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Abstract—The popularity of cloud computing has led to
increasing demand for efficient and scalable hardware. Multi-
tenant FPGAs are becoming popular because of their ability to
provide high performance and flexibility, yet being cost-effective.
While multiple tenants have the ability to configure the same
FPGA with customized modules, several security vulnerabilities
can be exploited by adversaries. Attackers can use an FPGA to
perform malicious actions, such as injecting malicious bitstreams
and launching denial-of-service attacks. We propose a two-tier
machine learning framework that first detects malicious features
from an FPGA bitstream and then performs criticality analysis
to evaluate the severity of potentially malicious ring oscillators
(ROs) configured by that bitstream. The latter step is crucial
as it ensures the security of FPGAs from voltage and power-
based attacks and also reduces the risk of inappropriately
blocking benign RO-based circuits from FPGA configuration.
The proposed framework is evaluated using a diverse set of real-
world bitstreams. We achieve an accuracy of 100% in detecting
malicious bitstreams and an accuracy of 96.55% in detecting
malicious bitstreams that are critical.

I. INTRODUCTION

Field-programmable gate-arrays (FPGAs) are often used in
applications that require high performance with customization,
such as video processing, cryptography, and deep learning.
FPGAs are now commonplace in cloud computing environ-
ments and are also being incorporated in data centers hosted
by Amazon and Microsoft [1], [2]. FPGAs offer flexibility
and enhanced performance in the implementation of complex
machine learning (ML) applications and FPGA-accelerated
services. For example, users upload their own customized
applications to cloud FPGAs. As FPGAs offer multi-tenancy,
users share a common platform where they implement their
own applications while being logically isolated from others.

While multi-tenant FPGAs offer a number of benefits, there
are several associated security risks that are of concern. Some
key security threats include fault attacks, power and voltage-
based attacks, and denial-of-service (DoS) attacks. An attacker
may activate several ROs simultaneously, causing the FPGA
to overheat, and subsequently malfunction [3].

Prior work on malicious bitstream detection has focused on
reverse-engineering (RE) of the FPGA configuration bitstream
by looking for specific patterns that indicate malicious behav-
ior [4]. However, the development of these RE tools is arduous
and complex. A promising approach is to use ML-based
techniques which detect RO-like signatures more effectively
than traditional methods. The work in [5] represents bitstreams
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as data-series images and uses a convolutional neural network

(CNN) to detect RO-like patterns from the images.

Although prior methods can efficiently detect and prevent
RO-based circuits from FPGA configuration, not much at-
tention has been devoted to determining the criticality of a
particular RO variant that is implemented by a user bitstream.
A digital circuit that performs genuine, real-life applications
can be blocked from FPGA configuration due to the presence
of RO-based circuits in its design. For example, ROs are used
in true random number generators (TRNGs) to generate secret
keys. Therefore, it is crucial to perform criticality analysis
of the incoming FPGA bitstream and determine the security
impact of the ROs implemented by that bitstream. We propose
an ML-based criticality analysis framework to assess the input
bitstreams before they are configured on an FPGA. The key
contributions of this paper are as follows:

« We present a method that can automatically detect malicious
RO-based Trojans implemented by FPGA bitstreams.

o We develop a two-stage ML-based framework that incor-
porates frequency domain-based feature extraction from the
FPGA bitstreams for malware criticality assessment.

+ We devise a metric that provides a score for each bitstream
indicating its criticality, and further use this metric to
compute the criticality of RO-based Trojans that are capable
of launching power- and voltage-based attacks.

« We evaluate the effectiveness of the proposed method on a
variety of real-world bitstreams.

The remainder of the paper is organized as follows. Sec-
tion II discusses attacks on FPGA-based systems and prior
countermeasures. Section III presents the threat model. Section
IV describes the procedure of identifying RO-based signatures
from FPGA bitstreams. Section V presents the two-tier ML-
driven framework for criticality analysis of ROs. Section VI
presents experimental results. Section VII concludes the paper.

II. BACKGROUND
A. Attacks on FPGA-based Systems

One of the most important components of an FPGA-based
system is its power distribution network (PDN). The PDN sup-
plies power to all the components of the FPGA and is typically
modeled using RLC circuits. The high switching activity of
ROs can cause a large amount of current to be drawn from
the PDN, resulting in a voltage drop. The increased current
draw can lead to significant power consumption of the FPGA.

Prior work has demonstrated successful voltage-based at-
tacks on FPGAs, thus disrupting their functionality and leading
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TABLE I: Prior malicious bitstream detection methods.
Characteristics [ T4] T 9] T I1Z] T Proposed method |
| Performed criticality analysis | X | X | X | v |
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Fig. 1: Schematic of the threat model.

to DoS [6]. In [3], a fault attack using ROs is presented. By
carefully controlling the frequency of the RO and utilizing
only 25% of the available FPGA logic, an attacker can create
voltage fluctuations that cause the FPGA to crash. In another
approach [7], malicious non-combinational ROs based on flip-
flops and latches evade the design rule check (DRC) and are
carried out for Amazon Web Services (AWS) instances.

B. Countermeasures

In [4], the Yosys tool is extended to detect combinational
cycles in technology-mapped netlists obtained through reverse-
engineering of FPGA bitstreams. However, the reverse-
engineering of bitstreams is a time-consuming procedure. For
example, a simple bitstream performing only partial reconfigu-
ration may take a few hours to reverse engineer whereas a full
bitstream performing more complex tasks (e.g., data analysis)
could take days or even weeks to reverse engineer [8]. The
work in [9] analyzes netlist graphs obtained from bitstreams
for malicious patterns such as combinational cycles, hidden
ROs, and self-oscillating circuits. However, the procedure
of generating a netlist graph from a bitstream can take a
considerable amount of time depending on the complexity
of the design. Table I summarizes the limitations of existing
methods for malicious bitstream detection and also highlights
our contributions. ML-based approaches have also been used
to detect hardware Trojans. The work in [10] [11] learns
features that are extracted from Trojan-inserted and Trojan-
free netlists using an ML classifier.

III. THREAT MODEL

The threat model is illustrated in Fig. 1. We assume that
an attacker can configure an FPGA with malicious RO-based
circuits. The FPGA supports time-based multi-tenancy i.e., a
single user has access to the FPGA at a time. The circuits
have the potential to cause overheating and DoS in the FPGA.
An attacker may also intercept the communication between
a legitimate user and the deployed FPGA, and modify the
bitstream that configures the FPGA. This can be done by either
physically altering the bitstream, or by using a software tool to
modify the bitstream before it is downloaded to the FPGA. Our
proposed ML-based bitstream detection framework is executed
off-chip and is assumed to be physically accessible only to
authorized users. Hence, an adversary will not be able to
tamper the detection framework. As explained in [13], the

FPGA first decrypts the incoming FPGA bitstream before it is
configured. Therefore, in this work, we evaluate our proposed
classification framework specifically on decrypted bitstreams.

IV. LEARNING MALICIOUS SIGNATURES USING ML
A. Data Pre-processing

We assume without loss of generality that the FPGA bit-
streams are generated as .bin files. While full bitstreams can
be used to train ML models, they have a few limitations.
First, due to their large size, full bitstreams can lead to higher
training times for the ML classifier. Second, in a full bitstream,
many bytes are either unused or have no effect on the output
functionality, making it difficult for the ML model to learn
specific patterns [14]. Alternatively, training the ML models
on window-based partitioned bitstreams to identify malicious
signatures significantly reduces the training time. Since we
aim to identify specific windows from a given bitstream that
correspond to possible RO-based patterns, we propose dividing
a bitstream into a set of y windows. Since the size of a
Xilinx Ultrascale FPGA bitstream is 128966372 bytes, the
size of each window n = [128%663727 "Eor 3 given number
of windows 1, we train ¢ equivalent ML classifiers. For
training each classifier, we first partition the bitstreams in
the dataset into i windows. Next, we store the partitioned
bitstreams as Numpy (.npy) arrays. Let us denote the i**
window by QSf;b,l < ¢ < 9. We train the i*» ML classifier
on the window ¢;, extracted from the dataset of benign and
malicious bitstream arrays. Evaluation results for the choice
of ¢ are provided in Section VI.

B. Importance of Criticality Assessment of RO-based Designs

The criticality of a bitstream is determined by the amount of
malicious behavior that can be caused by the ROs implemented
by that bitstream. The number of ROs and the frequency of
the ROs implemented by the bitstream affect how critical the
bitstream is. The criticality analysis of a bitstream can help in
reducing the risk of inappropriately blocking benign RO-based
circuits from FPGA configuration. A metric for evaluating the
criticality of a given bitstream is presented in Section VI-B.
This metric can help us to identify which bitstreams are more
likely to cause harm to the FPGA.

The proposed approach is based on CNNs to learn features
extracted from the frequency-domain representation of the
FPGA bitstreams. One of the most popular feature extraction
techniques is Fast Fourier transform (FFT) [15]. FFT is a
useful tool for exploratory analysis and can be used for
detecting malicious patterns in FPGA bitstreams.

V. PROPOSED CRITICAL ASSESSMENT FRAMEWORK

Before the FPGA is configured, the bitstream is fed to our
classification framework to determine the criticality of the RO-
based circuit implemented by that bitstream. Fig. 2 illustrates
the proposed two-tier framework.

A. Data Generation

We evaluate the proposed method on bitstreams implement-
ing a diverse set of real-world benign and malicious designs.
For our experiments, we target the Xilinx Virtex Ultrascale
(VU440) and Kintex Ultrascale (KU085) FPGA boards. These
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Fig. 2: Methodology used for criticality analysis

FPGAs are used in many real-world applications, such as high-

performance computing, networking, and data storage [16].
Benign bitstreams: These bitstreams implement AES cores,

microprocessors, VGA Opencores, LCD controllers, and IS-

CAS 85, ITC ’99, and EPFL benchmark circuits.

Malicious bitstreams: In this work, we define a malicious
bitstream as a bitstream that contains RO-based signatures.
However, as discussed in Section IV, an RO-based design may
not be critical to the FPGA it is configured upon. In other
words, all critical bitstreams are malicious but all malicious
bitstreams might not be critical.

« Critical bitstreams: We implemented simple ROs, loop-free
ROs (including latched and self-clocked oscillators), staged
ROs, and conditional ROs. We ensure that the number of
stages of these ROs are consistent with the number of RO
circuits that are used to launch voltage-based attacks in [3].

» Non-critical bitstreams: These bitstreams implement several
variants of TRNGs and physically unclonable functions
(PUFs). Although these bitstreams include ROs, they are
not harmful when actually placed on the FPGA.

B. First Stage: Detection of Malicious Signatures
1) Selection of ML model
Next, we select a suitable classifier for training and evalua-

tion purposes based on the F1-score. We evaluate the following

supervised ML models [17]: 1) Random Forest (RF), 2) Sup-
port Vector Machine (SVM), 3) eXtreme Gradient Boosting

(XGB), and 4) Multilayer Perceptron (MLP).

2) Training and Inferencing with Pre-Trained ML Model

After obtaining a suitable ML classifier, we train 1) such
classifiers, namely ¢;, where 1 < ¢ < 9, according to the
procedure explained in Section IV. For VU440 bitstreams, the
number of input features to ¢ is [1Z25F2]. We employ
hyper-parameter tuning to improve the trainability of our
model in learning RO-based signatures from the dataset. To
run ¢; in the evaluation mode for inferencing, we split the
bitstream into ¥ windows of equal size and pass each of
the windows through the ) ML classifiers. Given a window
qb;,, the classifier ¢; returns a confidence score Sil, such that:
0 < S! < 1,1 < i < 1. We specifically calculate the S}
values as they are a measure of the accuracy of an ML model’s
predictions. A higher confidence score S} suggests that the 7"
window more likely contains malicious RO-based signatures.
We collect all such malicious windows and their corresponding
S} values, and pass them to Stage 2 for criticality classification
and evaluation.
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Fig. 3: FFT-encoded images of: (a) Critical RO; (b) TRNG.
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C. Second Stage: RO Criticality Assessment

1) Data Collection

We store the malicious windows extracted from the first
stage of the detection pipeline as comma-separated values
(CSV) files. Next, we apply FFT to convert the CSV files
into the frequency domain. The FFT-encoded images corre-
sponding to examples of a critical and a non-critical circuit
are illustrated in Fig. 3(a) and Fig. 3(b), respectively.

2) Neural Network Architecture

We apply a CNN-based detection approach to perform
criticality assessment on FFT-encoded images. We reshape
the encoded images to 224 x224 arrays before model training.
Note that we train the Stage 2 model on only the critical and
non-critical malicious bitstreams. The CNN architecture used
in our experiments has five convolutional layers and five max-
pooling layers, followed by a fully-connected layer. We use the
ReLU and Softmax activation functions in the fully-connected
layer. While ReLU reduces the risk of overfitting, Softmax
allows better generalization of the input data and robustness
to outliers than other activation functions [18].

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

We implement the benign and malicious circuits in Verilog
and generate bitstreams corresponding to these circuits using
Xilinx Vivado 2018.2. We use Python 3.4 to build the ML
and CNN models. The training and inferencing of the ML
and CNN models are run on a 2.4 GHz Intel Xeon Gold 5115
CPU with 768 GB of RAM. The selected hyperparameters for
the two-stage framework are listed in Table II.

We generate 150 benign bitstreams and 156 malicious bit-
streams for the VU440 board. To ensure that these bitstreams
are diverse and sufficient, we implement a variety of malicious
circuits as well as benign samples that are deployed in real-
life applications [3] [4] [6]. We randomly split the benign
and malicious bitstreams into training and test datasets in the
ratio 70:30. Therefore, the training dataset consists of 214
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TABLE II: Best hyperparameters for the selected classifiers.

TABLE III: Evaluation results using different frameworks.

Classifier Selecied hyper-parameters E Kk Stage 1 Stage 2
SVM C = 100, kemel: RBF ramewor A B [ TPR o (%) [ R (%) [ TN Ryer, (%) ]
CNN Loss: Categorical crossentropy, Optimizer: RMSProp, TD (D) + TD (2) | 96.73 100 827 83.18
Leaming rate = 0.001, Number of epochs = 200 TD (1) + FD (2) | 96.73 100 96.55 100
~100 FD (1) + TD (2) | 40.2 55.17 48.27 62.06
9 97.4 % o5 FD (1) + FD (2) | 40.2 55.17 65.5 44.82
7 g 0 Prior work [3] | 93.47 09482 76.92 79.31
gjj g 85 TABLE IV: Evaluation of ~ for test bitstreams.
@ 9| 908 250 Type Count | Avg. value of
= 895 | 2 . Benign 34 0.008
89 87.6 g Malicious but non-critical 29 0.115
87 s 70 Malicious and critical 29 0.863
85 < 65
RF  SVM.  XGB MLP 6 8 10 12 14 16 18
@ () ¥ strength of the proposed method over prior work on detection

Fig. 4: (a) Fl-score of the ML classifiers after k-fold cross-
validation (b) Determining the best value of ) using SVM.

bitstreams and the test dataset comprises of 92 bitstreams.

The bitstreams in the evaluation dataset include 34 benign

bitstreams, 29 malicious and critical bitstreams, and 29 non-

critical malicious bitstreams.

B. Evaluation Metrics

o T'PRp,q is the percentage of malicious bitstreams that are
correctly classified as malicious. TN Ry, is the percent-
age of malicious non-critical bitstreams that are correctly
identified as non-critical.

« Classification accuracy (A,.) is the ratio of the number of
correct predictions to the total number of predictions.

« For an input bitstream, the criticality metric - is formulated
as: vy = Sp x 821 <k <4,0 <~ <1, where S} is
the highest confidence score (corresponding to the window
¢%,) returned by the Stage 1 ML classifiers and S? is the
confidence score associated with the label (i.e., critical or
non-critical) predicted by the Stage 2 CNN model. After
running simulations on a variety of test bitstreams (benign
and malicious), we conclude that a bitstream with v > 0.7
is critical. In general, ~ can be determined on the basis of
the data used for training the CNN model.

« R, is the percentage of critical bitstreams that are correctly
classified as critical.

C. Overall Training and Evaluation Results

1) Choice of ML Classifier and Selection of 1

We perform k-fold cross-validation and evaluate the FI1-
scores to determine a suitable ML classifier for training and
the inferencing of malicious RO-based signatures in Stage 1 of
our detection framework. We select k = 5 as it is commonly
used in practice [17]. We present the performance results of the
ML classifiers in Fig. 4(a). We observe that SVM provides the
highest Fl-score. In Fig. 4(b), we observe that 1) = 14 is the
best choice for window-based partitioning of the bitstreams.

2) Analysis of RO Criticality

As shown in Table III, the best results are obtained when
we select time-domain (TD)-based malicious bitstream detec-
tion exclusively in Stage 1 and frequency-domain (FD)-based
criticality analysis particularly in Stage 2 of the pipeline. We
observe that selecting other combination of feature extraction
techniques results in poor performance metrics for the two-
stage framework. Additionally, in Table III, we highlight the

of malicious RO signatures [5]. The average -~ values for each
type of bitstream are listed in Table IV. The time overhead
during the inferencing phase is 1.1 minutes.

D. Evaluation for Other FPGA Families

For a KUO85 FPGA bitstream (size: 48251520 bytes), we
obtain 1y = 9 by hyperparameter tuning. Note that the training
and test dataset include the circuits described in Section V-A.
The evaluation (in %) of the two-stage framework on a test
dataset of 30 benign and 52 malicious bitstreams yields: A, =
91.46, TPRma = 93.33, R, = 95.45, and TN Rper, = 91.3.
The time overhead associated with the criticality assessment

of a test bitstream is less than 1 minute.
VII. CONCLUSION

We have presented a method for efficiently detecting RO-
like signatures and determining the criticality of different
RO variants implemented via FPGA configuration bitstreams.
Our method can be easily extended to other FPGA families,
with minimal modifications. The proposed two-tier ML/CNN-
based framework achieves a significantly higher classification
accuracy compared to baseline detection frameworks.

REFERENCES

[1] Amazon, “Amazon EC2 F1 Instance,” https://go.aws/3ENtUj9, 2021.
[2] K. Eguro et al., “FPGAs for trusted cloud computing,” in FPL, 2012.
[3] D. Gnad et al., “Voltage drop-based fault attacks on FPGAs using valid
bitstreams,” in FPL, 2017, pp. 1-7.
[4] J. Krautter et al., “Mitigating Electrical-level Attacks towards Secure
Multi-Tenant FPGAs in the Cloud,” ACM TRETS, vol. 12, no. 3, 2019.
[5] J. Chaudhuri et al, “Detection of malicious FPGA bitstreams using
CNN-based learning,” in ETS, 2022.
[6] M. Zhao et al., “FPGA-based remote power side-channel attacks,” Proc.
IEEE S&P, 2018.
[7] T. Sugawara et al., “Oscillator without a combinatorial loop and its threat
to FPGA in data centre,” Electronics Letters, 2019.
[8] T. Wollinger et al, “Security on FPGAs: State-of-the-art
implementations and attacks,” ACM TECS, p. 534-574, 2004.
[9] T. M. La et al., “FPGADefender: Malicious self-oscillator scanning for
Xilinx UltraScale + FPGAs,” ACM TRETS, 2020.
[10] T. Inoue et al., “Designing hardware trojans and their detection based
on a SVM-based approach,” in ASICON, 2017, pp. 811-814.
[11] J. Yang et al, “Hardware trojans detection through RTL features
extraction and machine learning,” in AsianHOST, 2021, pp. 1-4.
[12] H. Nassar et al, “Loopbreaker: Disabling interconnects to mitigate
voltage-based attacks in multi-tenant FPGAs,” in ICCAD, 2021, pp. 1-9.
[13] Xilinx, “Ultrascale architecture configuration,” https://bit.ly/3yyxvQ9 .
[14] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2010.
[15] SKlearn, “Fourier transforms,” bit.ly/3hco841.
[16] Xilinx, “AWS cloud,” https://bit.ly/3Vgx1aT.
[17] Scikit-learn, “Machine learning in Python,” https://bit.ly/30zdLBZ .
[18] A. Krizhevsky et al, “Imagenet classification with deep convolutional
neural networks,” Commun. ACM, vol. 60, no. 6, p. 84-90, 2017.

Authorized licensed use limited to: ASU Library. Downloaded on September 12,2023 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.



