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Abstract. In this paper we propose a novel class of methods for high-order accurate integration5

of multirate systems of ordinary differential equation initial-value problems. The proposed methods6

construct multirate schemes by approximating the action of matrix \varphi functions within explicit ex-7

ponential Rosenbrock (ExpRB) methods, thereby called multirate ExpRB (MERB) methods. They8

consist of the solution to a sequence of modified ``fast"" initial-value problems, which may themselves9

be approximated through subcycling any desired initial-value problem solver. In addition to proving10

how to construct MERB methods from certain classes of ExpRB methods, we provide rigorous con-11

vergence analysis of these methods and derive efficient MERB schemes of orders 2 through 6 (the12

highest-order infinitesimal multirate methods to date). We then present numerical simulations to13

confirm these theoretical convergence rates and to compare the efficiency of MERB methods against14

other recently introduced high-order multirate methods.15
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1. Introduction. In this paper, we consider numerical methods to perform19

highly accurate time integration for multirate systems of ordinary differential equation20

(ODE) initial-value problems (IVPs). The primary characteristic of these problems is21

that they are comprised of two or more components that on their own would evolve22

on significantly different time scales. Such problems may be written in the general23

additive form24

(1.1) u\prime (t) = F (t, u(t)) := Ff (t, u) + Fs(t, u), t \in [t0, T ], u(t0) = u0,25

where Ff and Fs contain the ``fast"" and ``slow"" operators or variables, respectively.26

Typically, due to either stability or accuracy limitations the fast processes must be27

evolved with small step sizes; however the slow processes could allow much larger28

time steps. Such problems frequently arise in the simulation of ``multiphysics"" sys-29

tems, wherein separate models are combined together to simulate complex physical30

phenomena [7]. While such problems may be treated using explicit, implicit, or mixed31

implicit-explicit time integration methods that evolve the full problem using a shared32

time step size, this treatment may prove inefficient, inaccurate, or unstable, depend-33

ing on which time scale is used to dictate this shared step size. Historically, scientific34

simulations have treated such problems using ad hoc operator splitting schemes where35

faster components are ``subcycled"" using smaller time steps than slower components.36
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Schemes in this category include Lie--Trotter [22] and Strang--Marchuk [21, 28] tech-37

niques that are first- and second-order accurate, respectively. In recent years, however,38

methods with increasingly high orders of accuracy have been introduced. Our par-39

ticular interest lies in methods allowing so-called infinitesimal formulations, wherein40

the fast time scale is assumed to be solved exactly, typically through evolution of a41

sequence of modified fast IVPs,42

v\prime (\tau ) = Ff (\tau , v) + g(\tau ), \tau \in [\tau 0, \tau f ], v(\tau 0) = v0,43

and where the forcing function g(\tau ), time interval [\tau 0, \tau f ], and initial condition v0 are44

determined by the multirate method to incorporate information from the slow time45

scale. In practice, however, these fast IVPs are solved using any viable numerical46

method, typically with smaller step size than is used for the slow dynamics. While47

both the legacy Lie--Trotter and Strang--Marchuk schemes satisfy this description,48

each uses g(\tau ) = 0 and only couple the time scales through the initial condition v0.49

The first higher-order infinitesimal multirate methods were the multirate infinitesimal50

step (MIS) methods [26, 30], which allowed up to third-order accuracy. These have51

been extended by numerous authors in recent years to support fourth and fifth orders52

of accuracy, as well as implicit or even mixed implicit-explicit treatment of the slow53

time scale [1, 3, 16, 25, 27].54

Most higher-order (\geq 3) infinitesimal methods, including MIS, relaxed MIS [27],55

extended MIS [1], multirate infinitesimal general structure additive Runge--Kutta56

(GARK) [24, 25], and implicit-explicit multirate infinitesimal (MRI) GARK [3], place57

no restrictions on the operators Ff and Fs. The corresponding order conditions for58

these methods are rooted in partitioned Runge--Kutta theory, to the end that the59

number of order conditions grows exponentially with the desired order of accuracy,60

to the effect that none of these methods have been proposed with order of accuracy61

greater than four.62

In previous work, we presented an alternate approach for deriving infinitesimal63

multirate methods that was based on exponential Runge--Kutta (ExpRK) theory,64

named multirate ExpRK (MERK) methods [16]. A particular benefit of this theory is65

that ExpRK methods require fewer order conditions than partitioned Runge--Kutta66

methods; however, to leverage this theory, MERK methods require that the fast time67

scale operator is autonomous and that it depends linearly on the solution u; i.e., these68

consider the IVP69

(1.2) u\prime (t) = F (t, u(t)) := \scrL u+\scrN (t, u), t \in [t0, T ], u(t0) = u0,70

where the ``fast"" and ``slow"" components are Ff (t, u) = \scrL u and Fs(t, u) = \scrN (t, u),71

respectively. With this restriction in place, however, MERK methods have been72

proposed with orders of accuracy up to five.73

In this work, we address the case of a nonautonomous and nonlinear fast time scale74

operator Ff (t, u) by proposing to use a dynamic linearization approach that updates75

the operators \scrL and \scrN within each time step. Nonlinear dynamical systems often76

operate on multiple time scales away from equilibrium; hence linearization techniques77

can offer important information on how such systems behave in the neighborhood of78

equilibrium points. Near an equilibrium point the eigenvalues of the linearized system79

often provide the necessary information on the time scale structure. Therefore, we80

expect that the dynamic linearization approach that updates \scrL u (within each time81

step) at the fast time scale will be applicable for any dynamical system wherein its82

linearization captures the majority of the dynamics. In addition, as mentioned in83
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[11], a bad choice of fixed linearization (1.2) can lead to stability issues, for exam-84

ple, if the numerical solution stays near an equilibrium point of the problem for a85

long time. In such a case, MERK methods may require taking smaller time steps,86

thereby causing computational inefficiency. This further motivates us to consider the87

idea of linearizing (1.2) in each integration step in order to overcome these issues.88

We leverage this dynamic linearization approach through building multirate schemes89

from exponential Rosenbrock (ExpRB) methods. This new class of multirate schemes,90

called multirate ExpRB (MERB) methods, approximates the action of matrix \varphi func-91

tions within explicit ExpRB methods and consists of solving a sequence of modified92

linear ODE-IVPs, which can be integrated using any desired ODE solvers. Moreover,93

we establish an elegant convergence theory for MERB methods, allowing us to deter-94

mine a minimum order of accuracy for the numerical methods needed for solving the95

corresponding fast time scale IVPs. In addition to this theory, we generalize the co-96

efficients for a number of high-order ExpRB methods and exploit their parallel stage97

structure to derive efficient multirate methods of very high-order (including the first-98

ever infinitesimal multirate method of order 6), with optimized numbers of modified99

fast IVPs. Our numerical experiments show that these new proposed MERB schemes100

are uniformly the most efficient when considering slow function calls (of particular in-101

terest for multirate systems where the fast component is much less costly to compute102

than the slow component) and thus are very competitive in comparison with recently103

developed high-order multirate methods such as MERK and MRI-GARK.104

The remainder of this paper is organized as follows. We first present the structure105

of ExpRB methods (section 2.1). Then in section 2.2 we interpret the corresponding106

ExpRB internal stages and time step approximations as exact solutions to modified107

``fast"" IVPs, thereby deriving MERB methods. In section 2.3 we present rigorous108

convergence analysis for this family of newly proposed methods. Then in section 2.4109

we construct specific multirate methods from this family for practical use and discuss110

techniques for their numerical implementation in section 2.5. In section 3 we provide111

detailed numerical results to compare the performance of the proposed methods with112

the recent MERK methods of orders 3 through 5, as well as with third- and fourth-113

order explicit MRI-GARK methods. Finally, we provide concluding remarks and114

discuss avenues for future research in section 4.115

2. MERB methods.116

2.1. ExpRB schemes. ExpRB methods are constructed by linearizing the vec-117

tor field F (t, u) at each step along the numerical solution (tn, un),118

(2.1) u\prime (t) = F (t, u(t)) = Jnu(t) + Vnt+Nn(t, u(t))119

with120

(2.2) Jn =
\partial F

\partial u
(tn, un), Vn =

\partial F

\partial t
(tn, un), Nn(t, u) = F (t, u) - Jnu - Vnt.121

We note that if (1.1) is in fact autonomous, i.e., u\prime (t) = F (u(t)), then this linearization122

simplifies since Vn = 0 and Nn(t, u) = Nn(u) = F (u) - Jnu.123

One can represent the exact solution to (2.1) at time tn+1 = tn +H as in [14] by124

applying the variation-of-constants formula (also known as, Duhamel's principle),
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(2.3)

u(tn+1) = eHJnu(tn) +

\int H

0

e (H - \tau )Jn

\Bigl( 
Vn(tn + \tau ) +Nn(tn + \tau , u(tn + \tau ))

\Bigr) 
d\tau 

= eHJnu(tn) +H\varphi 1(HJn)Vntn +H2\varphi 2(HJn)Vn

+

\int H

0

e (H - \tau )JnNn(tn + \tau , u(tn + \tau ))d\tau ,

126

where \varphi k(Z) (Z = HJn) belong to the family of \varphi functions given by127

(2.4) \varphi k(Z) =
1

Hk

\int H

0

e (H - \tau ) Z
H

\tau k - 1

(k  - 1)!
d\tau , k \geq 1.128

Explicit ExpRB methods approximate the integral in (2.3) by using a quadrature rule129

with nodes ci in [0, 1] (i = 1, . . . , s) (c1 = 0). Denoting the resulting approximations130

un \approx u(tn) and Uni \approx u(tn + ciH), ExpRB methods may be written as131

(2.5)

Uni = un + ciH\varphi 1(ciHJn)F (tn, un) + c2iH
2\varphi 2(ciHJn)Vn +H

i - 1\sum 

j=2

aij(HJn)Dnj ,

un+1 = un +H\varphi 1(HJn)F (tn, un) +H2\varphi 2(HJn)Vn +H
s\sum 

i=2

bi(HJn)Dni,

132

where133

(2.6) Dni = Nn(tn + ciH,Uni) - Nn(tn, un),134

(i = 2, . . . , s) and where Dn1 = 0 [11, 14]. Here, the weights aij(HJn) and bi(HJn)135

are usually chosen (by construction) as linear combinations of the \varphi k(ciHJn) and136

\varphi k(HJn) functions given in (2.4), respectively. These unknown functions can be137

determined by solving order conditions, depending on the required order of accuracy.138

Remark 2.1 (order conditions). For later use, in Table 1 we recall the stiff order139

conditions for ExpRB methods up to order 6 from [18]. We note that an ExpRB140

method of order 6 only requires 7 conditions, which is much less than the 36 conditions141

needed for explicit Runge--Kutta or ExpRK methods of the same order. This is the142

advantage of the dynamic linearization approach (2.1) and can be understood by143

observing from (2.2) that144

(2.7)
\partial Nn

\partial u
(tn, un) = 0 and

\partial Nn

\partial t
(tn, un) = 0.145

This property significantly simplifies the number of order conditions, particularly for149

higher-order schemes. A further consequence of (2.7) is that from (2.6) we have150

Dni = \scrO (H2), meaning that ExpRB methods are at least of order 2.151

2.2. A multirate procedure for ExpRB methods. Inspired by [16], we now152

show how ExpRB schemes can be interpreted as a class of MIS-type methods. Namely,153

we construct modified ODEs whose exact solutions correspond to the ExpRB internal154

stages Uni (i = 2, . . . , s) and the final stage un+1.155

Lemma 2.2. Consider an explicit ExpRB scheme (2.5), where the weights aij(HJn)156

and bi(HJn) can be written as linear combinations of \varphi k functions,157

(2.8) aij(HJn) =

\ell ij\sum 

k=1

\alpha 
(k)
ij \varphi k(ciHJn), bi(HJn) =

mi\sum 

k=1

\beta 
(k)
i \varphi k(HJn),158
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Table 1146

Stiff order conditions for ExpRB methods up to order 6 (from [18]). Here Z,K, and M denote
arbitrary square matrices.

147

148

No. Order condition Order

1
\sum s

i=2 bi(Z)c2i = 2\varphi 3(Z) 3

2
\sum s

i=2 bi(Z)c3i = 6\varphi 4(Z) 4

3
\sum s

i=2 bi(Z)c4i = 24\varphi 5(Z) 5

4
\sum s

i=2 bi(Z)ciK
\bigl( 
\sum i - 1

k=2 aik(Z)
c2k
2!

 - c3i\varphi 3(ciZ)
\bigr) 

= 0 5

5
\sum s

i=2 bi(Z)c5i = 120\varphi 6(Z) 6

6
\sum s

i=2 bi(Z)c2iM
\bigl( 
\sum i - 1

k=2 aik(Z)
c2k
2!

 - c3i\varphi 3(ciZ)
\bigr) 

= 0 6

7
\sum s

i=2 bi(Z)ciK
\bigl( 
\sum i - 1

k=2 aik(Z)
c3k
3!

 - c4i\varphi 4(ciZ)
\bigr) 

= 0 6

and where \ell ij and mi are some positive integers. Then, Uni and un+1 are the exact159

solutions of the (linear) modified differential equations160

v\prime ni(\tau ) = Jnvni(\tau ) + pni(\tau ), vni(0) = un, i = 2, . . . , s,(2.9a)161

v\prime n+1(\tau ) = Jnvn+1(\tau ) + qn(\tau ), vn+1(0) = un ,(2.9b)162
163

at the times \tau = ciH and \tau = H, respectively. Here, pni(\tau ) and qn(\tau ) are polynomials164

in \tau given by165

pni(\tau ) = Nn(tn, un) + (tn + \tau )Vn +
i - 1\sum 

j=2

\left( 
 

\ell ij\sum 

k=1

\alpha 
(k)
ij

ckiH
k - 1(k  - 1)!

\tau k - 1

\right) 
 Dnj ,(2.10a)166

qn(\tau ) = Nn(tn, un) + (tn + \tau )Vn +
s\sum 

i=2

\Biggl( 
mi\sum 

k=1

\beta 
(k)
i

Hk - 1(k  - 1)!
\tau k - 1

\Biggr) 
Dni.(2.10b)167

168

Proof. The proof can be carried out in a very similar manner as in [16, Theo-169

rem 3.1]. Here, we only sketch the main idea. First, we insert the \varphi k functions from170

(2.4) into (2.8) to get the integral representations of aij(HJn) and bi(HJn):171

aij(HJn) =

\int ciH

0

e (ciH - \tau )Jn

\ell ij\sum 

k=1

\alpha 
(k)
ij

(ciH)k(k  - 1)!
\tau k - 1d\tau ,(2.11a)172

bi(HJn) =

\int H

0

e (H - \tau )Jn

mi\sum 

k=1

\beta 
(k)
i

Hk(k  - 1)!
\tau k - 1d\tau .(2.11b)173

174

Inserting these into (2.5) shows that175

Uni = eciHJnun +

\int ciH

0

e (ciH - \tau )Jnpni(\tau )d\tau , i = 2, . . . , s,(2.12a)176

un+1 = eHJnun +

\int H

0

e (H - \tau )Jnqn(\tau )d\tau ,(2.12b)177

178

which clearly show that Uni = vni(ciH) and un+1 = vn+1(H) by means of the179

variation-of-constants formula applied to (2.9a) and (2.9b), respectively.180
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MERB methods. Starting from the initial value u0 = u(t0), Lemma 2.2 suggests181

a multirate procedure to approximate the numerical solutions un+1 (n = 0, 1, 2, . . .)182

obtained by ExpRB methods. Specifically, one may integrate the slow process (Vnt+183

Nn(t, u)) using a macro time step H and integrate the fast process (Jnu) using a micro184

time step h = H/m (where m > 1 is an integer representing the time scale separation185

factor) via solving the ``fast"" ODEs (2.9a) on [0, ciH] and (2.9b) on [0, H]. Let us186

denote the corresponding numerical solutions of these ODEs as \widehat Uni (\approx vni(ciH) =187

Uni) and \^un+1 (\approx vn+1(H) = un+1). Then this multirate procedure consists in each188

step of solving (2.9)--(2.10) with the initial value \^un (\^u0 = u0). Since we must linearize189

each step around the approximate solution \^un instead of the true value un, we denote190

the approximations of Jn, Vn, Nn(t, u), and Dnj appearing in polynomials (2.10) as191

\^Jn =
\partial F

\partial u
(tn, \^un), \^Vn =

\partial F

\partial t
(tn, \^un), \^Nn(t, u) = F (t, u) - \^Jnu - \^Vnt,(2.13a)192

\widehat Dnj = \^Nn(tn + cjH, \widehat Unj) - \^Nn(tn, \^un).(2.13b)193
194

Thus, starting with \^u0 = u0, for each time step tn \rightarrow tn+1 we solve perturbed linear195

ODEs for i = 2, . . . , s,196

(2.14) y\prime ni(\tau ) = \^Jnyni(\tau ) + \^pni(\tau ), \tau \in [0, ciH], yni(0) = \^un,197

with198

(2.15) \^pni(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn +
i - 1\sum 

j=2

\left( 
 

\ell ij\sum 

k=1

\alpha 
(k)
ij

ckiH
k - 1(k  - 1)!

\tau k - 1

\right) 
 \widehat Dnj ,199

to obtain200

\widehat Uni \approx yni(ciH) \approx vni(ciH) = Uni.201

Then, using these approximations, we find202

(2.16) \^qn(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn +

s\sum 

i=2

\Biggl( 
mi\sum 

k=1

\beta 
(k)
i

Hk - 1(k  - 1)!
\tau k - 1

\Biggr) 
\widehat Dni203

and solve one additional linear ODE204

(2.17) y\prime n+1(\tau ) = \^Jnyn+1(\tau ) + \^qn(\tau ), \tau \in [0, H], yn+1(0) = \^un,205

to obtain the update206

\^un+1 \approx yn+1(H) \approx vn+1(H) = un+1.207

Since this process can be derived from ExpRB schemes satisfying (2.8), we call the208

resulting methods (2.14)--(2.17) MERB methods. Note that, since \^Un1 and yn1(0)209

do not enter the MERB scheme, for the sake of completeness, one can define \^Un1 =210

yn1(0) = \^un.211

Remark 2.3. Based on MERB's formulation in (2.14)--(2.17), they have similar212

structure to MERK methods. Hence, they can retain MERK's interesting features,213

including very few evaluations of the costly slow components, and they do not require214

computing matrix functions as ExpRB methods do. The main difference is that at215

each integration step MERB methods must update the linearization components \^Jn,216

\^Vn, \^Nn, and \^Dnj . However, this increased cost may be balanced by the fact that, due217

to the property (2.7), high-order MERB methods should require considerably fewer218

modified ODEs than MERK methods of the same order (see section 2.4).219
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2.3. Convergence analysis of MERB methods.220

2.3.1. Analytical framework. To analyze the convergence of MERB methods,221

we employ the abstract framework of strongly continuous semigroups (see, e.g., [5, 23])222

on a Banach space X. Throughout this paper, we denote the norm in X by \| \cdot \| . Let223

(2.18) J =
\partial F

\partial u
(t, u)224

be the Fr\'echet partial derivative of F . We make use of the following assumptions.225

Assumption 1. The Jacobian (2.18) is the generator of a strongly continuous226

semigroup e tJ in X. This implies that there exist constants C and \omega such that227

(2.19)
\bigm\| \bigm\| e tJ

\bigm\| \bigm\| \leq Ce\omega t, t \geq 0,228

and consequently \varphi k(HJ), aij(HJ), and bi(HJ) are bounded operators.229

230

Assumption 2. The solution u : [t0, T ] \rightarrow X of (1.1) is sufficiently smooth with231

derivatives in X, and F : [t0, T ] \times X \rightarrow X is sufficiently Fr\'echet differentiable in a232

strip along the exact solution to (1.1). All derivatives occurring are assumed to be233

uniformly bounded.234

235

Stability bound. Since \^Jn = \partial F
\partial u

(tn, \^un) arising in MERB methods changes at236

every step and \^Jn \approx Jn, we also employ the following stability bound (for the discrete237

evolution operators on X) of ExpRB methods (see [11, section 3.3]) to have238

(2.20)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n - k\prod 

j=0

eH
\^Jn - j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq CS, t0 \leq tk \leq tn \leq T.239

The importance of this bound is that the constant CS is uniform in k and n, despite240

the fact that Jn varies from step to step.241

2.3.2. A global error representation of MERB methods. Since MERB242

methods (2.14)--(2.17) result in a numerical solution \^un+1 which approximates the243

numerical solution un+1 of ExpRB methods (as denoted above) at time tn+1, we244

will employ the local errors of ExpRB methods to analyze the global error of MERB245

methods. Throughout the paper the following error notations will be used.246

\bullet Global error notation for MERB methods. We denote the global error at time247

tn+1 of a MERB method as248

(2.21) \^en+1 = \^un+1  - u(tn+1).249

\bullet Local error notation for ExpRB methods. We denote the local error at tn+1 of250

the base ExpRB method as251

(2.22) \~en+1 = \~un+1  - u(tn+1).252

Here, \~un+1 is the numerical solution of the base ExpRB method obtained after253

carrying out one step of (2.5) starting from the exact solution u(tn) as the initial254

value:
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255

\~un+1 = eH
\~Jnu(tn)+H\varphi 1(H \~Jn) \~Vntn +H2\varphi 2(HJn) \~Vn(2.23a)256

+H

s\sum 

i=1

bi(H \~Jn) \~Nn(tn + ciH, \~Uni),257

\~Uni = eciH
\~Jnu(tn) + ciH\varphi 1(ciH \~Jn) \~Vntn + c2iH

2\varphi 2(ciH \~Jn) \~Vn(2.23b)258

+H

i - 1\sum 

j=1

aij(H \~Jn) \~Nn(tn + cjH, \~Unj),259

260

where261

(2.24) \~Jn =
\partial F

\partial u
(tn, u(tn)), \~Vn =

\partial F

\partial t
(tn, u(tn)), \~Nn(t, u) = F (t, u) - \~Jnu - \~Vnt.262

Note that, from Lemma 2.2, (2.23) is equivalent to one step of the MERB scheme263

starting from the exact initial value yn+1(0) = u(tn) (for which the solution of the264

IVP (2.17) on [0, H] is ``known"" to be yn+1(H) = \~un+1). Therefore, one can consider265

that \~en+1 is also the local error of MERB methods.266

\bullet Global error notation for approximation of the IVP (2.17). As \^un+1 \approx yn+1(H)267

(the true solution of the ODE (2.17)), we denote the global error of an ODE solver268

used for integrating (2.17) on [0, H] as269

(2.25) \^\varepsilon n+1 = \^un+1  - yn+1(H).270

\bullet Global error notation for approximation of the IVP (2.14). Similarly, since \^Uni271

is the numerical solution of (2.14) on [0, ciH] obtained by an ODE solver, let us denote272

the global error of this approximation as273

(2.26) \^\varepsilon ni = \^Uni  - yni(ciH).274

Note that, by applying the variation-of-constants formula to (2.17) and using (2.11b),
yn+1(H) can be represented as

yn+1(H) = eH \^Jn \^un +H\varphi 1(H \^Jn) \^Vntn +H
2
\varphi 2(HJn) \^Vn +H

s\sum 

i=1

bi(H \^Jn) \^Nn(tn + ciH, \^Uni).

In view of (2.21), (2.22), and (2.25), we can represent the global error of MERB275

methods as276

(2.27) \^en+1 = \^un+1  - \~un+1 + \~en+1 = \^\varepsilon n+1 + (yn+1(H) - \~un+1) + \~en+1.277

To keep our presentation in a compact form, we introduce278

tni = tn + ciH,(2.28a)279

\^Bn = \varphi 1(H \^Jn) \^Vntn +H\varphi 2(H \^Jn) \^Vn +
s\sum 

i=1

bi(H \^Jn) \^Nn(tni, \^Uni),(2.28b)280

\~Bn = \varphi 1(H \~Jn) \~Vntn +H\varphi 2(H \~Jn) \~Vn +

s\sum 

i=1

bi(H \~Jn) \~Nn(tni, \~Uni).(2.28c)281

282

Using (2.28), we now derive a full expansion of (2.27), which shows how the global283

error of MERB methods can be estimated by the sum of the propagated local er-284

rors of ExpRB methods and the global errors of the ODE solvers used for (2.14)285

and (2.17).286
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Theorem 2.4. The global error \^en+1 of MERB methods (2.14)--(2.17) at time287

tn+1 can be expressed as288

(2.29)

\^en+1 =

\Biggl( 
n\prod 

j=0

eH
\^Jn - j  - 

n\prod 

j=0

eH
\~Jn - j

\Biggr) 
u0

\underbrace{}  \underbrace{}  
Error1

+
n\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

eH
\~Jn - j

\Biggr) 
\~ek+1

\underbrace{}  \underbrace{}  
Error2

+

n\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

eH
\^Jn - j

\Biggr) 
\^\varepsilon k+1

\underbrace{}  \underbrace{}  
Error3

+H

n\sum 

k=0

\Biggl[ \Biggl( 
n - k - 1\prod 

j=0

eH
\^Jn - j

\Biggr) 
\^Bk  - 

\Biggl( 
n - k - 1\prod 

j=0

eH
\~Jn - j

\Biggr) 
\~Bk

\Biggr] 

\underbrace{}  \underbrace{}  
Error4

.

289

Proof. In view of (2.27), we first study the difference (yn+1(H)  - \~un+1). Using290

(2.28b) and (2.25) (which implies \^un = yn(H) + \^\varepsilon n), we have291

(2.30) yn+1(H) = eH
\^Jn \^un +H \^Bn = eH

\^Jnyn(H) + eH
\^Jn \^\varepsilon n +H \^Bn.292

Solving this recurrence relation (with y0(H) = u(t0) = u0) gives293

(2.31)

yn+1(H) =

\Biggl( 
n\prod 

j=0

eH
\^Jn - j

\Biggr) 
u0+

n - 1\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

eH
\^Jn - j

\Biggr) 
\^\varepsilon k+1+H

n\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

eH
\^Jn - j

\Biggr) 
\^Bk.294

Similarly, using (2.28c) and (2.22), we can write \~un+1 in (2.23a) as295

(2.32) \~un+1 = eH
\~Jnu(tn) +H \~Bn = eH

\~Jn \~un  - eH
\~Jn\~en +H \~Bn.296

After solving this recurrence, we end up with297

(2.33)

\~un+1 =

\Biggl( 
n\prod 

j=0

eH
\~Jn - j

\Biggr) 
u0  - 

n - 1\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

eH
\~Jn - j

\Biggr) 
\~ek+1 +H

n\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

eH
\~Jn - j

\Biggr) 
\~Bk.298

Subtracting (2.33) from (2.31) and inserting the result into (2.27) prove (2.29).299

For the sake of completeness, we have set
\prod 

 - 1
j=0(\cdot ) (empty products of operators)300

to equal the identity in the proof above. This will be used throughout section 2.3.301

Next, we prove some preliminary results before estimating the global error \^en+1.302

2.3.3. Preliminary results and error bounds.303

Lemma 2.5. The term Error4 in (2.29) can be further expressed as304

(2.34)

Error4 = H

n\sum 

k=0

\Biggl[ \Biggl( 
n - k - 1\prod 

j=0

eH
\^Jn - j  - 

n - k - 1\prod 

j=0

eH
\~Jn - j

\Biggr) 
\^Bk+

\Biggl( 
n - k - 1\prod 

j=0

eH
\~Jn - j

\Biggr) 
( \^Bk - \~Bk)

\Biggr] 
,305

where306

(2.35)

\^Bk  - \~Bk =
2\sum 

j=1

\bigl[ \bigl( 
\varphi j(H \^Jk) - \varphi j(H \~Jk)

\bigr) 
\~Vk + \varphi j(H \^Jk)( \^Vk  - \~Vk)

\bigr] 
t2 - j
k Hj - 1

+

s\sum 

i=1

\bigl( 
bi(H \^Jk) - bi(H \~Jk)

\bigr) 
\~Nk(tki, \~Uki)

+

s\sum 

i=1

bi(H \^Jk)
\bigl( 
\^Nk(tki, \^Uki) - \~Nk(tki, \~Uki)

\bigr) 
.

307
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Proof. The derivation of (2.34) is straightforward by subtracting and adding the308

same term
\prod n - k - 1

j=0 eH
\~Jn - j \^Bk within the sum

\sum n
k=0[\cdot ] in Error4. Also, by subtracting309

(2.28c) from (2.28b), one can easily obtain (2.35).310

To estimate the difference in the nonlinear terms at each internal MERB and311

ExpRB stage,
\bigl( 
\^Nk(tki, \^Uki) - \~Nk(tki, \~Uki)

\bigr) 
in (2.35), we first study the difference312

(2.36) \^Eni = \^Uni  - \~Uni.313

Denoting314

\^Ani = ci\varphi 1(ciH \^Jn) \^Vntn + c2iH\varphi 2(ciH \^Jn) \^Vn +

i - 1\sum 

j=1

aij(H \^Jn) \^Nn(tnj , \^Unj),(2.37a)315

\~Ani = ci\varphi 1(ciH \~Jn) \~Vntn + c2iH\varphi 2(ciH \~Jn) \~Vn +
i - 1\sum 

j=1

aij(H \~Jn) \~Nn(tnj , \~Unj),(2.37b)316

317

we obtain the following result.318

Lemma 2.6. The difference between \^Uni and \~Uni can be expressed as319

(2.38) \^Eni = \^\varepsilon ni + eciH
\^Jn\^en +

\bigl( 
eciH

\^Jn  - eciH
\~Jn
\bigr) 
u(tn) +H( \^Ani  - \~Ani)320

with321

(2.39)

\^Ani  - \~Ani =

2\sum 

\ell =1

\bigl[ \bigl( 
\varphi \ell (ciH \^Jn) - \varphi \ell (ciH \~Jn)

\bigr) 
\~Vn + \varphi \ell (ciH \^Jn)( \^Vn  - \~Vn)

\bigr] 
c\ell it

2 - \ell 
n H\ell  - 1

+

i - 1\sum 

j=1

\bigl( 
aij(H \^Jn) - aij(H \~Jn)

\bigr) 
\~Nn(tnj , \~Unj)

+
i - 1\sum 

j=1

aij(H \^Jn)
\bigl( 
\^Nn(tnj , \^Unj) - \~Nn(tnj , \~Unj)

\bigr) 
.

322

Here, \^\varepsilon n1 = \^Un1  - yn1(c1H) = \^un  - yn1(0) = 0 (due to c1 = 0), and thus \^En1 = \^en.323

Proof. From (2.36) and (2.26), we have324

(2.40) \^Eni = \^\varepsilon ni + yni(ciH) - \~Uni.325

Using (2.37b), one can write \~Uni given in (2.23b) as326

(2.41) \~Uni = eciH
\~Jnu(tn) +H \~Ani.327

By applying the variation-of-constants formula to (2.14) and using (2.11a),328

(2.42) yni(ciH) = eciH
\^Jn \^un +H \^Ani = eciH

\^Jn(\^en + u(tn)) +H \^Ani,329

where \^Ani is given in (2.37a). Inserting (2.41) and (2.42) into (2.40) gives (2.38). Simi-330

larly to (2.35), the expression (2.39) can be verified by subtracting (2.37b) from (2.37a)331

first and then adding and subtracting to the result the same terms ci\varphi 1(ciH \^Jn) \~Vntn,332

c2iH\varphi 2(ciH \^Jn) \~Vn, and
\sum i - 1

j=1 aij(H
\^Jn) \~Nn(tn + cjH, \~Unj).333
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Remark 2.7 (reasonable assumptions on \^en and \^Eni). In view of the expressions334

(2.29) and (2.38), one can investigate how the global error \^en+1 = \^en+1(H) and the335

difference \^Eni = \^Eni(H) behave as the step size H approaches 0. First, it is clear336

that limH\rightarrow 0 Error1 = 0 and limH\rightarrow 0 Error4 = 0. Second, we note that, if the linear337

ODEs (2.17) and (2.14) of the MERB scheme are solved with ODE solvers which have338

convergence orders r and q (using a micro time step h = H/m, m > 1), their global339

errors behave as \^\varepsilon k+1 = \scrO (hr) = 1
mr \scrO (Hr), \^\varepsilon ni = \scrO (hq) = 1

mq \scrO (Hq), respectively.340

Next, as for the local errors \~ek+1 of the ExpRB methods, in [19, section 3.3] it was341

shown that these errors are at least proportional to H3 (for free---without any order342

conditions). In fact, the stiff order conditions for ExpRB methods of orders up to 6343

have been derived so far [18, 20], meaning that \~ek+1 = \scrO (Hp+1) (2 \leq p \leq 6). Putting344

these together, we observe from (2.29) that345

lim
H\rightarrow 0

\^en+1 =

n\sum 

k=0

\Bigl( 
lim
H\rightarrow 0

\~ek+1+ lim
H\rightarrow 0

\^\varepsilon k+1

\Bigr) 
=

n\sum 

k=0

\Bigl( 
lim
H\rightarrow 0

\scrO (Hp+1)+ lim
H\rightarrow 0

1

mr
\scrO (Hr)

\Bigr) 
= 0.346

Using this, we deduce from (2.38) that347

lim
H\rightarrow 0

\^Eni = lim
H\rightarrow 0

\^\varepsilon ni + lim
H\rightarrow 0

\^en = lim
H\rightarrow 0

1

mq
\scrO (Hq) + lim

H\rightarrow 0
\^en = 0.348

Therefore, henceforth we will reasonably assume that \^en+1 and \^Eni remain in a suf-349

ficiently small neighborhood of 0 for small step sizes.350

Next, we prove several bounds needed to estimate the terms in (2.35) and (2.39).351

To simplify our presentation within both this and the following subsections, we will352

use C as a generic constant that may have different values at each occurrence.353

Lemma 2.8. Under Assumption 2, the bound354

(2.43) \| \^Nn(tni, \^Uni) - \~Nn(tni, \~Uni)\| \leqslant C\| \^Eni\| + C\| \^Jn  - \~Jn\| + C\| \^Vn  - \~Vn\| 355

holds for all n and i as long as \^Eni remains in a sufficiently small neighborhood of 0.356

Proof. First, we split357

\^Nn(tni, \^Uni) - \~Nn(tni, \~Uni) = \^Nn(tni, \^Uni) - \^Nn(tni, \~Uni)
\underbrace{}  \underbrace{}  

Nsplit1

+ \^Nn(tni, \~Uni) - \~Nn(tni, \~Uni)
\underbrace{}  \underbrace{}  

Nsplit2

.358

Using (2.13a) and (2.24), we write the term Nsplit2 as359

(2.44)
Nsplit2 =

\bigl( 
F (tni, \~Uni) - \^Jn \~Uni  - \^Vntni

\bigr) 
 - 

\bigl( 
F (tni, \~Uni) - \~Jn \~Uni  - \~Vntni

\bigr) 

= ( \~Jn  - \^Jn) \~Uni + (\~Vn  - \^Vn)tni.
360

Expanding \^Nn(t, U) into a Taylor series expansion around (tni, \~Uni) gives361

(2.45) Nsplit1 =

\int 1

0

\partial \^Nn

\partial u
(tni, \~Uni + \theta \^Eni) \^Enid\theta .362

Under Assumption 2, (2.43) follows by bounding \| Nsplit1\| + \| Nsplit2\| .363
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Lemma 2.9. Under Assumptions 1 and 2, the bounds364

\| \^Jn  - \~Jn\| \leqslant C\| \^en\| , \| \^Vn  - \~Vn\| \leqslant C\| \^en\| ,(2.46a)365

\| e t
\^Jn  - e t

\~Jn\| \leqslant Ct\| \^en\| , t \geq 0,(2.46b)366

\| \varphi \ell (t \^Jn) - \varphi \ell (t \~Jn)\| \leqslant Ct\| \^en\| , t \geq 0,(2.46c)367

\| bi(H \^Jn) - bi(H \~Jn)\| \leqslant CH\| \^en\| ,(2.46d)368

\| aij(H \^Jn) - aij(H \~Jn)\| \leqslant CH\| \^en\| (2.46e)369
370

hold for all n, \ell , i, and j, as long as the global errors \^en remain in a sufficiently small371

neighborhood of 0.372

Proof. It is straightforward to verify (2.46a) by first noting that \^Jn  - \~Jn =
\partial F
\partial u

(tn, \^un) - 
\partial F
\partial u

(tn, u(tn)), \^Vn  - \~Vn = \partial F
\partial t

(tn, \^un) - 
\partial F
\partial t

(tn, u(tn)) and then expanding
\partial F
\partial u

(t, u), \partial F
\partial t

(t, u) in a Taylor series around (tn, u(tn)) (using with the integral remain-
der terms of \scrO (\| \^en\| )). Next, we estimate the difference between the two semigroups

e t
\^Jn and e t

\~Jn in a similar manner as in [19, Lemma 4.2]. Namely, it is observed that

e t
\^Jn is the solution of the IVP

w\prime (t) = \^Jnw(t) = \~Jnw(t) + ( \^Jn  - \~Jn)w(t), w(0) = I.

Applying the variation-of-constants formula to this IVP gives

e t
\^Jn  - e t

\~Jn = t

\int 1

0

e (1 - \theta )t \~Jn( \^Jn  - \~Jn)e
\theta t \^Jnd\theta .

Therefore, (2.46b) follows directly from (2.19) and (2.46a) (the first bound). Using373

this, (2.46c)--(2.46e) follow from using (2.4) and (2.8) (see also [19, Lemma 4.3]).374

Using the results from Lemmas 2.6, 2.8, and 2.9, we obtain the following result.375

Corollary 2.10. Under Assumptions 1 and 2, the estimate376

(2.47) \| \^Bk  - \~Bk\| \leqslant 

s\sum 

j=1

C\| \^\varepsilon kj\| + C\| \^ek\| 377

holds for all k, as long as \^Eki and the global errors \^ek remain in a sufficiently small378

neighborhood of 0.379

Proof. Using Lemmas 2.9 and 2.8, one can bound (2.35) as380

(2.48) \| \^Bk  - \~Bk\| \leqslant C\| \^ek\| + C

s\sum 

i=1

\| \^Eki\| .381

Next, we apply Lemma 2.6 (with n = k) to get \^Eki and then estimate it by using382

(2.19) and Lemma 2.9 (the bound (2.46b)):383

(2.49) \| \^Eki\| \leqslant \| \^\varepsilon ki\| + C\| \^ek\| +H\| \^Aki  - \~Aki\| .384

Again using Lemmas 2.9 and 2.8, the bound on \| \^Aki  - \~Aki\| (see (2.39)) is similar to385

(2.48). Inserting this into (2.49) and using \^Ek1 = \^ek finally show that386

(2.50) \| \^Eki\| \leqslant \| \^\varepsilon ki\| + C\| \^ek\| +
i - 1\sum 

j=1

C\| \^\varepsilon kj\| .387

It is clear now that (2.47) follows from (2.48) and (2.50).388
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Finally, we give a technical lemma, which can be later used to estimate the term389

Error1 appearing in (2.29).390

Lemma 2.11. Let \{ Zj\} 
n
j=0 and \{ Yj\} 

n
j=0 be two sequences of operators on X (the391

state space). We have392

(2.51)

n\prod 

j=0

Zn - j  - 
n\prod 

j=0

Yn - j =

n\sum 

k=0

\Biggl( 
n - k - 1\prod 

j=0

Zn - j

\Biggr) 
(Zk  - Yk)

\Biggl( 
n\prod 

j=n - k+1

Yn - j

\Biggr) 
.393

Proof. By adding and subtracting
\prod n - 1

j=0 Zn - jY0 and then
\prod n - 2

j=0 Zn - jY0Y1, the394

left-hand side of (2.51) can be written as395

\Biggl( 
n - 1\prod 

j=0

Zn - j

\Biggr) 

(Z0  - Y0) +

\Biggl( 
n - 2\prod 

j=0

Zn - j

\Biggr) 

(Z1  - Y1)Y0 + (ZnZn - 1 . . . Z2  - YnYn - 1 . . . Y2)Y1Y0.396

We continue adding and subtracting (
\prod n - k - 1

j=0 Zn - j)(
\prod n

j=n - k+1 Yn - j) in this manner397

until k = n to obtain the right-hand side (2.51).398

Corollary 2.12. Under Assumptions 1 and 2, the estimate399

(2.52)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\prod 

j=0

eH
\^Jn - j  - 

n\prod 

j=0

eH
\~Jn - j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leqslant H
n\sum 

k=0

C\| \^ek\| .400

holds for all n as long as the global errors \^ek remain sufficiently small.401

Proof. This follows by applying Lemma 2.11 to Zn - j = eH
\^Jn - j and Yn - j =402

eH
\~Jn - j and by using the stability bound (2.19) and the bound (2.46b) from Lemma 2.9.403

2.3.4. MERB convergence. With the above preparation in hand, we are now404

ready to prove convergence of our MERB methods.405

Theorem 2.13. Let the IVP (1.1) satisfy Assumptions 1--2. Consider for its406

numerical solution a MERB method (2.14)--(2.17) that is constructed from an ExpRB407

method of global order p using with macro time step H. Let m denote the number408

of fast steps per slow step. If the fast ODEs (2.14) and (2.17) associated with the409

MERB method are integrated with micro time step h = H/m by using ODE solvers410

that have global order of convergence q and r, respectively, then the MERB method is411

convergent with the error bound412

(2.53) \| \^un  - u(tn)\| \leqslant CHp + Chq + Chr - 1 = CHp +
C

mq
Hq +

C

mr
Hr - 1

413

on compact time intervals t0 \leq tn = t0 + nH \leq T . Here, while the first error414

constant depends on T  - t0 (but is independent of n and H), the second and third415

error constants also depend on the error constants of the chosen ODE solvers.416

Proof. Using Corollary 2.12, the stability bound (2.19), and Corollary 2.10, one417

can estimate the four error terms Error1, Error2, Error3, and Error4 in (2.29),418

which together show that419

(2.54) \| \^en+1\| \leqslant H

n\sum 

k=0

C\| \^ek\| +
n\sum 

k=0

C\| \~ek+1\| +
n\sum 

k=0

C\| \^\varepsilon k+1\| +H

n\sum 

k=0

\Biggl( 
s\sum 

j=1

C\| \^\varepsilon kj\| 

\Biggr) 
.420

From our assumption that the base ExpRB method has global order p, its local error421

satisfies \| \~ek+1\| \leqslant CHp+1. Since the fast ODEs (2.14) and (2.17) are integrated by422
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solvers with global orders of convergence q and r (using a micro time step h), we have423

\^\varepsilon kj = \scrO (hq) and \^\varepsilon k+1 = \scrO (hr). Inserting these into (2.54) gives424

(2.55) \| \^en\| \leqslant H

n - 1\sum 

k=0

C\| \^ek\| +
n - 1\sum 

k=0

\bigl( 
CHp+1 + Chr + CHhq

\bigr) 
.425

The error bound (2.53) results from applying a discrete Gronwall lemma to (2.55).426

We next distinguish two cases for (1.1), corresponding to whether the problem is427

stiff or nonstiff/mildly stiff, in order to further comment on the error bound (2.53).428

Remark 2.14 (stiff problems). For stiff problems where the stiffness is dominated429

by the linear part, u\prime = F (t, u) = Lu + g(t, u) (L has a large norm or is potentially430

unbounded), our convergence theory presented above is still valid provided that the431

linear ODEs (2.14) and (2.17) are solved with stiff solvers. This is because, for such432

stiff problems, one can prove that the first error constant C in the error bound (2.53)433

is uniformly bounded independent of the stiffness. First, we can assume that L is the434

generator of a strongly continuous semigroup e tL in X and g : [t0, T ] \times X \rightarrow X is435

sufficiently Fr\'echet differentiable (with uniformly bounded derivatives) in a strip along436

the exact solution. Note that these still imply our Assumption 1 (by using a standard437

perturbation result of semigroup as noted in [19, section 2.2]) and Assumption 2438

(since F (t, u) = Lu + g(t, u)). Then, we only need to modify our previous proof for439

the important bound (2.46a) in Lemma 2.9 such that it now holds with a constant C440

that is bounded independent of \| L\| . In fact, using J(u) = L + \partial g
\partial u

(t, u), one simply441

sees that442

\| \^Jn  - \~Jn\| =

\bigm\| \bigm\| \bigm\| \bigm\| 
\partial g

\partial u
(tn, \^un) - 

\partial g

\partial u
(tn, u(tn))

\bigm\| \bigm\| \bigm\| \bigm\| \leq C\| \^en\| ,443

where the constant C depends only on value uniformly bounded by the assumption on444

g. Similarly, one has \| \^Vn  - \~Vn\| = \| \partial g
\partial t
(tn, \^un) - 

\partial g
\partial t
(tn, u(tn))\| \leq C\| \^en\| . Using these,445

all of the above proofs still hold, and all bounds associated with terms involving C\| \^en\| 446

are still valid with constants C uniformly bounded and independent of the stiffness.447

The use of stiff solvers for the linear ODEs (2.14) and (2.17) thus guarantees that the448

second and third error constants of the error bound (2.53) could be also independent449

of the stiffness. Therefore, for stiff problems, it is suggested from (2.53) to use stiffly450

accurate solvers of orders q \geq p and r \geq p+1 for (2.14) and (2.17), respectively (for a451

fixed m), to have a stiffly accurate MERB method (2.14)--(2.17) that converges with452

order p overall. We note, however, that m may need to be larger for stiff problems,453

and thus if a high-order ODE solver is used for (2.17) (say r = 4 or 5), the requirement454

r \geq p+1 may be relaxed to r \geq p as the constant 1
mr in the third error term becomes455

much smaller.456

Remark 2.15 (nonstiff/mildly stiff problems). For nonstiff/mildly stiff problems,457

one can improve the second and third error terms in the global error bound (2.53).458

Specifically, since the linear ODEs (2.17) and (2.14) are solved on small intervals [0, H]459

and [0, ciH], respectively (using micro time step h), and they share the same Jacobian460

\^Jk which can be assumed to satisfy \| \^Jk\| \leqslant M (a moderate value), we employ the461

global error analysis in [9, Theorem 3.4] to derive that462

\| \^\varepsilon k+1\| \leqslant hr C
M
(eMH  - 1) = ChrH\varphi 1(MH) \leqslant ChrH,(2.56a)463

\| \^\varepsilon kj\| \leqslant hq C
M
(eMciH  - 1) \leqslant ChqH\varphi 1(MciH) \leqslant ChqH.(2.56b)464

465



MULTIRATE EXPONENTIAL ROSENBROCK METHODS A15

Using these for (2.54), we get466

(2.57) \| \^en\| \leqslant H

n - 1\sum 

k=0

C\| \^ek\| +
n - 1\sum 

k=0

\bigl( 
CHp+1 + ChrH + ChqH2

\bigr) 
.467

Applying a discrete Gronwall lemma shows the new error bound468

\| \^en\| \leqslant CHp + CHhq + Chr = CHp +
C

mq
Hq+1 +

C

mr
Hr,469

in which we gain an additional factor of H for the second and third error terms when470

compared to the original error bound (2.53). Thus for a fixed m, a MERB method471

(2.14)--(2.17) will converge with order p provided that the inner ODE solvers for (2.14)472

and (2.17) have orders q \geq p  - 1 and r \geq p, respectively. This is an improvement473

compared to MRI-GARK methods [25] (where convergence theory is only available474

for nonstiff problems) that require both q \geq p and r \geq p for a method of order p.475

2.4. Construction of specific MERB methods. Guided by Theorem 2.13,476

in order to derive MERB methods it is important to begin with base ExpRB methods477

that satisfy Lemma 2.2. Fortunately, such ExpRB methods are available up to order 6478

in the literature; see [11, 19, 20]. In this subsection, we extend some of these methods479

to give their coefficients more generally and then derive MERB methods of orders480

2 through 6 from these schemes. Note that, since a MERB method (2.14)--(2.17) is481

uniquely characterized by its polynomials \^pni(\tau ) and \^qn(\tau ), we only provide those482

polynomials here. In particular, we note that these MERB methods require fewer483

modified ODEs to be solved per slow time step than comparable order MRI-GARK484

[25] and MERK methods [16]. We further note that for each method we specify its485

``total fast traversal time,"" corresponding to how many multiples of [0, H] must occur486

when solving modified ODEs.487

2.4.1. Second-order methods. First, consider the second-order ExpRB-Euler488

scheme (see [11] and [14, section 1.2.2] for nonautonomous problems)489

un+1 = un +H\varphi 1(HJn)F (tn, un) +H2\varphi 2(HJn)Vn.490

Using Lemma 2.2 we immediately derive a second-order method called \ttM \ttE \ttR \ttB \tttwo :491

\^qn(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn, \tau \in [0, H].(2.58)492
493

This only requires the solution of one modified ODE. We note that, since second-order494

multirate methods have been available for some time, we do not include \ttM \ttE \ttR \ttB \tttwo in our495

numerical results and instead focus on higher-order multirate methods.496

2.4.2. Third-order methods. In [11], a 2-stage third-order ExpRB method497

called \tte \ttx \ttp \ttr \ttb \ttthree \tttwo was constructed (using c2 = 1) for autonomous problems. Extending498

this to nonautonomous problems and writing this for general c2, we solve condition 1499

of Table 1 directly (with s = 2) to give a general family of third-order methods:500

(2.59)
Un2 = un + c2H\varphi 1(c2HJn)F (tn, un) + c22H

2\varphi 2(c2HJn)Vn,

un+1 = un +H\varphi 1(HJn)F (tn, un) +H2\varphi 2(HJn)Vn +H 2
c2
2

\varphi 3(HJn)Dn2.
501

From this we construct the \ttM \ttE \ttR \ttB \ttthree family of third-order methods:502

(2.60)

\^pn2(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn, \tau \in [0, c2H],

\^qn(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn +
\tau 2

c22H
2
\widehat Dn2, \tau \in [0, H].

503
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Clearly, this requires the solution of 2 modified ODEs per slow time step (whereas504

third-order MERK and MRI-GARK methods require solving 3 modified ODEs per505

step). In our numerical experiments we take c2 = 1
2 , which gives rise to a total fast506

time step traversal for \ttM \ttE \ttR \ttB \ttthree of (1 + c2)H = 1.5H.507

2.4.3. Fourth-order methods. There exist several fourth-order ExpRB schemes508

[11, 19, 20, 15, 17] with coefficients fulfilling Lemma 2.2. However, we chose a 2-stage509

fourth-order ExpRB method called \tte \ttx \ttp \ttr \ttb \ttfour \tttwo which was constructed for autonomous510

problems in [15]. Transforming this to nonautonomous form, we have511

(2.61)
Un2 = un + 3

4H\varphi 1(
3
4HJn)F (tn, un) +

9
16H

2\varphi 2(
3
4HJn)Vn,

un+1 = un +H\varphi 1(HJn)F (tn, un) +H2\varphi 2(HJn)Vn +H 16
9 \varphi 3(HJn)Dn2.

512

We then apply Lemma 2.2 to construct the fourth-order \ttM \ttE \ttR \ttB \ttfour method:513

(2.62)
\^pn2(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn, \tau \in 

\Bigl[ 
0,

3

4
H

\Bigr] 

\^qn(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn +
16

9

\tau 2

H2
\widehat Dn2, \tau \in [0, H].

514

\ttM \ttE \ttR \ttB \ttfour only requires solving 2 modified ODEs per slow time step, whereas fourth-515

order MRI-GARK and MERK methods require 5 and 4 modified ODEs in each step,516

respectively. We further note that (2.62) has a total fast traversal time of 7
4H =517

1.75H.518

2.4.4. Fifth-order methods. ExpRB methods of order 5 can be found in [19,519

20]. Here, for efficiency purposes, we consider a parallel scheme called \ttp \tte \ttx \ttp \ttr \ttb \ttfive \ttfour \tts \ttfour ,520

whose coefficients (with fixed nodes ci) satisfy Lemma 2.2. It uses s = 4 stages521

and is embedded with a fourth-order scheme (for step size adaptivity) but can be522

implemented as a 3-stage method. A detailed derivation of \ttp \tte \ttx \ttp \ttr \ttb \ttfive \ttfour \tts \ttfour is given in523

[20] (solving conditions 1--4 of Table 1 with the choices b2(Z) = 0, a43(Z) = 0,524

a32(Z) =
2c3

3

c2
2

\varphi 3(c3Z), and a42 =
2c3

4

c2
2

\varphi 3(c4Z)). Following that derivation, we present525

here a family of fifth-order ExpRB methods (depending on parameters c2, c3, c4) for526

nonautonomous problems:527

(2.63)
Un2 = un +H

\bigl( 
c2\varphi 1(c2HJn)F (tn, un) + c22H\varphi 2(c2HJn)Vn

\bigr) 
,

Un3 = un +H
\Bigl( 
c3\varphi 1(c3HJn)F (tn, un) + c23H\varphi 2(c3HJn)Vn +

2c3
3

c2
2

\varphi 3(c3HJn)Dn2

\Bigr) 
,

Un4 = un +H
\Bigl( 
c4\varphi 1(c4HJn)F (tn, un) + c24H\varphi 2(c4HJn)Vn +

2c3
4

c2
2

\varphi 3(c4HJn)Dn2

\Bigr) 
,

un+1 = un +H (\varphi 1(HJn)F (tn, un) +H\varphi 2(HJn)Vn + b3(HJn)Dn3 + b4(HJn)Dn4)

with

b3(HJn) =
1

c2
3
(c4 - c3)

\bigl( 
c4\varphi 3(HJn) - 6\varphi 4(HJn)

\bigr) 
,

b4(HJn) =
1

c2
4
(c3 - c4)

\bigl( 
2c3\varphi 3(HJn) - 6\varphi 4(HJn)

\bigr) 
.

c4 = 3(5c3 - 4)
5(4c3 - 3) .

528
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529

We note that the two internal stages \{ Un3, Un4\} are independent of one another and530

thus can be computed simultaneously. They also have the same format, in that they531

have the same formula but only act on different inputs c3 and c4, which we exploit532

below to give the same polynomial for their corresponding modified ODEs.533

Applying Lemma 2.2 to (2.63) results in the fifth-order family of \ttM \ttE \ttR \ttB \ttfive methods:534

(2.64)

\^pn2(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn, \tau \in [0, c2H],

\^pn3(\tau ) \equiv \^pn4(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn +
\bigl( 

\tau 
c2H

\bigr) 2 \widehat Dn2, \tau \in [0, c3H],

\^qn(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn + \tau 2

H2

\bigl( 
c4

c2
3
(c4 - c3)

\widehat Dn3 +
c3

c2
4
(c3 - c4)

\widehat Dn4

\bigr) 

 - \tau 3

H3

\bigl( 
1

c2
3
(c4 - c3)

\widehat Dn3 +
1

c2
4
(c3 - c4)

\widehat Dn4

\bigr) 
, \tau \in [0, H].

535

This only requires solving 3 modified ODEs per slow step (the only existing fifth-order536

multirate method, MERK5, requires 5). In our experiments we choose c2 = c4 = 1
4 <537

c3 = 33
40 , so we can solve the modified ODE (2.14) using the polynomial \^pn3(\tau ) on538

[0, c3H] to obtain both \widehat Un3 \approx Un3 and \widehat Un4 \approx Un4 (since c4 < c3), without solving an539

additional fast ODE on [0, c4H]. Using this strategy, the total fast traversal time for540

\ttM \ttE \ttR \ttB \ttfive is (1 + c2 + c3)H = 83
40H = 2.075H.541

2.4.5. Sixth-order methods. To the best of our knowledge, the only existing542

ExpRB method of order 6, named \ttp \tte \ttx \ttp \ttr \ttb \ttsix \ttfive \tts \ttseven , is given in [20]. It uses s = 7 stages543

and is embedded with a fifth-order method. As with (2.63), this method consists of544

multiple independent internal stages (namely, the stages in two groups \{ Un2, Un3\} 545

and \{ Un4, Un5, Un6, Un7\} ) that can be computed simultaneously, which we exploit to546

implement like a 3-stage method. While \ttp \tte \ttx \ttp \ttr \ttb \ttsix \ttfive \tts \ttseven is constructed for autonomous547

problems and uses a set of fixed nodes ci, we extend the derivation from [20] to548

construct a family of 7-stage sixth-order methods for nonautonomous problems:549

(2.65)

Unk = un + ckH\varphi 1(ckHJn)F (tn, un) + (ckH)2\varphi 2(ckHJn)Vn, k = 2, 3,

Uni = un + ciH\varphi 1(ciHJn)F (tn, un) + (ciH)2\varphi 2(ciHJn)Vn,

+Hai2(HJn)Dn2 +Hai3(HJn)Dn3, i = 4, 5, 6, 7,

un+1 = un +H\varphi 1(HJn)F (tn, un) +H2\varphi 2(HJn)Vn +H

7\sum 

i=4

bi(HJn)Dni,

550

where551

ai2(HJn) =
1

c2
2
(c3 - c2)

\bigl( 
2c3i c3\varphi 3(ciHJn) - 6c4i\varphi 4(ciHJn)

\bigr) 
,552

ai3(HJn) =
1

c2
3
(c2 - c3)

\bigl( 
2c3i c2\varphi 3(ciHJn) - 6c4i\varphi 4(ciHJn)

\bigr) 
,553

bi(HJn) =  - 2\^\alpha i\varphi 3(HJn) + 6\^\eta i\varphi 4(HJn) - 24\^\beta i\varphi 5(HJn) + 120\^\gamma i\varphi 6(HJn),554

\^\gamma i =
1

c2i (ci  - ck)(ci  - cl)(ci  - cm)
, \^\alpha i = ckclcm\^\gamma i,555

\^\beta i = (ck + cl + cm)\^\gamma i, \^\eta i = (ckcl + clcm + ckcm)\^\gamma i.556
557

Here i, k, l,m \in \{ 4, 5, 6, 7\} are distinct indices, and ci, ck, cl, cm are distinct (positive)
nodes. Applying Lemma 2.2 we obtain the first-ever sixth-order infinitesimal multirate
method, \ttM \ttE \ttR \ttB \ttsix :
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\^pn2(\tau ) \equiv \^pn3(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn, \tau \in [0, c2H],

\^pn4(\tau ) \equiv \^pn5(\tau ) \equiv \^pn6(\tau ) \equiv \^pn7(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn

+ \tau 2

(c3 - c2)H2

\Bigl( 
c3
c2
2

\widehat Dn2  - 
c2
c2
3

\widehat Dn3

\Bigr) 
 - \tau 3

(c3 - c2)H3

\Bigl( 
1
c2
2

\widehat Dn2  - 
1
c2
3

\widehat Dn3

\Bigr) 
, \tau \in [0, c4H],

\^qn(\tau ) = \^Nn(tn, \^un) + (tn + \tau ) \^Vn  - \tau 2

H2

7\sum 

i=4

\^\alpha i
\widehat Dni +

\tau 3

H3

7\sum 

i=4

\^\eta i \widehat Dni

 - \tau 4

H4

7\sum 

i=4

\^\beta i
\widehat Dni +

\tau 5

H5

7\sum 

i=4

\^\gamma i \widehat Dni, \tau \in [0, H].

As seen, \ttM \ttE \ttR \ttB \ttsix requires only 3 modified ODEs per slow time step like \ttM \ttE \ttR \ttB \ttfive , reflecting558

the fact that its base sixth-order ExpRB method (2.65) has the structure of a 3-stage559

method. \ttM \ttE \ttR \ttB \ttsix can be also implemented in an efficient way by choosing c3 < c2 and560

c5, c6, c7 < c4. With these choices, we can solve the modified ODE (2.14) using \^pn2(\tau )561

on [0, c2H] to obtain both \widehat Un2 \approx Un2 and \widehat Un3 \approx Un3 without solving an additional562

fast ODE on [0, c3H]. Similarly, we can solve (2.14) using \^pn4(\tau ) on [0, c4H] to563

get all four approximations \widehat Uni \approx Uni (i = 4, 5, 6, 7) without solving 3 additional564

ODEs on [0, c5H], [0, c6H], and [0, c7H]. In our numerical experiments, we take565

c3 = c5 = 1
10 < c2 = c6 = 1

9 < c7 = 1
8 < c4 = 1

7 . This gives a total fast traversal time566

of (1 + c2 + c4)H = 79
63H \approx 1.253H.567

2.5. MERB method implementation. In Algorithm 2.1 we provide a precise568

description of the MERB algorithm. We note that, in our implementations of MERB

Algorithm 2.1 MERB method

\bullet Input: F ; J ; V ; t0; u0; s; ci (i = 1, . . . , s); H
\bullet Initialization: Set n = 0; \^un = u0.
While tn < T
1. Set \widehat Un1 = \^un.
2. Compute \widehat Jn = J(tn, \^un) and \widehat Vn = V (tn, \^un).
3. For i = 2, . . . , s do

(a) Find \^pni(\tau ) as in (2.15).

(b) Solve (2.14) on [0, ciH] to obtain \widehat Uni \approx yni(ciH).
4. Find \^qn(\tau ) as in (2.16)
5. Solve (2.17) on [0, H] to get \^un+1 \approx yn+1(H).
6. Update tn+1 := tn +H, n := n+ 1.

\bullet Output: Approximate values \^un \approx un, n = 1, 2, . . . (where un is the numer-
ical solution at time tn obtained by an ExpRB method).

569

methods, we found it beneficial to include formulas for \widehat Nn(t, u) and \widehat Dni(t, u) as570

additional inputs to the algorithm (provided they can be precomputed) for use in571

(2.15) and (2.16) to avoid floating-point cancellation errors when seeking very accurate572

solutions. On the other hand, we note that, within the MERB algorithm, both the573

products Jw and V \tau can be approximated from F using finite differences,574

J(t, u)w = 1
\sigma 
(F (t, u+ \sigma w) - F (t, u)) +\scrO (\sigma ) and575

V (t, u)\tau = 1
\sigma 
(F (t+ \sigma \tau , u) - F (t, u)) +\scrO (\sigma ),576

577

instead of J and V being provided analytically; however, when seeking high accuracy,578

then such approximations can cause excessive floating-point cancellation error.579
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3. Numerical experiments. In this section, we test MERB methods on select580

multirate problems to demonstrate their convergence rates, efficiency, and applicabil-581

ity to stiff systems of ODEs. In section 3.1 we examine a semilinear nonautonomous582

system with bidirectional coupling between the fast and slow variables. For this prob-583

lem, we compare the proposed \ttM \ttE \ttR \ttB \ttthree --\ttM \ttE \ttR \ttB \ttsix methods with other recently developed584

multirate methods that treat the slow time scale explicitly, namely, \ttM \ttE \ttR \ttK \ttthree , \ttM \ttE \ttR \ttK \ttfour , and585

\ttM \ttE \ttR \ttK \ttfive from [16], plus \ttM \ttR \ttI -\ttG \ttA \ttR \ttK -\ttE \ttR \ttK \ttthree \ttthree \tta and \ttM \ttR \ttI -\ttG \ttA \ttR \ttK -\ttE \ttR \ttK \ttfour \ttfive \tta from [25]. In section586

3.2 we test the MERB methods on a much stiffer 2D, Gray--Scott reaction-diffusion587

PDE system. MATLAB implementations of all tests are provided on Github [4].588

We provide three types of ``log-log"" efficiency plots that compare solution error589

versus different cost measurements: slow function calls, total function calls, and MAT-590

LAB runtimes, respectively. In such plots, the most efficient method corresponds to591

the curve that is closest to the bottom left corner. We compute solution error as the592

maximum absolute error over all spatial grid points and time outputs, as measured593

against either an analytical solution or highly accurate reference solution. We also594

estimate convergence rates using the maximum pointwise convergence rate once each595

method is within the asymptotic convergence regime. Each of our efficiency measure-596

ments tells a different story. First, slow function calls illustrate the cost of a multirate597

method when applied to an IVP system with expense dominated by the slow compo-598

nents Fs(t, u). Second, total function calls capture the cost of Ff (t, u) and highlight599

properties of methods related to their total fast traversal times. Lastly, even though600

MATLAB runtimes are a poor proxy for performance on HPC applications, we use601

these to capture the costs associated with dynamic linearization and to measure how602

these costs affect efficiency.603

3.1. Bidirectional coupling system. Inspired by [6, section 5.1], we propose604

the semilinear, nonautonomous bidirectional coupling problem on 0 < t \leq 1605

u\prime = \sigma v  - w  - \beta t,(3.1a)606

v\prime =  - \sigma u,(3.1b)607

w\prime =  - \lambda (w + \beta t) - \beta 

\Biggl( 
u - 

a(w + \beta t)

a\lambda + b\sigma 

\Biggr) 2

 - \beta 

\Biggl( 
v  - 

b(w + \beta t)

a\lambda + b\sigma 

\Biggr) 2

,(3.1c)608

609

with exact solution u(t) = cos(\sigma t)+ae - \lambda t, v(t) =  - sin(\sigma t)+ be - \lambda t, and w(t) =610

(a\lambda + b\sigma )e - \lambda t  - \beta t. This problem features linear coupling from slow to fast time611

scales through (3.1a) and nonlinear coupling from fast to slow time scales through the612

equation for (3.1c). In addition, it includes tunable parameters \{ a, b, \beta , \lambda , \sigma \} taken613

here to be \{ 1, 20, 0.01, 5, 100\} , with a\sigma = b\lambda ; \sigma determines the frequency of the fast614

time scale, and \beta controls the strength of the nonlinearity. In the case of dynamic615

linearization, smaller values of \beta correspond with weaker nonlinearity, resulting in616

higher values of the optimal time scale separation factor m = H/h.617

While the splitting of this IVP into fast and slow components, u\prime (t) = F (t, u) =618

Ff (t, u)+Fs(t, u), for MERB methods is dictated by the dynamic linearization process619

at each time step,620

(3.2) \^u\prime (t) = F (t, \^u(t)) =
\Bigl[ 
\^Jn\^u(t)

\Bigr] 
+

\Bigl[ 
\^Vnt+ \^Nn(t, \^u(t))

\Bigr] 
:= Ff (t, u) + Fs(t, u),621

MERK and MRI-GARK methods do not require dynamic linearization and thus622

have more freedom in how they are partitioned. While MERK methods require that623

Ff (t, u) = \scrL u, MRI-GARK methods support arbitrary splittings. Therefore, for this624
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Table 2642

Multirate method properties: Number of slow internal stages and modified ODEs, total fast
traversal times, and optimal m factors for (3.1).

643

644

Method
Slow
stages

Modified
ODEs

Fast traversal
time of [0, H]

Bidirect. coupling
optimal m

Dynamic Fixed

\ttM \ttE \ttR \ttB \ttthree 2 2 1.5 80
\ttM \ttE \ttR \ttK \ttthree 3 3 2.166 80 10

\ttM \ttR \ttI -\ttG \ttA \ttR \ttK \ttthree \ttthree \tta 3 3 1 80 10
\ttM \ttE \ttR \ttB \ttfour 2 2 1.75 40
\ttM \ttE \ttR \ttK \ttfour 6 4 2.833 40 10

\ttM \ttR \ttI -\ttG \ttA \ttR \ttK \ttfour \ttfive \tta 5 5 1 40 1
\ttM \ttE \ttR \ttB \ttfive 4 3 2.075 10
\ttM \ttE \ttR \ttK \ttfive 10 5 3.2 10 10
\ttM \ttE \ttR \ttB \ttsix 7 3 1.253 5

problem we consider two separate fast-slow splittings: in addition to the dynamic625

linearization, we consider a fixed splitting informed by the exact solution626

Ff (t,\bfu ) =

\left[ 

 

\sigma v

 - \sigma u

0

\right] 

 , Fs(t,\bfu ) =

\left[ 

 
 

 - w  - \beta t

0

 - \lambda (w + \beta t) - \beta 
\Bigl( 

u - 

a(w - \beta t)
a\lambda +b\sigma 

\Bigr) 2

 - \beta 
\Bigl( 

v  - 

b(w - \beta t)
a\lambda +b\sigma 

\Bigr) 2

\right] 

 
 ;627

628

in the ensuing results we call this the ``fixed linearization."" We denote methods run629

with the fixed linearization using an asterisk; e.g., \ttM \ttE \ttR \ttK \ttthree \ast uses a fixed linearization,630

while \ttM \ttE \ttR \ttK \ttthree uses dynamic linearization.631

We note that, for problems that are dominated by their linear portion, \^Jn, the632

dynamic linearization (3.2) can place more dynamics at the fast time scale than other633

fixed multirate splittings, thereby offering a potential for greater multirate accuracy at634

the expense of constructing the dynamic linearization at each slow step. To determine635

the optimal m for each splitting we follow the experimental approach from [16] that636

compares efficiency in terms of slow-only function evaluations and total (slow+fast)637

function evaluations for several different values of H and m corresponding to each638

multirate and inner method pairing. These values are given in Table 2 and largely639

confirm that dynamic linearization can leverage larger time scale separation factors640

than the fixed linearization (3.1).641

Our implementations of multirate methods of the same order use identical explicit645

fast integrators for solving all modified ODEs. Third-order methods use a 3-stage646

\scrO (h3) method from [2, equation (233f)], fourth-order methods use Kutta's 4-stage647

\scrO (h4) method from [13], and fifth-order methods use the 8-stage \scrO (h5) explicit part648

of ARK5(4)8L[2]SA from [12], while \ttM \ttE \ttR \ttB \ttsix uses an 8-stage \scrO (h6) method based on649

the 8,5(6) procedure of [29]. We assess error at 20 equally spaced points within the650

time interval and consider slow steps H = 0.05\times 2 - k for k = 0, 1, . . . , 7.651

Figures 1--3 show accuracy and efficiency results for this problem. Examining the654

legends from each figure, we see that all methods attain their expected order of con-655

vergence. In Figure 1, all \scrO (H3) methods incorporating dynamic linearization have656

similar errors, coinciding with their uniform time scale separation factor of m = 80.657

Similarly, the methods using fixed linearization \ttM \ttE \ttR \ttK \ttthree \ast and \ttM \ttR \ttI -\ttG \ttA \ttR \ttK \ttthree \ttthree \tta \ast have the658

same m = 10, leading to comparable errors. Dynamic linearization leads to lower er-659

rors than fixed linearization at the same step size (here up to 103). Examining method660

efficiency, we see that the proposed \ttM \ttE \ttR \ttB \ttthree is the most efficient when considering661
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Fig. 1. Convergence rates (given in parentheses in the legend) and efficiency of \scrO (H3) methods
on the bidirectional coupling problem of section 3.1.
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Fig. 2. Convergence rates (in parentheses in the legend) and efficiency of \scrO (H4) methods on
the bidirectional coupling problem of section 3.1.
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both overall runtime and slow function evaluations, while \ttM \ttR \ttI -\ttG \ttA \ttR \ttK \ttthree \ttthree \tta is slightly662

more efficient in total function evaluations. Of particular note, we see a significant663

slow function call benefit for all methods that use dynamic linearization.664

We plot results for \scrO (H4) methods in Figure 2. As seen for the \scrO (H3) methods,667

\scrO (H4) methods using dynamic linearization achieve improved error at the same H in668

comparison to those using fixed linearization. Here, \ttM \ttE \ttR \ttB \ttfour and \ttM \ttE \ttR \ttK \ttfour show optimal669

runtime efficiency, with \ttM \ttR \ttI -\ttG \ttA \ttR \ttK -\ttE \ttR \ttK \ttfour \ttfive \tta close behind. The MRI-GARK methods670

are slightly more efficient in total function calls, while \ttM \ttE \ttR \ttB \ttfour is more efficient in slow671

function calls.672

Finally, we compare the performance of \scrO (H5) and \scrO (H6) methods in Figure 3.675

The accuracy of the \scrO (H5) methods is almost identical on this test problem, with676

\ttM \ttE \ttR \ttB \ttsix starting with slightly higher error but quickly catching up due to its higher677

convergence rate. The two new MERB methods are the most efficient for this test678

problem by all metrics. Focusing on runtime efficiency, \ttM \ttE \ttR \ttB \ttfive is slightly more efficient679

at larger error values but is passed by \ttM \ttE \ttR \ttB \ttsix at smaller errors. Focusing on function680

calls, \ttM \ttE \ttR \ttB \ttsix is the most efficient in total function calls due to its smaller total traversal681

time, whereas the small number of stages for \ttM \ttE \ttR \ttB \ttfive renders it more efficient in terms682

of slow function calls.683
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Fig. 3. Convergence rates (given in parentheses in the legend) and efficiency of \scrO (H5) and
\scrO (H6) methods on the bidirectional coupling problem of section 3.1.
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3.2. Gray--Scott model. As a challenge problem to test MERB methods in684

the stiff regime, we consider the Gray--Scott reaction-diffusion PDE [8]:685

\partial tu = Du\nabla 
2u - uv2 +A(1 - u),

\partial tv = Dv\nabla 
2v + uv2  - (A+B)v,

(3.3)686

where u(x, y, t) and v(x, y, t) are defined over the domain [0, 1]\times [0, 1]\times (0, 0.2], sat-
isfy periodic boundary conditions, and are spatially discretized with 50 centered
finite difference grid points in each direction. Here the reaction coefficients are
A = 0.625, B = 0.25, and the diffusion coefficients are Du = 0.312 and Dv = 0.156.
The initial conditions are Gaussian pulses

u(x, y, 0) = 1 - e - 150
\bigl( 
(x - 0.5)5+(y - 0.5)2

\bigr) 
, v(x, y, 0) = e - 150

\bigl( 
(x - 0.5)5+2(y - 0.5)2

\bigr) 
.

With these parameters the Jacobian norm at the initial condition is 6.2 \times 103, cor-687

responding to a moderately stiff problem. We compute error by comparing against688

a reference solution (obtained using MATLAB's \tto \ttd \tte \ttone \ttfive \tts with relative and absolute689

tolerances 10 - 13 and 10 - 14) at 10 evenly spaced points in time, and we test all meth-690

ods with slow time steps H = 0.01 \times 2 - k for k = 0, . . . , 7. All methods use a time691

scale separation factor of m = 10. Due to the problem's stiffness, we employ fully im-692

plicit Runge--Kutta methods for the fast integration: \ttM \ttE \ttR \ttB \ttthree uses a 2-stage RadauIIA693

method, \ttM \ttE \ttR \ttB \ttfour uses a 3-stage LobattoIIIC method, \ttM \ttE \ttR \ttB \ttfive uses a 3-stage RadauIIA694

method, and \ttM \ttE \ttR \ttB \ttsix uses a 4-stage LobattoIIIC method [10].695

To more readily compare the proposed MERB methods against one another, in696

Figure 4 we overlay plots showing the efficiency of these methods according to each of697

our three cost metrics. Again, as seen in the legend each method attains its theoretical698

convergence rate on even this significantly stiffer test problem. We note that, at the699

largest step size of H = 0.01 (the left-most point on each curve), \ttM \ttE \ttR \ttB \ttfive has the least700

error for this problem, followed by \ttM \ttE \ttR \ttB \ttfour , \ttM \ttE \ttR \ttB \ttthree , and then \ttM \ttE \ttR \ttB \ttsix . Due to this larger701

initial error, \ttM \ttE \ttR \ttB \ttsix is only optimal when considering runtime efficiency at the smallest702

error values (unlike for the bidirectional test problem shown in Figures 1--3, where703

it is considerably more competitive in multiple metrics). Due to its low initial error704

and high convergence rate, \ttM \ttE \ttR \ttB \ttfive is the most efficient of all MERB methods across705

a wide range of error levels and cost metrics, with \ttM \ttE \ttR \ttB \ttthree and \ttM \ttE \ttR \ttB \ttfour optimal for only706

the highest error values.707
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Fig. 4. Convergence rates (given in parentheses in the legend) and efficiency of all MERB
methods on the Gray--Scott problem of section 3.2.

708

709

4. Conclusions. We have introduced a new approach for multirate integration710

of IVPs that evolve on multiple time scales. Employing an MIS-like approach wherein711

the coupling between slow and fast time scales occurs through defining a sequence of712

modified IVPs at the fast time scale and built off of existing ExpRB methods, the713

proposed MERB methods allow creation of multirate methods with very high order714

and minimize the amount of costly processing of the slow time scale operator. In715

addition to deriving a clear mechanism for constructing these from certain classes of716

ExpRB schemes, we provide rigorous convergence analysis for MERB methods. We717

note that the style of this analysis is much more elegant than our approach for MERK718

methods [16] in that we analyze the overall MERB error by separately quantifying719

the error between the MERB approximation of the underlying ExpRB method and720

the error in the ExpRB approximation of the original IVP. With this theory in hand,721

we propose a suite of MERB methods with orders 2 through 6, where in the cases of722

orders 3--6, we additionally provide generalizations of the base ExpRB methods and723

extend these to nonautonomous problems.724

We examine the performance of the proposed MERB methods of orders 3 through725

6 on two test problems: a nonautonomous bidirectional coupling problem and a 2D726

Gray--Scott model. For the bidirectional coupling problem, we compare MERB meth-727

ods against existing MERK and explicit MRI-GARK methods, where the MERK and728

MRI-GARK methods are tested with two potential multirate splittings on each prob-729

lem. While all MERB, MERK, and MRI-GARK methods exhibited their theoretical730

convergence rates on this problem and splittings, their efficiency varies. In order to731

provide results that potentially apply to a broad range of multirate applications, we732

investigate efficiency using three separate measurements of cost: MATLAB runtime,733

total function calls (both fast and slow), and slow function calls only. Within these734

metrics, some general patterns emerge. First, most of the methods exhibited opti-735

mal efficiency at higher m = H/h values when using multirate splittings based on736

dynamic linearization as opposed to fixed splittings. Second, the proposed MERB737

methods show the best runtime efficiency of all methods and splittings, although in738

some cases the equivalent order MERK method with dynamic splitting is competi-739

tive. Third, due to their total fast time scale traversal times of 1.0H, the MRI-GARK740

methods always exhibit the best total function call efficiency. Lastly, due to their low741

number of slow stages, the proposed MERB methods are uniformly the most efficient742

when considering slow function calls (only in a few instances MERK with dynamic743
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splitting was competitive). This is particular of interest for multirate problems where744

the fast component is much less costly to compute than the slow component. For the745

moderately stiff Gray--Scott system, we demonstrate that MERB methods maintain746

their expected orders of accuracy expanding the set of problems to which they are747

applicable.748

Based on these results, we find that the newly proposed MERB methods provide749

a unique avenue to construction of high-order MIS-like multirate methods and that750

they are very competitive in comparison with other recently developed high-order751

MIS-like multirate schemes. More work remains, however. An obvious extension752

is to include embeddings to enable low-cost temporal error estimation, as well as753

to investigate robust techniques for error-based multirate time step adaptivity. A754

further extension of MERB methods could focus on applications that require implicit755

or mixed implicit-explicit treatment of processes at the slow time scale.756
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