A General and Scalable Method for Optimizing
Real-Time Systems with Continuous Variables

Sen Wang, Ryan K. Williams, Haibo Zeng
Bradley Department of Electrical and Computer Engineering, Virginia Tech, USA
{swang666, rywillil, hbzeng} @vt.edu

Abstract—In the optimization of real-time systems, designers
often face a challenging problem where the schedulability con-
ditions are non-convex, non-continuous, or lack an analytical
form to understand their properties. In this paper, we propose
a general and scalable framework for optimizing real-time
systems, named Numerical Optimizer with Real-Time Highlight
(NORTH). NORTH treats schedulability analysis as a blackbox
which may only return true/false results on system schedulability.
Built upon the active-set methods from the gradient-based numer-
ical optimization literature, NORTH proposes new methods to
manage active constraints to further improve the gradient-based
optimizers. We apply the proposed approach to two example
problems, one on energy optimization for systems with dynamic
voltage and frequency scaling, and the other on the optimization
of control performance. Experimental results demonstrate that
the proposed framework runs 10? to 10° times faster than state-
of-the-art methods while maintaining similar solution quality.

I. INTRODUCTION

Over the years, the real-time systems community has devel-
oped an impressive set of scheduling algorithms and associated
schedulability analysis techniques for various applications.
However, many of these schedulability analysis techniques are
not friendly for optimization purposes, as they often involve
non-continuous, non-differentiable functions, e.g., the ceiling
function in the classical response time calculation [1], which
represents the number of interferences from a higher priority
task. Even worse, the analysis may use functions that do not
necessarily have an analytical form, such as those based on
demand bound functions [2]], real-time calculus [3], abstract
event model interfaces [4], or timed automata [5]], [6].

Another challenge in optimizing real-time systems is their
ever-increasing complexity. The functionality of real-time sys-
tems such as automotive and unmanned aircraft is grow-
ing fast, especially given the recent trend of introducing
autonomous features and system-to-system connectivity [/7]],
[8]. For example, modern automotive systems may contain
hundreds of software tasks [9]]. The supporting hardware and
software systems are also becoming more complex, often fea-
turing heterogeneous multicore processors, dedicated hardware
accelerators, and domain-specific operating systems.

The existing approaches for optimizing real-time systems do
not adequately address the above two challenges as they lack
scalability and/or applicability. In particular, the aforemen-
tioned first challenge makes it impractical or even impossible
to handle schedulability conditions in standard mathematical
optimization frameworks. Hence, researchers have explored

the possibility to develop customized optimization frame-
works that are specially designed for real-time systems and
their schedulability analysis (e.g., [10]-[12]). However, they
require that the schedulability analysis is sustainable with
respect to the design variables, including task periods [[10] and
worst case execution times (WCETs) [11], [[12]. Sustainable
schedulability analysis means that if a task system is deemed
schedulable, then it should remain schedulable with, for ex-
ample, decreased WCET or increased period [13]], [[14]. Such
a property may not hold [[6] or become difficult to prove for
sophisticated analysis techniques.

In this paper, we address the above challenges by developing
an optimization framework that is generally applicable to
real-time systems. Specifically, we treat the schedulability
analysis as a black box that only answers true/false to the
question of system schedulability. Our framework, named
Numerical Optimizer with Real-Time Highlight (NORTH),
leverages existing numerical optimization methods and tunes
them for real-time systems optimization. Compared to other
standard optimization frameworks, including Integer Linear
Programming (ILP), convex programming, or geometric pro-
gramming, numerical methods can efficiently solve many
large-scale optimization problems without requiring specific
forms for the problem constraints or objective function [/15].
However, existing numerical methods do not work well when
optimizing real-time systems. First, gradient-based numerical
methods rely on the knowledge of gradients, i.e., the vector
of partial derivatives. Hence, they cannot be directly applied
to non-differentiable or blackbox schedulability constraints.
Even if it is possible to use numerical values to estimate the
gradient [[16], gradient-based methods still suffer from poor
solution quality, as indicated by the experiments. On the other
hand, gradient-free methods typically run much slower than
gradient-based methods and lack the necessary scalability [16].

Recognizing the above issues, we adopt a gradient-based
method and further propose a novel technique, termed variable
elimination (VE), to significantly improve its solution quality.
The critical observation is that different design variables usu-
ally have different impacts on the schedulability constraints.
Thus, it is possible that changing certain variables may main-
tain schedulability while improving the objective, and other
variables cannot achieve both. VE exploits this difference
by fixing the values of the second group of variables (i.e.,
eliminating them from the rest of the optimization process)
and seeking favorable values to the first group of variables.

Contributions. In this paper, we present NORTH, to the
best of our knowledge, the first numerical method based frame-
work for optimizing real-time systems. We use two example
problems to demonstrate the advantages of our framework.
One is the energy minimization based on dynamic voltage and
frequency scaling (DVFES), and the other is the optimization
of control quality. NORTH has the following features that
highlight its advantages over other alternatives:

e Generality: NORTH works with any schedulability anal-
ysis that may only return true/false results for system
schedulability.

o Scalability: NORTH is scalable in that the number of
times it checks the system schedulability is polynomial
to the number of variables. Besides, NORTH can utilize
special structures in the problem if available (See more
in Theorem {4 and Example {4).

o Quality: NORTH adapts classical active-set methods and
proposes a new approach, variable elimination, to manage
active constraints. It is demonstrated to significantly im-
prove the solution quality for gradient-based optimizers.

II. RELATED WORK

There is a rich set of literature on the optimization methods
for real-time systems. According to the categories given by
Zhao et al. [12], popular methods include: (1) meta-heuristics
such as simulated annealing [[17] and genetic algorithms [[18]];
(2) direct formulation of the problem in standard mathemati-
cal optimization frameworks such as branch-and-bound [19],
ILP [20], [21], and convex programming [22]; (3) problem-
specific methods for a given system model and optimization
problem, such as those for minimizing energy in systems with
DVEFS [23]; (4) customized optimization frameworks includ-
ing [10]-[12], [24]. However, the first category is relatively
slow, and often comes with a rather low solution quality. The
other categories have limited applicability, as they rely on
a particular form or property of the schedulability analysis.
For example, ILP requires the schedulability analysis to be
formulated as linear functions of the design variables, while
[11]], [12] requires that the analysis is sustainable.

Numerical optimization methods (NOM) are broadly used
in optimization due to their fast speed and generality. Classical
examples of NOM include interior point methods (IPM) and
active-set methods (ASM) [16], and their more recent exten-
sions to non-convex optimization, such as sequential-quadratic
programming, Levenberg-Marquardt [25], [26], Dog-leg [27]],
Frank-Wolfe [28], and gradient-projection [29].

However, numerical methods cannot be directly applied
to schedulability constraints that are non-differentiable or
without an analytical form. The first possible solution from
the literature is to use numerical approximation of gradients,
but it may suffer from significant performance loss because
the numerical approximation is not necessarily reliable [[16]]
(e.g., it may become infinite at the non-continuous points).
Gradient-free methods, such as model-based and interpolation
methods, and the Nelder—-Mead method [30], are too slow
to handle large industrial problems, and their application to

constrained optimization is not as well-studied as gradient-
based ones [[16]]. Finally, a recent trend is to exploit machine
learning techniques [31], [32]. However, it usually relies on a
large-scale training data set, which makes the design process
more time-consuming and less flexible.

We now discuss the related work for the two example
problems. For energy management based on Dynamic Voltage
and Frequency Scaling (DVFS), various algorithms have been
proposed for systems scheduled under Earliest Deadline First
(EDF) [22], [33]-[36]], Rate Monotonic (RM) [34]], [37], etc.
A comprehensive review can be found in [23]]. Recently, more
sophisticated system models have been considered, includ-
ing mixed-criticality scheduling [38]], directed acyclic graph
(DAG) models on multi-core [39], and limited-preemptive
DAG task models [[6]. These models also come with par-
ticularly complicated schedulability analysis and may lack
the properties that other optimization approaches require. For
example, the analysis in [[6] is not sustainable.

The other example we consider is the optimization of
control performance [40]], where the control performance is
often modeled as a weighted sum of task periods and response
times [11]]. Different optimization algorithms have been pro-
posed, such as branch-and-bound [40], [41]], genetic algorithm
[17], and mixed-integer geometric programming [42]. Also,
customized optimization frameworks are proposed in [10],
[11]. However, similar to the above, these algorithms are
limited to specific system models or require certain properties
on the schedulability analysis.

III. SYSTEM MODEL

A. Notations

We use light symbols to represent scalars and bold sym-
bols to represent vectors and matrices. Bold symbols with
a subscript ¢ represent the i-th element of a vector/function.
During optimization iterations, the iteration number is usually
denoted as (k), a superscript with parenthesis. For example,

X(-O) denotes the i-th element of the vector x at the O-th

K2

iteration. ||v|| denotes the Euclidean norm for a vector v,
[Iv|ly denotes norm-1, |S| denotes the size of a set S, |z|
could also denote the absolute value of a scalar . We usually
use h to denote the numerical granularity, which is 10~° in
experiments. We usually use the letter to represent variables,
F(x) for objective functions, g(x) for constraints. However,
when introducing real applications, we follow the standard
notation in the domain to avoid confusion. The gradient is
denoted as VF(x). If F(x) can be equivalently transformed
into a sum-of-items form, yielding an objective:

mxinZ]-'i(x) (D

then we call each item F;(x) a component of the objective
function. In this case, the Jacobian matrix is:

OF,
Jij = X](X) 2)

where J;; is the entry of the Jacobian matrix at the i-th row
and the j-th column. J7 denotes the transpose of J.

In many situations, the response time r; of a task 7; may
depend on some variables, e.g., X, then 7;(x) denotes a function
which returns the response time of ;.

B. Problem Formulation

Generally speaking, real-time system design can be mathe-
matically described as an optimization problem:

min F(x) (3)
s.b.t. Sched(x) =0 4

where x € RY represents the design choices, such as the
execution times or periods of tasks, 1b; (ub;) denotes the lower
(upper) bound of x;, and F(x) : RY — R describes the
design objective, which could be overall energy consumption,
or some customized objective related to design choices. If
possible, we represent F(x) using a least-square form to
enable faster convergence speed from numerical optimizers.
Finally, of central importance is the schedulability analysis
constraint:

0, system is schedulable

1 (6)

otherwise

Sched(x) = {
which only returns binary results, i.e., schedulable or not. This
is a challenging but realistic assumption in many situations.
For example, analysis methods based on demand bound func-

tions [2] or timed automata may fall into this category.

Assumption 1. We assume a feasible initial solution is avail-
able to begin optimization iterations. This initial solution can
usually be easily acquired. For example, in the case of DVFS,
the maximum CPU frequency can be a good initial solution.

Assumption 2. We assume the optimization variables x in
problem (@) are continuous in their domain, but the constraints
or objective functions may be non-differentiable with respect
to these variables. Examples are task WCETs, periods, or
deadlines.

Relaxation of the two assumptions above will be discussed
in Section
Challenges. The major challenge comes from the schedulabil-
ity constraint (d), which could only return 0/1 and thus lacks
gradient information. Furthermore, the objective function and
constraints could be non-convex, non-differentiable, or even
black-box functions. Therefore, most state-of-the-art nonlinear
programming (NLP) methods, which are proposed for smooth
problems, cannot be directly applied or may suffer from
serious performance loss.

In addition, performing schedulability analysis is expensive
in many cases because it could have pseudo-polynomial or
even exponential computation costs. Therefore, to finish opti-
mization within a reasonable time, minimizing the number of
times to call schedulability analysis is desired.

C. Application: Energy Optimization

The first example application is energy optimization based
on DVFS [23]], one of the most popular optimization strategies
used in real-time embedded systems. By sacrificing part of the
response time of running tasks at a lower frequency, DVFS
can achieve significant power consumption improvements.
To be more specific, we consider a task set of N periodic
tasks scheduled by a given scheduling method. This problem
can be formulated as a least-square optimization problem by
minimizing the energy consumption F;(f) of each task 7; with
respect to the run-time frequency f of all the tasks:

N-1
w3 (VED) g
=0

s.b.t. Sched(f) =0 (8)

with the energy function E;(f) for the task 7; approximated

as:
_

T;
where H is the hyper-period (i.e., the least common multiple
of the task set’s periods) and 7; is task 7;’s period. The
second term in the above equation is a power model com-
monly adopted in the literature, which considers both static
and dynamic power consumption [43]], [44]. The parameters
(a = 1.76Watts/GH23, v =3, 8 = 0.5) are highly accurate
on real platforms [43]], [45]. The execution time c¢; of each
task 7; can be obtained from the run-time frequency f; by a
frequency model adopted from [22], [23]]:

E;(f) (B+of]) x ¢ (10)

fix sz
¢ =c¢; + f,
which considers both speed-independent (cf*) and speed-
dependent (c}*) operations when executing the computational
tasks.

The schedulability analysis of the above formulation could
be performed by various methods. For convenience in com-
paring to baseline methods, we will first consider the classical
response time analysis (RTA) model for uni-processor, fixed-
priority, preemptive platforms [46]:

T
ri=cit Yy (7 1es

jenp(i) 7

(1)

12)

where hp(i) denotes the tasks with higher priority than the
task 7;. In this case, let D; denote the deadline of 7;, and we
have

0, Vi,ri(f) <D;

1 (13)

otherwise

)

Sched(f) = {

Importantly, our framework supports much more complicated
schedulability analysis methods than Equation (I2). For ex-
ample, model verification methods such as those proposed
by Nasri et al. [6] for limited-preemptive DAG task models
are also used in our experiments. Such methods usually have
advantages in real systems by providing less pessimism than

many analytic methods. However, state-of-art methods such as
[11] cannot be applied because [6]’s analysis is not sustainable.

D. Application: Control Quality Optimization

Our second application example is concerned with op-
timizing the control performance of a task set [[11f], [40].
Following the problem description in [11], we use a least-
square formulation to approximate the control cost, which is
a weighted sum of task period T; and response time 7;(T):

N-1
1 2
min Z; (V/aiTi + Biri(T)) (14)
s.b.t. Sched(T) =0 (15)
Ib; <T; <ub;,i€[0,N —1] (16)

where the variables T, are the task 7;’s periods, a; and
B; are given control weight parameters, and r;(T) is the
task 7;’s response time. Similar to energy optimization, the
schedulability analysis can be posed in various forms. In our
experiments, we use the RTA model given by (I2)), which is
the same as [11]] for easy comparison.

E. Concepts from Numerical Optimization

Definition 1 (Feasible solution). A solution x for the optimiza-
tion problem (@) is feasible if it satisfies all the constraints.

Definition 2 (Differentiable point). In this paper, a point x
is called (non-)differentiable if the objective function F(x) is
(not) differentiable at x.

Definition 3 (Descent vector). A vector A is called a descent
vector for function F(x) at x if

Fx+A) < Fx) 17)

Definition 4 (Descent direction). A is a descent direction if
da > 0 such that oA is a descent vector.

We also clarify several terms in numerical optimization [|16]]:

Continuous variable: A variable is considered continuous if
it can take any floating-point values within its domain.

Active/inactive constraints: At point X, a constraint g(x) < 0
is called active if it holds with an ‘“equal” relationship,
ie., g(x) = 0 at x. All the equality constraints are active
by definition. An inequality constraint that holds with strict
“larger/smaller than” at x is inactive, e.g., g(x) < 0.

Active-set framework (ASM): Essentially, in each iteration to
solve a constrained optimization problem, the active-set frame-
work solves a simplified problem that only has equality con-
straints (active constraints). This is based on the assumption
that inactive constraints will not influence a local update if the
update is small enough. Famous active-set algorithms include
the simplex method, sequential-quadratic programming, etc.

Trust-region methods (TRM): Essentially, TRM defines a
region around the current variable x(*) to search for a local
update, and then updates the region radius based on optimiza-
tion results. The search process is usually based on solving an
approximate model of the original problem.

Linearization: According to the Taylor expansion, a func-
tion f(x) can be locally approximated by a linear function
with its first-order gradient:

F) = fx@) + VO (x —x) (18)
CFeasible initial solution x)
Numerical method-based optimizatipn
(NMBO)
Unconstrained
optimization
update step A reduce A Formulate
new initial
x+A Feasible? && No solution

Adescent?

X = X+A

Variable Elimination

(VE)
Following A, search for
variables that fail
dimension feasibility test
Change these
Yes .
variables to -
constants

No

C Terminate with x)

Figure 1: Framework overview: NORTH and its two compo-
nents: NMBO and VE. During iterations, beginning with a
feasible solution x(’“), we formulate an unconstrained problem
and use classical optimizers to find an update direction A. If
A leads into an infeasible region, then we will decrease A
until it becomes small enough so that x(**1) is feasible. After
it, we check whether there exist close active constraints. If so,
we find their dependent variables and transform these variables
to constants at x**t1) to continue the future iterations. The
algorithm terminates when there are no variables to eliminate.

IV. NUMERICAL METHOD-BASED OPTIMIZATION
A. Motivation

In this section, we introduce the first component of NORTH:
Numerical Method-Based Optimization (NMBO) to attack
the challenges above by avoiding the gradient evaluation of
the schedulability constraints. NMBO is inspired by active-
set methods (ASM) and trust-region methods (TRM) from
numerical optimization. ASM is suitable because it allows
us to drop the inactive constraints during iterations, therefore
simplifying many iterations where the variables x(*) are not

close to becoming infeasible. If x(®) + A becomes infeasible,
we will keep decreasing its update step A until x*) + A
becomes feasible or stop if A becomes small enough. In
this way, x(*) will finally stop at either a stationary point or
somewhere near the feasibility region boundary.

NMBO is similar to but different from the popular numerical
methods such as the trust-region method (TRM) [16] because
NMBO works with the schedulability constraint (@): At first,
NMBO utilizes the idea of ASM to avoid evaluating constraint
gradients because the gradients are usually not differentiable.
Secondly, NMBO adds an extra step to examine constraint
violation after applying the update step A to guarantee the
feasibility of (@).

B. Methodology

In this section, we describe NMBO, which combines the
active-set and the trust-region algorithms to optimize with the
schedulability constraint (). In each iteration, we begin with a
feasible solution and perform optimization without constraints.
After obtaining an update step, we verify whether this new
update step is feasible and descent. If so, the update step A is
accepted; otherwise, A is decreased based on classical trust-
region or line search methods [16]. This way, NMBO will
terminate at either static points or feasible region boundaries.

Unconstrained optimization could be provided by any meth-
ods. For example, in our experiments, we use the popular
Levenberg-Marquardt algorithm [25]], [26] (LM) as the un-
constrained optimizer. LM finds update steps as follows:

AETIE X diag IPTIR)A = —JOTFxK)) (19)

where J*) is the Jacobian matrix after linearizing the objective
function:

FE®) = [Fo(x), ., Fon(x®)]" (20)

The i-th row of J is given by:
Ji. = VFi(x) ey
VFi(x) = |25, o] 22)

The length of A can be indirectly managed by controlling
the damping parameter A in Equation (I9). For example,
increasing A\ usually decreases the update step A.

C. Numerical Gradient

If the objective function F;(x) is not differentiable at x(*),
or if it is difficult to derive analytical gradients (e.g., JF;(x)
could be the response time given by a black-box schedulability
analysis), the numerical gradient can be utilized. The numer-
ical gradient for a function f(x) is estimated as follows:

af _ f(xla - T+ ha "7xN) B f(xlw'axi - hv"axN)
0.’131‘ 2h

(23)
The step size h can be chosen by considering both approxima-
tion accuracy (smaller is better) and round-off error (cannot be
too small) [[16]. We use 10~° in the experiments. Alternative
gradient estimation methods, such as stochastic methods, may

also be used. Although numerical gradient (23) is convenient,
we make the following critical observations:

Observation 1. Applying numerical gradient at non-
differentiable points may return a misleading gradient.

Justification. The numerical gradient (23) at a non-
differentiable point could point in any directions, including
some non-descent directions. Furthermore, if the step size h
is small, the norm of the numerical gradient could become
very large, and optimizers will perform worse.

Observation 2. Classical gradient-based constrained pro-
gramming methods may return infeasible results if the con-
straints are not differentiable.

Justification. Gradient-based methods usually build a local
approximation model for constraints in each iteration. If the
constraints are not differentiable, the numerical gradient could
be misleading, and such an approximation model cannot be
reliable, therefore, may return unsafe results.

Despite being a gradient-based optimizer, NMBO solves the
issues above by building local approximation models only for
objective functions but not for constraints. After obtaining a
descent vector, NMBO checks whether it leads to a feasible
solution and only accepts it if it is safe.

D. Termination Conditions for NMBO
NMBO stops if the update steps A or the relative difference

Fx+D) - F(x®)

5re =
1 F(x®)

(24)

is small enough, e.g., 0y < 1075, or the number of iterations
exceeds a given bound (e.g., 1000). Although the latter is
theoretically possible, it is not observed in our experiments.

Example 1. We use a simplified energy minimization problem
as an example throughout this paper to demonstrate how to
execute each step. To make the examples more intuitive, we
use the execution time c¢; rather than run-time frequency f; as
variables.

crll}ig 64c;? + ¢y (25)
s.b.t. Sched(eq,¢c2) =0 (26)
4<¢ <10 (27)
1<e¢y <10 (28)

where the variables are the execution time of each task. Task
sets are described in Table |} the schedulability constraint is

given by Equation (T3).

Table I: Example task set for elimination

Old computation time Period Deadline Priority
Task 1 4 10 6 High
Task 2 1 40 40 Low

We assume a feasible initial solution is given at ¢(®) =
(4,1), and use LM (Equation (I9)) as the unconstrained
optimizer. The minimum numerical granularity is 107>, initial
A from (T9) is 1, then we have:

o _ [-64x2/4% 0] _[-2 0
Fo= 0 —2/13| T 0 -2 29
W =c® 4 A=[5 125 (30)

Such iterations will continue until ¢*) becomes very close to
the schedulability boundary, e.g., (5.999, 1.499). The uncon-
strained optimization will stop at this point because it cannot
find a feasible update step with very big), e.g., 10'2.

Observation 3. If schedulability analysis could utilize a safe
“warm start”, then the schedulability results from previous
iterations may speed up iterative methods such as NMBO.

Justification. The “incremental” nature of iterative algorithms
is helpful in some schedulability analyses. For example, con-
sider the response time analysis model by Equation (12)). After
increasing the execution time ¢; of the task 7; to ¢; + A; and
A; > 0, r;(c;) from the last iteration could be a warm start
to begin the fixed-point iterations in Equation (T2) to obtain
ri(¢; + A;). More related work can be found in Davis et

al. [47].
V. VARIABLE ELIMINATION

A. Motivation and Concepts

As shown in Fig. 2] an infeasible descent vector A could
contain a feasible direction. Therefore, if we only optimize a
portion of variables that will not violate constraints soon, we
may continue optimization after NMBO terminates. We call
this simple idea variable elimination (VE).

Therefore, it is important to know when iterations reach the
feasible region’s boundary to enable VE, which is not easy
because Equation (@) only returns 0/1. Early work such as [48]],
[49] usually assumes a specific schedulability analysis, and
thus is unsuitable in our case. The classical definition of active
constraints introduced in Section [I[-E] is also not suitable
because it is defined for continuous functions. Therefore, we
extend the classical definition for active constraints in the
context of real-time system design:

Definition 5 (Active schedulability constraint). The schedu-
lability constraint given by Equation) becomes an active
constraint at a point x if

Sched(x) =0 31

39, |6|| < h,Sched(x +6) =1 (32)

where h is the minimum numerical granularity.

In other words, if a point X has an active schedulability
constraint, it means that x is schedulable but very close
to becoming unschedulable. When the optimizer terminates,
some inequality or schedulability constraints may become
active constraints, preventing classical optimizers from moving

60 ~C1

Figure 2: Variable elimination motivating example. We con-
sider Example [I| which terminates at (5.999, 1.499). The red
arrow shows the update step A from classical unconstrained
optimizers. It will make x infeasible because task 1 will miss
its deadline. However, if we only update xo following A while
leaving x; unchanged, we can obtain a feasible descent step,
as shown by the blue arrow.

40 5.0

forward. A simple solution is removing some variables that
could cause constraint violation. Finding these variables will
be easier with the following definitions:

Definition 6 (Dimension feasibility test). A solution x € RY
for optimization problem (3) passes dimension-j feasibility test
of length d along the direction A if x ® (I%j\d’ J) is feasible,
with j € [0, N —1].

where the @ operation for arbitray vectors x and y in this
paper is defined as follows:

i #J

1=

Xi,

33
% +d (33)

y:X@(d’j) < ¥V = {
In other words, any x; that does not pass the dimension
feasibility test along the descent direction A, given by un-
constrained optimizers, of length d > h should be eliminated,
where h is minimum numerical granularity. After x; is elimi-
nated at x(®), it will remain unchanged as xgk) in the future. d
can be estimated following the first paragraph in Section [V-D}

Example 2. In this example, we continue with Example [I]
and show how to perform the Dimension Feasibility test. We
will first consider a small elimination tolerance d = 107°.
In this case, ¢ passes dimension-1 (with ¢;) and dimension-2
(with ¢) feasibility test because both (5.999 + 1075,1.499)
and (5.999,1.499 + 10~°) are schedulable. However, if we
consider a larger elimination tolerance, e.g., d = 0.1, ¢ will
fail the dimension-1 feasibility test (with ¢;) but still pass the
dimension-2 feasibility test (with ¢3). How to select the proper
elimination tolerance will be introduced later.

B. Performance Influence of Variable Elimination

Definition 7 (Strict descent step). An update step A € RN
at x is called a strict descent step if

Vie[0,N—1], Fx® (A, i) < F(x) (34)

In many real-time systems, the design metric is posed at
the task level, and each task provides one or a set of variables
individually. Two examples can be found in Section

and Such decoupled systems are beneficial because the
descent step returned by gradient-based optimizers is usually
a strict descent step. The following theorem summarizes this
observation using the objective function given by (3):

Theorem 1. If F(x) is differentiable at x, then there exists
a > 0 such that A = —aV F is a strict descent step.

Proof.

VF= [V./—"o(xo), ceey Vfo(l‘]\r_l)] (35)

According to the Taylor expansion, for Vi € [0, N — 1], there
exists a small a > 0 such that:

F(x& (A1) = F(x) —a(VFi(x))* < F(x) (36

Now we introduce more notations for the following theo-
rems. At a feasible point x € RY, we denote A € RY as
a descent, but not necessarily feasible, step returned by an
unconstrained optimizer, such as Equation (I9). Furthermore,
we denote S as the collection of the dimension indexes that
pass the dimension feasibility test with length d > h along the
direction A, where h is the minimum numerical granularity,
and S for those that fail the test. The update step v2 € RY
for the dimension-i feasibility test can be described as:

A.
Vg{ J
0

Theorem 2. If A is a strict descent step, and the number of
indexes that pass the dimension feasibility test is |S| = q > 0,
then all the q vectors vP that pass the dimension feasibility
test provide feasible descent update directions at x.

Proof. Results of Definition [7] and Theorem |

Theorem 3. If both the objective function F(x) and all the
constraints @) and @) are locally differentiable at x*), and
the number of indexes that pass dimension feasibility test |S| =
q > 0, then there exists d < d that is small enough such that
x®) 4 A s a feasible solution, where

j=i

. 37
otherwise

q
Ac{d anl ||AlL<d, o; >0} (38)
7

Fx® + A) < Fx®) (39)

In Equation (38)), norm-1 is used such that each dimension
of A is no larger than d.

Proof. Similar to Theorem [1} the feasibility and descent prop-
erty can be proven using the Taylor expansion to constraints
and objective function, respectively. |

Observation 4. Although the objective functions and con-
straints in real-time systems are not differentiable functions
in RN, they are differentiable at many feasible points.

This is because a function of continuous variables, such as
the response time (12)), usually only has a limited number of
non-differentiable points but infinite differentiable points.

C. Non-differentiable Objective Function

When NMBO terminates at a non-differentiable point x(F)
we can find and eliminate the non-differentiable components
X;, because their numerical gradient is not reliable and may
prevent optimizers from finding a feasible descent direction. If
a guarantee of performance improvement is desired without the
assumptions above, e.g., differentiable and decoupled objective
functions/constraints at x(*), the dimension feasibility test can
be replaced with:

Definition 8 (Dimension feasibility descent test). A solution
x € RY for optimization problem (@) passes dimension-j
feasibility descent test of length d along the direction A if
X (\%jld’j) is feasible, where j € [0, N — 1] and

Flre (S1d,) < Fx)
1A,
Coordinate descent [50] can then be used for future iterations.
It is useful for situations such as when non-sustainable schedu-
lability analysis is observed.

(40)

D. How to Eliminate Variables

Following Theorem we can possibly improve x(*) by
transforming X5 into constant values at x(*), where S denotes
those indexes that do not pass the dimension feasibility (de-
scent) tests. The complete procedure is given by Algorithm [I]
In reality, estimating proper d is difficult. Therefore, we design
an adaptive strategy: first try small values (e.g., minimum
numerical granularity) and keep increasing d (e.g., 1.5x in
each iteration) until at least one variable is eliminated.

Algorithm 1: Variable elimination

Input: x(%) | descent step A, elimination tolerance d,
un-eliminated indexes set I/

Output: eliminated variable indexes
1 for (i in U) do
2 xl(-k) = ng) + dlﬁj\
3 if (AnyConstraintIsWolated(xl(-k)) OR
IsNonDiﬁferentiable(xEk))) then
4 | return i
5 end
6
7

(k)

i

ng) = xgk) — dlﬁ—:‘ // Recover x

end

Example 3. We continue with Example [I] to illustrate the
adaptive strategy in selecting d. To find out which variable to
eliminate at (5.999,1.499), we can try to increase ¢; or €g
by d separately and see whether there would be constraints
being violated. We may first try d = 1072, but notice that
no constraint violation is found. Then we slowly increase d
(e.g., by 1.5x each time) until d = 107° x 1.5'2 > 0.001,
and notice that ¢ fails the dimension-1 feasibility test (with
¢;) while still passing the dimension-2 feasibility test (with
¢2). Therefore, we eliminate ¢;. After it, ¢; participates in

the following iterations as a constant variable 5.999, and c;
becomes the only variable to optimize.

Although Algorithm [I] requires examining each un-
eliminated variable once in each loop, this process can be
sped up for many schedulability analyses.

Theorem 4. During variable elimination, if an variable x; is
eliminated at a feasible point x, i.e.:

A;
Al

and x; has bigger influence than x; on schedulability, i.e.,

Sched(..,xj,..,z; +d

)=1 (41)

A

ZTi,) Z Sched(.., Tjyeey I’1+d‘A| ,)

@2)

and A;A; > 0, then x; also satisfies elimination conditions
and should be eliminated.

A
Sched(..,xj+d—2-, ..,
Al

Proof. From the assumptions, x; satisfies the elimination
conditions from Equation {I) and {@2), therefore should be
eliminated. |

Although analyzing whether some variables have a bigger
influence than others is difficult for black-box schedulability
analysis, there are many cases where it can be done, and The-
orem [becomes useful. In preemptive systems, if execution
times are variables, the utility test for the earliest deadline
first (tasks with lower period have bigger influence) and rate
monotonic [51]], or Equation (T2) (priority decides influence)
all satisfy the assumption above. In some DAG schedulability
analyses such as [52]], [53|] under multi-processor platforms,
tasks in the critical path may have a bigger influence than
other tasks, together with other mild assumptions.

Example 4. We use the schedulability analysis given by
Equation (I2) as an example to illustrate Theorem [The
variables are the worst-case execution time ¢; # 0 of each task.
In this case, tasks with higher priority have bigger influence.
We denote 75 as any one task that has higher priority than 7,
r;(¢c;,¢x) as the response time of 7; that depends on ¢; and
¢i, and assume ¢ does not pass the dimension-i feasibility test
and will be eliminated, i.e., there exists A > 0 such that

ri(c;, cp) = ¢; + Z (TZ(C%;CIG)WC] <D, (43)
J€hp(i)
1\Le Av
ri(e; +A,e) =€+ A+ Z {r(c—;i‘ck)kj > D;
j€hp(3) !
(44)

Then, ¢; from task 7 will also be eliminated together with
¢; because:

s A
ri(ci7ck + A) =c¢; + Z [M-‘Cj

J€hp(i),j#k
ri(c;, e + A (45)
A i[RI

>ri(e; + A, ep) > Dy

The reason why the last “>" sign holds can be seen by consid-
ering the process of fixed-point iterations. When r;(c; + A, ¢)
and r;(¢;, ¢, +A) begin with the same value such as r;(¢;, ¢),
ri(c;, e + A) will result into a value that is not less than
r;(c;, ¢, + A) because:

|—ri(ci7 Ck)

1A>A
Tk

(46)
Therefore, when iterations terminate, we will have r;(c;, ¢; +
A) > ri(e; + A, e).

Theorem 5. Results returned by NORTH are always feasible.

Proof. The input to VE is always feasible because NMBO
only accepts feasible updates. The output of VE is also feasible
because VE does not change the values of variables. When
performing future iterations, all the constraints remain the
same as the original constraints. Therefore solutions from
NORTH are always feasible. |

E. Termination Condition

There are two possible termination conditions. If the inner
trust-region optimizer stops at a differentiable point from
gradient-based optimizers, that means we reach a stationary
point, and the overall algorithm will terminate. However, in
most cases, after the inner algorithm terminates, VE will find
new variables to eliminate, and possibly a feasible descent
direction to continue iterations. The overall framework will
terminate if all the variables are eliminated.

Theorem 6. The total number of iterations of NORTH is no
larger than the number of variables.

Proof. The adaptive elimination tolerance introduced before
could guarantee that at least one variable will be eliminated
every time after NMBO returns. Since there are only a finite
number of variables, the framework will always terminate after
eliminating all the variables. |

Example 5. We continue with Example [3] to explain when
NORTH terminates. After eliminating ¢; at 5.999, ¢, will be
the only variable to optimize. NMBO will soon terminate at
the schedulability boundary when ¢o = 15.89, where the task
To’s worst-case response time 72 = 39.89 < 40. The algorithm
does not terminate at ¢ = 15.99 because the relative error
difference between the last two iterations in NMBO is already
smaller than 10~° when ¢y = 15.89.

At this time, VE will try to find variables to eliminate again.
The old elimination tolerance 10~° x 1.5'2 from Example [3|is
inherited there, which cannot trigger eliminating any variables.
Therefore, VE will try to increase the elimination tolerance
d further until d = 107° x 1.522 > 0.11, where ¢, will
violate the schedulability constraint and be eliminated. After
eliminating c5, no variables are left. Therefore, NORTH cannot
make any progress further and terminates at (5.999,15.89).
The final solution differs from but is close to the optimal
solution (6, 16).

FE. Applications of Variable Elimination

VE could only bring performance improvements to non-
local/global optimal solutions when these solutions locate
near the boundary of feasible regions. In real-time systems
where non-convex or black-box schedulability analyses are
considered, VE will likely bring significant performance im-
provements because the optimal solution often lies at the
schedulability boundary, and VE allows each variable to
explore the schedulability boundary without interfering with
each other.

A different way to view VE is that variables usually have
different sensitivity to schedulability constraints. Correspond-
ingly, we need to differentiate these variables (by dimension
feasibility test) and make distinct adjustments (by variable
elimination). An example is that each task provides one or a set
of optimization variables and has its own deadline constraint.
In this case, it may be rare that all the tasks meet their deadline
simultaneously during iterations. However, VE could optimize
each task separately until these tasks cannot be optimized
further.

G. Limitations of Variable Elimination

It is possible that NORTH fails to find a feasible descent
direction A € RN after NMBO terminates at a non-
optimal point x(*) € RN Therefore, VE is utilized to search
for a feasible descent direction in a smaller space RN~
where n is the number of variables that have a fixed value
in subsequent iterations (i.e., they were “eliminated” in the
previous iterations). This means that VE sacrifices the potential
performance improvements from these eliminated variables in
favor of higher computation efficiency.

There are possibly other alternatives to variable elimination.
For example, projecting the gradient along the boundaries of
the schedulable region may be a better way to find feasible
descent directions if the boundaries can be linearized. Such
an idea is explored in classical gradient projection (GP)
algorithms (described in 16, Chapter 16]). However, the high
computation cost of the projection process in high-dimension
space limits the application of GP primarily to constraints of
simple forms. We leave the study of this enhancement to future
work.

VI. RUN-TIME COMPLEXITY ESTIMATION

From the main framework Fig [I] the overall run time can
be analyzed as follows:

Cost = Ngjimi X (COStTR + COStElimi) (G

where Ngjim; describes the number of elimination loops,
Costrr describes the cost of the inner trust-region optimizer,
and Costgjim;i describes the cost of detecting elimination vari-
ables.

For each of these items above, we have

Netimi <N (48)
where N is the number of variables from Theorem [6]
Costtr < Ntr X (COStsched + O(Ng)) 49)

where Costgheq denotes the cost for schedulability analyses,

the number of trust-region iterations Ntgr is decided by the

distance between the initial solution F(x(°)) and the final

solution Fy;:

_1F) - R
€

Nt (50)

and convergence speed of the unconstrained optimizer.
Many gradient-based optimizers usually have super-linear or
quadratic convergence speed [[16], which are very fast! The last
item in Equation (@9) denotes the worst-case matrix-related
computation. Finally, we have

Costglimi < N X Costyeped (51

VII. APPLICATION AND GENERALIZATIONS

In the previous sections, we use two assumptions [T] and 2] to
develop our framework. In this section, we discuss how these
two assumptions may be relaxed.

A. Finding initial solutions

Finding feasible initial solutions can follow a strategy that
assigns variable values that are most “friendly” toward schedu-
lability, e.g., the shortest execution time/longest period. Such
a strategy is optimal in schedulability if sustainable schedula-
bility analyses are used, e.g., the schedulability analysis based
on and (T3).

However, it is possible to start with infeasible initial so-
lutions if the penalty of violating schedulability and other
constraints can be quantified. For example, in many real-
time systems, tardiness (the extra time that tasks need to
finish execution after passing deadlines) can be given by
schedulability analyses. In this case, we can introduce a barrier
function as follows:

0 D;>r;

52
—w(D; —r;) Di<rm 62

wBarrier(D; —r;) = {
where D; and r; are the deadline and worst-case response
time of the task 7;, and w is a punishment coefficient that
is much larger than the possible values of the objective
function. During the optimization process, the barrier function
is expected to first reduce to zero such that all »;, < D;
(i.e., the solution becomes schedulable). Then the rest of the
optimization process would be similar to the case that starts
with a feasible initial solution.

B. Optimizing Discrete Variables

NORTH may directly handle discrete variables in situations
such as when an appropriate rounding strategy is available.
For example, suppose all the constraints are monotonic (e.g.,
schedulability analysis is sustainable). In that case, floating-
point variables can be rounded into adjacent integer values
following a simple strategy: If a smaller value for the variable
implies no worse system schedulability, we may round it down
to ensure the schedulability; otherwise, it is rounded up.

Also, it may be possible to leverage the idea of the
coordinate-descent algorithm [50] by optimizing continuous

and discrete variables separately. For example, for the co-
optimization of task priorities and periods, we may use simple
heuristics such as rate-monotonic policy for priority assign-
ment and let NORTH handle the continuous variables such as
task periods.

C. Limitations

NORTH may not work well if no useful gradient informa-
tion can be obtained from the objective function, in which case
gradient-based optimizers cannot work. For example, consider
(T4) as the control objective function and Equation (12)
for response time calculation. If «;T; is removed from the
objective function, then the gradient of the objective function
would be either O or undefined, and gradient-based optimizers
will get stuck at the initial solution. Another typical example
is binary variables, where no gradient can be evaluated.
Since NORTH relies on the calculation of gradient, it also
suffers from the common limitations, for example, it cannot
guarantee to find global optimal solutions for general nonlinear
optimization problems.

VIII. EXPERIMENTS

The proposed framework is implemented using a numerical
optimization library GTSAM [54] in C++, which is widely
used in the robotics area, such as Simultaneous Localization
and Mapping (SLAM) [15]], [55] and motion planning [56]],
[S57]. All the experiments are conducted on a standard desktop
environment (Intel Core i7-11700 CPU, 16 GB Memory). The
code is released]

Interior-point method (IPM), one of the most powerful
constrained optimization methods [16f, is used as a classical
gradient-based method for comparison. The implementation
is provided by a widely-applied optimization library IPOPT
[58], [59], which also incorporates sophisticated heuristic
optimization tricks. When working with IPOPT, the numerical
gradient from is used for non-differentiable functions. All
the baseline methods are summarized as follows:

e Zhao20, the optimization framework proposed in [11].
In their experiments, the energy function is weighted by
10%, and we keep this weight in all of our experiments. It
finds the optimal solution if it terminates before time-out.

o MIGP, a mixed-integer geometric programming method
to solve the example application problems. After formu-
lating a MIGP, it is solved by the geometric programming
solver gpposy [60] with BnB solver in YALMIP [61].

o IPM, implemented with IFOPT and IPOPT. If IPM cannot
find a feasible solution, the initial solution is used for
performance evaluation.

e NMBO_LM, NMBO method introduced in Section
where LM (T9) is the unconstrained optimizer.

« NORTH_LM, the optimization framework proposed in
this paper, where LM is the unconstrained optimizer.

o SA, simulated annealing, a standard general optimizer.
We only compare with it when there are no good baseline

1 https://github.com/zephyr06/RT_System_Design_Numerical_Methods

methods. The cooling rate is 0.99, the temperature is 105,
and the iteration limit is 109.

All the methods have the same time limit of 600 seconds.

A. Energy Optimization based on FTP Model

The same experiment settings as [l1] are used in our
experiments, where a simplified energy function is used:
org

H c;
= 7 (0f) < (5
where ¢} denotes the WCETs for f; = 1. The task sets
were generated randomly: system utilization was selected
within the range [0.5, 0.9], period T; was generated following
log-uniform distribution within the range [100, 100000], and
utilization of each task was generated using Uunifast [47].
The optimization variables were only allowed to be at most
twice their original values, which means the clock rate can
be decreased as low as half the base clock rate. The deadlines
were the same as the task periods, and priorities were assigned
according to Rate Monotonic (RM) policy. Schedulability
analysis is given by Equation and (T3).

The performance results were shown in Fig. Ba] where the
y-axis showed the relative gap between the baseline methods
FEhaseline against Zhao et al. [11]]:

E;i(x)

) (53)

Ebaseline - EZhaoZO

x 100

(54
E7zhac20

The average run-time speed is shown in Fig [3d]

B. Energy Optimization for DAG Model

A more complicated, but realistic schedulability analysis
proposed by Nasri et al. [6] was also used with DVFS. It
targets non-preemptive directed acyclic graph (DAG) appli-
cations under multicore systems. It is not sustainable with
respect to tasks’ worst-case execution time. The schedulability
analysis cannot be modeled by either MIGP or Zhao20 (not
sustainable); thus, we used simulated annealing in addition to
NMBO and IPM as baseline methods.

Simulated task sets were generated following real-world
automotive benchmark [9]]. Each task set was composed of
several periodic DAG tasks, and each DAG had several nodes,
the number of which followed a uniform distribution between
1 and 20. The dependency relationships between each node
inside a single DAG were generated following [62], where
a directed edge was added from one node to another if a
random number was smaller than a parallel factor, 0.2 in our
experiments. The execution time of each node was generated
using Uunifast [47] given the DAG task’s utilization, while
each DAG task’s utilization was generated using a modified
Uunifast algorithm. We modified Uunifast to cut each task’s
maximum utilization to be no larger than 100%; otherwise,
the task sets would be un-schedulable following [6]]. All the
task sets were executed on a homogeneous 4-core computing
platform. The task sets’ period parameters were randomly
selected according to an automotive task set benchmark [9]
that is commonly used in literature to generate simulated task

https://github.com/zephyr06/RT_Sytem_Design_Numerical_Methods

70{5 70 ———Y
9 120 > v/v\'/v—v—v/'_'_"""'_'/
s 60 0\‘/0—0 0\ 60
Q 100 = * =
q . €50
@ T S
< g0 —e— NORTH & S o
;‘ —v— NMBO 2 40 -e- NORTH & 40 —:— xag
= E —¥— NMBO £
2w IPM S o £ M
o —=— Zhao20 230 —4- sA 230 ~m- Zhao20
g 0 & MIGP g ; -~ MIGP
o & 20 B 20
2 & &
o 20 10 = v - 10
& Yy YV Ty V=YY V_yV—V-Y- S ¥- — e e—b—0_a—0 00—
0 0 o] S T T
g lb 1‘5 2‘0 2‘5 3‘0 é 4‘3 é é % é é 1‘0 4 é é 1‘0 1‘2 1‘4 1‘6 1‘8 2‘0
Task Number Task Number Task Number
(a) DVFS performance subject to (T2) (b) DVFS performance subject to [@] (c) Control performance optimization
102 102 10%
~®- NORTH ~®- NORTH
—v— NMBO —v— NMBO
102 1M 10? 1PM
/ -#- Zhao20 107 ~H- Zhao20
— -9~ MIGP — —e — -~ MIGP _ a2
3 10! 3z ‘/'/, Z 10! =]
s s e _o—] N
g 100 g e § 100 -
H H — _— — K i
£ e g 100 o v/ £ 8
s Pe S = / _— s o __e—e—®
210 o ° - o 10 — —o—e—0—®
H /V/v £ > * — s M .,o—o—"'
€ € c e
2 102 W 2 / 2 1072 _e—R7 ey —Y—Y.
Y 10° © y—y——"—"7
Rt pe " —e- NORTH LI S e
1073 4 WV / —v— NMBO 103 W
1PM
v -®- SA
1074 107! 1074
0 10 20 30 40 50 60 70 80 3 4 5 6 7 8 9 10 4 6 8 10 12 14 16 18 20
Task Number Task Number Task Number
(d) DVFS log run-time subject to (T2) (e) DVFS log run-time subject to [|§|] (f) Control optimization log run-time

Figure 3: The upper and lower figures in each column show the performance and speed of the three experiments, respectively.
Compared with state-of-art method Zhao20 , NLP_Elim_approx performed only 1% worse while running 10% to 103 times
faster. The performance gap among different NLP methods validates the success of the proposed framework and variable
elimination. The run-time report shows great scalability of NLP methods, which optimized large-scale task sets(e.g., N = 80)
in less than 1 second.

170
150 —e- NORTH i
—v— NMBO b=
25000 1PM 1604 7 ~@- NORTH_LM
125 NORTH_L
= —= NORTH_Dogleg
100 S 20000 gue —+= NORTH_GN
9 ! = ° NORTH_cGD
= 75 Vo T ® 140 -@- NMBO-LM
] y ! 2 15000 2 NMBO_L
¢ so0 ‘ P . ; = 2 130 ~ - NMBO_Dogleg
-1 ‘ ‘ 3 @
K] o RPN . 2 10000 2 -+~ NMBO_GN
E2PTS I R o, 2 2 NMBO_cGD
|llifiiidiag ; e
o 3
5000
110
-25 P
i oo e —ea—e—e—e—0—0—0—° e ey
_so 0 100
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Task Number Task Number Task Number
(a) Box plot between NORTH and Zhao20 (b) RTA calling times (c) Different optimizers in NORTH

Figure 4: More results in the control performance application. (a) shows performance distribution between NORTH and .
(b) shows average RTA calling times. NORTH has an almost linear increasing rate. (c) shows the performance of 5 classical
numerical optimizers in NMBO and NORTH.

sets [63]], [64]. Considering that the response time analysis During optimization, we increased the relative error tolerance

based on [6] is much more time-consuming than the RTA to 103 and the initial elimination tolerance to 10.

model (12), the task periods were randomly selected within a The energy optimization was performed at the node level in

sub-set: {1,2,5,10,20,50, 100}. For each given task number, each DAG task. That means there were 100 nodes on average

we generated 105 task sets, among which 15 tasks were to optimize when the task number was 10, 200 nodes at most.

generated for each overall utilization from 0.1 x 4 to 0.9 x 4. The results were reported in Fig [3b] and Fig The y-
axis in Fig [3b] showed the relative performance gap of the

11

energy saving ratio, which is the energy consumption ratio
after optimization over the initial energy consumption.

C. Control Optimization

The problem of control performance optimization is de-
scribed by Equations (T4)-(T6)). This problem is more challeng-
ing than the energy optimization problem for numerical meth-
ods because the objective function involves non-differentiable
response time analyses. The task sets were generated similarly
as [11]], [40]]. They consisted of periodic tasks 7; scheduled by
RM on a uni-processor platform and had implicit deadlines.
In the objective function (I4), «; was randomly generated
in the range [1, 1000], B; was generated in the range[l,
10000], while the worst-case execution time c¢; of the task
7; was from [1, 100]. The task periods were bounded by
T, <5 ¢. Fig and Ea] respectively illustrated
the average optimized control performance, the runtime of the
optimization procedures, and the boxplot comparing NORTH
and [11].

D. Discussions

The three experiments above showed that NORTH could
maintain very similar performance (around 1~3%) as state-
of-the-art methods while running 102 ~ 10° times faster in
sample applications. Compared with the classical optimization
method IPM, NORTH showed significant improvements in
performance and speed. Such advantages are primarily because
the non-differentiable nature of schedulability constraint (@)
prevents IPM from converging to a feasible solution. Finally,
Fig[3d|and [3b| show that NORTH could optimize a larger range
of real-time systems than [[11f], such as large-scale systems
and systems with non-sustainable schedulability requirements.
Next, we use the control experiment as an example to discuss
some further common observations.

1) Performance statistics: Although NORTH had worse
average-case performance than state-of-the-art methods [11] in
small task sets, it showed great promise to outperform [11]] in
larger task sets given a limited time budget. Fig fa] showed the
distribution of the relative gap between the proposed method
and [11] in the control optimization. When N > 17, the
proposed algorithm showed better performance in almost half
the cases because of [11]’s time-out issue, even though [11]]
could possibly return the global optimal otherwise. As such,
it can be expected that NORTH may perform even better than
[11] as N becomes larger.

2) Computation cost related to schedulability analysis:
Fig[4b|showed the average time of calling schedulability analy-
sis in each experiment, which is the most time-consuming part
in NORTH. Some methods were not analyzed because their
major cost includes other expensive components, such as a
branch-and-bound searching procedure. From the figures, IPM
basically followed a quadratic relationship with respect to the
task number. In contrast, NORTH followed an almost linear
relationship because it avoided the numerical gradient of the
schedulability analysis. This indicated promising scalability
properties of NORTH.

12

3) Improving classical numerical optimizers: As an opti-
mization framework, NORTH improves upon various uncon-
strained optimizers. Fig [4c| showed the performance compar-
ison on five widely-applied unconstrained optimizers (Leven-
berg [25]], Levenberg-Marquardt [26], Dog-leg [27]], Gauss-
Newton, and conjugated gradient descent) and their application
with NORTH. Although different optimizers may influence
NORTH’s performance, NORTH achieved robust and reason-
ably good performance overall except GN, which cannot find
update steps within the feasible region.

4) Obtaining feasible initial solutions: In all the experi-
ments, we followed a simple strategy that used the shortest
execution time and longest period possible as the initial
solution. Such a strategy is optimal in the first and third
experiments because the schedulability analysis is sustainable.
However, in the second experiment where a non-sustainable
schedulability analysis was used this strategy may fail to find
a feasible initial solution. Therefore, we measured the chance
that such a strategy provided feasible initial solutions. The
settings were the same as in Section except that each
task set only contains 3 DAG (10 nodes per DAG on average)
to allow the examination of system schedulability. There is a
time limit of 100s in finding feasible exeuction times. The task
set will be discarded from the statistics if time-out. Overall,
among 4500 random task sets, 3343 were schedulable, and
our strategy finds a feasible initial solution in 96% of the
schedulable cases. The distribution under different per-core
utilization is shown in Table

Table II: Proportion of random DAG task sets that are schedu-
lable by the shortest execution time subject to [6]]

| U@ |10 |20 |30 |40 |50 |60 | 70| 80 | 90 |
‘Pr"p"“ion 100‘100‘100‘100‘97‘93 ‘ 88 ‘ 72‘47‘
(%)

IX. CONCLUSION

This paper proposes NORTH, a general and scalable opti-
mization framework for real-time systems based on numerical
methods. NORTH is designed to optimize with black-box
schedulability constraints based on the idea of the classical
active-set methods (ASM). However, NORTH differs from
ASM in identifying/managing active constraints and maintain-
ing feasibility for the schedulability constraints. We use two
examples to demonstrate the advantages of our framework: one
is the minimization of energy consumption, and the other is the
optimization of control performance. Extensive experiments
suggest that the framework may achieve very similar solution
quality as state-of-the-art methods while running 102 to 10°
times faster.

X. ACKNOWLEDGMENT

This work is partially supported by NSF Grants No.
1812963 and 1932074.

[1]

[2]

[3]

[4]

[5]

[6

=

[7

—

[8

[t}

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software engineering journal, vol. 8, no. 5, pp. 284-292, 1993.
S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” [1990] Proceedings 11th
Real-Time Systems Symposium, pp. 182—190, 1990.

L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 IEEE International Sym-
posium on Circuits and Systems (ISCAS), vol. 4, pp. 101-104 vol.4,
2000.

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst, “System level performance analysis—the symta/s approach,”
IEE Proceedings-Computers and Digital Techniques, vol. 152, no. 2,
pp. 148-166, 2005.

K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 1,
pp. 134-152, 1997.

M. Nasri, G. Nelissen, and B. B. Brandenburg, “Response-time analysis
of limited-preemptive parallel dag tasks under global scheduling,” in
ECRTS, 2019.

L. Heintzman, A. Hashimoto, N. Abaid, and R. K. Williams, “Anticipa-
tory planning and dynamic lost person models for Human-Robot search
and rescue,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 8252-8258, ieeexplore.ieee.org, May 2021.
Perceptln, “2021 rtss industry challenge.” http://2021.1tss.org/
industry-session/, 2021.

A. H. Simon Kramer, Dirk Ziegenbein, “Real world automotive bench-
marks for free,” 2015.

Y. Zhao, V. Gala, and H. Zeng, “A unified framework for period
and priority optimization in distributed hard real-time systems,” I[EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2188-2199, 2018.

Y. Zhao, R. Zhou, and H. Zeng, “An optimization framework for real-
time systems with sustainable schedulability analysis,” 2020 IEEE Real-
Time Systems Symposium (RTSS), pp. 333-344, 2020.

Y. Zhao, R. Zhou, and H. Zeng, “Design optimization for real-time
systems with sustainable schedulability analysis,” Real-Time Systems,
vol. 58, no. 3, pp. 275-312, 2022.

S. Baruah and A. Burns, “Sustainable scheduling analysis,” in 2006 27th
IEEE International Real-Time Systems Symposium (RTSS’06), pp. 159—
168, IEEE, 2006.

A. Burns and S. Baruah, “Sustainability in real-time scheduling,” J.
Comput. Sci. Eng., vol. 2, pp. 74-97, 2008.

F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Found.
Trends Robotics, vol. 6, pp. 1-139, 2017.

Nocedal and J. Wright, Numerical Optimization, 2nd edition. Springer
New York, NY, 2006.

M. Shin and M. Sunwoo, “Optimal period and priority assignment for
a networked control system scheduled by a fixed priority scheduling
system,” International Journal of Automotive Technology, vol. 8, pp. 39—
48, 2007.

K. Tindell, A. Burns, and A. Wellings, “Allocating hard real-time tasks:
An np-hard problem made easy,” Real-Time Systems, vol. 4, pp. 145—
165, 2004.

J. Jonsson and K. Shin, “A parametrized branch-and-bound strategy for
scheduling precedence-constrained tasks on a multiprocessor system,”
Proceedings of the 1997 International Conference on Parallel Process-
ing (Cat. No.97TB100162), pp. 158-165, 1997.

M. Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli, “Synthesis
of multitask implementations of simulink models with minimum delays,”
IEEE Transactions on Industrial Informatics, vol. 6, pp. 637-651, 2010.
H. Zeng and M. Di Natale, “Efficient implementation of autosar
components with minimal memory usage,” in 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12), pp. 130-137,
IEEE, 2012.

H. Aydin, V. Devadas, and D. Zhu, “System-level energy management
for periodic real-time tasks,” 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), pp. 313-322, 2006.

M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Trans. Embed.
Comput. Syst., vol. 15, pp. 7:1-7:34, 2016.

13

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Zhao and H. Zeng, “The virtual deadline based optimization algorithm
for priority assignment in fixed-priority scheduling,” in 2017 IEEE Real-
Time Systems Symposium (RTSS), pp. 116-127, IEEE, 2017.

K. Levenberg, “A method for the solution of certain non — linear
problems in least squares,” Quarterly of Applied Mathematics, vol. 2,
pp. 164-168, 1944.

D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of The Society for Industrial and Applied Mathe-
matics, vol. 11, pp. 431-441, 1963.

M. POWELL, “A new algorithm for unconstrained optimization,” in
Nonlinear Programming (J. Rosen, O. Mangasarian, and K. Ritter, eds.),
pp. 31-65, Academic Press, 1970.

S. J. Reddi, S. Sra, B. Péczos, and A. Smola, “Stochastic frank-
wolfe methods for nonconvex optimization,” 2016 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
pp. 1244-1251, 2016.

M. V. Balashov, B. Polyak, and A. A. Tremba, “Gradient projection and
conditional gradient methods for constrained nonconvex minimization,”
Numerical Functional Analysis and Optimization, vol. 41, pp. 822 —
849, 2019.

J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, pp. 308-313, 1965.

S. Lee, H. Baek, H. Woo, K. G. Shin, and J. Lee, “MlI for rt: Priority
assignment using machine learning,” 2021 IEEE 27th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 118—
130, 2021.

Z. Bo, Y. Qiao, C. Leng, H. Wang, C. Guo, and S. Zhang, “Developing
real-time scheduling policy by deep reinforcement learning,” 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 131-142, 2021.

F. F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” Proceedings of IEEE 36th Annual Foundations of Computer
Science, pp. 374-382, 1995.

P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” Proceedings of the eighteenth ACM
symposium on Operating systems principles, 2001.

A. Qadi, S. Goddard, and S. Farritor, “A dynamic voltage scaling
algorithm for sporadic tasks,” RTSS 2003. 24th IEEE Real-Time Systems
Symposium, 2003, pp. 52-62, 2003.

C.-H. Lee and K. Shin, “On-line dynamic voltage scaling for hard real-
time systems using the edf algorithm,” 25th IEEE International Real-
Time Systems Symposium, pp. 319-335, 2004.

E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy in real-time
systems with discrete speed management,” ACM Trans. Embed. Comput.
Syst., vol. 8, pp. 31:1-31:23, 2009.

A. Bhuiyan, F. Reghenzani, W. Fornaciari, and Z. Guo, “Optimizing
energy in non-preemptive mixed-criticality scheduling by exploiting
probabilistic information,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 39, pp. 3906-3917, 2020.
A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, N. Guan, and Z. Guo,
“Energy-efficient parallel real-time scheduling on clustered multi-core,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31,
pp. 2097-2111, 2020.

G. M. Mancuso, E. Bini, and G. Pannocchia, “Optimal priority assign-
ment to control tasks,” ACM Trans. Embed. Comput. Syst., vol. 13,
pp. 161:1-161:17, 2014.

E. Bini and M. D. Natale, “Optimal task rate selection in fixed pri-
ority systems,” 26th IEEE International Real-Time Systems Symposium
(RTSS’05), pp. 11 pp.—409, 2005.

A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and A. L.
Sangiovanni-Vincentelli, “Period optimization for hard real-time dis-
tributed automotive systems,” 2007 44th ACM/IEEE Design Automation
Conference, pp. 278-283, 2007.

Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,
“Energy-efficient real-time scheduling of dags on clustered multi-core
platforms,” 2019 IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pp. 156-168, 2019.

S. Pagani and J.-J. Chen, “Energy efficient task partitioning based on
the single frequency approximation scheme,” 2013 IEEE 34th Real-Time
Systems Symposium, pp. 308-318, 2013.

P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy efficient
dvfs scheduling for mixed-criticality systems,” 2014 International Con-
ference on Embedded Software (EMSOFT), pp. 1-10, 2014.

http://2021.rtss.org/industry-session/
http://2021.rtss.org/industry-session/

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

(571

[58]

[59]
[60]

[61]

[62]

[63]

[64]

M. Joseph and P. K. Pandya, “Finding response times in a real-time
system,” Comput. J., vol. 29, pp. 390-395, 1986.

R. L. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Transactions on Computers,
vol. 57, pp. 1261-1276, 2008.

F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities,”
Real-Time Systems, vol. 46, pp. 305-331, 2010.

P. B. Betoret, I. Ripoll, and A. Crespo, “Minimum deadline calculation
for periodic real-time tasks in dynamic priority systems,” IEEE Trans-
actions on Computers, vol. 57, pp. 96-109, 2008.

J. H. Friedman, T. J. Hastie, H. Hofling, and R. Tibshirani, “Pathwise
coordinate optimization,” The Annals of Applied Statistics, vol. 1,
pp. 302-332, 2007.

C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” J. ACM, vol. 20, pp. 4661, 1973.

S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” 2012 IEEE 33rd Real-Time Systems Symposium, pp. 63-72,
2012.

R. L. Graham, “Bounds on multiprocessing timing anomalies,” STAM
Journal on Applied Mathematics, vol. 17, no. 2, pp. 416-429, 1969.

F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,” in
Factor Graphs and GTSAM: A Hands-on Introduction, 2012.

M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smooth-
ing and mapping,” IEEE Transactions on Robotics, vol. 24, pp. 1365—
1378, 2008.

M. Mukadam, J. Dong, F. Dellaert, and B. Boots, “Steap: simultaneous
trajectory estimation and planning,” Autonomous Robots, pp. 1-20, 2018.
S. Wang, J. Chen, X. Deng, S. A. Hutchinson, and F. Dellaert, “Robot
calligraphy using pseudospectral optimal control in conjunction with a
novel dynamic brush model,” 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6696—-6703, 2020.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, pp. 25-57, 2006.

A. W. Winkler, “Ifopt - A modern, light-weight, Eigen-based C++
interface to Nonlinear Programming solvers Ipopt and Snopt.,” 2018.
A. Mutapcic, K. Koh, S. Kim, and S. Boyd, “Ggplab version 1.00: a
matlab toolbox for geometric programming,” 2006.

J. Lofberg, “Yalmip : a toolbox for modeling and optimization in mat-
lab,” 2004 IEEE International Conference on Robotics and Automation
(IEEE Cat. No.04CH37508), pp. 284-289, 2004.

Q. He, M. Lv, and N. Guan, “Response time bounds for dag tasks with
arbitrary intra-task priority assignment,” in ECRTS, 2021.

M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate dags from multi-rate task sets,” 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 226-238, 2020.

S. Bozhko, G. von der Bruggen, and B. B. Brandenburg, “Monte
carlo response-time analysis,” 2021 IEEE Real-Time Systems Symposium
(RTSS), 2021.

14

	Introduction
	Related Work
	System model
	Notations
	Problem Formulation
	Application: Energy Optimization
	Application: Control Quality Optimization
	Concepts from Numerical Optimization

	Numerical method-Based Optimization
	Motivation
	Methodology
	Numerical Gradient
	Termination Conditions for NMBO

	Variable Elimination
	Motivation and Concepts
	Performance Influence of Variable Elimination
	Non-differentiable Objective Function
	How to Eliminate Variables
	Termination Condition
	Applications of Variable Elimination
	Limitations of Variable Elimination

	Run-time complexity estimation
	Application and generalizations
	Finding initial solutions
	Optimizing Discrete Variables
	Limitations

	Experiments
	Energy Optimization based on FTP Model
	Energy Optimization for DAG Model
	Control Optimization
	Discussions
	Performance statistics
	Computation cost related to schedulability analysis
	Improving classical numerical optimizers
	Obtaining feasible initial solutions

	Conclusion
	ACKNOWLEDGMENT
	References

