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A central assumption in most ecological models is that the interactions in a community
operate only between pairs of species. However, two species may interactively affect the
growth of a focal species. Although interactions among three or more species, called
higher-order interactions, have the potential to modify our theoretical understanding
of coexistence, ecologists lack clear expectations for how these interactions shape
community structure. Here we analytically predict and numerically confirm how the
variability and strength of higher-order interactions affect species coexistence. We found
that as higher-order interaction strengths became more variable across species, fewer
species could coexist, echoing the behavior of pairwise models. If interspecific higher-
order interactions became too harmful relative to self-regulation, coexistence in diverse
communities was destabilized, but coexistence was also lost when these interactions
were too weak and mutualistic higher-order effects became prevalent. This behavior
depended on the functional form of the interactions as the destabilizing effects of the
mutualistic higher-order interactions were ameliorated when their strength saturated
with species’ densities. Last, we showed that more species-rich communities structured
by higher-order interactions lose species more readily than their species-poor counter-
parts, generalizing classic results for community stability. Our work provides needed
theoretical expectations for how higher-order interactions impact species coexistence in
diverse communities.

coexistence | species interactions | community assembly | competition

A fundamental problem in ecology is explaining species coexistence in diverse commu-
nities despite the force of competitive exclusion. Because of the inherent complexity
of diverse systems, research on this problem has typically advanced by assuming that
interactions operate only between pairs of species and that these pairwise interactions then
combine to generate the dynamics of the full community (1). Two kinds of interactions
uniquely emerge in systems with more than two species. First are interaction chains,
which are defined as the indirect effect of one species on another through changes
in the abundance of a third (or fourth, fifth, etc.) species (1, 2). Rock-paper-scissors
games and intransitive competition more generally are well-studied examples of this
type of competitive dynamic (3—5). Importantly, the interactions in these chains remain
fundamentally pairwise, even when their effects on species densities propagate through
the competitive network. By contrast, the second main type of interaction occurs when
a group of two or more species interactively affect a focal species. Such interactions,
termed higher-order interactions, are absent from the purely pairwise models that have
contributed most to our understanding of species coexistence. Despite longstanding
efforts in ecology (6-11) and other fields (12-16), we currently lack coherent theoretical
expectations for how higher-order interactions impact coexistence in diverse communities.

Higher-order interactions emerge when species plastically respond to other species
in ways that affect their interaction with still other species. For example, consider the
idealized case of three plant species with different rooting depths, so that the strength
of the competitive interactions among species depends on the rooting depth overlap (1).
Suppose the species with the intermediate rooting depth is also phenotypically plastic
such that its rooting depth adjusts to avoid competition. In pairwise competition with
cither the shallow- or deep-rooted species, this intermediate species might experience lictle
competition because its rooting depth adjusts to avoid the roots of its competitor. When
competing with both the shallower and deeper rooting species, however, this intermediate
species experiences intense competition because it cannot simultaneously avoid both a
shallower and deeper rooted species.

Conversely, mutualistic higher-order interactions are also possible. As an example, an
antibiotic-degrading bacteria can protect antibiotic-sensitive bacteria from those produc-
ing the toxin, promoting the coexistence of three or more strains (17, 18). Interactions
of this type are presumably frequent in nature, and empirical evidence for their operation
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in plant and microbial communities is accumulating (19-21).
While demonstrating the operation of higher-order interactions
is the key first step in this research area, the obvious follow-
up question is how higher-order interactions actually shape the
dynamics of the community.

Ecologists do know how interactions shape coexistence
in the simplest possible case of just two competing species,
and these rules form a null expectation for the influence of
higher-order interactions (22-25). The following rules generally

apply:

1) Coexistence is favored when intraspecific competition is
stronger than interspecific competition.

2) Coexistence is disfavored by large variance among species in
their intrinsic growth rates and sensitivities to competition.

3) Species abundances grow without bound when interspecific
interactions are facilitative rather than harmful and stronger
than self-regulating interactions.

Generalizing these rules to diverse ecosystems—even those
with only pairwise interactions—is mathematically challenging
as the coexistence outcomes depend on the full structure of the
competitive network (26). One feasible path forward involves
first ignoring this structure and analyzing how the summary
statistics of pairwise interactions affect coexistence. Taking this
approach, ecologists have shown that the qualitative rules for
the dynamics of two competing species can still apply in diverse
communities with pairwise interactions (27-33). Understanding
how the statistics of higher-order interactions influence coexis-
tence could refine our theories of species diversity in general.
Indeed, recent theoretical work studying communities of fixed
total abundance (34) suggests that higher-order interactions may
upend classical expectations related to diversity and stability,
although whether this extends to systems where the total abun-
dance emerges from the interactions themselves remains to be
explored.

Here we combine numerical simulation with a technique from
statistical physics (30, 35-38) to address three questions: 1) How
do the strength and variability of higher-order interactions affect
species coexistence in diverse communities? 2) How do these
effects compare to the rules for coexistence in pairwise systems?
3) Does considering higher-order interactions alter classical the-
oretical results relating diversity to the probability of coexistence

(27-29)?

A B

Community dynamics

Results

We explored our research questions with a simple extension
of the generalized Lotka—Volterra model to include third-order
interactions (39-41), similar to those used in recent empirical
studies (19-21). In a community with S species, the dynamics
of species ¢’s density, IV;, is given by

dN;

=N (B3 AN =3T3 BN, 1)

where R; is species 4’s intrinsic growth rate, A;; describes the
strength of intraspecific limitation (set to 1 from now on for
simplicity), and the coefficient A;; describes the pairwise impact
of species j on species ¢’s growth (Fig. 14). We model the higher-
order interactions experienced by species i as the product of two
other species’ densities N; and Nj. Bjyji, measures the interactive
impact of species j and species k on species ¢. We initially allow
higher-order interactions to include squares (i.e., the term N; sz)

but not cubes of abundances (B;;; = 0 scales N2 for all 7) because
we assume that species” intraspecific regulation is fully captured
by the pairwise parameter A;;. We consider the case of cubic self-
regulation later in Results. The sign of the coefficients A;; and Byjp,
can be either positive (and therefore harmful) or negative (and
mutualistic).

The strength of the higher-order interactions in Eq. 1 isa simple
linear function of the product of species densities, allowing the
model to capture a broad range of possible interaction patterns.
At the same time, this assumption may not always be ecologically
realistic (42—45). To understand how this choice of functional
form affects our results, we also consider a suite of alternative
models where the magnitude of the higher-order interactions sat-
urates as a function of species densities and where the strengths of
the pairwise and higher-order interactions are explicitly coupled.
Note that we include the coefficients B;j; and Byy; in Eq. 1 even
though they multiply the same two abundances and therefore
could be absorbed into a single parameter. In the models with
more complex functional forms, however, these interactions are
no longer mathematically equivalent, so we retain these terms
as separate higher-order interactions to facilitate comparisons
between the different modeling frameworks.

Because of the complexity of ecological models with large num-
bers of species, we aim to predict how species coexistence depends
on summary statistics of the species’ growth rates and interactions,
rather than any particular parameterization. To understand how
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Fig. 1.

(A) Following Eq. 1, each species i in the community has an intrinsic growth rate R;, experiences self-limitation through the parameter A;, and competes

with other species through pairwise (red) and higher-order (blue) interactions. The pairwise competition coefficient A; measures the impact of species j on
species /, while the higher-order coefficient By measures the interactive impact of species j and species k on species i. (B) In our simulations, we integrate the
dynamics of Eq. 1 with either or both pairwise and higher-order interactions and record the fraction of species that are excluded and the abundances of the
coexisting species at equilibrium. (C) Plots of the density of species with a given abundance (the species abundance distribution) for communities with either
pairwise or higher-order interactions, and with different interaction variances. The solid blue curves denote the predicted species abundance distributions from

the cavity method (see Materials and Methods for details).
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the mean and variance of the growth rates (ur and J%) and
pairwise (114 and 0124) and higher-order (115 and 023) interactions
influence coexistence, we varied these statistics and used both
numerical simulations and analytical theory to determine how
they influence the fraction of coexisting species. By choosing
these statistics appropriately, we concentrate on systems whose
interactions are on average harmful but, due to their variance,
can sometimes be mutualistic. Because there are many more
higher-order interactions than pairwise interactions among the
S species, we scale the interaction strengths to account for the
number of pairwise or higher-order interactions (see SI Appendix,
section 1 for a more complete discussion). In our simulations, we
drew the growth rates and interactions from normal distributions
with the specified means and variances, solved the dynamical
system in Eq. 1 numerically, and then recorded the abundances
of all species in the community (Fig. 1B). This was then repeated
many times for different means and variances to understand
how these factors influence species coexistence. Here, rather than
asking whether the S species equilibrium is stable or feasible, as
in previous work (27-29, 31-33, 46, 47), we ask what fraction of
the species coexist (¢) after the dynamics proceed from positive,
randomly assigned initial species densities. This fraction is some-
times referred to as the persistence of the community (48), and
it has been studied extensively in the context of mutualistic and
trophic networks (48-52).

In addition to the simulation results, we use the cavity method,
a technique from statistical physics (35, 36), to generate analytical
predictions for how species coexistence depends on the mean
and variance of species’ growth rates and pairwise and higher-
order interactions. The central aim of the cavity method is to
characterize the distribution of abundances that a species could
achieve after invading a coexisting community. The equilibrium
abundances follow a distribution because the interactions them-
selves are sampled from probability distributions which give rise
to variability in species’ competitive abilities. The method then
equates this distribution of invader abundances to the distribution
of coexisting species abundances, permitting the derivation of a
set of equations for the statistics of the species abundance distri-
bution in the eventual community (Materials and Methods and
SI Appendix, section 2.A). The resulting community composition
is determined by both the species interactions and the equilib-
rium abundances. In a diverse community, complex interaction
patterns in the species pool (like intransitivity, trophic structure,
or more complicated empirically observed feedback loops) give
rise to the abundances of the coexisting species (5, 53, 54), and
similarly, the identity of the abundant species determines the
dominant patterns in the interactions of the coexisting commu-
nity (55). In some sense, the cavity method calculation integrates
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over the complicated relationship between interactions and species
abundances to tell us how these two effects jointly determine
the coexistence patterns in our simulations. In recent work, the
cavity method has successfully predicted the equilibrium species
abundance distributions for a wide variety of ecological models
(30, 37, 38, 56—60). Although this method is only theoretically
valid in the limit of an infinite number of species (S — 00),
it has been shown to describe the behavior of relatively small
Lotka—Volterra communities with pairwise interactions (30, 38).
Throughout our work, we implement a correction to the standard
cavity method equations so that we are better able to predict
coexistence in smaller communities (Materials and Methods and
SI Appendix, section 2.E).

We use the cavity method to calculate the species abundance
distribution at equilibrium for a range of means and variances
describing the pairwise and higher-order interactions in the com-
munity. The fraction of species with positive abundances yields
the fraction of coexisting species ¢ (see Materials and Meth-
ods for the equations and SI Appendix, section 2.A for the full
calculation). Importantly, our predicted abundance distributions
closely match their simulated counterparts (Fig. 1C). To facilitate
comparisons between our analytical theory and simulation results,
we concentrate on the case of fully random interactions with
specified statistics, but the cavity method calculations could be
generalized to incorporate additional structure in the interaction
network (38).

Obur first main result is that the cavity method does an excellent
job predicting the fraction of coexisting species for the Lotka—
Volterra model with higher-order interactions. When the com-
munity was very small (only five species), we found considerable
divergence between the simulation outcomes and the cavity
method predictions, and thus, our theory is not predictive for
such small systems (Fig. 2). At the other extreme, when the
system began with 30 species, or with much larger species pools
(S =300) as shown in SI Appendix, Fig. S3, we found excellent
agreement between our simulations and the cavity method
predictions (Fig. 2). Importantly, even when there were only
10 species, the cavity method captured the average behavior of
the simulated communities.

We first explored the effects of the pairwise interaction
strengths and variances on species coexistence to provide a baseline
against which to compare the effects of higher-order interactions.
In pairwise systems, increasing the variance in the interaction
strength reduces the fraction of species that coexist. This happens
because just like in models with only two competitors, variability
in the interspecific interaction strengths favors some competitors
over others (some get a better draw of interactions than others),
driving the losers to exclusion (Fig. 34) (30, 37, 38). Increasing
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Fig. 2. Comparison between the average simulated fraction of coexisting species, shown by symbols and error bars with +1 SD, and cavity method predictions
of that fraction, shown by the continuous lines. Results are shown for different community sizes—(Left) 5 species, (Middle) 10 species, and (Right) 30 species—
and different mean interaction strengths (colors and shapes) across a range of variances in the higher-order interaction strengths. Simulation means and SDs
were obtained for 100 realizations of the interactions per parameter combination. In all panels, the mean intrinsic growth rate was pz = 1.5, and its SD was

op = 0.5.
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Fig. 3.

Predictions for how the fraction of coexisting species (¢) depends on the variation in interaction strengths assuming (A) only pairwise, (B) only higher-

order, or (C) both types of interactions in the system. We plot results for three different variations in intrinsic growth rates (o) and three different mean
interaction strengths (u4 or pp). In C, the pairwise interaction statistics are us = 1 and o4 = 0.5. In A-C, the mean growth rate is ug = 1.5. Simulation results in

Sl Appendix, Figs. S4 and S5 closely match these predictions.

the variation in growth rates has an analogous effect, which can
be seen, for example, by comparing the blue lines (where mean
interaction strength is fixed) across Fig. 34 (30, 37, 38).

Increasing the mean pairwise interaction strength, while
keeping the intraspecific interaction strength constant (4,; = 1),
reduces coexistence because the interspecific interactions become
on the whole more competitive (Fig. 34) (30, 37, 38). With more
species exerting greater effects on others than on themselves,
the system exhibits less coexistence. This decrease in coexistence
becomes most apparent when species competitive imbalances
increase, either through variation in the intrinsic growth rates
or variation in interaction strengths. We can attribute this
behavior to the relative strength of intraspecific to interspecific
interactions because if instead species with a common intrinsic
growth rate experience a concomitant increase in self-regulation
as their interspecific interactions become more competitive,
the mean competition strength has no impact on coexistence
(SI Appendix, section 2.D) (30, 37).

Our second main result is that some of the lessons from how
pairwise interactions affect coexistence translate over to the effects
of higher-order interactions. For example, increased variability in
higher-order interaction strength (and intrinsic growth rates) re-
duced species coexistence (Fig. 3B) because, just as in the pairwise
case, this variability favors some species over others, and the losers

40of 9 https://doi.org/10.1073/pnas.2205063119

get excluded. Similarly, as long as the variation in higher-order
interaction strength was relatively low, and species differed in their
intrinsic growth rates, more harmful higher-order interactions
along with constant self-regulation reduced coexistence.
However, our third main result is that higher-order interaction
strength differed markedly from pairwise interaction strength in
its effects on species coexistence in one important way. Note
that when species shared identical intrinsic growth rates or vari-
ation in the higher-order interaction strength was high, more
harmful higher-order interactions increased, rather than decreased
coexistence (Fig. 3B). This coexistence-promoting effect of more
harmful higher-order interactions contrasts with the effect of more
harmful pairwise interactions and extends to systems with a mix
of pairwise and higher-order interactions (Fig. 3 B and C; see also
SI Appendix, Fig. S6, where we explicitly plot how the fraction of
coexisting species depends on the mean interaction strength).
The beneficial effect of more harmful higher-order interac-
tions emerges because such interactions reduce the likelihood
of a mutualism that can cause some species to become highly
abundant. When higher-order interactions are only weakly harm-
ful on average but highly variable, some species experience net
facilitation from the most abundant species, creating runaway
abundances when the mutualisms are reciprocal. This is analogous
to the behavior that can emerge in two-species systems when

pnas.org
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Fig. 4. The fraction of coexisting species for three variations in intrinsic growth rate (o) when the level of saturation is h = 3. These plots are analogous to
Fig. 3C, except now with saturating higher-order interactions. The symbols show the mean of the simulation results for over 100 replicate communities, and
the error bars denote 1 SD. In all panels, the number of species S = 30, the mean growth rate uz = 1.5, the mean pairwise interaction strength us = 1, and the

variation in pairwise interaction strengths o4 = 0.25.

the interspecific mutualisms are stronger than the self-regulating
terms. Indeed, the dominant species in communities with only
weakly harmful higher-order interactions tended to be those that
facilitate one another, while differentially harming the species
with lower abundances (S7 Appendix, section 3.D). This effect
occurs for both pairwise and higher-order interactions (55, 61)
(81 Appendix, section 3.D), but because higher-order interactions
scale with the square of the average abundance, the effect of
strong interspecific mutualism becomes more pronounced. In
fact, when higher-order interactions are on average mutualistic
and self-regulation is relatively weak, the mean abundance grows
indefinitely. In sum, even though more harmful interspecific inter-
actions should decrease coexistence by overpowering intraspecific
regulation, they simultaneously decrease the likelihood of run-
away mutualisms, which greatly benefits coexistence.

To further evaluate this hypothesis, we simulate two addi-
tional models where higher-order interactions might not generate
runaway abundances because their effect saturates with species
density. In the first model form, the scalar Bjj, of Eq. 1 was

By . . .
replaced by m so that higher-order interactions saturate

at a rate controlled by the parameter h. If h =0, we recover
the model in Eq. 1, while if A > 0, the higher-order interaction
strengths level off with increasing densities. With this modifica-
tion, the higher-order interaction properties affect coexistence in
a manner identical to the pairwise interactions. Namely, more
harmful higher-order interactions simply lead to less coexistence
(Fig. 4). In the second model form, we explicitly tie the strength of
each higher-order interaction to a particular pairwise interaction.
We now interpret the higher-order interaction measured by the
parameter Bjj, as modifying the underlying pairwise interac-
tion with coefficient A;;. Then, we constrain the total effect of
all higher-order interactions acting on the pairwise interaction
between ¢ and j to have at most the same magnitude as the
pairwise effect. Mathematically, this means that the net interaction

species ¢ experiences through the pairwise interaction with species
j and all of the higher-order interactions modifying this pairwise
interaction (i.e., the term —A;; N; — >, Biji N; Nj) cannot ex-
ceed 244 N; in absolute value. In some sense, higher-order inter-
actions also saturate with species densities in this model because
when large densities cause very strong higher-order interactions,
these higher-order interactions are replaced with either no interac-
tion or twice the strength of the pairwise interaction they modify.
With this second model form, more harmful higher-order interac-
tions once again lead to fewer coexisting species because beneficial
higher-order interactions ameliorate pairwise competition but
cannot not give rise to net facilitation (Fig. 5). In sum, modeling
higher-order interactions with saturating functional responses
eliminated the counterintuitive effect of mean higher-order in-
teraction strength, while preserving the effects of variation in the
growth rates and interactions. In the S Appendix, section 3.E, we
show that introducing cubic self-regulation has a similar effect on
coexistence as saturating higher-order interactions.

Our final result is that the classic finding that the probability
of coexistence of all S species declines with species richness in
systems with pairwise interactions (27-29, 62) also holds in
systems with higher-order interactions. Theory predicts that as
the number of species increases, communities can tolerate less
variability in their interactions before losing their first species (28,
31, 33, 63, 64). We call the value of the interaction variability
at which the first species goes extinct the “critical interaction
variability,” denoted G4 and Gp for pairwise and higher-order
interactions respectively. Notably, recent theory found that un-
der three-way higher-order interactions, this critical interaction
variability exhibited no systematic dependence on the number of
species (34), albeit using a different mathematical framework from
the one we have considered. By contrast, in simulations of our
model, the critical interaction variability for both pairwise and
higher-order interactions decreased as a function of the number

§ or=0 or=0.25 or=0.5
0 Mean
w5 L0 Interaction
E 2 hddL Strength  (ug)
E.g AA AAAA AA“A A :11
% 05 Yvy
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Q
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Variation in Interaction Strengths (og)

Fig. 5.

The fraction of coexisting species for three variations in intrinsic growth rate (og) when higher-order interactions cannot exceed the strength of the

pairwise interactions. These plots are analogous to Fig. 3C, except now the strengths of the higher-order interactions are constrained by the pairwise interactions.
The symbols show the mean of the simulation results for over 100 replicate communities, and the error bars denote 1 SD. In all panels, the number of species
S = 30, the mean growth rate iz = 1.5, the mean pairwise interaction strength 4 = 2, and the variation in pairwise interaction strengths o4 = 0.5.
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Fig. 6. The critical interaction variability as a function of the number of
species in the community with either only pairwise or only higher-order
interactions. The critical interaction variability is the smallest value of the
variability in the pairwise interactions (G4) or the higher-order interactions
(o8) at which the first species goes extinct. The circles and triangles show the
average of simulation results for 10 replicate communities, and the error bars
denote the minimum and maximum value found in all 10 simulations. The
lines are predictions based on our cavity method framework in Eq. 4. We set
or = pa = pp = 0 to make the comparison with previous theory more direct,
and we set the mean growth rate to be pg = 1.5.

of species in the community (Fig. 6). In fact, the critical higher-
order interaction variability decreased more quickly with species
richness than the pairwise variability. Note that to obtain this
result, we removed the scalings on the interaction statistics thus far
imposed to remove any effect of diversity on the total effect of the
interactions. Predictions for the critical variability from our cavity
method framework closely matched the simulation results (see the
lines in Fig. 6 and Materials and Methods for the corresponding
equations).

Discussion

Through the analysis of models for two competing species, ecolo-
gists have derived simple rules for species coexistence (spelled out
in the Introduction) (22, 23). We know that these rules do not
formally apply to systems with more than two species, including
those with purely pairwise interactions (26). Nonetheless, our
findings here suggest that these simple rules may strongly guide
expectations for the interpretation of coexistence in large systems,
even those organized by higher-order interactions, as long as the
network of interactions has a random structure. Moreover, the
cavity method can be used to develop theory for how higher-order
interactions impact species coexistence in such systems.

The central question of our study was how the strength and
variability in higher-order interactions influence species coexis-
tence (question 1 from the Introduction). We found that as
higher-order interaction strengths become more variable between
the species, fewer species coexisted. When interactions are het-
erogeneous and randomly assigned to species, species differ in
their sensitivity to competition, and the poorest competitors get
excluded. This behavior is directly analogous to results from
pairwise interactions (27-31). The average strength of higher-
order interactions, on the other hand, exhibited a more complex
effect on coexistence. When species differed considerably in their
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intrinsic growth rates and interaction strengths had little variation,
more harmful interspecific higher-order interactions generated
less coexistence. This result follows from the two-species rule that
more harmful interspecific interactions relative to intraspecific
regulation are destabilizing (30, 31).

However, when the variation in higher-order interactions was
large relative to the variation in intrinsic growth rates, we found
the opposite dependence—more harmful higher-order interac-
tions counterintuitively produced more coexistence. Even here,
though, the two-species rules prove useful. Less harmful mean
higher-order interactions introduced more mutualistic interac-
tions, which even in two-species systems can cause abundances to
grow without bound when they overwhelm self-regulation. The
subset of species engaged in this mutualistic rise were the most
abundant (87 Appendix, section 3.D) and greatly harmed species
that happened to engage in harmful higher-order interactions with
these species. When the strength of higher-order interactions in-
stead saturated as a function of species abundance, more harmful
higher-order interactions once again produced less coexistence
because the likelihood of strong mutualistic interactions, and
hence groups of highly dominant species, was reduced.

While variation in higher-order interactions harmed coexis-
tence regardless of whether or not these interactions saturated
with species densities, the effect of the mean interaction strength
depended strongly on the model form. As a result, increased vari-
ation in both pairwise and higher-order interactions reduced co-
existence, but the strength of linear higher-order interactions had
qualitatively new effects on coexistence relative to pairwise interac-
tions, thereby answering question 2 in the Introduction. In princi-
ple, higher-order interactions likely saturate with species densities
in natural communities (42-45), but it is unclear whether species
abundances in nature lie in a regime where a linear functional
response is a reasonable description of these saturating curves.
It is worth noting that the higher-order interactions currently
fit to data usually involve this linear assumption (mainly as a
byproduct of very reasonable data limitations), and if it is valid,
our theory suggests that more harmful higher-order interactions
may favor coexistence (19). However, this linear description of
higher-order interactions may not be a good one, in which case
we suspect that the predicted dynamics from these fitted models
would not be realistic (19, 65). If indeed, better data supported
higher-order interactions that saturate with species abundances
or are tightly coupled to pairwise interaction strengths, more
harmful higher-order interactions could favor fewer not more
coexisting species. The possibility of empirical support for higher-
order interactions constrained by the pairwise effects is interesting
given that such constraints are central to previous theoretical
work showing widespread coexistence resulting from higher-order
interactions (17, 66). All of this points to the fact that determining
both the parameter values and the functional forms of higher-
order interactions supported by empirical data is a crucial next
step in this research area.

Thus far, we have argued that higher-order interactions with
specific functional forms and constraints can favor coexistence but
that more generic, randomly sampled higher-order interactions
have similar effects on coexistence as pairwise interactions. This
latter message also holds when exploring how species richness
affects opportunities for coexistence. Consistent with classic stud-
ies modeling pairwise interactions (27-29), we found a loss of
coexistence with increasing diversity in our model, for both pair-
wise and higher-order interaction systems. Importantly, this effect
arose from fewer species having positive equilibrium abundance
rather than an increasingly unstable equilibrium with all species
present. Previous theoretical studies have also found that feasibility
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is lost before stability in Lotka—Volterra models (33, 63, 64), and
we have found the same behavior when incorporating higher-
order interactions. Although these feasibility- and stability-based
approaches differ quantitatively in their requirements for the
coexistence of all species, they have identified the same qualitative
relationship between interaction variability and species richness—
namely, that communities tolerate less variability in pairwise in-
terspecific interactions as they become more diverse (27-29). This
makes the recent findings of Bairey et al. (34), showing that species
diversity has no effect on the variability of three-way, higher-
order interactions required to disrupt coexistence, particularly
surprising. In contrast, not only did we find that the critical
variability of both pairwise and higher-order interactions declines
with species richness, this decrease was more severe with higher-
order interactions. We believe the discrepancy lies in the different
modeling frameworks. In the replicator equation used by Bairey
etal. (34), all abundances must sum to one, and thus, higher-order
interactions become weaker as the number of species increases
because the products of relative abundances near zero quickly
become very small. In the generalization of the Lotka—Volterra
model we consider, every species has an abundance that is fixed
by its intrinsic growth rate and its self-regulation. As a result, the
variability in higher-order interactions and species richness affects
opportunities for coexistence in the same qualitative way that pair-
wise interactions do, answering question 3 from the Introduction.
Our results also suggest that the number of interactions in a
community plays an important role in determining their effects
on coexistence. When we removed the scalings which accounted
for the larger number of higher-order than pairwise interactions,
we found that higher-order interactions had a stronger impact
on coexistence simply because there were more of them. This
fact suggests that higher-order interactions involving more than
three species should have even smaller critical variabilities than
those we predicted for three-way higher-order interactions. On
the other hand, if in nature the measured strength of higher-
order interactions tends to decrease as a function of the number
of species involved, then our theory that scales out the number of
interactions may be a more accurate representation of real systems.
In this case, it is less clear how the order of the interactions
(i.e., the number of species they involve) will affect the critical
variability because the clear effect of the number of possible
interactions is muted. The relationship between the order of an
interaction and its empirically derived strength is therefore an
important outstanding question for both theoreticians deriving
higher-order interactions from mechanistic underpinnings and
empiricists tackling the problem in nature. We have focused
here on three-way higher-order interactions, both to maintain
analytical tractability and because interactions of larger orders
are exceedingly difficult to measure empirically (19). A principal
direction for future work is to understand which interaction orders
ought to be included in phenomenological models and how the
orders of these interactions impact macroecological properties.
One important caveat of our cavity method results that they
are only valid when species coexist at a stable equilibrium (67).
Species may instead coexist in limit cycles (68) or exhibit chaotic
dynamics (69, 70), in which case it is no longer clear how the
mean and variance of the interactions affect coexistence. In the
parameter regimes we focused on, nonequilibrium dynamics were
rare (but see Materials and Methods and SI Appendix, section 3.B
for a complete discussion of where they can appear). Nevertheless,
complex dynamics with widespread coexistence have been shown
to emerge in diverse models with randomly sampled interactions
when intraspecific competition is similar to interspecific com-
petition (71) or in the regime with multiple equilibria when
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there is also external immigration (59). We did find multiple
equilibria when higher-order interactions are saturating (Matze-
rials and Methods and SI Appendix, section 3.B), suggesting that
nonequilibrium coexistence may appear in model communities
with higher-order interactions of specific functional form.

Our theory generates a null expectation for how higher-order
interactions influence species coexistence assuming they are on
average harmful (mutualistic, nonsaturating higher-order inter-
actions simply cause abundances to explode), and there is no
structure to the higher-order interaction network. Indeed, we
have shown with the cavity method that when higher-order
interactions are sampled at random, they do not generate ecosys-
tems with perfect coexistence. However, ecological interactions
in nature are likely to be nonrandom. If the network of higher-
order interactions has some complex structure, then it may have
a fundamentally different effect on coexistence than suggested
here. For example, we assumed that higher-order interactions
involving the square of abundances [the intraspecific higher-order
interactions (19)] follow the same distribution as all other higher-
order interaction terms. If instead the intraspecific higher-order
interactions are stronger than their interspecific counterparts, they
might be broadly stabilizing (39). Similarly, higher-order inter-
action strength may be correlated with the underlying pairwise
interactions in the system and thereby give rise to more or less
coexisting species than predicted here. At this point, however, it
is unclear how to impose additional constraints on the parameters
of the model we consider without specifying a mechanism for
the interactions in the ecosystem (72, 73). Moreover, deviations
from truly random interactions may not alter the qualitative
conclusions we have focused on. If specific interaction structures
were found to change our main conclusions, it is possible to
incorporate these structures into the cavity method (37, 61),
allowing one to understand the mechanisms by which nonrandom
interaction structures benefit or harm coexistence.

In this context, a central challenge in this field is to derive
phenomenological higher-order interaction parameters either
from 1) nature or 2) an underlying mechanistic process in a model.
Although both approaches could refine the conclusions we have
derived based on randomly sampled interactions, an empirically
determined interaction network can be used to interrogate specific
patterns in the structure of the interactions. At the same time, the
number of possible higher-order interactions grows quickly with
the number of species and the order of the interactions themselves,
making it very difficult to estimate all possible interactions
experimentally and necessitating new empirical approaches to
circumvent this challenge. This is where the cavity method may
prove particularly useful in an empirical context. To predict
coexistence with the cavity method, one only needs estimates
of the mean and variability of the interactions (61). In other
words, not every interaction needs to be measured. As a result, the
cavity method provides a powerful framework for empiricists to
compare the potential effects of higher-order interactions across
different ecosystems. The theory can be used to generate a baseline
level of coexistence expected from randomly assigned higher-order
interactions, and thus, deviations from such predictions can be
indicators of more complex ecological structure in nature.

Materials and Methods

Simulation Details. In our simulations, we used the Livermore Solver for
Ordinary Differential Equations (LSODA) from the deSolve v1.25 package (74)
in R version 3.6.1. We sample the species’ growth rates and interaction param-
eters from normal distributions with the statistics we specified in Results. In
Sl Appendix, Fig. S8, we show that our predictions still perform well for uniformly
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distributed interactions. We start each simulation with all species present at
randomly selected abundances in the interval [0, 1]. We integrate the dynamics
for 107 time steps and then record the abundances. We designate species with
abundance smaller than 10~ to be extinct. We then test whether or not we
have reached equilibrium by computing each of the coexisting species per capita
growth rates and comparing them to a cutoff of 0.01. We also test if any of
the excluded species can invade the equilibrium using the same growth rate
threshold. If the dynamics did not reach equilibrium or an excluded species can
invade, we remove the simulation run for our data. This occurs rarely and only for
large values of o or o3 (see S/ Appendix, section 3 for further discussion of our
simulation methods). The code used to run simulations and generate figures is
available on GitHub at https://github.com/theogibbs/CavityHOls (75).

Cavity Method Equations. In S/Appendix, section 2.A, we provide the cavity
method calculation in detail. In this and the following sections, we discuss the
calculation without the finite-size corrections that we mentioned in the main text,
but see SI Appendix, section 2.E for the complete analysis. The predicted distri-
bution for the coexisting species is a truncated normal distribution (Fig. 1C). We
use po and o to denote the mean and SD of this distribution before truncating
it. We derive equations in S Appendix, section 2.A for how these statistics relate
to the growth rate and interaction statistics. Specifically, we find that

1o = 1 — pa(N) — p1s* (N)?
2 2 2,2 2,2 /02\2 2]

oy = og + oap(N°) + 03" (N)°,
where ¢ is the fraction of coexisting species (as in Results), (N} is the mean
of the coexisting species, and (N?) is the second moment of the coexisting
species. In SI Appendix, section 2.A, we actually treat a more general case in
which the pairwise interaction coefficients can be correlated across the diagonal
(i.e., (Ajhi) — (Aj)? = pacs /S), but we report the simpler formulas in which
pa = Ohere. Eq. 2 can be interpreted as the average and variance in abundances
of a given coexisting species. Specifically, we can solve Eq. 1 forafocal abundance
N; and then compute the mean and variance of the resulting solution using both
the unknown properties of the coexisting species (¢, (N),and (N?))as well as the
statistics of the growth rates and interactions. In fact, previous work (76, 77) used
this method to predict the equilibrium properties of the Lotka-Volterra model
without invoking the cavity method. In Eq. 2, ¢, (N, and (N?) are all unknowns,
but they are related to 1 and o. Let P(No| 120, o0) be the nontruncated normal
distribution with mean g and SD . Then, ¢ is the integral of P(No| 10, o0)
over the positive abundances. Similarly, (N) is the average of P(No| g0, o0) over
the positive abundances. We find that

<’5:/ P(No| 10, 7%) dNo
0
’I o0
(N) = g/o NoP(No| 20, o) dNo [3]
'I o0
(V) = g/ NGP(No| pso, ) dNs,
0

where the factors of 1/ ¢ normalize the integral. Allin all, we have three equations
for three unknowns that we can solve numerically to determine the species
abundance distribution.

The Limit in Which All Species Coexist. The formulasin Eq.2 cannoteasily be
solved since 1o and o are not the same as (N) and (N*) — (N)?, respectively,
because the values of (N) and (N?) — (N)? both depend on the fraction of
species that are excluded. However, when ¢ = 1, 1o = (N), and o3 = (N?) —
(N)? and the equations in Eq. 2 simplify considerably. Because our theory is
only justified in the § — oo limit, this calculation is not fully consistent with
the cavity method, since when S is large enough, a nonzero fraction of species
will always be excluded. Nonetheless, we find that it still captures the qualitative
dependence of the fraction of coexisting species on the mean and variance in
species abundances reasonably well. In fact, in the next section, we use this
limit to quantitatively predict the results of our simulation results for the critical
variabilities.

When every species has the same growth rate (o = 0) and there are only

pairwise interactions in the ecosystem ug = o5 = 0, we find that o = #fu
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and of = %ué As a result, we find that o is directly proportional to .
Because the ratio 11 /oo determines ¢ (S/ Appendix, section 2.B), this calculation
suggests that, at least in the limit where all species coexist, 14 should have noim-
pact on coexistence (up to finite-size corrections, which we are neglecting here).
Interestingly, this dependence is true throughout the full range of o4 values we
consider, rather than just for small o values when we are close to the ¢ =1
limit. A straightforward calculation (which we include in S Appendix) shows that
the same analysis predicts the effect of mean pairwise competition strength when
species do not have identical growth rates (o > 0). When there are higher-order
interactions (when pig and o are nonzero), we must now solve quadratics in Eq. 2
to get 10 and &g In S/ Appendix, section 2.C, we find the behavior that we report
in Results-namely, that the qualitative effect of the mean higher-order interaction
strength changes for different values of oo, which is in turn determined by oz and
o Moreover, as 119 becomes smaller, the ratio 119 /g actually increases because
oo depends on pg. At the same time, when o > 0, this dependence is reversed,
and the ratio 19 /o increases as pug increases.

Deriving the Critical Variabilities. To find the critical variabilities for pairwise
and higher-order interactions, we once again consider the limit where ¢ = 1.We
use our solutions for 1o and o to compute the expected minimum of § samples
from the normal distribution with mean 12 and SD 0. Let x(S) be the expected
maximum value of S samples from the standard normal distribution. Then, the
expected minimum of our predicted normal distribution is pg — x(S)oy. In our
formulas, we also include the approximation x(S) < /2 log(S), so that we
can interpret the functional behavior more easily, but we use computationally
determined estimates of «(S) in Fig. 6 because they are significantly more
accurate. By setting the expected minimum to zero and solving for &4 or 55, we
find that the (average) critical variabilities are given by

1 1 1 1

= >

VS /EES)Z+T1 ™ VS \/2log(S) + 1
- O NN 2log($)
O = = — s 1

Spr 14+ K(5)2 ™~ Sug 1+ 2log(S)

where the first factors of S='/2 and S~ come from the interaction scalings that
we removed in this analysis. These predictions work well (Fig. 6), even though
they are based on a series of approximations. Note that the prediction for &5

involves the mean growth rate wz because og depends on g which in tum
depends on g, as we discussed in the previous section.

aA

[4]

Multiple Equilibria. Previous work on communities with only pairwise inter-
actions showed that in the regime where oy is large, multiple stable equilibria
are possible (30, 38). We find the same behavior here (S/ Appendix, section 3.B).
By contrast, we show that when o is large in communities with only higher-
order interactions, there are not multiple equilibria, because the dynamics
undergo unbounded growth in this regime. This unbounded growth is an
unrealistic feature of the multilinear model we have considered. It also occurs in
some regimes of the pairwise Lotka-Volterra model (30). In a model with only
higher-order interactions, however, the unbounded growth regime appears
to occur at a smaller value of og than the regime where there could be
multiple equilibria, meaning that we do not observe multiple equilibria in our
simulations of Eq. 1 (S/ Appendix, Fig. S9). However, when we modify Eq. 1 to
use saturating higher-order interactions, we once again find multiple stable
equilibria (S/ Appendix, Fig. S10), suggesting that these more complicated
dynamics may still occur in models with higher-order interactions as long as
unbounded growth is prevented.

Data, Materials, and Software Availability. Simulation code and data have
been deposited in GitHub (https://github.com/theogibbs/CavityHOls) (75). All
other study data are included in the article and/or S/ Appendix.
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