manner

until £ = n to obtain the right-hand side (2.51). ad
COROLLARY 2.12. Under Assumptions 1 and 2, the estimate

n ~
[Le"
=0

-7 —
Jj=

n

(2.52)

eHJn,j
0

<HY Cliél.
k=0

holds for all n as long as the global errors €, remain sufficiently small.

~Proof. This follows by applying Lemma 2.11 to Z,_; = eHJn-i and Y =
efl/»~i and by using the stability bound (2.19) and the bound (2.46b) from Lemma 2.9.0

2.3.4. MERB convergence. With the above preparation in hand, we are now
ready to prove convergence of our MERB methods.

THEOREM 2.13. Let the IVP (1.1) satisfy Assumptions 1-2. Consider for its
numerical solution a MERB method (2.14)—(2.17) that is constructed from an ExpRB
method of global order p using with macro time step H. Let m denote the number
of fast steps per slow step. If the fast ODFEs (2.14) and (2.17) associated with the
MERB method are integrated with micro time step h = H/m by using ODE solvers
that have global order of convergence q and r, respectively, then the MERB method is
convergent with the error bound

~ r—1 c c r—1
(2.53) |t — u(t,)|| < CH? + Ch9 4+ Ch zCH”+EHq+ﬁH
on compact time intervals tog < t, = to + nH < T. Here, while the first error
constant depends on T — to (but is independent of n and H), the second and third
error constants also depend on the error constants of the chosen ODE solvers.

Proof. Using Corollary 2.12, the stability bound (2.19), and Corollary 2.10, one
can estimate the four error terms Errorl, Error2, Error3, and Errord in (2.29),
which together show that

(2.54) [lénsall S HY Cllerl+ Y Cllénall+ Y Cllénall +H S (ZCH%II)
k=0 k=0 k=0 k=0 \ j=1

From our assumption that the base ExpRB method has global order p, its local error
satisfies ||€x41|| < CHPTL. Since the fast ODEs (2.14) and (2.17) are integrated by



423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Al4 V. T. LUAN, R. CHINOMONA, AND D. R. REYNOLDS

solvers with global orders of convergence g and r (using a micro time step k), we have
€r; = O(h?) and €x1 = O(h"). Inserting these into (2.54) gives

n—1 n—1
(2.55) lénll < H Y Clléxll + Y (CHP™ 4+ Ch™ + CHRY).
k=0 k=0

The error bound (2.53) results from applying a discrete Gronwall lemma to (2.55). O

We next distinguish two cases for (1.1), corresponding to whether the problem is
stiff or nonstiff/mildly stiff, in order to further comment on the error bound (2.53).

Remark 2.14 (stiff problems). For stiff problems where the stiffness is dominated
by the linear part, v’ = F(t,u) = Lu + g(¢t,u) (L has a large norm or is potentially
unbounded), our convergence theory presented above is still valid provided that the
linear ODEs (2.14) and (2.17) are solved with stiff solvers. This is because, for such
stiff problems, one can prove that the first error constant C' in the error bound (2.53)
is uniformly bounded independent of the stiffness. First, we can assume that L is the
generator of a strongly continuous semigroup e‘* in X and g : [to,T] x X — X is
sufficiently Fréchet differentiable (with uniformly bounded derivatives) in a strip along
the exact solution. Note that these still imply our Assumption 1 (by using a standard
perturbation result of semigroup as noted in [19, section 2.2]) and Assumption 2
(since F(t,u) = Lu+ g(t,u)). Then, we only need to modify our previous proof for
the important bound (2.46a) in Lemma 2.9 such that it now holds with a constant C
that is bounded independent of ||L||. In fact, using J(u) = L + g—Z(t,u), one simply
sees that

0 0
1 = Jull = | 52t ) = 58t ute)| < el

where the constant C' depends only on value unlformly bounded by the assumption on
g. Similarly, one has ||V;, — V,,|| = H%(tn,ﬁn) (tn,u( 2| < Cllén||. Using these,
all of the above proofs still hold, and all bounds assoc1ated with terms involving C/||é,, ||
are still valid with constants C' uniformly bounded and independent of the stiffness.
The use of stiff solvers for the linear ODEs (2.14) and (2.17) thus guarantees that the
second and third error constants of the error bound (2.53) could be also independent
of the stiffness. Therefore, for stiff problems, it is suggested from (2.53) to use stiffly
accurate solvers of orders ¢ > p and r > p+1 for (2.14) and (2.17), respectively (for a
fixed m), to have a stiffly accurate MERB method (2.14)—(2.17) that converges with
order p overall. We note, however, that m may need to be larger for stiff problems,
and thus if a high-order ODE solver is used for (2. 17) (say r = 4 or 5), the requirement
r > p+1 may be relaxed to 7 > p as the constant —= in the third error term becomes
much smaller.

Remark 2.15 (nonstiff/mildly stiff problems). For nonstiff/mildly stiff problems,
one can improve the second and third error terms in the global error bound (2.53).
Specifically, since the linear ODEs (2.17) and (2.14) are solved on small intervals [0, H]
and [0, ¢; H], respectively (using micro time step h), and they share the same Jacobian
Ji which can be assumed to satisfy ||Ji|| < M (a moderate value), we employ the
global error analysis in [9, Theorem 3.4] to derive that

(2.56a) €]l S B E(eMT — 1) = Ch"Hyp (MH) < Ch"H
(2.56b) lléill < h1E(eMeH —1) < ChiHpy(Me;H) < ChH.
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Using these for (2.54), we get

n—1 n—1
(2.57) lénl < H>  Clléxll + > (CHP' + Ch™H + ChiH?).
k=0 k=0

Applying a discrete Gronwall lemma shows the new error bound
C

lénll < CHP + CHWY 4+ Ch" = CHP + C ot + —H",
md m”

in which we gain an additional factor of H for the second and third error terms when

compared to the original error bound (2.53). Thus for a fixed m, a MERB method

(2.14)—(2.17) will converge with order p provided that the inner ODE solvers for (2.14)

and (2.17) have orders ¢ > p — 1 and r > p, respectively. This is an improvement

compared to MRI-GARK methods [25] (where convergence theory is only available

for nonstiff problems) that require both ¢ > p and r > p for a method of order p.

2.4. Construction of specific MERB methods. Guided by Theorem 2.13,
in order to derive MERB methods it is important to begin with base ExpRB methods
that satisfy Lemma 2.2. Fortunately, such ExpRB methods are available up to order 6
in the literature; see [11, 19, 20]. In this subsection, we extend some of these methods
to give their coefficients more generally and then derive MERB methods of orders
2 through 6 from these schemes. Note that, since a MERB method (2.14)—(2.17) is
uniquely characterized by its polynomials p,;(7) and §,(7), we only provide those
polynomials here. In particular, we note that these MERB methods require fewer
modified ODEs to be solved per slow time step than comparable order MRI-GARK
[25] and MERK methods [16]. We further note that for each method we specify its
“total fast traversal time,” corresponding to how many multiples of [0, H] must occur
when solving modified ODEs.

2.4.1. Second-order methods. First, consider the second-order ExpRB-Euler
scheme (see [11] and [14, section 1.2.2] for nonautonomous problems)

Using Lemma 2.2 we immediately derive a second-order method called MERB2:

(2.58) Gn(7) = No(tn, @) + (tn + 7))V, 7€ [0, HJ.

This only requires the solution of one modified ODE. We note that, since second-order
multirate methods have been available for some time, we do not include MERB2 in our
numerical results and instead focus on higher-order multirate methods.

2.4.2. Third-order methods. In [11], a 2-stage third-order ExpRB method
called exprb32 was constructed (using ¢o = 1) for autonomous problems. Extending
this to nonautonomous problems and writing this for general co, we solve condition 1
of Table 1 directly (with s = 2) to give a general family of third-order methods:

Una = U + coHp1(coHJ,)F(tn, uy) + c3H? 0o (coHJ, ) Vi,

2.59
( ) Unt1 :un+H<p1(HJn)F(tn,un)—|—H2<p2(HJn)Vn—&—H%(pg(HJn)Dng.

From this we construct the MERB3 family of third-order methods:

Pra(T) = Nt in) + (tn +7) Vo, T € [0,c2H],

(2.60) A N A N 2
Qn(T) = Nn(tna Un) + (tn + T)Vn + 22 D,o, TE [O, H]
2
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Clearly, this requires the solution of 2 modified ODEs per slow time step (whereas
third-order MERK and MRI-GARK methods require solving 3 modified ODEs per
step). In our numerical experiments we take cg = , which gives rise to a total fast
time step traversal for MERB3 of (1 + c2)H = 1.5H.

2.4.3. Fourth-order methods. There exist several fourth-order ExpRB schemes
[11, 19, 20, 15, 17] with coefficients fulfilling Lemma 2.2. However, we chose a 2-stage
fourth-order ExpRB method called exprb42 which was constructed for autonomous
problems in [15]. Transforming this to nonautonomous form, we have

Up2 = up + SHop (BHJ,)F(tn, un) + S H>02(3HJI, )V,

(2.61) 2 16
Upy1 = Up + Ho1 (HJn)F(tn, un) + H>p2(HJn) Vo + Hg ‘PB(HJ )Dn,

We then apply Lemma 2.2 to construct the fourth-order MERB4 method:

‘ ~ 3
Pn2(7) = Nop(tny @) + (tn + 1) Vi, re [o, ZH}

in(7) = Ny (b in) + (£ + )f/+16T2

(2.62)

Dy, 7 €[0,H].

MERB4 only requires solving 2 modified ODEs per slow time step, whereas fourth-
order MRI-GARK and MERK methods require 5 and 4 modified ODEs in each step,
respectively. We further note that (2.62) has a total fast traversal time of %H =
1.75H.

2.4.4. Fifth-order methods. ExpRB methods of order 5 can be found in [19,
20]. Here, for efficiency purposes, we consider a parallel scheme called pexprb54s4,
whose coefficients (with fixed nodes ¢;) satisfy Lemma 2.2. It uses s = 4 stages
and is embedded with a fourth-order scheme (for step size adaptivity) but can be
implemented as a 3-stage method. A detailed derivation of pexprb54s4 is given in
[20] (Solvmg conditions 1-4 of Table 1 with the choices b2(Z) = 0, aq3(Z) = 0,

aze(Z) = 2 gog((:g,Z) and aqo = 2 <p3 (c4Z)). Following that derivation, we present

here a famlly of fifth-order ExpRB methods (depending on parameters ¢, c3,cq) for
nonautonomous problems:

(2.63)
Upa = up + H (cap1(caH I, F(tn, un) + c3Hepa(caH J,) Vi)

Uns =u, + H (CS<P1 3 HJ,)F(tn,un) + cAHepa(cs H ) Vi, + 2 2 803(03HJ )Dn ) ;
Unt = tn + H (capr(caH T Ftu, un) + Hga(eaH IV + 25 a(caH o) Dz )

Unt1 = Up + H (1 (HIp)F(tn, un) + Hpo(HJ,) Vs + b3(H ) Dyg + by(H J, ) Dy
with

b3(HJn) = m(a;gﬁg(HJ ) 6(,04(HJ )),
_ 3(bez— 4)

C4 = B(dcs—3)°
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We note that the two internal stages {U,3,Un4} are independent of one another and
thus can be computed simultaneously. They also have the same format, in that they
have the same formula but only act on different inputs c3 and ¢4, which we exploit
below to give the same polynomial for their corresponding modified ODEs.
Applying Lemma 2.2 to (2.63) results in the fifth-order family of MERB5 methods:

Pna(T) = Nn(tnv n) (tn + T)Vna 7 € [0,c2H],
( ) Pn3(7) = Pna(7) = N (tn, Gn) + (tn + T)Vn =+ (CQTH)Qﬁn% [0; C3H]7
2.64) L _
(T) = Nn(truun) (t + T)Vn + ﬁ(cg(c;fq)pn:z + 2(c3 C4)Dn4)
-3 ~
W(C (64 c3) Das + c2(ez— c4)D"4)’ TE [O7H]

This only requires solving 3 modified ODEs per slow step (the only existing fifth-order
multirate method, MERKS5, requires 5). In our experiments we choose co = ¢4 = i <

c3 = 33, s0 we can solve the modified ODE (2.14) using the polynomial p,3(7) on

[0, c3 H] to obtain both ﬁng ~ U,3 and ﬁn4 ~~ Upy (since ¢4 < c3), without solving an
additional fast ODE on [0, ¢4 H]|. Using this strategy, the total fast traversal time for
MERBS5 is (14 ¢z + c3)H = $2H = 2.075H.

2.4.5. Sixth-order methods. To the best of our knowledge, the only existing
ExpRB method of order 6, named pexprb65s7, is given in [20]. It uses s = 7 stages
and is embedded with a fifth-order method. As with (2.63), this method consists of
multiple independent internal stages (namely, the stages in two groups {Upns, Uns}
and {Uyng, Ups, Ung, Up7}) that can be computed simultaneously, which we exploit to
implement like a 3-stage method. While pexprb65s7 is constructed for autonomous
problems and uses a set of fixed nodes ¢;, we extend the derivation from [20] to
construct a family of 7-stage sixth-order methods for nonautonomous problems:

Unk = Uy + co Hoy (co HI ) F(tn, upn) + (e H)?@o(ck HIy ) Vi, k= 2,3,
Uni = tn + c;H1(c; HJn)F(tn, un) + (c;H)?p2(ci H T, ) Vi,
(265) +Ha’i2(HJn)Dn2 +Hai3(HJTL)DTL3a 1= 47576a 7a

7
Ung1 = Un + Hor (HTp)F(tn, un) + H*@a(HJ,) Ve + H Y bi(HJn) Dy,

i=4
where
aix(HJ,) = m(% csps(c;HJ,) — 6c§lg04(ciHJn)),
aiz(HJp) = m(% cop3(ciH J,) — 6¢tpa(ciH ),
bi(HJ,) = —2&;03(HJ,,) + 61:04(H Jy,) — 2462@5( JIn) + 1209;06(H Jp,),
o 1 - .
T e a)e —en)’ T

Bi = (cx + i + cm)Yis N = (cker + ciem + CiCm)Yi-

Here i, k,l,m € {4,5,6,7} are distinct indices, and ¢;, ¢k, ¢, ¢, are distinct (positive)
nodes. Applying Lemma 2.2 we obtain the first-ever sixth-order infinitesimal multirate
method, MERB6:
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ﬁnQ(T) = ﬁnB(T) = Nn(tnyﬂn) + (tn + T)Vny TE [07 C2H]a
ﬁn4(7—) = ﬁnS (T) = ﬁnG(T) = ﬁn?(T) = Nn(tny ﬂn) + (tn + T)Vn
+ (037022)H2 (%’ﬁrﬂ - %ﬁwﬁ) - (63:;32)]{3 (éﬁn2 - %ﬁnB)y TE [07C4H]a

=4 i=4
7 7
4 ey 5 D
— 72 Y BiDni+ Zx Y 4iDui, 7€ [0, H].
=4 i=4

As seen, MERBS6 requires only 3 modified ODEs per slow time step like MERB5, reflecting
the fact that its base sixth-order ExpRB method (2.65) has the structure of a 3-stage
method. MERB6 can be also implemented in an efficient way by choosing c3 < ¢o and
¢s, C, C7 < cq4. With these choices, we can solve the modified ODE (2.14) using ppa(7)
on [0, c2H] to obtain both Ung ~ U, and [7”3 ~ U,3 without solving an additional
fast ODE on [0,c3H]. Similarly, we can solve (2.14) using pn4(7) on [0,csH] to
get all four approrimations ﬁm ~ Uy (1 = 4,5,6,7) without solving 3 additional
ODEs on [0,c5H], [0,c6H], and [0,c7H]. In our numerical experiments, we take
c3 =c5 = %0 < cg=cg= % <cr= % < ey = % This gives a total fast traversal time
of (1+co+cy)H =22 H ~ 1.253H.

~ 63
2.5. MERB method implementation. In Algorithm 2.1 we provide a precise
description of the MERB algorithm. We note that, in our implementations of MERB

Algorithm 2.1 MERB method

e Input: F; J; V; to; up; s; ¢ (i=1,...,8); H
e Initialization: Set n = 0; 4,, = ug.
While ¢, <T
1. Set Up1 = . R
2. Compute J,, = J(tn, Uy) and V,, = V(t,, Gy).
3. Fort=2,...,sdo
(a) Find py;(7) as in (2.15).
(b) Solve (2.14) on [0, ¢;H] to obtain ﬁm ~ Yni(ci H).
4. Find §,(7) as in (2.16)
5. Solve (2.17) on [0, H] to get tint1 = Yni1(H).
6. Update tp41 :=t, + H,n:=n+1.
e Output: Approximate values @, =~ u,,n =1,2,... (where u,, is the numer-
ical solution at time ¢, obtained by an ExpRB method).

methods, we found it beneficial to include formulas for ﬁn(t,u) and lA)m(t,u) as
additional inputs to the algorithm (provided they can be precomputed) for use in
(2.15) and (2.16) to avoid floating-point cancellation errors when seeking very accurate
solutions. On the other hand, we note that, within the MERB algorithm, both the
products Jw and V7 can be approximated from F' using finite differences,

J(t,wyw =1 (F(t,u+ow) — F(t,u)) + O(c) and
V(t,u)r = % (F(t+oT1,u) — F(t,u)) + O(0),

instead of J and V being provided analytically; however, when seeking high accuracy,
then such approximations can cause excessive floating-point cancellation error.
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3. Numerical experiments. In this section, we test MERB methods on select
multirate problems to demonstrate their convergence rates, efficiency, and applicabil-
ity to stiff systems of ODEs. In section 3.1 we examine a semilinear nonautonomous
system with bidirectional coupling between the fast and slow variables. For this prob-
lem, we compare the proposed MERB3-MERB6 methods with other recently developed
multirate methods that treat the slow time scale explicitly, namely, MERK3, MERK4, and
MERK5 from [16], plus MRI-GARK-ERK33a and MRI-GARK-ERK45a from [25]. In section
3.2 we test the MERB methods on a much stiffer 2D, Gray—Scott reaction-diffusion
PDE system. MATLAB implementations of all tests are provided on Github [4].

We provide three types of “log-log” efficiency plots that compare solution error
versus different cost measurements: slow function calls, total function calls, and MAT-
LAB runtimes, respectively. In such plots, the most efficient method corresponds to
the curve that is closest to the bottom left corner. We compute solution error as the
maximum absolute error over all spatial grid points and time outputs, as measured
against either an analytical solution or highly accurate reference solution. We also
estimate convergence rates using the maximum pointwise convergence rate once each
method is within the asymptotic convergence regime. Each of our efficiency measure-
ments tells a different story. First, slow function calls illustrate the cost of a multirate
method when applied to an IVP system with expense dominated by the slow compo-
nents F,(t,u). Second, total function calls capture the cost of F(¢,u) and highlight
properties of methods related to their total fast traversal times. Lastly, even though
MATLAB runtimes are a poor proxy for performance on HPC applications, we use
these to capture the costs associated with dynamic linearization and to measure how
these costs affect efficiency.

3.1. Bidirectional coupling system. Inspired by [6, section 5.1], we propose
the semilinear, nonautonomous bidirectional coupling problem on 0 < ¢t <1

(3.1a) v =ov—w-— Bt,
(3.1b) v = —ou,
URTOAY b + 5\
+ w +
1 [ _ _awT Pty _owr Pt
(3.1c) w Aw + Bt) B(u a)\+ba> ,6’(1) a)\erO_) ,
with exact solution u(t) = cos(ct) +ae™, wv(t) = —sin(ot) +be >, and w(t) =

(aX + bo)e™ — Bt. This problem features linear coupling from slow to fast time
scales through (3.1a) and nonlinear coupling from fast to slow time scales through the
equation for (3.1c). In addition, it includes tunable parameters {a,b, 5, \,0} taken
here to be {1,20,0.01, 5,100}, with ac = bA; o determines the frequency of the fast
time scale, and 8 controls the strength of the nonlinearity. In the case of dynamic
linearization, smaller values of S correspond with weaker nonlinearity, resulting in
higher values of the optimal time scale separation factor m = H/h.

While the splitting of this IVP into fast and slow components, u/(t) = F(t,u) =
Fy(t,u)+F,(t,u), for MERB methods is dictated by the dynamic linearization process
at each time step,

(32)  @(t) = F(t,at) = [jnﬁ(t)} + [VnHNn(t,a(t)) = Fy(t,u) + Fiy(t,u),
MERK and MRI-GARK methods do not require dynamic linearization and thus

have more freedom in how they are partitioned. While MERK methods require that
Fy(t,u) = Lu, MRI-GARK methods support arbitrary splittings. Therefore, for this
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TABLE 2
Multirate method properties: Number of slow internal stages and modified ODEs, total fast
traversal times, and optimal m factors for (3.1).

Method Slow Modified | Fast traversal | Bidirect. coupling
stages ODEs time of [0, H] optimal m
Dynamic | Fixed
MERB3 2 2 1.5 80
MERK3 3 3 2.166 80 10
MRI-GARK33a 3 3 1 80 10
MERB4 2 2 1.75 40
MERK4 6 4 2.833 40 10
MRI-GARK45a 5 5 1 40 1
MERB5 4 3 2.075 10
MERK5 10 5 3.2 10 10
MERB6 7 3 1.253 5

problem we consider two separate fast-slow splittings: in addition to the dynamic
linearization, we consider a fixed splitting informed by the exact solution

ov Tw
F’f(lf7 u) = |—ouj, Fs(t7 u) = ( ?ﬁt 2 b(w—pBt) 2
0 —AMw+pt) -8 (u - aaI;era)) -8 (v o aliﬂw )

in the ensuing results we call this the “fixed linearization.” We denote methods run
with the fixed linearization using an asterisk; e.g., MERK3* uses a fixed linearization,
while MERK3 uses dynamic linearization.

We note that, for problems that are dominated by their linear portion, jn, the
dynamic linearization (3.2) can place more dynamics at the fast time scale than other
fixed multirate splittings, thereby offering a potential for greater multirate accuracy at
the expense of constructing the dynamic linearization at each slow step. To determine
the optimal m for each splitting we follow the experimental approach from [16] that
compares efficiency in terms of slow-only function evaluations and total (slow-+fast)
function evaluations for several different values of H and m corresponding to each
multirate and inner method pairing. These values are given in Table 2 and largely
confirm that dynamic linearization can leverage larger time scale separation factors
than the fixed linearization (3.1).

Our implementations of multirate methods of the same order use identical explicit
fast integrators for solving all modified ODEs. Third-order methods use a 3-stage
O(h?) method from [2, equation (233f)], fourth-order methods use Kutta’s 4-stage
O(h*) method from [13], and fifth-order methods use the 8-stage O(h®) explicit part
of ARK5(4)8L[2]SA from [12], while MERB6 uses an 8-stage O(h®) method based on
the 8,5(6) procedure of [29]. We assess error at 20 equally spaced points within the
time interval and consider slow steps H = 0.05 x 2% for k = 0,1,...,7.

Figures 1-3 show accuracy and efficiency results for this problem. Examining the
legends from each figure, we see that all methods attain their expected order of con-
vergence. In Figure 1, all O(H?) methods incorporating dynamic linearization have
similar errors, coinciding with their uniform time scale separation factor of m = 80.
Similarly, the methods using fixed linearization MERK3* and MRI-GARK33a* have the
same m = 10, leading to comparable errors. Dynamic linearization leads to lower er-
rors than fixed linearization at the same step size (here up to 10%). Examining method
efficiency, we see that the proposed MERB3 is the most efficient when considering
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—A— MERB3 (3.96) —+— MERK3 (3.67) —+- MERKS3* (3.97)
—0— MRI-GARK33a (3.71)  —4- MRI-GARK33a* (4.37)

100

10724

Max Error

107

10-%

1072 107! 10° 10° 10* 10° 109 10% 10%
Runtime (s) Total function calls Slow function calls

FIG. 1. Convergence rates (given in parentheses in the legend) and efficiency of O(H?) methods
on the bidirectional coupling problem of section 3.1.

—<+— MERB4 (4.01) —#— MERK4 (4.01) —%- MERK4* (4.12)
MRI-GARK45a (4.05) MRI-GARK45a* (4.93)
10°4 10°4
1072 1072 *\
x\

g 107 10714
=
% 107° 107 4
=

108 108

10-10 10-104

10-2 10! 100 10° 10" 10° 10° 10° 10° 10'
Runtime (s) Total function calls Slow function calls

FIG. 2. Convergence rates (in parentheses in the legend) and efficiency of O(H*) methods on
the bidirectional coupling problem of section 3.1.

both overall runtime and slow function evaluations, while MRI-GARK33a is slightly
more efficient in total function evaluations. Of particular note, we see a significant
slow function call benefit for all methods that use dynamic linearization.

We plot results for O(H*) methods in Figure 2. As seen for the O(H?) methods,
O(H*) methods using dynamic linearization achieve improved error at the same H in
comparison to those using fixed linearization. Here, MERB4 and MERK4 show optimal
runtime efficiency, with MRI-GARK-ERK45a close behind. The MRI-GARK methods
are slightly more efficient in total function calls, while MERB4 is more efficient in slow
function calls.

Finally, we compare the performance of O(H®) and O(H®) methods in Figure 3.
The accuracy of the O(H®) methods is almost identical on this test problem, with
MERB6 starting with slightly higher error but quickly catching up due to its higher
convergence rate. The two new MERB methods are the most efficient for this test
problem by all metrics. Focusing on runtime efficiency, MERB5 is slightly more efficient
at larger error values but is passed by MERB6 at smaller errors. Focusing on function
calls, MERBS is the most efficient in total function calls due to its smaller total traversal
time, whereas the small number of stages for MERB5 renders it more efficient in terms
of slow function calls.
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—#— MERB5 (5.37) —&— MERKS5 (5.37)  -@- MERK5* (5.15)
MERB6 (6.0)

Max Error

1072 107! 10° 10* 10° 109 10? 10% 10*
Runtime (s) Total function calls Slow function calls

FiG. 3. Convergence rates (given in parentheses in the legend) and efficiency of O(H®) and
O(HSY) methods on the bidirectional coupling problem of section 3.1.

3.2. Gray—Scott model. As a challenge problem to test MERB methods in
the stiff regime, we consider the Gray—Scott reaction-diffusion PDE [8]:

Ou = D, V?*u — uv® + A(1 — u),

3.3
(3:3) 0w = D,V*v + uv?® — (A + B)w,

where u(z,y,t) and v(z,y,t) are defined over the domain [0, 1] x [0,1] x (0,0.2], sat-
isfy periodic boundary conditions, and are spatially discretized with 50 centered
finite difference grid points in each direction. Here the reaction coefficients are
A = 0.625, B = 0.25, and the diffusion coefficients are D, = 0.312 and D, = 0.156.
The initial conditions are Gaussian pulses

~150((2-0.5)> +2(y—0.5)?)

~150((2-0.5)+(y—0.5)2 ) o

u(xayao)zl_e .’I,‘,y,O)Ze

With these parameters the Jacobian norm at the initial condition is 6.2 x 103, cor-
responding to a moderately stiff problem. We compute error by comparing against
a reference solution (obtained using MATLAB’s ode15s with relative and absolute
tolerances 10712 and 1071*) at 10 evenly spaced points in time, and we test all meth-
ods with slow time steps H = 0.01 x 27% for k = 0,...,7. All methods use a time
scale separation factor of m = 10. Due to the problem’s stiffness, we employ fully im-
plicit Runge-Kutta methods for the fast integration: MERB3 uses a 2-stage RadaullA
method, MERB4 uses a 3-stage LobattolIIC method, MERB5 uses a 3-stage RadaullA
method, and MERB6 uses a 4-stage LobattoIIIC method [10].

To more readily compare the proposed MERB methods against one another, in
Figure 4 we overlay plots showing the efficiency of these methods according to each of
our three cost metrics. Again, as seen in the legend each method attains its theoretical
convergence rate on even this significantly stiffer test problem. We note that, at the
largest step size of H = 0.01 (the left-most point on each curve), MERB5 has the least
error for this problem, followed by MERB4, MERB3, and then MERB6. Due to this larger
initial error, MERB6 is only optimal when considering runtime efficiency at the smallest
error values (unlike for the bidirectional test problem shown in Figures 1-3, where
it is considerably more competitive in multiple metrics). Due to its low initial error
and high convergence rate, MERB5 is the most efficient of all MERB methods across
a wide range of error levels and cost metrics, with MERB3 and MERB4 optimal for only
the highest error values.



708
709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

MULTIRATE EXPONENTIAL ROSENBROCK METHODS A23

—A— MERB3 (3.08) —v— MERB5 (4.92) MERB6 (6.51)
—<— MERB4 (4.13)
10744 10794 107%4
107" 10774
g . . X
5 10774 1074
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Runtime (s) Total function calls Slow function calls

Fic. 4. Convergence rates (given in parentheses in the legend) and efficiency of all MERB
methods on the Gray—Scott problem of section 3.2.

4. Conclusions. We have introduced a new approach for multirate integration
of IVPs that evolve on multiple time scales. Employing an MIS-like approach wherein
the coupling between slow and fast time scales occurs through defining a sequence of
modified IVPs at the fast time scale and built off of existing ExpRB methods, the
proposed MERB methods allow creation of multirate methods with very high order
and minimize the amount of costly processing of the slow time scale operator. In
addition to deriving a clear mechanism for constructing these from certain classes of
ExpRB schemes, we provide rigorous convergence analysis for MERB methods. We
note that the style of this analysis is much more elegant than our approach for MERK
methods [16] in that we analyze the overall MERB error by separately quantifying
the error between the MERB approximation of the underlying ExpRB method and
the error in the ExpRB approximation of the original IVP. With this theory in hand,
we propose a suite of MERB methods with orders 2 through 6, where in the cases of
orders 3-6, we additionally provide generalizations of the base ExpRB methods and
extend these to nonautonomous problems.

We examine the performance of the proposed MERB methods of orders 3 through
6 on two test problems: a nonautonomous bidirectional coupling problem and a 2D
Gray—Scott model. For the bidirectional coupling problem, we compare MERB meth-
ods against existing MERK and explicit MRI-GARK methods, where the MERK and
MRI-GARK methods are tested with two potential multirate splittings on each prob-
lem. While all MERB, MERK, and MRI-GARK methods exhibited their theoretical
convergence rates on this problem and splittings, their efficiency varies. In order to
provide results that potentially apply to a broad range of multirate applications, we
investigate efficiency using three separate measurements of cost: MATLAB runtime,
total function calls (both fast and slow), and slow function calls only. Within these
metrics, some general patterns emerge. First, most of the methods exhibited opti-
mal efficiency at higher m = H/h values when using multirate splittings based on
dynamic linearization as opposed to fixed splittings. Second, the proposed MERB
methods show the best runtime efficiency of all methods and splittings, although in
some cases the equivalent order MERK method with dynamic splitting is competi-
tive. Third, due to their total fast time scale traversal times of 1.0H, the MRI-GARK
methods always exhibit the best total function call efficiency. Lastly, due to their low
number of slow stages, the proposed MERB methods are uniformly the most efficient
when considering slow function calls (only in a few instances MERK with dynamic
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splitting was competitive). This is particular of interest for multirate problems where
the fast component is much less costly to compute than the slow component. For the
moderately stiff Gray—Scott system, we demonstrate that MERB methods maintain
their expected orders of accuracy expanding the set of problems to which they are
applicable.

Based on these results, we find that the newly proposed MERB methods provide
a unique avenue to construction of high-order MIS-like multirate methods and that
they are very competitive in comparison with other recently developed high-order
MIS-like multirate schemes. More work remains, however. An obvious extension
is to include embeddings to enable low-cost temporal error estimation, as well as
to investigate robust techniques for error-based multirate time step adaptivity. A
further extension of MERB methods could focus on applications that require implicit
or mixed implicit-explicit treatment of processes at the slow time scale.
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