
Thomson scattering diagnostics of nonthermal
plasma from particle-in-cell simulations
Audrey Farrell

University of California, Los Angeles
Los Angeles, California
audfarrell@g.ucla.edu

Chaojie Zhang
University of California, Los Angeles

Los Angeles, California

Yipeng Wu
University of California, Los Angeles

Los Angeles, California

Zan Nie
University of California, Los Angeles

Los Angeles, California

Noa Nambu
University of California, Los Angeles

Los Angeles, California

Mitchell Sinclair
University of California, Los Angeles

Los Angeles, California

Kenneth Marsh
University of California, Los Angeles

Los Angeles, California

Chandrasekhar Joshi
University of California, Los Angeles

Los Angeles, California

Abstract—Optical Thomson scattering is now a mature di-
agnostic tool for precisely measuring local plasma density and
temperature. These measurements typically take advantage of
a simplified analytical model of the scattered spectrum, which
is built upon the assumption that each plasma species is in
thermal equilibrium. However, this assumption fails for most
laboratory plasmas of interest, which are often produced through
high field ionization of atoms via ultrashort laser pulses and
vulnerable to several kinetic instabilities. While it is possible
to analytically model the Thomson scattered spectrum for some
non-Maxwellian distribution functions, it is often not practical to
do so for laboratory plasmas with highly complex and unstable
distribution functions. We present a new method for predicting
the Thomson scattered spectrum from any plasma directly from
fully kinetic particle-in-cell simulations. This approach allows us
to model the contributions of kinetic instabilities to the Thomson
spectrum that aren’t taken into account in Maxwellian theory.
We demonstrate this method’s capability to capture nonthermal
features in the Thomson spectrum by simulating a simple bump-
on-tail plasma as well as a more complex laser-ionized plasma.
The versatility of this approach makes it an effective aid in
the experimental design of Thomson diagnostics to directly
characterize kinetic instabilities in laboratory plasmas.

Index Terms—plasma measurement, low-temperature plasmas,
plasma diagnostics, plasma simulation, plasma stability, plasma
density, plasma temperature

I. INTRODUCTION

Accurate information about the phase-space of laboratory
plasmas is essential for applications in wakefield acceler-
ation, fusion science, radiation generation, and laboratory
astrophysics. Such plasmas are often in a nonthermal state
- that is to say that the plasma electrons and ions have
velocity distribution functions that are non-Maxwellian and/or
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anisotropic. These plasmas eventually reach thermal equilib-
rium through collisions and self-organization via collisionless
kinetic instabilities. Experimentally, it is important to develop
techniques that will provide time resolved information about
the evolution of the the phase space of the plasma species.
For decades Thomson scattering has been used for local
density, temperature, and drift velocities in laboratory plasmas
[1]. More recently, the advent of ultrashort laser pulses has
allowed for the direct measurement of evolution in the Thom-
son spectrum [2]. However, most applications of Thomson
scattering rely on the assumption of stable, linear plasma in
thermal equilibrium, and previous theoretical work has shown
that even small deviations from Maxwellian electron velocity
distribution (EVD) functions can lead to significant error in
the Thomson scattered spectra predicted by Maxwellian theory
[3]–[5].

Nonequilibrium plasmas are susceptible to many kinetic in-
stabilities that will impact the collective Thomson scattering of
a laser beam [6], [7]. While it is possible to analytically model
the Thomson spectrum from many non-Maxwellian EVDs [3]–
[5], [8], doing so is often very complex, and not necessarily
practical when planning an experiment or analyzing existing
data, particularly for laboratory plasmas with complex EVDs.
We present an alternative method for predicting the Thomson
scattered spectra using kinetic particle-in-cell (PIC) simula-
tions of laboratory plasmas. This method is independent of the
plasma itself, instead depending on the fundamental definition
of Thomson scattering in order to provide a general method
that can be used to optimize scattering geometries that directly
probe nonlinear and nonthermal plasma waves of interest in a
given experiment.



II. FUNDAMENTALS OF THOMSON SCATTERING

At its core, Thomson scattering is a three wave interaction
between a low energy probe, electron plasma waves present
in the plasma, and scattered photons. This is expressed in the
phase matching conditions

k0 = ks + km (1)

ω0 = ωs + ωm (2)

where (k0, ω0) are the wavevector and frequency of the
incident probe, (ks, ωs) are the wavevector and frequency
of the scattered light, and (km, ωm) are the wavevector and
frequency of the measured electron plasma wave, respectively.
Fig. 1a illustrates these phase matching conditions geometri-
cally as parallelograms connecting the EM wave and elec-
tron plasma wave dispersion relations. The red parallelogram
demonstrates scattering off of plasma waves traveling to the
left (kl, ωl), resulting in redshifted light at (ksl, ωsl). Similarly
the blue parallelogram demonstrates scattering from plasma
waves traveling to the right (kr, ωr), resulting in blueshifted
light (ksr, ωsr). The resonant plasma oscillations produce
corresponding peaks in the Thomson spectrum, as illustrated
in Fig. 1b.

For Maxwellian plasmas, the Thomson scattered spectrum
has an analytical form factor given by the spectral density
function (SDF) S(k, ω)

S(k, ω) ≡ lim
V→∞,T→∞

1

V T

〈 |ne(k, ω)|2
ne0

〉
(3)

=
2π

k

[∣∣∣1− χe

ϵ

∣∣∣
2

fe

(ω
k

)
+ Zi

∣∣∣χe

ϵ

∣∣∣
2

fi

(ω
k

)]
(4)

where V is the scattering volume, T is the scattering time, ne0

is the mean electron density, χe is the electron susceptibility, ϵ
is the permittivity, Zi is the ion charge, and fe(v), fi(v) are the
electron and ion velocity distribution functions, respectively.

III. EXTRACTING THOMSON SPECTRA FROM SIMULATION

By applying this geometric understanding of the Thomson
scattered spectrum to simulated density fluctuations, we can
predict the spectra of any simulated plasma.

A. Simulations in One Dimension

In 1D simulations, we only have information about the
plasma along one axis, and so we take the simulated axis
as parallel to the probed electron plasma wave, (km, ωm). We
model the dispersion relation of the electron plasma waves
by taking the spatiotemporal fast Fourier transform (FFT) of
the simulated electron density ne(x∥, t), which gives a map
of the amplitudes of plasma oscillations in (k, ω)-space. Fig.
2a shows this dispersion space for a Maxwellian plasma,
where the simulation closely follows the theoretical dispersion
relations for Bohm-Gross and ion-acoustic waves, as expected.
For the chosen scattering geometry and plasma parameters, the
Thomson scattering parameter α = 1/kλD for this simulation
is 2.8, meaning that we are in the highly collective regime,
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Fig. 1: (a) Demonstration of the phase matching conditions for
Thomson scattering in a thermal plasma. The incident probe
(k0, ω0) and scattered light (ks, ωs) follow the dispersion
relation for electromagnetic waves in plasma, ω2 = ω2

p+c2k2,
shown in solid black. The grey curve shows the shifted
EM wave dispersion relation as written in (5). The electron
plasma waves are approximated as Bohm-Gross waves (dashed
black curve) and ion-acoustic waves (dotted black curve). The
red and blue parallelograms demonstrate the phase-matching
conditions for the up- and downshifted peaks in the Thomson
scattered spectrum shown in (b). The green feature in (b) is
the ion feature produced through scattering off of ion-acoustic
waves in the plasma, with peaks at the ion-acoustic matching
conditions ∆k = ∆l,r close to zero, shown in detail on the
inset plot.

and expect to see distinct features in the Thomson spectrum
corresponding to Bohm-Gross and ion-acoustic waves.

If we shift the electromagnetic (EM) wave dispersion re-
lation such that (k0∥, ω0) sits at the origin, as shown by the
grey curve in Fig. 1a, the set of (k∥, ω) along that curve are
those that satisfy the phase-matching conditions in (1) and (2).
Explicitly, we take the (km, ωm) given by

ωm =
√
w2

p + c2(km − k∥0)2 + c2k2⊥0 − w0 (5)

where k∥0 and k⊥0 are the projections of the probe wavevector
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Fig. 2: (a) |ne(k∥, ω)|2 for a 1D OSIRIS simulation of a 10eV,
ne = 1018cm−3 Maxwellian plasma. Theoretical curves for
Bohm-Gross, ion-acoustic, and electromagnetic wave disper-
sion relations are shown for the given plama parameters, where
the EM wave dispersion relation has been shifted such that
(k0∥, ω0) sits on the origin as given in (5). The Thomson spec-
trum is extracted underneath this shifted dispersion relation
to satisfy the phase matching conditions. (b) Simulated (red)
and analytical (green) Thomson spectra for an 800nm probe
scattering at θ = 150◦, each normalized to their maximum.

onto the k̂m axis. Taking |ne(k∥, ω)|2 at these points maps
directly to intensity of the Thomson scattered spectrum, as
shown in Fig. 2b. With this method we are able to calculate a
similar form factor to the analytical S(k, ω) for Maxwellian
plasma given in (4).

B. Simulations in Two Dimensions

The core principle of this method is the same in two dimen-
sions as in one. The primary complication is a computational
one: in 1D simulations we must treat the simulated axis as
the probed axis in our scattering geometry, but in 2D we have
enough information to extract the Thomson spectrum for any
scattering geometry in the plane of the simulation. For high
resolution simulations in 2D, extracting the Thomson spectrum
in exactly the same way as in 1D would require holding the
entire simulation at all time steps in computer memory at once,
which is typically not possible due to hardware limitations.

For the purpose of extracting the Thomson spectrum, we
only care about ne(k∥, ω) near the probed (km, ωm). Since we
typically set ∆x∥ ≈ 0.2/km in order to spatially resolve the
plasma wave we’re interested in, the maximum k∥ simulated
is typically k∥,max ≳ 5km, which is significantly higher than
anything we need to calculate the Thomson spectrum. We
can perform the spatial FFT while iteratively loading each
time step in the simulation, and immediately crop to only the
k∥-range necessary to extract the Thomson spectrum before
moving forward. This reduces the amount of data we need to
store in memory simultaneously, allowing us to analyze high
resolution simulations while maintaining individual contribu-
tions to the scattered spectrum from each x⊥-position in the
plasma.

A step-by-step overview of this analysis is as follows:
1) For each time step ti:

a) Load the full array of local densities, ne(x, y, ti)
b) Rotate ne(x, y, ti) to align with the probed k̂m,

giving ne(x∥, x⊥, ti)
c) Take the FFT of ne(x∥, x⊥, ti) along the x̂∥ axis,

giving ne(k∥, x⊥, ti)
d) Clip ne(k∥, x⊥, ti) to the maximum k∥ needed to

define the Thomson spectrum for this simulation.
2) Take the FFT of the clipped ne(k∥, x⊥, t) along the t-

axis, giving ne(k∥, x⊥, ω)
3) Take the sum of |ne(k∥, x⊥, ω)|2 along the x⊥-axis,

giving |ne(k∥, ω)|2
4) Extract the Thomson spectrum along the shifted EM

wave dispersion relation as given in (5).

C. Boundary Conditions

This analysis depends heavily on the discrete Fourier trans-
form, which assumes periodic boundary conditions in x∥ and
t. In most cases this is not true, and we need to remove edge
artifacts from the final ne(k∥, ω) spectrum that arise from
the discontinuous boundaries of the simulation. To do so we
use periodic plus smooth (P+S) decomposition of ne(x∥, t).
P+S breaks the data into a periodic component (containing
the spectrum we’re interested in) and a smooth component
that resolves the discontinuities on the edges of the data. This
method preserves the spectral information in the data better
than traditional methods of removing edge artifacts [9].

In 2D simulations, a conventional P+S approach would
again require loading the entire simulation at once in order
to calculate the boundary discontinuities for ne(x∥, t) at each
x⊥ position before taking the Fourier transform. To work
around this we instead enforce that the density drops to zero
on the edges of the x⊥-axis. This allows us to calculate the
boundary discontinuities using only the first and last timesteps
of the simulation. We then calculate the smooth component of
ne(x∥, t) for all x⊥ at once, and then subtract this component
from ne(k∥, x⊥, ω) as calculated in the previous section.

D. Finite Probe Beams

The example in Fig. 2b was calculated for a perfectly
monochromatic probe beam, but in reality the bandwidth of
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Fig. 3: Discretized spectrum of an 800nm probe beam with
5nm bandwidth.

the probe beam will broaden the Thomson spectrum. To take
this into account we discretize the probe spectrum, as shown
in Fig. 3, and take Stot(k, ω, λ0,∆λ) =

∑
j IjSj(k, ω, λj)

where Ij is the normalized intensity of a single wavelength in
the probe spectrum.

Currently the temporal profile of the probe is not taken
into account and the Thomson spectra are calculated using
the full temporal range of the simulation. Shorter scattering
time corresponds to lower resolution in ω, so while it is
possible to model the ultrashort probes used for time-resolved
Thomson scattering measurements, care needs to be taken in
maintaining high enough spectral resolution for this analysis.
Similarly the spatial intensity profile of the probe beam is
not currently included in this analysis, so all locations within
the simulation box are considered equal contributors to the
Thomson spectrum. Future work will focus on including these
finite probe effects in the extracted spectra.

IV. BUMP ON TAIL PLASMA

To test the capability of this method to model Thomson
scattering from unstable plasma, we simulated a bump-on-
tail plasma in 1D OSIRIS. Fig. 4 shows the electron velocity
distribution consisting of a main population of stationary 10eV
electrons at n0,main = 1018cm−3 and a beam of 10eV elec-
trons streaming at 0.02c with n0,beam = 1017cm−3. The bump
in the EVDF will excite an unstable plasma wave that grows
nonlinearly as the plasma approaches thermal equilibrium.
The full dispersion relation for this asymmetric two-stream
instability (ATSI) was solved numerically for this plasma using
Xie et al.’s PDRK code [10]. Fig. 5a demonstrates that the
maximum growth rate calculated (green) matches the growth
of corresponding density fluctuations in the simulation (red).

Fig. 5b shows the dispersion space for this simulation
alongside the theoretical curve for 10eV Bohm-Gross waves
at ne0 = n0,main + n0,beam (black dash-dotted line) and
the calculated real frequency of the asymmetric streaming
instability (blue dashed line). The shifted EM wave dispersion
relation shown is for an 800nm probe beam with a 90◦

scattering angle. The dispersion space for this plasma is highly
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Fig. 4: Electron velocity distribution for a bump on tail
plasma initialized in 1D OSIRIS. The plasma consists of a
10eV population with ne = 1018cm−3 (red) and a 10eV,
ne = 1017cm−3 beam streaming with a velocity of 0.02c
(green).

asymmetric about ω = 0, resulting in an asymmetric Thomson
spectrum, as seen in Fig. 5c.

In addition to this asymmetry, the calculated Thomson
spectrum has a frequency shift between electron features that
cannot be reproduced using the Maxwellian model of Thom-
son scattering (shown in green in Fig. 5c). The expression
in (4) doesn’t take into account non-thermal electron plasma
waves such as ATSI, and so fails to predict the spectrum for the
bump-on-tail plasma even though both electron populations are
Maxwellian. A similar distribution is discussed at length in [6],
where a similar Thomson spectrum is numerically calculated
by directly solving the wave equation of the scattered waves.

V. LASER-IONIZED PLASMA

While the bump-on-tail plasma of the previous section does
well to highlight the impact of instabilities on the Thomson
spectrum, it is far from a realistic laboratory plasma. We
simulated the laser-ionization of neutral helium in 2D OSIRIS.
An 8mJ, 50fs, 800nm (a0 = 0.273) linearly polarized laser
pulse was sent through n0 = 5 · 1018cm−3 of neutral helium
with a short (2.5µm) linear up- and downramp in density
along the pump axis. The simulation ran for just over 3ps. We
define an 800nm probe beam with 5nm bandwidth incident
perpendicular to the pump beam and a scattering angle of
150◦. Fig. 6a shows the electron density immediately after
the pump has left the simulation box, along with the probed
km direction for this scattering geometry (105◦ relative to the
pump axis).

Calculating |ne(k∥, ω)|2 as outlined in Section III-B for
all timesteps after the pump has left, we once again see a
dispersion relation that is far from thermal, shown in Fig. 6b.
We can see features close to a 100eV Bohm-Gross dispersion
relation at low k, but around the shifted EM wave dispersion
relation (shown here in white) the spectrum is dominated by
asymmetric blobs arising from higher order kinetic effects.
Fig. 6c shows the extracted Thomson spectrum for this sim-
ulation (red) alongside the theoretical spectrum for a 100eV
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Fig. 5: (a) Simulated (red) evolution of density fluctuations
in the bump-on-tail plasma over time for the fastest growing
spatial frequency, kmax ≈ (57 ± 2)ωp/c. The green dashed
line shows the maximum growth rate predicted by kinetic
theory. (b) |ne(k∥, ω)|2 for a 1D OSIRIS simulation of a
the bump-on-tail plasma. The shifted EM and Bohm-Gross
dispersion relations are shown in black. The blue curve shows
the real frequencies of the asymmetric two-stream instability,
calculated numerically using the PDRK code in [10]. (c)
Simulated (red) and analytical (green) Thomson spectra for
an 800nm probe scattering at θ = 90◦, each normalized to
their maximum.

Maxwellian plasma. Note that this simulation did not include
ions after ionization, and so we do not expect to see ion-
acoustic features in the simulated spectrum. Most notably, the
electron features in the simulated spectrum do not occur at the

same frequency shift as the Maxwellian spectrum even though
the plasma densities are the same.

This simulation was modelled after experimental conditions
in [2], where the measured Thomson spectrum also showed
electron features at frequency shifts below ωp for the known
plasma density.

VI. CONCLUSION

We have presented a computational method for predicting
the Thomson scattered spectrum from plasmas simulated in
kinetic particle-in-cell codes. This method can be applied to
any 1D or 2D simulation regardless of the electron distribu-
tion function, allowing us to predict the Thomson spectrum
for nonthermal and unstable plasmas. This method is capa-
ble of reproducing the established theoretical spectrum for
Maxwellian plasma, and can predict nonthermal features that
the Maxwellian model cannot.

Simulating the Thomson spectrum from a 1D bump-on-tail
plasma produces an asymmetric dispersion relation consistent
with kinetic theory for asymmestric two-stream instability, and
our method is able to show this asymmetry in the Thom-
son spectrum. Reproducing a laser-ionized helium plasma in
2D simulation shows asymmetric nonthermal features in the
dispersion relation as well, and our method was capable of
predicting a broad frequency spectrum with scattered frequen-
cies from below ωp to above ωp, as seen in experimental
measurements [2].

This method is particularly well suited for optimizing
Thomson scattering diagnostics to directly probe kinetic insta-
bilities in laboratory plasmas. One simulation of the experi-
mental plasma conditions can be used to calculate the scattered
spectrum for any scattering geometry and probe beam param-
eters, allowing for optimization of the experimental layout to
target specific plasma waves of interest. Given that Thomson
scattering diagnostics are nonperturbing and can give time-
resolved spectra using ultrashort probes, this method provides
a highly advantageous means of characterizing stability and
nonthermal effects in laboratory plasmas.
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Fig. 6: (a) Simulated electron density of laser-ionized helium
(ne0 = 5 ·1018cm−3) immediately after the pump beam (trav-
elling from left to right) leaves the simulation box. The dashed
line shows the direction of the probed plasma wavevector for a
probe incident at 90◦ relative to the pump and a 150◦ scattering
angle. (b) Simulated |ne(k∥, ω)|2 for this simulation. The
white dashed line shows the shifted EM dispersion relation
given by (5) for an 800nm probe. (c) Calculated Thomson
spectrum (red) from this simulation alongside the theoretical
Thomson spectrum for a 100eV Maxwellian helium plasma
(green).
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