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ABSTRACT
As FPGAs are increasingly shared and remotely accessed by
multiple users and third parties, they introduce significant
security concerns. Modules running on an FPGAmay include
circuits that induce voltage-based fault attacks and denial-of­
service (DoS). An attacker might configure some regions of
the FPGA with bitstreams that implement malicious circuits.
Attackers can also perform side-channel analysis and fault
attacks to extract secret information (e.g., secret key of an
AES encryption). In this paper, we present a convolutional
neural network (CNN)-based defense to detect bitstreams of
RO-based malicious circuits by analyzing the static features
extracted from FPGA bitstreams. We further explore the
criticality of RO-based circuits in order to detect malicious
Trojans that are configured on the FPGA. Evaluation on
Xilinx FPGAs demonstrates the effectiveness of the security
solutions.
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1 INTRODUCTION
Field-programmable gate-arrays (FPGAs) are now integrated
in various cloud computing infrastructures and reconfig­
urable system-on-chips (SoCs). The availability of FPGA in
cloud data centers has enabled users to improve application
performance by enabling them to implement customizable
hardware accelerators directly on the FPGA fabric. In addi­
tion to increasing computational efficiency at reduced cost,
partial reconfiguration allows new types of FPGA designs
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that would be otherwise impossible to implement. Conse­
quently, Amazon and Microsoft have incorporated them for
specialized compute-intensive services [1] [2].
Multi-tenant FPGAs are split into logically isolated regions

that can be occupied by multiple users at a time. A major­
ity of integrated circuits are supplied by a common power
distribution network (PDN) for the entire FPGA board. As a
result, an electrical connection exists between the victim and
attacker modules [17]. An attacker can use voltage sensors
such as ring oscillators (ROs) and time-to-digital converters
to measure voltage fluctuations caused at the victim end.
Moreover, a grid of ROs can be activated simultaneously to
generate high-frequency oscillations; this may overheat the
FPGA and launch a denial-of-service (DoS) attack [4].
In order to prevent the attacker from directly configuring

the FPGA with an invalid or malicious bitstream, various
countermeasures have been adopted that detect and block
such bitstreams before loading them to the FPGA fabric. In
[5], the FPGA bitstream structures are scanned to detect sig­
natures that satisfy the requirements of FPGA-based fault
attacks. However, [5] requires reverse engineering (RE) of
the bitstreams to their corresponding netlists; this technique
is computationally intensive. Also, the RE tools are specific
to each FPGA family and each FPGA vendor. Therefore, ap­
plying RE techniques for malicious bitstream detection is
not always practical.
In this paper, we propose a convolutional neural network

(CNN)-based methodology to learn malicious RO-like sig­
natures from the data-series representation of bitstreams
and detect a malicious bitstream before it is used for FPGA
configuration. The key contributions of this paper are as
follows:

• Generation of different RO variants and loop-free ROs,
which have been identified as a rising threat to cloud
FPGAs;

• Extraction ofmalicious features from FPGA bitstreams;
• A CNN-based classification framework that learns fea­
tures extracted from RO patterns;

• Evaluation of the proposed solution for multiple FPGA
families;
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Figure 1: Illustration of the threat model.
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• Criticality classification ofFPGA bitstreams using Fourier
transform-encoded images and identification of RO­
based Trojans that are capable of launching power and
voltage-based attacks.

The remainder of the paper is organized as follows. Section
II presents the threat model, discusses the possible security
concerns for multi-tenant FPGAs, and describes related prior
work on FPGA bitstream checking. Section III describes the
overall CNN-based feature extraction framework for ma­
licious bitstream classification. In Section IV, we propose
a CNN-based method to classify ROs as benign or critical,
based on their Fourier transform-encoded representations.
Section V presents the experimental results. Section VI con­
cludes the paper.

Figure 2: CNN pipeline for malicious bitstream detec­
tion.

perform side-channel analysis attacks on an AES-128 core
present in the same FPGA. In [4], it has been demonstrated
how a DoS attack on an FPGA requires only a small number
ofROs, occupying about 12% of the available LUTs. In [6],
benign circuits such as ripple-carry adders are utilized as
voltage sensors. Such circuits evade any bitstream-checking
mechanism and can still be used to extract the AES key by
performing correlation power analysis (CPA) attack.
Non-combinational oscillators have been proposed in [15];

these circuits escape design rule check (DRC) by FPGAs in
the cloud e.g., in the case ofAmazon Web Services (AWS).
As AWS rejects a design containing combinational loops, an
attacker can resort to generating loop-free oscillators, which
can be a major threat to cloud FPGAs.

2.3 Prior Work on Malicious Bitstream
Detection

Several methods have been proposed to check bitstreams
before using them to configure an FPGA. The icebox_vlog tool
is used to reverse-engineer a bitstream to the technology­
mapped netlist [5]. The Yosys tool is extended to analyze
combinational cycles and other similar patterns to detect
malicious structures. However, the development of these
reverse-engineering tools is complex and time-consuming;
moreover, the tools vary from one FPGA to another.
An approach to analyze FPGA bitstreams using neural net­

works is presented in [10]. The dataset used in this work con­
sists ofpartial bitstreams with different IPs, including adders,
multipliers and subtractors. It focuses on partial bitstreams

2 BACKGROUND, RELATED WORK, AND
THREAT MODEL

2.1 Threat Model
An FPGA PDN is represented by an RLC circuit. The voltage
drop Vdrop in this network is given by the equation: Vdrop =
IR + L x di/dt where R is the resistance of the PDN, L is
the inductance of the PDN, and di/dt is the rate of change
of the electric current inside the PDN, which depends on
the workload that the PDN is subjected to [4]. ROs generate
oscillations with a frequency that depends on the gate delays
of the inverters. High-frequency oscillation ofROs have been
shown to maliciously affect the power consumption of the
FPGA and ultimately lead to DoS [8].
In multi-tenant FPGAs, both the attacker and victim can

configure the FPGA with their own modules. Although these
modules are logically isolated from each other and the at­
tacker has no physical access to the FPGA device, they may
still be capable of launching voltage drop-based attacks and
side-channel attacks; these attacks can significantly affect the
victim FPGA module [4]. Fig. 1 illustrates the threat model
with the possible attacks on cloud-based FPGAs.
Our proposed CNN pipeline for malicious bitstream detec­

tion is based off-chip. The end-user inputs a bitstream to the
pre-trained CNN model for authentication before loading it
to the FPGA for configuration. If the CNN classifies the bit­
stream as malicious, it is blocked from FPGA configuration.
Fig. 2 illustrates the proposed CNN pipeline.

2.2 Types of Attacks on Multi-tenant
FPGAs

FPGA-based systems are subject to power analysis side­
channel attacks, fault attacks, as well as voltage drop-based
attacks. The work in [8] demonstrates a DoS attack as well as
a timing fault-based attack by deploying a grid ofROs on the
FPGA fabric. In [12], customized power sensors using delay
lines have been configured on a multi-tenant FPGA, which

Block from FPGA Yes
configuration

Bitstream
identified as
malicious?

No Load bitstream for
FPGA configuration
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because they can be trained faster, as compared to full bit­
streams. However, [10] does not consider the more com­
plicated cases of detecting malicious ROs and RO variants,
especially when they are embedded within larger designs.
Machine learning-based approaches for malicious circuit de­
tection (especially hardware Trojans) have been proposed in
[16] and [7]. These methods detect malicious circuits either
from gate-level netlists or by using frequency domain signals
and layout images.
Table 1 provides a qualitative comparison of this work

with prior work on malicious bitstream detection before the
bitstream is configured on the FPGA. Note that [5], [9], and
[11] require computation-intensive reverse-engineering (RE)
techniques to generate the technology-mapped netlist from
the FPGA bitstream.

3 CNN-BASED FEATURE EXTRACTION
3.1 Data Collection
We have generated a large dataset consisting of benign and
malicious bitstreams that are used to configure an FPGA.
We implement the circuits corresponding to the benign and
malicious bitstreams in Verilog. The bitstreams generated in
this work are full bitstreams represented as .bin format (i.e.,
binary data files without the ASCII header at the beginning
of the file). We use full bitstreams because they are of fixed
size and can configure the entire FPGA at a single shot. A
full bitstream is used in time-sharing applications where
multiple users can access the FPGA at different times. The
following bitstreams are used in our experiments:
Benign Bitstreams: We generated bitstreams that imple­

ment arithmetic cores, keyboard controllers, AES cores, MIPS
cores, and VGA OpenCores. We also generated bitstreams
that implement ISCAS '85, ITC '99, and EPFL benchmarks.
We ensured that these bitstreams are representative of data
used in real-life benign applications.
Malicious Bitstreams: We generated bitstreams that im­

plement circuits that are capable of causing significantly
high voltage fluctuations and power-based attacks on the

Figure 3: Conditionally active RO.

the FPGA, thereby leading to DoS. We focus on simple ROs
as well as non-combinational ROs. Non-combinational or
loop-free ROs escape DRC and also supports successful bit­
stream generation on cloud FPGAs. We implemented the self­
clocked and latched non-combinational ROs and requested
bitstream generation using the write_bitstream command.
FPGA configuration bitstreams are generated for both the
latch-based RO and the self-clocked RO, supporting the claim
that they are capable of evading DRC.
Conditionally active RO: An attacker might not use a

bare RO for FPGA configuration. Instead, they might conceal
the malicious activity using conditionally active ROs. Hence,
we generate MUX-based conditionally active ROs and include
them in our experimental dataset. An implementation of a
conditionally active RO is shown in Fig. 3.

3.2 Mapping Bitstreams to Data-Series
Representation

After generating the dataset of benign and malicious bit­
streams, we proceed to convert the bitstreams to their corre­
sponding data series. The obtained data is then represented
as image files for each bitstream. Representing bitstreams as
images enables us to:

• Identify specific patterns in the images that represent
malicious behaviour;

• Utilize a CNN-based framework that learns malicious
patterns in images;

• Apply image augmentation to increase the size of the
training dataset and enhance the model performance.

Note that the procedure ofbitstream generation takes '"'oJ 15
minutes and plotting the bitstream as 2D data series takes

Table 1: Comparison of our work with previous malicious bitstream detection methods.

CharactenstIcs L5J L9J LIIJ Proposed method
Types ot attacks Fault and power-based Power-hammering DoS, Voltage and power-based,

prevented timing faults DoS
Bitstream type Full Partial Partial Full

Dataset Bitstreams converted to Bitstreams converted Manipulating existing Bitstreams plotted as
technology-mapped netlist to netlist graphs bitstreams data-series, FIT-encoded images

RE used? Yes Yes Yes No
Self-clocked ROs No Yes No Yes

analyzed?
Conditional ROs analyzed ? No No No Yes

Features extracted Combinational Combinational cycles, Interconnects Combinational and
cycles invalid routing non-combinational cycles

Experimental framework icebox_v[og, yosys tools BitMan Reconfiguration-based defense CNN-based feature extraction
Extended to new No Yes Yes Yes
FPGA families?
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Figure 4: Steps involved in the training and evaluation
of the CNN-based malicious bitstream detector.

(1) The image received at the input layer may have noise
included in it. To account for this, we add more con­
volutionallayers in our model and attempt to extract
meaningful features as the network gets deeper.

3.3 Malicious Bitstream Detection using
CNN-based Framework

After obtaining the training dataset, we apply our CNN-based
image classification framework for learning and evaluation.
We present the overall steps involved in the CNN-based
detection model in Fig. 4. The CNN used in our work has
four convolutional layers, four max pooling layers, and four
linear layers. We select this architecture for the following
reasons:

50

(2) In the specific problem of identifying malicious pat­
terns in FPGA bitstreams, we utilize gray-scale images
for our CNN model. However, extracting meaningful
features from a gray-scale image is much more com­
plex than extracting features from a colored image. In
such a scenario, it is desirable to have more linear lay­
ers to improve the performance of the model in such
a scenario. We select the Rectified Linear Unit (ReLU)
as our activation function because it trains the model
faster and efficiently, without causing a significant
drop in classification accuracy [3].

Further, we add a dropout layer after every maxpooling
layer to prevent overfitting. We perform hyperparameter
tuning to select the dropout value p. We have considered
values ofp in the range 0.1 < P < 0.8. However, in our exper­
iments, we use p =0.25 because it gives the best classification
accuracy on the test dataset.
The image files corresponding to a benign bitstream and

a malicious bitstream are shown in Fig. 5(a) and Fig. 5(b),
respectively. The following qualitative observations are ob­
tained from the patterns in the benign and malicious images.
For malicious bitstreams, the intensity of patterns across the
image is not uniform; it follows a non-uniform distribution.
On the other hand, we observe a higher intensity of a particu­
lar pattern in the image corresponding to a benign bitstream;
the same region appears with a lesser intensity in the case
of a malicious bitstream. Such observations guide us to use

100

150

o 50 100 150 200 250
(b)

o

200

250

Figure 5: Images corresponding to: (a) benign bitstream;
(b) malicious bitstream.

Detection ofmalicious imagesPerformance evaluation (Ao
TPRmal, FPRmal)

upto 10 minutes. Therefore, generating a large dataset of
benign and malicious bitstreams and then converting them
to image files is time-consuming. Image augmentation, a
well-known type of data augmentation technique, is used
in such scenarios. In this work, we specifically apply image
augmentation for the following reasons:

• Image augmentation improves the performance of the
CNN model by extracting meaningful features (in this
case, RO-like patterns) from image representations of
bitstreams and using them to classify the image files
as being either benign or malicious.

• It artificially expands the training dataset with new
and realistic examples from existing training data.

We use the data-series representation of bitstreams in our
training dataset to train our CNN-based model. To obtain
the bitstream as data series, we first convert the bitstreams
into comma-separated values (CSV) files. Next, we plot the
content of each CSV file as two-dimensional series data and
store them as image files (.png format).
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Figure 6: Criticality analysis of ROs present in FPGA configuration circuits.

these specific attributes as features to train our proposed
CNN-based malicious bitstream detector.

4 CRITICALITY ANALYSIS OF RO-BASED
CIRCUITS

We next look at different implementations of ROs in circuits
employed in real-world applications. Note that there exist
RO-based digital circuits that are used for genuine, real-life
applications, e.g., true random number generators, phase­
locked loops and so on. Therefore, ifwe utilize a mechanism
that blocks all circuits with ROs, it can incorrectly block
benign circuits that require ROs for correct operation. Hence,
we focus on performing a criticality classification of RO­
based circuits. This step is essential for the following reasons:

• ML-based criticality analysis will help detect RO-based
Trojans before they are configured on the FPGA, with
a high classification accuracy;

• Prevent misclassification of ROs used for legitimate
purposes;

We proceed to identify abstract features in the spectral
domain that distinguish RO-based Trojans from benign RO­
based circuits. Fig. 6 illustrates the proposed strategy. In
order to perform criticality analysis, we convert all the im­
ages in the experimental dataset to the Fourier domain using
Fast Fourier Transform (FFT) and pass them through our
curated CNN model for training and future evaluation. Fig.
7 shows the FFT-encoded images corresponding to a benign
RO and a critical RO-based Trojan. The images represent
the frequencies and the corresponding amplitudes present

in the original data-series representation of the FPGA bit­
streams. From Fig. 7, we can clearly classify between benign
and critical ROs. We train our CNN model on FFT-encoded
images of the benign and critical RO-based circuits. The CNN
architecture is carefully chosen to increase the classification
accuracy.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
We implement the malicious power-wasting circuits using
Verilog. We obtain the benign circuits from several bench­
marks and OpenCore repository. Next, we generate bitstreams
corresponding to the benign and malicious circuits using Xil­
inx Vivado 2018.2. We focus on the Virtex Ultrascale FPGA
in all of our experiments.
We implement the overall CNN-based classification frame­

work using Pytorch. The CNN is trained using the Adam
optimizer, with a learning rate of 0.00075. Dropout layers
withp =0.25 and batch normalization layers have been added
after every convolutional layer for better training accuracy.

5.2 Evaluation Metrics
We use the following performance metrics to evaluate our
CNN-based classification model.

• TPRmal is the percentage of malicious bitstreams that
are correctly classified as malicious.

• FPRmal is the percentage of benign bitstreams that are
incorrectly classified as malicious.

• Classification accuracy (Ac ) is the ratio of the number
of correct predictions to the total number of predic-
tions. It is computed as: A c = ~P, where Cp is the

p
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Figure 7: FFT of images corresponding to (a) Benign RO (b) Critical RO.
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Table 2: Exploring flip techniques.

Technique Training acc. (%) Test acc. (%)
fliPZr 93.9% 95.7%
flipud 99.2% 96.4%

flip (along axis (1,2)) 90.8% 87.4%

Table 3: Comparison of our model with the CNN archi­
tecture used for FPGA bitstream classification in [10].

CharactenstIcs CNN archItecture In LIOJ Proposed method
No. of cony. layers One Four
No. ofFC layers Two Four
Training accuracy 91.6% 99.2%
Training loss 0.36 0.031
Test accuracy 85.7% 96.4%

number of correct predictions and Tp is the total num­
ber of predictions.

5.3 Evaluation of Proposed CNN-based
Classification Framework

Our experimental dataset comprises of 95 image files gen­
erated from benign bitstreams and 80 image files generated
from malicious bitstreams. Since the dataset is of relatively
small size, we use image augmentation to increase the size of
our training dataset. We choose the rotation and flip tools
from the Scikit-Iearn library [13]; these image augmentation
techniques show the highest classification accuracy com­
pared to other commonly used image augmentation tools,
such as the equalize and the translate operations [18]. The
rotation and flip image augmentation techniques enable
our model to extract meaningful features from the image
representation of bitstreams. We performed several experi­
ments to determine the best flip operation among - fliPzr,
flipud, and flip. These operations are described below:
(1) fliPzr: Flip the image horizontally, either left or right;
(2) flipud: Flip the image vertically, either up or down;
(3) flip: Flip the image along any axis or multiple axes.
The evaluation results are presented in Table 2. We observe

that flipud gives significantly better results when used as
the image augmentation technique.
After image augmentation, our dataset contains 314 image

files. We use k-fold cross validation to evaluate multiple
versions of train-test split. In our experiments, we select
k =5 in accordance with common practice [14]. We obtain
an average training accuracy of 99.2% and an average test
accuracy of 96.4% after 300 epochs. Also, we obtain TPRmaz
= 97.08% and FPRmaz = 4.29%.
Next, we compare our approach with prior work on classi­

fication of FPGA bitstreams. In [10], a CNN model is used to
detect a particular hardware module (e.g. adder, subtractor,
or multiplier). To highlight that our proposed CNN model
is customized for the specific application of detecting mali­
cious bitstreams, we apply the CNN architecture described
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in [10] to our dataset. Evaluation results in Table 3 show that
our CNN architecture is carefully designed to be suitable for
the security problem of malicious bitstream detection and
authentication.

5.4 Timing Overhead
We next investigate the timing overhead of each stage of the
CNN-based image classification framework. The conversion
of a user-input bitstream to data series requires negligible
time - less than 4 minutes of CPU time on a 2.4 GHZ Intel
Xeon Gold 5115 CPU with 768 GB of RAM. We also ob­
serve that CNN inferencing requires only 0.03 seconds on a
NVIDIA GeForce GTX 1080 GPU.

5.5 Evaluation on Multiple FPGA Families
We present evaluation results of our proposed CNN-based
malicious bitstream detection framework for other FPGA
versions. This procedure requires only retraining our model,
while the CNN-based framework remains unchanged. We
generated benign and malicious bitstreams for the Xilinx Kin­
tex Ultrascale FPGA, and then prepared the training dataset
for our model. After image augmentation, we obtain 84 im­
ages in the training dataset and 28 images in the test dataset.
Using the CNN-based feature classification framework, we
obtain a training accuracy of 98.4%. A high classification
accuracy of 95.7% highlights the flexibility of utilizing our
CNN model over multiple FPGA versions, without the need
for reverse-engineering methods.

5.6 Analysis of RO Criticality
The test dataset includes the FFT-encoded images of 48 dif­
ferent bitstreams corresponding to benign and critical ROs.
These are as follows:

(1) 15 bitstreams corresponding to power-wasting RO and
conditional RO circuits (Critical);

(2) 6 bitstreams implementing variants of the latched RO
circuit (Critical);

(3) 7 bitstreams corresponding to the self-clocked RO cir­
cuit (Critical);

(4) 20 bitstreams that implement N wrapper-based TRNGs,
250 < N < 300 (Benign).

We perform FFT to obtain the spectral images of the test
dataset. Next, we use our pre-trained neural network to clas­
sify the type of RO (i.e., benign or critical) based on the
unique spectral signatures of each FFT-encoded images. The
overall classification results are presented in Table 4. This
experiment therefore highlights the importance of analyzing
the criticality of any RO-based circuit that is configured on
an FPGA and further using the features from the spectral
domain to detect and block malicious Trojans.
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Table 4: Classification accuracy of pre-trained CNN
model on FFT-encoded benign and critical ROs.

Decision Power-wasting Condo RO Latched Self-clocked TRNG
RO RO RO

Critical 9 6 4 6 1
Benign 0 0 2 1 19

A c 100 100 66.67 85.7 95
Average A c 89.47

6 CONCLUSION
We have presented an efficient CNN-based malicious bit­
stream detection framework. By embedding image augmen­
tation in our framework, we have demonstrated a high clas­
sification accuracy of the model. The proposed CNN model
utilizes specific patterns from the data-series representation
ofmalicious bitstreams and efficiently distinguishes between
benign and malicious bitstreams with an accuracy of 96.4%.
We have also presented a CNN-based solution using FFT
techniques for criticality analysis of ROs that are configured
on multi-tenant FPGAs.
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