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Abstract—Multi-tenant FPGAs are increasingly being used
in cloud computing technologies. Users are able to access the
FPGA fabric remotely to implement custom accelerators in the
cloud. However, the sharing of FPGA resources by untrusted
third-parties can lead to serious security threats. Attackers can
configure a portion of the FPGA with a malicious bitstream. Such
malicious use of the FPGA fabric may lead to severe voltage
fluctuations and denial-of-service. In this work, we consider
FPGAs that support time-based multi-tenancy ie., a single user
has access to the FPGA at a time. We propose a convolutional
neural network (CNN)-based approach to detect malicious RO-
like circuits that are configured on an FPGA by learning features
from the data-series representation of the bitstreams of malicious
circuits. We use the classification accuracy, true-positive rate,
and false-positive rate metrics to guantify the effectiveness of
CNN-based classification of malicious bitstreams. Our threat
model includes a variety of power-wasting circuits that are
used to configure FPGAs in the cloud. We propose a two-
stage malicious bitstream detection framework for classification
and diagnosis of the type of malicious circuit implemented by
a particular bitstream. We further propose a novel window-
merging technigue to improve model performance in the second
stage of the detection framework. Experimental results on Xilinx
FPGAs demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Field-programmable gate-arrays (FPGAs) are now ubiqui-
tous in cloud computing infrastructures and reconfigurable
system-on-chips (50Cs). The availability of FPGAs in cloud
data centers has opened up new opportunities for users to
improve application performance by enabling them to im-
plement customizable hardware accelerators directly on the
FPGA fabric. In addition to increasing computational effi-
ciency at reduced cost, partial reconfiguration allows new
types of FPGA designs that would be otherwise impossible
to implement. FPGAs are therefore being incorporated today
for specialized compute-intensive services in cloud data cen-
ters, e.g., by Amazon and Microsoft [1] [2]. FPGAs in the
cloud support multi-tenancy, which allows users to perform
customized operations.

As FPGAs are increasingly shared and remotely accessed
by multiple users and third parties, they are a major reason
for rising security concerns. Modules running on an FPGA
may include circuits that induce voltage-based fault attacks and
denial-of-service (DoS) [3] [4]. An attacker might configure
some regions of the FPGA with bitstreams that implement
malicious circuits. The FPGA is split into logically isolated,
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separate regions that can be occupied by multiple users at the
same time. As a majority of integrated circuits are supplied
by a common power distribution network (PDN) for the entire
FPGA board, there exists an electrical connection between the
victim and attacker modules [5]. Therefore, voltage fluctua-
tions caused at the victim end can be measured by voltage
sensors such as a ring oscillator (RO) and a time-to-digital
converter (TDC) at the attacker end. This may lead to voltage-
based attack and DoS of the FPGA device. Moreover, a grid of
ROs can be activated simultaneously at a particular frequency
of activation (fgp) to generate voltage-drop pulses in rapid
succession; this shuts down the on-board voltage regulator and
causes the FPGA to crash [6].

Various countermeasures have been adopted to protect FP-
GAs from unauthorized third-party access. In order to prevent
the attacker from directly configuring the FPGA with an
invalid or malicious bitstream, the defender (e.g., the FPGA
vendor) can incorporate an on-chip bitstream checking mech-
anism that detects and blocks such bitstreams before they
are loaded to the FPGA fabric [7]. Alternatively, the FPGA
bitstream structures can be examined to identify signatures
that satisfy the requirements of FPGA-based fault attacks [8].
However, both [7] and [8] require reverse-engineering (RE) of
the bitstreams to their corresponding netlists; this technique
is time-consuming as well as complex. Additionally, the RE
tools are specific to each FPGA family and vendor. Therefore,
applying RE techniques to exiract signatures of malicious
structures is not always feasible.

In this paper, we provide a more general methodology
to examine FPGA bitstreams for malicious RO-like patterns.
Analyzing features from the bitsiream itself is time-consuming
as well as computationally intensive. Therefore, we focus on
visualizing these bitstreams as a data-series plot and use a
convolutional neural network (CNN)}-based approach to learn
and detect malicious patierns from the data series. We also pro-
pose a robust two-tier bitstream partitioning-based framework
that detects a malicious bitstream and also diagnoses the type
of power-wasting circuit implemented by that bitstream. Our
proposed frameworks can be extended to perform detection
and classification of malicious configuration bitsireams of
multiple FPGA families and vendors. The key contributions
of this paper are as follows:

Generation of RO variants, non-combinational ROs, glitch

amplification circuits, and other power-wasting circuits

which are major security threats to cloud FPGAs.

Visualization of FPGA bitstreams as data series and the
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Fig. 1: Schematic of the threat model.

exiraction of signature patierns that differentiate benign
bitstreams from malicious RO-based bitstreams.

« A CNN-based framework that detects malicious bitstreams
based on features extracted from RO patterns.

« An end-to-end robust machine leaming (ML)-based trame-
work to detect and diagnose malicious power-wasting cir-
cuits that are used to configure FPGAS in the cloud.

« Evaluation of the proposed frameworks for multiple FPGA
families and real-life FPGA bitstreams,

« Quantitative comparison with the state of the art, in erms
of performance metrics and run time.

The remainder of the paper is organized as follows. Section

IT discusses how FPGAs are prone to voltage-based attacks,

describes related prior work on FPGA bitstream checking, and

presents the threat model. Section 11l describes the flow of our

CNN-based feature extraction framework for detecting mali-

cious RO-like patterns. Section 1V further broadens the threat

model and presents a novel two-stage ML-based framework
for diagnosis of a wide range of malicious power-wasting
circuits. Experimental results and observations are presented in

Section V. Section VI discusses future work and new research

directions. Section VIl concludes the paper.

IT. BACKGROUND AND MOTIVATION
A, Threat Model

We assume that the FPGAs support time-based multi-
tenancy i.e., a single user has access to the FPGA at a time.
In this scenario, an attacker can configure the FPGA with
bitstreams that implement malicious power-wasting circuits.
An attacker with no physical access to the target FPGA device
can still launch voltage- and power-based attacks on the FPGA.
Our proposed CNN-based detection framework is based oftf-
chip and is assumed to be trusted. Therefore, an adversary
or any third-party user is unaware of the functionality of
the proposed detection framework and will be unable to
physically tamper it. As shown in [9], an FPGA device must
first decrypt the incoming FPGA bitstream before it is being
configured. The FPGA bitsireams can be decrypied using
bitstream encryption tools available from FPGA vendors such
as Xilinx. Therefore, in this work, the user-input bitstream is
assumed to be decrypted before it is used for evaluation by
our detection framework. It is also assumed that an attacker
cannot hide power-wasting circuits in the obfuscated design, as
it would be difficult to detect them without taking the design
apart using RE methods. Fig. 1 illustrates the threat model
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considered for remote attacks on cloud-based FPGAS.

B. Antacks on Cloud-Computing FPGAs
Multi-tenant FPGAs are now increasingly being used in

clond computing environments. These FPGAs also support
time-multiplexing, which enables multiple users to partially
configure the FPGAs with custom, logically isolated modules
during different time windows. Multi-tenancy significantly
improves FPGA utilization and flexibility. Unfortunately, the
modeling of multi-tenant FPGAsS in the cloud can pose a
serious threat due to malicious users. Attackers can configure
a portion of the FPGA with a polential power-wasting circuit
that affects the power distribution network (PDN) of the
FPGA. The PDN is carefully designed to supply power Lo
all the modules of the FPGA. The voltage drop Vi, across
the PDIN is the summation of voltage drops across all the logic
blocks of the FPGA and may be expressed as follows:

Virop = IR+ L x di/dt (1)

where I is the resistance of the PDN, L is the inductance
of the PDN, and di/dt is the rate of change of the electric
current inside the PDN, which depends on the workload that
the PDN is subjected to [6]. Although the modules of every
tenant are physically isolated, an adversary can still inject
malicious power-wasting circuits in the FPGA that critically
affect the PDN. A power-wasting circuit is a malicious circuit
that consumes a large amount of power and potentially affects
the PDN of the FPGA. Such circuits contribute to voltage and
power-based attacks on FPGAs in the cloud. On-chip voltage
sensors have been used in [10] to measure voltage changes
in the PDN of an FPGA. Since all the modules of the mult-
tenant FPGA share the same PDN, voltage fluctuations in any
particular co-tenant module will cause voltage variations in the
entire PDN. The sensor readings generated in [10] are utilized
to identify the type of computations performed by a co-tenant
of that FPGA. Thus, an attacker may receive confidential
information about the tasks performed on the multi-tenant
FPGAs, and launch attacks on the sensitive modules.

The work in [11] demonstrates a denial-of-service {DoS)
aftack as well as the injection of timing faulis by deploying a
arid of ROs on the FPGA fabric. In [12], customized power
sensors using delay lines have been configured on a multi-
tenant FPGA, which are then used to perform side-channel
analysis attacks on an AES-128 core present in the same
FPGA. Ring oscillator (RO)-based voltage sensors have heen
demonstrated to induce fault attacks and crash the FPGA [6].
It has been shown in [6] how a DoS attack on an FPGA
requires only a small number of ROs, occupying about 12%
of the available LUTs. By suddenly enabling all the ROs, the
aftacker can cause a significant voltage drop.

Non-combinational oscillators have been proposed in [13];
these escape design rule check (DRC) by FPGAs in the cloud
ez, in the case of Amazon Web Services (AWS) As AWS
rejects a design containing combinational loops, an attacker
can resort to generating loop-free ROs, which can be a major
threat to cloud FPGAs.

Enabling a grid of ROs simultaneously results in a high
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Fig. 2: CNN pipeline for df:tf:::hng malicious bitstreams.

current and hence, a large voltage drop, according to Equation
{1). To cause a significant voltage drop enough to crash the
FPGA, the ROs are toppled at a frequency . Experi-
ments have shown that 1920 ROs switching at

KHz successfully crashes a Lattice FPGA board [6]. Currently,
Amazon cloud service providers (CS5Ps) prohibit bitstream
generation of netlists representing RO-like circuits. However,
in [13], the authors show how non-combinational oscillators
evade the AWS design mle check (DRC) and successfully
generate bitstreams on the cloud FPGAs.

C. Defenses

Several methods have been proposed to evaluate bitstreams
before FPGA configuration. The icebox_viog tool is used to
reverse-engineer a bitstream to the technology-mapped netlist
[8]. However, different FPGA families and FPGA vendors
may use different bitsiream formats, which require RE tool
modification.

An approach to analyze FPGA bitstreams using neural
networks is presented in [14]. The dataset used in this work
consists of partial bitstreams with different IPs, including
adders, multipliers and subtractors. It focuses on partial bit-
sireams because they can be trained faster, as compared to
full bitstreams. However, [14] does not consider the more
complicated cases of detecting malicious ROs and RO variants,
especially when they are embedded within larger designs.

ML-based approaches for malicious circuit detection (es-
pecially hardware Trojans) have been proposed in [15] and
[16]. These methods detect malicious circuits either from gate-
level netlists or by using frequency domain signals and layout
images. The work in [17] demonstrates a localized feature-
based approach using a recurrent neural network model. Stud-
ies on the detection of internet-of-things (IoT) malware using
feature exiraction techniques have also been conducted [18].
ML-based techniques have also been adopted in [19] and [20]
to distinguish between Trojan-free and Trojan-inserted circuits
based on features exiracted from their gate-level netlists. How-
ever, [19] and [20] are limited with their ability to accurately
identify hardware Trojans.

III. IDENTIFICATION OF RO-LIKE PATTERNS

In this section, we describe the proposed methodology to
detect malicious RO-like signatures from data-series represen-
tation of bitstreams. We check for specific structural attributes
of these series that are not found in benign bitstreams, thus
indicating the presence of malicious logic. We propose a CNN-
based image classification framework that learns these key
features and detects a malicious bitstream before it is used for

3

FPGA configuration. Note that our CNN pipeline for malicious
bitstream detection is based off-chip. The end-user inputs a
bitstream to the pre-trained CNN model for authentication
before loading it to the FPGA. If the CNN classifies the
bitstream as malicious, it is blocked from FPGA configuration.
Fig. 2 illustrates the proposed CNN pipeline.
A, Justification for the use of ML Models

A FPGA configuration bitstream has a vendor-specific for-
mat. Although the file format of the bitstream is publicly avail-
able, the mapping of the bits to FPGA LUTs and the format
of the configuration bits are not documented by the FPGA
vendors [9]. The FPGA configuration bitsiream consists of a
sequence of frames, each of which contains the configuration
information about the LUTs and their interconnects. All the
frames have a fixed and identical length. We target the Xilinx
Virtex Ultrascale (VU440) FPGA in our work because it is
widely used in high-performance applications and provides
integration capabilities on a 20nm FinFET node [21]. The
number of configuration frames for the VU440 bitstream is
262110, with each frame consisting of 123 32-bit words.
The LUT and the interconnect configuration data are encoded
in a compressed binary format, which allows for efficient
storage of the FPGA configuration bitstream. Since both the
LUTs and interconnects are arranged as a grid of rows and
columns in the FPGA, they form a well-organized structure. A
malicious bitstream may contain structures such as XOR pates
or ROs that are not typical in benign bitstreams. Therefore,
by analyzing the statistical properties of the configuration
bitstream (including the type and the number of LUTs and
interconnects), well-trained ML models will be able to identify
data patterns that might be indicative of a malicious bitstream.

B. Data Collection

We generate a larpe dataset consisting of benign and ma-
licious bitstreams that are used to configure an FPGA. We
generate 95 benign bitstreams and 80 malicious RO-based
bitstreams. FPGA bitstreams can be of the following two types
- partial and full. A partial bitstream is used to configure only
a portion of the FPGA, which in turn increases the flexibility
of the system. Partial bitstreams contain all the configura-
tion logic necessary for partial reconfiguration of the FPGA
module. Note that the size of a partial bitsiream is directly
proportional to the size of the FPGA region it is configuring.
For example, if the reconfigurable region comprises 10% of
the entire device resources, the size of the partial bitstream is
almost 105 of the full bitstream. The bitstreams generated in
this work are full bitstreams in .bin format (i.e., binary data
files without the ASCII header at the beginning of the file).
We use full bitsireams because they are of fixed size and can
configure the entire FPGA at a particular time. A full bitstream
is used in time-sharing applications where multiple users can
access the FPGA at different times. For example, the size of
a full bitstream for VU440 FPGA is 128,966,372 bytes. The
bitstreams used for our experiments are as follows:

Benign Bitstreams: We generated bitstreams that configure
designs such as USBs, keyboard controllers, AES cores,
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Fig. 3: Non-combinational loops in oscillators: (a) Latched
RO; (b) Self-clocked RO.
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Fig. 4: Conditionally active RO.

MIPS cores, IPs that support trigonometric, quadratic, and
other arithmetic operations, and VGA OpenCores. We also
generaled bitstreams that implement ISCAS "85, ITC '99,
and EPFL benchmarks. We ensured that these bitstreams are
representative of data used in real-life benign applications. The
designs are implemented in Verilog and VHDL.

Malicious Bitstreams: We define a malicious bitsiream as a
bitstream implementing a circuit that is capable of overheating
the FPGA or launching power- and voltage-based attacks on
the FPGA. We focus on simple ROs as well as variants of
ROs. Most CAD tools can detect a combinational loop and
raise an error during DRC. However a non-combinational RO
escapes DRC and also supports successful biisiream genera-
tion. Therefore, we take into consideration such loop-free ROs
and treat them as malicious circuits in this paper. We design
two such variants of loop-free ROs:

Latch-based RO: Fig. 3(a) presents an example of a latch-

based RO. As illustrated, the output of the last stage of RO

is fed as the input to a laich in the middle of the loop. Since
this latch divides the circuit into two separate combinational
loops, the overall design is no longer combinational.

Selfclocked RO: An example of a self-clocked RO is

illustrated in Fig. 3(b). Here, the Q" output of the D flip-flop

faces one inverter delay. The inverter output is XNOR-ed
with the QQ output of the flip-flop and the result is fed back
to the clock input of the register. The output of the XNOR
gate glitches every time the register output changes; this
occurs due to the signal delay from (" through the inverter.
We implement the above non-combinational ROs using the
Vivado design tools and request bitstream generation using
the write_bitstream command. We observe that bitstreams
are generated for both latch-based RO and self-clocked RO,
supporting the claim that they are capable of evading DRC.

Conditionally active RO: Note that an attacker might not
use a bare RO to configure the FPGA. The malicious activity
might be concealed using circuits that conditionally activate
the ROs. These circuits lead to a failure of the entire PDN. We
generate MUX-based conditionally active ROs that are capable

4

Input: Xilinx FPGA bitstream
Output: CSV file comesponding to
Read file as hex byies and store in Content
Insert delimiters in Content
S'plit Content into array
for i in range (length(Content) do
| Convert Confent to decimal
end
for i in range (lengthContent) do
| Insert newline n in Content, where n = 10
end
Convert Content to string
return Content

Fig. 5: Procedure for converting a full bitsiream to its corre-
sponding C5V format.

of serving the intent of the attacker. An implementation of a
conditionally active RO is shown in Fig. 4.

. Mapping Bitstreams to Data-Series Representation

The sparsity score of an FPGA bitstream is calculated based
on the fraction of bitstream bytes that have a value of zero.
The average sparsity score for all the penerated benign and
malicious bitsireams is (1L92, indicating that a large portion of
the FPGA LUTs is not being utilized. Therefore, we convert
these bitstreams to their corresponding data series for efficient
data preprocessing. This data is then represented as image
files for each bitstream. Plotting bitsireams as data series and
storing them as image files enables us to:

1) Identify specific patterns in the image files that represent
malicious behaviour;

2) Utilize a CNN-based image classification framework to
detect these malicious patterns in images.

CNNs are widely used in a variety of applications, e.g.,
compuler vision, medical image analysis, and image classi-
fication and segmentation. These networks rely on a large
amount of data to avoid overfitting. However, it is sometimes
difficult to have access to the required amount of data. Note
that the procedure of generating a bitstream takes upto
minutes. Therefore, penerating a large dataset of benign and
malicious bitstreams and then converting them to image files
is time-consuming. Image augmentation, a well-known type
of data augmentation technique, is used in such scenarios.
Image augmentation increases the size of the training dataset
by creating transformed versions of training set images. In the
particular problem being studied in this paper, i.e., extracting
features from bitstream image files and classifying them as
being either malicious or benign, image augmentation serves
two important purposes:

It helps in building a well-trained CNN model that learns

RO-based features from the image, rather than from the

bitstream values.

It artificially expands the training dataset with new and

realistic examples from existing training data.

Note that image augmentation is performed on the training
dataset only and not on the validation or test dataset. Deep-
learning techniques such as the CNN can learn meaningful
features from the transformed training data as well as the
original training data. Many techniques for augmentation of
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Fig. 6: Illusiration of the steps involved in the training and
evaluation of CNN-based malicious bitstream detection model.

image data exist, specifically image rotation, random crop-
ping, flipping images, adding Gaussian noise, and adjusting
brightness, conirast, and saturation of images. We use image
rotation as the data augmentation technique for increasing
the size of our training dataset. We choose this technique
because it has been shown to be effective for the detection
problem [22] with 1) a significant improvement in training
accuracy, and 2) reduction in training loss as the number
of training examples is increased. By applying rotation-based
image augmentation, we generate a greater number of artificial
training data images since the original dataset is limited. These
newly generated images retain the visual properties of RO-
based circuits, allowing the recognition of malicious patterns
from different angles of the bitstream-generated images.

We use the series representation of bitsireams to train our
CNN-based image classification framework. To obtain the
bitstream as data series, we perform the following operations:
1) We convert the benign and malicious bitstreams into

comma-separated values (C5V) files. The procedure for

bitstream-to-CSV conversion is illustrated in Fig. 5.

2) We plot the content of each CSV file as two-dimensional
series data and store them as image files (_png format).

3) We define another .csv file, namely CSV . This file stores
all of the generated image files along with their marked
labels (‘0" or “17). The value “0" corresponds to the image
file of a benign bitstream and the value ‘1" corresponds to
the image file of a malicious bitstream.

4) We split C5V g into the training dataset CSV g, and the
test dataset C5V,, in the ratio 80:20. We choose the split
ratio in such a way that it represents all the data with
minimum fraining loss and avoids underfitting as well as
overfitting, both of which are undesirable.

D. Malicious Bitstream Detecrion using CNNs

Next, we proceed to build our CNN-based image classifi-
cation framework and use it to learn and classify the data.
The overall steps involved in the CNN-based detection model
are shown in Fig. 6. A CNN is a feed-forward type of neural
network that takes an image as input and convolves it with
filters or kernels to extract features. Each filter is designed to

5
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(a)
Fig. 7: Image files corresponding to: (a) benign bitstream; (b)
malicious bitstream.

detect a certain feature in the data, such as edges or boundaries.
Next, the output of the filter is passed through a pooling
layer that combines the individual filter outputs. The pooling
layer allows the CNN to understand the spatial proximity in
the bitstream [23]. Therefore, we apply CNN-based learning
to gain insight into how certain bytes of the bitstream can
affect the performance of the FPGA. By applying CNN-based
feature extraction, specific malicious patterns can be accurately
detected in the bitstreams that otherwise might not be visible
if RE methods are applied. The neural network used in our
classification framework has four convolutional layers, four
max pooling layers, and four linear layers. We choose this
architecture for the following reasons:

1) The data received at the CNN input layer is an image i.e.,
an array of pixels. This data may have noise included in
it. Therefore, we increase the number of filters by adding
more convolutional layers, and extract useful features as
the network pets deeper

2) As we are looking at the problem of identifying specific
patterns indicating malicious behaviour, we utilize gray-
scale images for the training and evaluation of the CNN
model. Note that the colored images are associated with a
range of colors that do not signify a particular bitstream
feature and hence, is not relevant in the current problem.
However, extracting meaningful features from a gray-scale
image is much more complex than extracting features from
a colored image. In such a scenario, it is desirable to
have more linear layers using the non-linear activation
function. We choose the Rectified Linear Unit (RelLU) as
our activation function because it trains the CNN model
faster and more effectively, without causing a significant
drop in classification accuracy [24].

Large neural networks trained on relatively small datasets can

cause overfitting. To mitigate this issue, we add a dropout layer

after every maxpooling layer We perform hyperparameter
tuning to select the dropout value . We have considered
values of in the range . However, choosing

= (.25 yields the least training loss and the highest training
accuracy. The image files corresponding to a benign bitstream
and a malicious bitsiream are shown in Fig. 7(a) and Fig.

7(b), respectively. For the malicious bitstream, the intensity of

patterns across the image follows a non-uniform distribution.

For the benign bitstream, we observe a higher intensity of

a particular pattern in the image. However, the same pattern
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appears with less inlensity in the malicious bitstream. These
observations guide us to use these specific atiributes as fea-
tures to train our proposed neural network-based malicious
bitsiream detector. Note that the CNN-based classification
framework is the foremost and the most important step as it
helps in distinguishing between benign and malicious FPGA
bitstreams through static analysis of the bitstreams.
IV. PROPOSED TWO-STAGE MALICIOUS BITSTREAM
DETECTION FRAMEWORK

A Motivarion

Our primary goal is to enhance the detection of ROs in
bitstreams as well as detect a wider range and substantial
number of power-wasting circuits, with reduced processing
time. In this scenario, reducing the size of the data being
processed can help in reducing the time overhead. By reducing
the number of features to be processed by the detection model,
the amount of time required to evaluate an FPGA bitstream can
be significantly reduced. Most of the recent work on power and
voltage-based attacks on cloud-computing FPGAs focus on the
implementation of RO-like circuits as voltage sensors. Even
though ROs are typical examples of power wasting circuits,
the authors of [25] have proposed an evolved version of the
standard 128-bit AES circuit that is capable of consuming
ageressive amount of power. The AES-based power waster
is modified by introducing XOR gates between each round to
induce glitching, and therefore high power wastage. Recently,
circuits based on glitch amplification have been explored that
do not incorporate oscillators [26]. Such circuits evade DRC
and are capable of causing power-hammering attacks, thus
crashing the FPGA board.

It is important to detect the presence of such power-wasting
circuits before they are configured on the FPGA. Note that
there exist digital circuits that are used for genuine, real-life
applications but consume high power due to heavy FPGA LUT
utilization. In other words, the percentage of FPGA utilization
is expected to be more for a densely packed, large circuit
compared to a much smaller circuit. However, a grid of ROs
that occupies as little as 12% of FPGA logic is still capable
of consuming similar or higher amount of power compared to
larger, benign circuits occupying  65% of FPGA [6]. Hence
if we utilize a mechanism that blocks all circuits with high
power consumption, it can incorrectly block compute-intensive
benign circuits. Therefore, we first identify circuits that occupy

12% of the FPGA but consume a significantly high amount
of power. We synthesize and implement the malicious power-
wasting circuits on the VU440 board. We list these circuits
and their power consumption in Table 1. We monitor the power
consumption using the power analysis feature. Note
that the power-wasting circuits itemized in Table I are used to
launch power and voltage-based attacks in [3], [6], [25], and
[26] have LUT utilization less than %.

B. Malicious Power-Wasting Circuits

The following power-wasting circuits are evaluated:

1) RO: We implement single-stage and three-stape ROs that
are capable of launching voltage-based attacks [6]. The
oscillation frequency of an -staged RO with propagation

6

TABLE I: List of power-wasting circuits.

T¥pe OF Circuil FOWET CONSUMpPHOn (W) |
Single-stage RO (1920 instances) K}
Thres- RO (3600 instances) 27.9
Latched RO (1500 instances) 26.7
Self-clocked RO (1800 instances) 26.8

Unrolled AES core 38412

AES core (10 instances) 606,34

AES core (20 instances) 9259
Chained 16-bit shift registers 26.5
16-bit shift registers (10 instances) 42.8
16-bit shift registers (20 instances) 767
3-input XOR-hased glitch amplification 26.5

delay  is defined by the following equation:

(2)

From Equation (2), we observe that the oscillation fre-
quency will be higher for ROs with single and three stages.
Therefore, we choose these ROs as potential power-wasting
circuits. We also implement conditionally active ROs.

2) Non-combinational ROs: We implement single-stage and
three-staged latched ROs.

3) Power-wasting AES: We implement the AES-based power
waster used in [25]. Note that this circuit does not perform
encryption but only contributes to high power consumption.
The original 128-bit AES core is modified by adding a
XOR gate between the AES rounds. Placing the XOR gate
in the AES core induces glitching doe to gate delays.

4) Glitch amplification-based circuits: We implement single-

stage and three-stage self-oscillating circuits based on

glitch amplification [7]. We also evaluate glitch amplifi-

cation circuits having -input XOR gates, [26].

An example circuit is illustrated in Fig. 8.

-bit shift register: Although a shifti register is used
for benign computational purposes, replicating multiple
instances of this circuit can dangerously affect the PDN
and cause voltage and power-based attacks on the FPGA.
C. Characteristics of Power-Wasting Circuits

From Section IV-A, we recognize the features of a power
wasting malicious circuit as follows:

1) Combinational cycles, indicating the presence of ROs;

2) Data-to-clock routings, which may hide non-

combinational loops e.g. self-clocked ROs;

3) Presence of XOR gates at unusual locations of the circuit

that may induce glitching;

4) Significantly high FPGA power consumption even when

less than 10% of FPGA LUTs are occupied.

Table II shows the bitsiream generation times for Xilinx
FPGAs on a 2.4 GHz Intel Xeon Gold 5115 CPU with 768
GB of RAM. The bitstreams have been implemented for a
single-stage RO. The data in Table II explains that the time

OV
Ik —=
XOR_1 X0F,_ 2

Fig. 8: A plitch amplification-based circuit.
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Fig. 9 Owerall archileciure of the two-stage malicious bit-
stream diagnosis pipeline.
TABLE 1I: Bitstream generation times on FPGA devices.

FPOA device Bilsiream generation Hime (=]
Zang- TIHD T3
Virtex 7 49
Kinkex Ulirascale a7
Virtex Ulirascale (5]

required for bitstream generation increases with the size of the
FPGA. Note that the time taken o reverse engineer a bitstream
is directly proportional to the size of a bitstream. Therefore,
if & bitstream has a higher generation time, the time taken to
reverse engineer the bitsiream also increases. As explained in
[27], a tull bitstream performing high-computing applications,
such as data analytics, may require several weeks to be reverse-
engineered. Let us consider a scenario where we have to
evaluate an FPGA bitstream for analyzing malicious structures,
before the bitstream is deployed on the AWS cloud instance. If
we were to use RE-based approach, we would need to perform
several iterations of RE until all the malicious siructures are
detected [8]. This process can take several weeks depending
on the size and complexity of the bitstream. We propose a
two-stage ML-based malicious bitsiream detection framework
that identifies malicious bitstreams across different FPGA
devices. The overall framework is illustrated in Fig. 9. In Stage
1, a sliding window-based byte extraction is performed and
malicious signatures in the bitstream are identified using pre-
trained ML models. The Stage 2 model proceeds to diagnose
the type of malicious circuit from the malicious windows that
are detected in Stage 1 of the pipeline.

D. Stage I: Sliding Window-based Detection
1} Training of Stage 1 ML Model

Note that our bitstream detection pipeline is executed off-
chip and can be extended to any FPGA device or family,
as required. As explained in [9], the information about the
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mapping of bits to LUTs and circuit functionality are not
stored arbitrarily in different parts of the configuration bit-
stream; instead it is stored in the form of continuous sequence
of bytes in the bitstream. Therefore, we first try to identify
features from the bitstreams that indicate the presence of
malicious signatures. Here, the signature 18 determined by a set
of concurrent bytes in the bitstream. In order to get the most
accurate locations of such malicious signatures, we divide the

bitstream into a group of non-overlapping windows of size n

bytes. The procedure for bitstream generation and extraction

of sub-bytes is illustrated in Fig. 10.

Overlapping vs. non-overlapping windows: In this work,
we have not considered the scenario when an attacker splits
power-hungry circuits across multiple windows, such that each
window is classified as benign. However, if we had to address
this situation, we would propose partitioning the bitstreams
using overlapping windows (instead of non-overlapping win-
dows) for more accurate data analysis as well as examining
the interaction between multiple windows for the same circuit.

We initiate training of the ML model with a given number of
windows, 4. The training dataset includes a large selection of
benign and malicious bitstreams. The nature of the bitstreams
is elaborated in Section V-G. Since the size of a VU440
bitstream is 128966372 bytes, the size of each sliding window
n= [%]. We further increase the number of sliding
windows (reduce the size of each window) to narrow down
to those windows with the most likelihood of containing
malicious signatures. We perform hyperparameter tuning to
arrive at the most suitable choice of the number of windows .
Once we arrive at an optimum value of «» by hyperparameter
tuning, we divide an user-input bitstream into ¢ windows
during execution of the two-stage pipeline. For a siven af,
let us denote the i** window by gr.'r;-,_.l < i<

Fig. 11 illustrates the methodology for identifying malicious
windows during the training phase in Stage | of our malicious
bitstream detection pipeline. The procedure for the selection
of an optimum value of ¢ is as follows:

1) For each window o, € {qﬁ%._..ci:z,,,.,qt-ﬁ}. extract the array
of bytes present in that window, for every benign and
malicicus bitstream;

2) Train ML classifiers separately for each window qﬂriﬁ €
{qb%b, gr.'rf,;,_. <.y @ }: therefore, for ¥ windows, number of ML
classifiers that needs to be trained is oy

3) Ewvaluate the confidence score of each window based on the
training data. The score lies in the range [0, 1] and it indi-
cates the region of bitstream where malicious signatures are
most likely to be present. If a window has a high confidence
score, it 18 considered to be a malicious window and will
be assessed in the next stage of the detection pipeline;

4y Choose the window with the highest confidence score,
$maT, AT £ (gl 42 $h ). Next, arrange the remain-
ing windows in increasing order of their confidence scores.

Generally, the confidence scores are evaluated on the test
data [28]. However, we calculate the confidence scores based
on the training data. This is because it the model fails to
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Fig. 11: ML-based malicious window extraction in Stage 1.

differentiate between benign and malicious windows in the
training stage itself, it is expected to perform poorly during
the inferencing stage. From the model training stage, we
evaluate the confidence scores of each window and identify
those windows where the model is able to efficiently learn
the non-linear relationship between the window features and
the malicious nature of the full FPGA bitstream. In other
words, if the confidence score of window cia:} excesds that
of window qﬁ{ we can infer that qﬁ-:.) contains more useful
information in its bitsiream than r;l.‘:{lb that correlates better to
the criticality of the entire bitstream. The first stage of our
malicious bitstream detection pipeline is, therefore, essential
for the following reasons -

1) It enables pruning of insignificant bytes from the input
bitstream and only passes critical windows to the next stage
for diagnosis. In other words, a sample sent for training in
Stage 2 should be precise with only wseful information.
This reduces model confusion in Stage 2 and hence, the
model can converee using fewer ground-truth data samples;

2) Windows containing malicious signatures are prioritized:
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Input: User-input bitstream B
Output: O, Winat
Fead bitstream B
flag +— 0
Winat + @ *Set of malicious windows*/
Cimel +— @ MFConfidence scores of malicious windows®/
Pre-trained models M, 1 < £ < o
Divide 7 into 3 = 14 windows MSelected using hyperparameter
tming*
Denote each window as d‘:ﬁ
for @ in range (4} do
Run inferencing of lﬁf’] on pre-trained modal M
if J\f,.predictrdl:,_,) iv malicions then
Calculate () M#Confidence score of i** window*/
Wnar-append(d})
C'ﬂmut-ﬂPE"Eﬂd{G:
ag+— 1
e flag
end
it flag == 0 then
Classily B as benign else
Classifv B as malicious
end
refurn Crygp, Winar

Fig. 12: Pseudo-code for Stage 1 inferencing of bitstream.

this strategy can help in performing bitstream manipula-

tions such as modifying LUT content and clock signal

rerouting in order to remove malicious content prior (o

FPGA programming [29].

2) Inferencing

Fig. 12 describes Stage | inferencing for a given FPGA
configuration bitstream. As shown in the algorithm, the input
bitstream is divided into a set of o windows, We obtain
1 = 14 using hyperparameter tuning. We run inferencing on
each window based on the pre-trained models. If a window
is found to be malicious, it is appended to the list Wiy
and the corresponding confidence score is also noted. Afier
all the windows are analyzed, we check the status of the
flag. 1f the value of flag is (I, we classify the bitstream as
benign. Otherwise, we classify the bitstream to be malicious
and proceed to the second stage for diagnosis.

From the algorithm, we can observe that Stage 1 prunes
insignificant windows from the input bitstream. As a result,
the sample sent for inferencing in Stage 2 contains only useful
information regarding the presence of malicious circuits.

E. Srage 2: Multi-Class Classificarion

1) Training of Stage 2 DNN Model

From Stage 1 of the two-tier framework, we extract the set
of malicious windows for the power-wasting circuits in our
training dataset using the algorithm in Fig. 12. Next, we merge
the malicious windows and plot the data-series representation
of the concatenated window for each type of malicious circuit,
namely the RO, latched RO, self-clocked, AES power waster,
and shift register. We generate several images corresponding
to the malicious power-wasting circuits by varying the number
of instances in each of them. Next, we use the features
from the images, namely the pixel values comesponding to
each byte position to train our Stage 2 DNN-based multi-
class classification model. Since our target is to detect the
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five types of malicious power-wasting circuits, we ftrain our
model on five classes of images, each class corresponding to
a malicious circuit. We perform random search to determine
the best combination of hyperparameters that maximizes the
performance of the model. These hyperparameters include the
number of hidden layers, the number of neurons in each layer,
the type of activation function, and the loss function. Results
obtained from hyperparameter tuning are shown in Section V.

2) Inferencing with DNN Model

Next, we proceed to diagnose ie., identify the type of
malicious circuit after our pre-trained SVM model in the first
stage classifies a user-input bitsiream as malicious. We extract
the windows with the maximum confidence scores from the
input bitstream using the algorithm in Fig. 12 and convert
each window to its data-series representation, in the form of
image files. Then, we evaluate the image files using our pre-
trained DNN model. The DNN model generates a label and
a confidence score for the image files corresponding to the
malicious windows. We also perform merging operation on all
the malicious windows of the evaluated bitstream and perform
inferencing on the image file corresponding to the resulting
merged window using our pre-trained DNN model.

During inferencing, it is possible that the labels generated by
the DNN model vary among the malicious windows. In other
words, the model can predict incorrect labels for some of the
image files. Therefore, it is necessary to address these cases
and improve the generalization ability of the neural network
architecture to correctly diagnose the type of malicious circuit
implemented by a specific bitstream that has been classified as
malicious in Stage 1. We develop an algorithm to diagnose a
malicious bitsiream based on the weighted confidence scores
of its malicious windows. Let us say, the first stape generates

malicious windows for a given bitstream . Each of the
malicious windows has a confidence score I, . The
value * * in the superscript of ! signifies that the confidence
scores are generated by the Stage 1 ML models. Now, Stage
2 generates a label (‘RO’, ‘self-clocked RO’, ‘latched RO’,
‘AES’, ‘shift register’) for each of the malicious windows
with a confidence score of 2, . Similarly, the
value © * in the superscript of ? denotes the confidence score
generated from the second stage DNN model. Next, we merge
the windows and generate an image file corresponding to the
concatenated window. We get a label and confidence score for
this window, namely 2 . In other words, the confidence
score generated by the Stage 2 DNN model for the merged
window is assigned to 2 . We can set the corresponding
Stage 1 confidence score, namely ! since we do
not perform evaluations on the merged window in Stage 1.
Now, we perform a weighted summation of the confidence
scores for the generated labels as follows -

Z 1 2 if
=1

1 (3)
In equation (3), represents the weighted con-

fidence score corresponding to a particular label . The
value lies between and | and represents those malicious
windows that generate the same label . The score for the
merged window, , is added to the weighted confidence
score for the particular label that matches the label for the
merged window. After we get the weighted confidence scores
for all the generated labels, we identify the label that gives
the maximum confidence score. This label is, therefore, the
power-wasting circuit implemented by the given bitstream.
Hence, from the weighted confidence scores, we can efficiently
diagnose the type of circuit implemented by a given bitstream.

F. Comparison with Existing ML-Based Classification Models

In [10], the authors study the voltage changes in the PDN of
a multi-lenant FPGA and use this information to determine the
type of computations performed by a co-tenant of the FPGA.
In this work, the attacker configures a portion of the multi-
tenant FPGA with a voltage fluctuation sensor, particularly
the TDC. The TDC sensors are implemented using buffers and
latch elements. Note that the delay through the buffer elements
{(propagation speed) is inversely (directly) proportional to the
supply voltage of the PDN. Therefore, it is possible to evaluate
the voltage fluctuations in the PDN due to computations on the
multi-tenant FPGA. The sensor readings (or traces) captured
by the TDCs are analyzed by the attacker using the following
steps. The traces are transformed into images using a short-
term Fourier Transform function. Finally, the image is passed
through a ResNet50 inference model that classifies it into one
of the several types of computations.

While [10] focuses on identifying cryptographic core and
RO-based computations, it has not explored a number of other
power-wasting circuits that can be used to attack cloud FPGAs.
In our approach, we aim to cover a broader threat model,
including conditionally active ROs and non-combinational
ROs. Moreover, we explore power-wasting AES cores that are
significantly different from normal cryptographic AES cores.

While our work and the work in [10] both make use of ML
models to identify the type of computations, a key difference
of our work from [10] is as follows. While [10] focuses on
a side-channel analysis attack on the multi-tenant FPGA to
extract information about the type of computation in a co-
tenant module, our goal is to defend a multi-tenant FPGA
from malicious circuit configuration and also identify the
type of malicious circuit. We explore fundamental properties
of malicious power-wasting circuits and apply our two-stage
detection framework directly to the user input bitstream to
immediately identify and block malicious circuits from being
configured on the FPGA.

V. RESULTS
A Experimental Sefup

We use Verilog to implement the malicious power-wasting
circuits. We obtain the benign circuits from several bench-
marks and OpenCore repository. Next, we synthesize, imple-
ment, and penerate bitstreams corresponding to the benign
and malicious circuits using Xilinx Vivado 2018.2. We imple-
ment the overall CNN-based classification framework using
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. For image augmentation, we use the and

tools from the Scikit-learn library [30]. We have trained

the CNN using the Adam optimizer and with a learning rate

of (L00075. The number of training epochs is chosen to be

300. Dropout layers with a probability of and batch

normalization layers have been added after every convolutional
layer for better training accuracy and reduced overfitting.

We use and to build our two-stage
malicious bitstream detection framework. The DNN model
utilized in Stage 2 has five convolutional layers and five
maxpooling layers, followed by two fully connected layers.
We trained the DNN over epochs using the
optimizer with a learning rate of . All the experiments
are run on a 2.4 GHz Intel Xeon Gold 5115 CPU with 768
GB of RAM.

B. Evaluation Metrics

The following metrics are used to evaluate the effectiveness
of our CNN model and our two-stage bitsiream diagnosis

framework, described in Section III and IV, respectively.
: Percentage of malicious bitstreams correctly clas-

sified as malicious.

: Percentage of benign bitstreams incorrectly clas-
sified as malicious.
Classification accuracy { ) The ratio of the number of
correct predictions to the total number of predictions. It is
computed as: —E, where is the number of correct
predictions and  is ‘the total number of predictions.

C. Detection of RO-like Patterns Using CNN-based Classifi-
cation Framework

Recall that our dataset comprises of 95 image files generated
from benign bitstreams and 80 image files generated from
malicious bitstreams. The bitstreams are generated using the
write_bitstream command available in Xilinx Vivado 2018.2.
These bitstreams target the VU440 board. Afier the bitstreams
are penerated, they are converted to their corresponding CSV
files (as illustrated in Fig. 5). Next, they are plotted as data-
series representation and stored as image files. Since the
dataset is of relatively small size, we use image augmentation
to increase the size of our training dataset. We choose the

and as our image augmentation method; this
method shows the highest classification accuracy compared to
other commonly used image augmentation techniques, such as
the and the operations [22]. The
and image aupmentation techniques enable our model to
extract meaningful features from the image representation of
bitstreams. We performed several experiments to determine the
best operation among - , and . These
operations are described below:
1) : Flip the image horizontally, either left or right;
2) : Flip the image vertically, either up or down;
3) : Flip the image along any axis or multiple axes.
We present the evaluation results in Table I11. We note that
gives us significantly better results when used as the
image augmentation technique. After image augmentation, the
size of our dataset increases to 314 image files. The number

10

TABLE III: Exploring methods for image augmentation.

Technique Training acc. | %) | Test acc. | o)
gy, 03.0% 95.T%
flip.g 00 1% 96 4%
flip (along axis (1, 32)) o0ER Br.d%

of benign image files and malicious image files are 146 and
168, respectively. We use -fold cross validation to evaluate
multiple versions of train-test split In our experiments, we
select in accordance with common practice [31].
Therefore, paris are used to train our model and the
remaining one part is used for model evaluation. We obtain
an average (raining accuracy of 99.2% and an average test
accuracy = 96.17% after 300 epochs, over the five folds.
Also, we obtain = 97.02% and = 4.79%.

We next compare the proposed CNN-based detection ap-
proach with prior work on classification of FPGA bitstreams.
The work in [14] uses a CNN to detect a particular hardware
module (e.g. adder, subtractor, or multiplier) in a “one versus
all” classification problem. To highlight that our proposed
CNN architecture is tailor-made for detecting malicious bit-
streams, we apply the CNN architecture described in [14] to
our dataset. The results in Table IV show that our CNN archi-
tecture is carefully designed to be applicable to the security
problem of malicious bitsiream detection and authentication.
D. Malicious Bitstream Detection using AWS Tools

Users now have the freedom to upload their own design files
on multi-tenant cloud FPGA s and request bitstream generation.
However, during design rule check (DRC), the AWS cloud
FPGAs reject circuits that contain combinational loops, e.g.,
ROs. Therefore, if an attacker atiempts to configure the FPGA
with a malicious grid of ROs, it will be instantly blocked by
the AWS detection tools. However, in [13], the authors present
examples of non-combinational ROs that cause oscillations
but are not detected by the AWS. The description of these
non-combinational ROs, namely the laiched RO and the self-
clocked RO are provided in Section ITI-A.

We implement the simple staped RO, latched RO, and
self-clocked RO and submit the design checkpoints (.dcp) to
AWS using Cloudshell. We observe the oscillating behavior
of these circuits in the Vivado simulation stage. For bitstream
generation on the AWS, we follow the following steps:

We first create an AWS Vivado 2020.2 Dewveloper Amazon

machine image. This will create an AWS instance (we use

} with Vivado for building aws-fpga into .dcp;

We upload the HDL files comesponding to the non-

combinational ring oscillators (ROs) and several RO variants

using the Cloudshell;

Next, we invoke the Vivado Design Suite TCL shell;

We run a customized TCL script to synthesize and run

implementation on .dcp, and request bitstream generation.

Table V shows the results that we obtained. The latched RO,
self-clocked RO, and conditional RO remain undetected by
the AWS tools. However, we observe a ‘Combinational Loop’
alert during AWS bitstream generation for all the staged ROs,
i.e., these oscillators are detected during the AWS design rule
check and prevented from requesting bitsiream generation.
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TABLE IV: Comparison with prior machine learning architec-
ture used for FPGA bitstream classification [14].

[ Characterisiics | CININ architeciure i [13] | Froposed method |
No. of conv. layers One Four
[~ WO, of FUC layers Tore Four
TTaEIMNE ACCUracy UT.6% T
Training loss 036 0031
TEsT accuracy B % U635
TABLE V: Evaluation results on AWS platform.
— Deecied during | Bilsteam
Type of circuit | "DRE check?® | peneraied?
Staged ED Iy X
Laiched RO X v
Self-clocked RO X v
Conditional RO X v

E Comparison of Proposed Framework with RE Method

Finally, we compare the proposed approach with [8]; see
Table V1. Note that [8] requires reverse-engineering techniques
to generale the technology-mapped netlist from the FPGA
bitstream, and the tools are specific to a FPGA family. In
addition, [8] is focused on determining how many malicious
ROs can crash the FPGA. Therefore, a direct quantitative
comparison with [8] is not feasible. Nevertheless, we note that
the proposed approach is complementary to [8] for securing
FPGAs from malicious bitsireams, and its goal of malicious
bitstream detection can be synergistically combined with the
vulnerability assessment provided by [3].
FE Sliding Window-based Malicious Bitstream Detection

1) Stage 1 Training

We proceed to detect malicious windows in the FPGA
bitstreams using the sliding window-based approach. We begin
the search for the optimized number of windows with
and continue the procedure until we narrow down to the
location(s) of malicious signatures in a given configuration
bitstream. Table VII presents the evaluation results for the
sliding window-based malicious bitsiream detection frame-
work. For every value of |, we calculate the size of each
window (in bytes). For example, if , we divide the
bitstream into nine non-overlapping windows of size

1259563?9 . We choose the function to
a‘mld losing significant mfnrmallon about malicious structures
from the bitstream. Once we penerate the bounding bytes of
each such window for a given , we perform window-based
byte extraction for all the benign and malicious bitstreams
present in our experimental dataset. For our experiments, we
generate 120 benign bitstreams and 116 malicious bitstreams.
The benign bitstreams implement designs from ITC 99, 15-
CAS'85, and EPFL benchmarks. We also generate bitstreams
that implement AES cores, microprocessor cores, and micro-
controllers. The malicious bitstreams include a wide range of

TABLE VI: Comparison with RE method [8].

I Characierstics | e T5]
Bi Nethsl representanon
Dataset a5 data-series of bilstreams
EE used” No Yes
Loop-free KOs analyzed? Yes Ko
UCNN-based icebox_viog,
Framework feature extraction yosys tools
" TPR g = 57.00% Wo. of KOs equired
Evaluation results FPRog = 479% | to crash the FPGA = 1920

F1-Score (%)

VM NGB
Fig. 13: Fl-score uf ML models after -fold cruss—validalinn.
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power-wasting circuits that are capable of causing voltage-
based attacks and DoS attack on the FPGA. We randomly
split our dataset into training and test datasets in the ratio
of . Random splitting of dataset ensures that our test
dataset includes various power-wasting circuits such as non-
combinational ROs and power-wasting AES cores. Afier ran-
dom split, we have 89 benign bitstreams and 76 malicious
bitstreams in the training dataset and 31 benign bitstreams
and 40 malicious bitstreams in the test dataset. We define the
following terms and as follows:
1) : The lower bound on the number of windows to
divide the bitstream into;
2) : The upper bound on the number of windows to
divide the bitstream into; this also indicates the number
beyond which the ML classifier fails to identify malicious
signatures in the sub-windows with acceptable classifica-
tion accuracy.
Choosing the value of : Ouwr target is to locate the
window in the bitsiream that contains most of the malicious
features and distinguishes itself from a benign bitstream.
Therefore, we choose

Choice of ML Classifier: Wf: perform -fold cross-
validation to select a suitable ML classifier to train our dataset
of benign and malicious bitstreams. We evaluate the following
four supervised learning models: (1) Random Forest (RF), (2)
Support Vector Machine (SVM), (3) XGBoost (XGB), and (4)
Multilayer Perceptron (MLP).

We select in accordance with common practice
[31]. Therefore, parts are used to train our model and
the remaining one part is used for model evaluation. Fig. 13
illustrates the Fl-scores of the four ML classifiers after -fold
cross-validation. We observe that SVM generates the highest
Fl-score of among all the tested ML classifiers. The
best hyperparameters chosen for the SVM are as follows -
regularization parameter ( , kernel: RBE A high F1-
score for the SVM model can be attributed to the ability of
the model to handle high-dimensional datasets and accurately
classify FPGA bitstreams based on their relevant features [32].
FPGA bitstreams are often represented by a large number of
features (in this case, features), which is a challenge
for traditional classification algorithms. Therefore, we utilize
the SWM classifier to evaluate the benign and malicious
bitstreams in Stage 1 of our proposed framework.

For a given number of windows
we train  number of SVM classifiers on the dataset uf
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TABLE VII: Evaluation of confidence scores to determine the value of
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TABLE VIII: Malicious windows detected in the first stage of the two-tier classification pipeline.

Window | Ri_7 | R 6a | RO_10G | DF 0 | DF I8 | DF_I01 | 50 81 S0 117 | ARG 10 [AES 20 SR 4

&, 011 0.984 0.984 011 011 011 0.984 0.981 0.805 0.805 0165

oy 0.815 0.815 D.EIS 0.815 0.815 l].ElS 0.815 D.Eli 0.25 0&15 [1} l!i

#y, 0943 [ 0079 | 0979 [0095 | 0.005 | 0979 [ 0019 | 0979 | 0095 | 0095 [00E

2 H 0.987 0.99 0.99 0.933 0.723 0.99 0.99 0.99 0.037 0.037 0.25

& & 0.302 0.838 0.838 0.92 0.849 0.603 0.348 0.499 0116 0116 0.703

bitstreams of size 122296372 Now, we calculate the confidence
scores of each classifier on the  sub-windows. Therefore,
we pet a set of confidence scores, one score for each sub-
window. Our target is to identify those specific windows in
the entire bitsiream that have the highest confidence score,
and are therefore most likely to contain malicious signatures.
We stop our search for the suitable choice of once the
confidence scores for all the sub-windows start saturating
and stop showing significant increment. From Table VII,
we observe that choosing penerates an appropriate
number of malicious windows, with higher confidence scores
compared to other values of . Therefore, for the first stage of
our bitsiream diagnosis pipeline, we choose for sub-
array extraction of an user-input configuration bitstream. Thus,
the number of input features to the SVM classifier is equal
to the window size RELulre bytes. The
confidence score is maximum for the window {; and is equal
to 97.69%. The window 3, has the next highest confidence
score of 95.38%. These results help us to identify the specific
windows in a given bitstream where malicious signatures are
most likely to be present. We use these observations to further
analyze the type of malicious circuit implemented by this
bitstream in Stage 2 of our bitstream diagnosis framework.

2) Inferencing
The test dataset includes the following 40 types of malicious

bitstreams (© * denotes the number of instances):

1) 8 bitsireams corresponding to RO and conditional RO
circuits (denoted by _k

2) 6 bitstreams implementing variants of the latched RO
circuit (denoted by _k

3) 7 bitstreams corresponding to the self-clocked RO circuit
(denoted by  _ );

4) 4 bitstreams that implement rounds of AES-based power
waster, where {denoted by _k

5) 7 bitstreams comresponding to a chained shift register circuit
(denoted by  _ );

6) 8 bitsireams corresponding to
amplification circuits, .
We achieve for all the malicious bitstreams

in our test dataset using the pre-trained sliding window-

based ML classifier. Furthermore, we evaluate the confidence

scores of every malicious window detected for a particular

-input XOR-based glitch

malicious bitstream. These scores are used in the second
stage of our classification pipeline to diagnose the type of
circuit implemented by the bitstream. The experimental results
are shown in Table VIII. We show inferencing results for
eleven malicious bitstreams from our test dataset and present
evaluation results for only those windows that detect malicious
windows with a confidence score . The shaded cells
in Table VIII correspond to the malicious windows that are
detected with a high confidence score during the first stage.
All the evaluated glitch amplification circuits were identified
as malicious by the specific SVM classifier that was trained
on the window 7,; the average confidence score generated
being %. Furthermore, the malicious windows returned
by the Stage 1 ML model for an AES power waster circuit
and a glitch amplification circuit are similar, thereby implying
that our model can efficiently detect XOR gates placed at
unusual locations of a circuit, which contribute to glitching.
We observe that all the malicious bitstreams in our test dataset
are detected by our Stape 1 model, thereby justifying the
effectiveness of the proposed method.

G. Evaluarion Results for Multi-Class Classification of Mali-
cious Bitsireams

Once we identify all the malicious windows in the bitstream
using the 14 SVM classifiers, we plot the Numpy arrays
for each malicious window and store them as images. The
images corresponding to the evaluated power-wasting circuits
are shown in Fig. 14 (a)}-(d). The -axis label indicates the
byte position and the -label represents the pixel value of
that byte position. From Fig. 14, we can visually differentiate
the malicious circuits from one another. Each pixel value is
in the range [ ]. Next, we normalize the array of the
image pixel values to be between [0, 1] by specifying the
parameter . Finally, we reshape the imapes
to dimension before feeding them to the pre-trained
DNN multi-class classifier. The image files fed to the DNN
model are illusirated in Fig. 14 (e)-(h). Each -
dimensional image having normalized input values act as input
to the first convolutional layer of the DNN model. Note that
the labels generated by the model are one-hot encoded values
and hence, do not require normalization.

Furthermore, we concatenate all the malicious windows and
use the resulting image for inferencing. For example, if a

12
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Fig. 14: Images corresponding to the malicious window

(2 (h)

1, before normalization (a-d) and afier normalization and rescaling

{e-h) for the RO, Latched RO, Self-clocked RO, and AES power waster circuits, respectively.

malicious bitstream has  malicious windows, the number
of images passed through the DNN classifier for inferencing
is . The DNN classifier predicts a label for each of
the images, along with a confidence score. Due to
a well-trained DNN model (we achieve a training accuracy
of , over 200 epochs), the DNN classifier predicts the
label with a confidence score of ‘1°. We use Equation (3) to
calculate the confidence score of the generated labels for the

images. Finally, we identify the label which produces
the highest weighted confidence score.

Using the weighted confidence score-based approach, we
correctly diagnose out of the malicious bitstreams in
our test dataset. In other words, our DNN classifier correctly
identifies the type of malicious circuit implemented by a user-
input bitstream with a classification accuracy of .

H. Comparison Between Proposed Detection Frameworks

The efficiency of partitioning-based bitstream detection
framework in identifying a broad variety of power-wasting
circuits compared to prior detection methods is demonsirated
in Table IX. The model used in [33] is chosen as the baseline
framework. The CNN-based malicious bitstream detection
framework proposed in Section III is denoted by
[34]. The current partitioning-based ML-DNN framework is
denoted as . For fair comparison, the evaluation
dataset used for testing the above three frameworks consists
of 120 benign bitstreams and 116 malicious bitstreams. The
percentage of glitch amplification circuits correctly identified
as malicious is denoted by . We observe that

achieves a % i.e., all the malicious bitstreams
in our evaluation dataset are correctly identified as malicious.
This means that actual malicious activities are detected by
, while fewer false alarms are generated. Moreover,
we are able to detect the glitch amplification circuits in the
test dataset with an accuracy of  %. Owerall, the proposed
bitstream partitioning-based framework achieves a
speedup compared to the baseline framework [33] to
detect a malicious user-input bitstream on a 2.4 GHz Intel
Xeon Gold 5115 CPU with 768 GB of RAM.
I Extending the framework for multiple FPGA families
Note that the proposed technique of detecting malicious
bitstreams can be extended to other FPGA versions and
families. Only the training dataset changes, while the bitstream
detection framework remains unchanged. For the Xilinx Kin-
tex Ultrascale (KUOBS5) FPGA, we generate similar number of
benign and malicious bitsireams as were generated for VU440
We generate = 8 by hyperparameter tuning for a KUOSS
bitstream (size: 48251520 bytes). Evaluation on a test dataset
of 31 benign and 40 malicious bitstreams yields:
05% and = 0.6%. The time overhead associated with
the evaluation on a user-input bitsiream is 1.3 minutes.
VI. DISCUSSION
The primary motivation behind our proposed approach
is to detect malicious RO-based and non-RO-based circuits
that have the potential of causing power- and voltage-based
attacks on FPGAs [6], [25], [13]. Currently, our ML-based
framework is able to detect any bitstream that contains RO-

TABLE IX: Performance comparison of partitioning-based malicious circuit detection with prior detection frameworks.

Selected

Time ed

i

: Speedup
Framework | No. of input features Hype (ers TPRma(%) | FPRmar(%) | A:(%) (%) | (s) |(w.rt. Baseline [33])
Baseline [33] 178966372 max_depth = 60, no. of Ti5 19.31 TeOs [375] 247 —
estimators = 100
M LIony 33 SOTTE Uphimizer. Adam, 1] ! OT54 [ 625 | 2353 TU5
Ir = 7.5e(-3)
ML2pnw O2TTEEL C=10, 100 32 T 18 | 100 | 883 | L] |
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like signatures, including ROs used for benign purposes. In
order to distinguish between malicious ROs and benign ROs
{implemenied in PUFs and TENGs), we first need to collect
a sufficient amount of training data for both RO types. Next,
we can extend our two-tier bitstream diagnosis framework to
learn features from the RO variants and assess the malware
criticality of the RO ie., identify whether the RO belongs to
a malicious category or whether it is implemented in benign
circuits. We will explore this scenario in our future work.

Note that the proposed methodology offers several advan-
tages over signature-based approach for malicious bitsiream
detection. First, signature-based approaches are limited to de-
tecting only known malicious bitstreams. Attackers can easily
evade this defense by devising previously unseen malicious
bitstreams. However, supervised ML algorithms can detect
both known and unknown malicious bitstreams, making them
more robust against such attacks. Second, ML-based methods
are more cost-effective for implementation, in terms of requir-
ing less computing power than signature-based methods.

The attacker may use additional circuits (along with the
malicious components) to obfuscate the high power consump-
tion of the malicious components. To address this adversarial
assumption, we can apply the proposed two-tier malware
detection framework in conjunction with run-time anomaly
detectors based on long short term memory (LSTM) to monitor
the power consumption of the FPGA and successfully detect
an obfuscated attack [35]. We do not go into the details of this
adversarial assumption as it is beyond the scope of this paper.

VII. CONCLUSION

First, we have presented a CNN-based malicious bitstream
detection framework for FPGAs. By utilizing specific patterns
from the data-series representation of bitstreams, the proposed
CNN model uses negligible knowledge about the actual bit-
siream structure to achieve a highly accurate classification
of benign and malicious bitstreams. Next, we have further
broadened our threat model by evaluating a wide variety of
power-wasting circuits and glitch amplification circuits that are
a threat to cloud computing FPGAs. We have presented a two-
tier malware detection framework that identifies a malicious
bitstream and also diagnoses the type of malicious circuit
implemented by that bitstream. We have demonsirated the
effectiveness of our methodology for multiple FPGA families.
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