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Abstract—The popularity of cloud computing has led to
increasing demand for efficient and scalable hardware. Multi-
tenant FPGAs are becoming popular because of their ability to
provide high performance and flexibility, yet being cost-effective.
While multiple tenants have the ability to configure the same
FPGA with customized modules, several security vulnerabilities
can be exploited by adversaries. Attackers can use an FPGA to
perform malicious actions, such as injecting malicious bitstreams
and launching denial-of-service attacks. We propose a two-tier
machine learning framework that first detects malicious features
from an FPGA bitstream and then performs criticality analysis
to evaluate the severity of potentially malicious ring oscillators
(ROs) configured by that bitstream. The latter step is crucial
as it ensures the security of FPGAs from voltage and power-
based attacks and also reduces the risk of inappropriately
blocking benign RO-based circuits from FPGA configuration.
The proposed framework is evaluated using a diverse set of real-
world bitstreams. We achieve an accuracy of 100% in detecting
malicious bitstreams and an accuracy of 96.55% in detecting
malicious bitstreams that are critical.

I. INTRODUCTION

Field-programmable gate-arrays (FPGAs) are often used in
applications that require high performance with customization,
such as video processing, cryptography, and deep learning.
FPGAs are now commonplace in cloud computing environ-
ments and are also being incorporated in data centers hosted
by Amazon and Microsoft [1], [2]. FPGAs offer flexibility
and enhanced performance in the implementation of complex
machine learning (ML) applications and FPGA-accelerated
services. For example, users upload their own customized
applications to cloud FPGAs. As FPGAs offer multi-tenancy,
users share a common platform where they implement their
own applications while being logically isolated from others.

While multi-tenant FPGAs offer a number of benefits, there
are several associated security risks that are of concern. Some
key security threats include fault attacks, power and voltage-
based attacks, and denial-of-service (DoS) attacks. An attacker
may activate several ROs simultaneously, causing the FPGA
to overheat, and subsequently malfunction [3].

Prior work on malicious bitstream detection has focused on
reverse-engineering (RE) of the FPGA configuration bitstream
by looking for specific patterns that indicate malicious behav-
ior [4]. However, the development of these RE tools is arduous
and complex. A promising approach is to use ML-based
techniques which detect RO-like signatures more effectively
than traditional methods. The work in [5] represents bitstreams
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as data-series images and uses a convolutional neural network
(CNN) to detect RO-like patterns from the images.

Although prior methods can efficiently detect and prevent
RO-based circuits from FPGA configuration, not much at-
tention has been devoted to determining the criticality of a
particular RO variant that is implemented by a user bitstream.
A digital circuit that performs genuine, real-life applications
can be blocked from FPGA configuration due to the presence
of RO-based circuits in its design. For example, ROs are used
in true random number generators (TRNGs) to generate secret
keys. Therefore, it is crucial to perform criticality analysis
of the incoming FPGA bitstream and determine the security
impact of the ROs implemented by that bitstream. We propose
an ML-based criticality analysis framework to assess the input
bitstreams before they are configured on an FPGA. The key
contributions of this paper are as follows:
• We present a method that can automatically detect malicious

RO-based Trojans implemented by FPGA bitstreams.
• We develop a two-stage ML-based framework that incor-

porates frequency domain-based feature extraction from the
FPGA bitstreams for malware criticality assessment.

• We devise a metric that provides a score for each bitstream
indicating its criticality, and further use this metric to
compute the criticality of RO-based Trojans that are capable
of launching power- and voltage-based attacks.

• We evaluate the effectiveness of the proposed method on a
variety of real-world bitstreams.
The remainder of the paper is organized as follows. Sec-

tion II discusses attacks on FPGA-based systems and prior
countermeasures. Section III presents the threat model. Section
IV describes the procedure of identifying RO-based signatures
from FPGA bitstreams. Section V presents the two-tier ML-
driven framework for criticality analysis of ROs. Section VI
presents experimental results. Section VII concludes the paper.

II. BACKGROUND

A. Attacks on FPGA-based Systems

One of the most important components of an FPGA-based
system is its power distribution network (PDN). The PDN sup-
plies power to all the components of the FPGA and is typically
modeled using RLC circuits. The high switching activity of
ROs can cause a large amount of current to be drawn from
the PDN, resulting in a voltage drop. The increased current
draw can lead to significant power consumption of the FPGA.

Prior work has demonstrated successful voltage-based at-
tacks on FPGAs, thus disrupting their functionality and leading
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TABLE I: Prior malicious bitstream detection methods.
Characteristics [4] [9] [12] Proposed method

Performed criticality analysis ✗ ✗ ✗ ✓
RE used ✓ ✓ ✓ ✗

Self-clocked RO detected ✗ ✓ ✗ ✓
Extra hardware needed ✗ ✗ ✓ ✗

Attacker

Victim

Module 1

FPGA Platform

Module 2

Intercept communication,
Bitstream modification

Legitimate bitstream

Malicious RO-based configuration

Fig. 1: Schematic of the threat model.

to DoS [6]. In [3], a fault attack using ROs is presented. By
carefully controlling the frequency of the RO and utilizing
only 25% of the available FPGA logic, an attacker can create
voltage fluctuations that cause the FPGA to crash. In another
approach [7], malicious non-combinational ROs based on flip-
flops and latches evade the design rule check (DRC) and are
carried out for Amazon Web Services (AWS) instances.
B. Countermeasures

In [4], the Yosys tool is extended to detect combinational
cycles in technology-mapped netlists obtained through reverse-
engineering of FPGA bitstreams. However, the reverse-
engineering of bitstreams is a time-consuming procedure. For
example, a simple bitstream performing only partial reconfigu-
ration may take a few hours to reverse engineer whereas a full
bitstream performing more complex tasks (e.g., data analysis)
could take days or even weeks to reverse engineer [8]. The
work in [9] analyzes netlist graphs obtained from bitstreams
for malicious patterns such as combinational cycles, hidden
ROs, and self-oscillating circuits. However, the procedure
of generating a netlist graph from a bitstream can take a
considerable amount of time depending on the complexity
of the design. Table I summarizes the limitations of existing
methods for malicious bitstream detection and also highlights
our contributions. ML-based approaches have also been used
to detect hardware Trojans. The work in [10] [11] learns
features that are extracted from Trojan-inserted and Trojan-
free netlists using an ML classifier.

III. THREAT MODEL

The threat model is illustrated in Fig. 1. We assume that
an attacker can configure an FPGA with malicious RO-based
circuits. The FPGA supports time-based multi-tenancy i.e., a
single user has access to the FPGA at a time. The circuits
have the potential to cause overheating and DoS in the FPGA.
An attacker may also intercept the communication between
a legitimate user and the deployed FPGA, and modify the
bitstream that configures the FPGA. This can be done by either
physically altering the bitstream, or by using a software tool to
modify the bitstream before it is downloaded to the FPGA. Our
proposed ML-based bitstream detection framework is executed
off-chip and is assumed to be physically accessible only to
authorized users. Hence, an adversary will not be able to
tamper the detection framework. As explained in [13], the

FPGA first decrypts the incoming FPGA bitstream before it is
configured. Therefore, in this work, we evaluate our proposed
classification framework specifically on decrypted bitstreams.

IV. LEARNING MALICIOUS SIGNATURES USING ML
A. Data Pre-processing

We assume without loss of generality that the FPGA bit-
streams are generated as .bin files. While full bitstreams can
be used to train ML models, they have a few limitations.
First, due to their large size, full bitstreams can lead to higher
training times for the ML classifier. Second, in a full bitstream,
many bytes are either unused or have no effect on the output
functionality, making it difficult for the ML model to learn
specific patterns [14]. Alternatively, training the ML models
on window-based partitioned bitstreams to identify malicious
signatures significantly reduces the training time. Since we
aim to identify specific windows from a given bitstream that
correspond to possible RO-based patterns, we propose dividing
a bitstream into a set of ψ windows. Since the size of a
Xilinx Ultrascale FPGA bitstream is 128966372 bytes, the
size of each window n = ⌈ 128966372

ψ ⌉. For a given number
of windows ψ, we train ψ equivalent ML classifiers. For
training each classifier, we first partition the bitstreams in
the dataset into ψ windows. Next, we store the partitioned
bitstreams as Numpy (.npy) arrays. Let us denote the ith

window by ϕiψ, 1 ≤ i ≤ ψ. We train the ith ML classifier
on the window ϕiψ extracted from the dataset of benign and
malicious bitstream arrays. Evaluation results for the choice
of ψ are provided in Section VI.
B. Importance of Criticality Assessment of RO-based Designs

The criticality of a bitstream is determined by the amount of
malicious behavior that can be caused by the ROs implemented
by that bitstream. The number of ROs and the frequency of
the ROs implemented by the bitstream affect how critical the
bitstream is. The criticality analysis of a bitstream can help in
reducing the risk of inappropriately blocking benign RO-based
circuits from FPGA configuration. A metric for evaluating the
criticality of a given bitstream is presented in Section VI-B.
This metric can help us to identify which bitstreams are more
likely to cause harm to the FPGA.

The proposed approach is based on CNNs to learn features
extracted from the frequency-domain representation of the
FPGA bitstreams. One of the most popular feature extraction
techniques is Fast Fourier transform (FFT) [15]. FFT is a
useful tool for exploratory analysis and can be used for
detecting malicious patterns in FPGA bitstreams.

V. PROPOSED CRITICAL ASSESSMENT FRAMEWORK

Before the FPGA is configured, the bitstream is fed to our
classification framework to determine the criticality of the RO-
based circuit implemented by that bitstream. Fig. 2 illustrates
the proposed two-tier framework.
A. Data Generation

We evaluate the proposed method on bitstreams implement-
ing a diverse set of real-world benign and malicious designs.
For our experiments, we target the Xilinx Virtex Ultrascale
(VU440) and Kintex Ultrascale (KU085) FPGA boards. These
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Fi g. 2: M et h o d ol o g y us e d f or criti c alit y a n al ysis of R Os t h at ar e c o n fi g ur e d o n m ulti-t e n a nt F P G As.

F P G As ar e us e d i n m a n y r e al- w orl d a p pli c ati o ns, s u c h as hi g h-
p erf or m a n c e c o m p uti n g, n et w or ki n g, a n d d at a st or a g e [ 1 6].

B e ni g n bitst r e a ms : T h es e bitstr e a ms i m pl e m e nt A E S c or es,
mi cr o pr o c ess ors, V G A O p e n c or es, L C D c o ntr oll ers, a n d I S-
C A S ’ 8 5, I T C ’ 9 9, a n d E P F L b e n c h m ar k cir c uits.

M ali ci o us bitst r e a ms : I n t his w or k, w e d e fi n e a m ali ci o us
bitstr e a m as a bitstr e a m t h at c o nt ai ns R O- b as e d si g n at ur es.
H o w e v er, as dis c uss e d i n S e cti o n I V, a n R O- b as e d d esi g n m a y
n ot b e criti c al t o t h e F P G A it is c o n fi g ur e d u p o n. I n ot h er
w or ds, all criti c al bitstr e a ms ar e m ali ci o us b ut all m ali ci o us
bitstr e a ms mi g ht n ot b e criti c al.
• Criti c al bitstr e a ms : We i m pl e m e nt e d si m pl e R Os, l o o p-fr e e

R Os (i n cl u di n g l at c h e d a n d s elf- cl o c k e d os cill at ors), st a g e d
R Os, a n d c o n diti o n al R Os. We e ns ur e t h at t h e n u m b er of
st a g es of t h es e R Os ar e c o nsist e nt wit h t h e n u m b er of R O
cir c uits t h at ar e us e d t o l a u n c h v olt a g e- b as e d att a c ks i n [ 3].

• N o n- criti c al bitstr e a ms : T h es e bitstr e a ms i m pl e m e nt s e v er al
v ari a nts of T R N Gs a n d p h ysi c all y u n cl o n a bl e f u n cti o ns
( P U Fs). Alt h o u g h t h es e bitstr e a ms i n cl u d e R Os, t h e y ar e
n ot h ar mf ul w h e n a ct u all y pl a c e d o n t h e F P G A.

B. First St a g e: D et e cti o n of M ali ci o us Si g n at ur es
1) S el e cti o n of M L m o d el
N e xt, w e s el e ct a s uit a bl e cl assi fi er f or tr ai ni n g a n d e v al u a-

ti o n p ur p os es b as e d o n t h e F 1-s c or e. We e v al u at e t h e f oll o wi n g
s u p er vis e d M L m o d els [ 1 7]: 1) R a n d o m F or est ( R F), 2) S u p-
p ort Ve ct or M a c hi n e ( S V M), 3) e Xtr e m e Gr a di e nt B o osti n g
( X G B), a n d 4) M ultil a y er P er c e ptr o n ( M L P).

2) Tr ai ni n g a n d I nf er e n ci n g wit h Pr e- Tr ai n e d M L M o d el
Aft er o bt ai ni n g a s uit a bl e M L cl assi fi er, w e tr ai n ψ s u c h

cl assi fi ers, n a m el y ζ i , w h er e 1 ≤ i ≤ ψ , a c c or di n g t o t h e
pr o c e d ur e e x pl ai n e d i n S e cti o n I V. F or V U 4 4 0 bitstr e a ms, t h e
n u m b er of i n p ut f e at ur es t o ζ i is ⌈ 1 2 8 9 6 6 3 7 2

ψ ⌉ . We e m pl o y
h y p er- p ar a m et er t u ni n g t o i m pr o v e t h e tr ai n a bilit y of o ur
m o d el i n l e ar ni n g R O- b as e d si g n at ur es fr o m t h e d at as et. T o
r u n ζ i i n t h e e v al u ati o n m o d e f or i nf er e n ci n g, w e s plit t h e
bitstr e a m i nt o ψ wi n d o ws of e q u al si z e a n d p ass e a c h of
t h e wi n d o ws t hr o u g h t h e ψ M L cl assi fi ers. Gi v e n a wi n d o w
ϕ i

ψ , t h e cl assi fi er ζ i r et ur ns a c o n fi d e n c e s c or e S 1
i , s u c h t h at:

0 ≤ S 1
i ≤ 1 , 1 ≤ i ≤ ψ . We s p e ci fi c all y c al c ul at e t h e S 1

i

v al u es as t h e y ar e a m e as ur e of t h e a c c ur a c y of a n M L m o d el’s
pr e di cti o ns. A hi g h er c o n fi d e n c e s c or e S 1

i s u g g ests t h at t h e it h

wi n d o w m or e li k el y c o nt ai ns m ali ci o us R O- b as e d si g n at ur es.
We c oll e ct all s u c h m ali ci o us wi n d o ws a n d t h eir c orr es p o n di n g
S 1

i v al u es, a n d p ass t h e m t o St a g e 2 f or criti c alit y cl assi fi c ati o n
a n d e v al u ati o n.
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Fi g. 3: F F T- e n c o d e d i m a g es of: ( a) Criti c al R O; ( b) T R N G.

C. S e c o n d St a g e: R O Criti c alit y Ass ess m e nt

1) D at a C oll e cti o n
We st or e t h e m ali ci o us wi n d o ws e xtr a ct e d fr o m t h e first

st a g e of t h e d et e cti o n pi p eli n e as c o m m a-s e p ar at e d v al u es
( C S V) fil es. N e xt, w e a p pl y F F T t o c o n v ert t h e C S V fil es
i nt o t h e fr e q u e n c y d o m ai n. T h e F F T- e n c o d e d i m a g es c orr e-
s p o n di n g t o e x a m pl es of a criti c al a n d a n o n- criti c al cir c uit
ar e ill ustr at e d i n Fi g. 3( a) a n d Fi g. 3( b), r es p e cti v el y.

2) N e ur al N et w or k Ar c hit e ct ur e
We a p pl y a C N N- b as e d d et e cti o n a p pr o a c h t o p erf or m

criti c alit y ass ess m e nt o n F F T- e n c o d e d i m a g es. We r es h a p e
t h e e n c o d e d i m a g es t o 2 2 4 × 2 2 4 arr a ys b ef or e m o d el tr ai ni n g.
N ot e t h at w e tr ai n t h e St a g e 2 m o d el o n o nl y t h e criti c al a n d
n o n- criti c al m ali ci o us bitstr e a ms. T h e C N N ar c hit e ct ur e us e d
i n o ur e x p eri m e nts h as fi v e c o n v ol uti o n al l a y ers a n d fi v e m a x-
p o oli n g l a y ers, f oll o w e d b y a f ull y- c o n n e ct e d l a y er. We us e t h e
R e L U a n d S oft m a x a cti v ati o n f u n cti o ns i n t h e f ull y- c o n n e ct e d
l a y er. W hil e R e L U r e d u c es t h e ris k of o v er fitti n g, S oft m a x
all o ws b ett er g e n er ali z ati o n of t h e i n p ut d at a a n d r o b ust n ess
t o o utli ers t h a n ot h er a cti v ati o n f u n cti o ns [ 1 8].

VI. E X P E R I M E N T A L R E S U L T S

A. E x p eri m e nt al S et u p
We i m pl e m e nt t h e b e ni g n a n d m ali ci o us cir c uits i n Veril o g

a n d g e n er at e bitstr e a ms c orr es p o n di n g t o t h es e cir c uits usi n g
Xili n x Vi v a d o 2 0 1 8. 2. We us e P yt h o n 3. 4 t o b uil d t h e M L
a n d C N N m o d els. T h e tr ai ni n g a n d i nf er e n ci n g of t h e M L
a n d C N N m o d els ar e r u n o n a 2. 4 G H z I nt el X e o n G ol d 5 1 1 5
C P U wit h 7 6 8 G B of R A M. T h e s el e ct e d h y p er p ar a m et ers f or
t h e t w o-st a g e fr a m e w or k ar e list e d i n Ta bl e II.

We g e n er at e 1 5 0 b e ni g n bitstr e a ms a n d 1 5 6 m ali ci o us bit-
str e a ms f or t h e V U 4 4 0 b o ar d. T o e ns ur e t h at t h es e bitstr e a ms
ar e di v ers e a n d s uf fi ci e nt, w e i m pl e m e nt a v ari et y of m ali ci o us
cir c uits as w ell as b e ni g n s a m pl es t h at ar e d e pl o y e d i n r e al-
lif e a p pli c ati o ns [ 3] [ 4] [ 6]. We r a n d o ml y s plit t h e b e ni g n
a n d m ali ci o us bitstr e a ms i nt o tr ai ni n g a n d t est d at as ets i n t h e
r ati o 7 0: 3 0. T h er ef or e, t h e tr ai ni n g d at as et c o nsists of 2 1 4
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T A B L E II: B est h y p er p ar a m et ers f or t h e s el e ct e d cl assi fi ers.
Cl assi fi er S el e ct e d h y p er- p ar a m et ers

S V M C = 1 0 0 , k er n el: R B F
C N N L oss: C at e g ori c al cr oss e ntr o p y, O pti mi z er: R M S Pr o p,
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Fi g. 4: ( a) F 1-s c or e of t h e M L cl assi fi ers aft er k -f ol d cr oss-
v ali d ati o n ( b) D et er mi ni n g t h e b est v al u e of ψ usi n g S V M.

bitstr e a ms a n d t h e t est d at as et c o m pris es of 9 2 bitstr e a ms.
T h e bitstr e a ms i n t h e e v al u ati o n d at as et i n cl u d e 3 4 b e ni g n
bitstr e a ms, 2 9 m ali ci o us a n d criti c al bitstr e a ms, a n d 2 9 n o n-
criti c al m ali ci o us bitstr e a ms.
B. E v al u ati o n M etri cs
• T P R m al is t h e p er c e nt a g e of m ali ci o us bitstr e a ms t h at ar e

c orr e ctl y cl assi fi e d as m ali ci o us. T N R b e n is t h e p er c e nt-
a g e of m ali ci o us n o n- criti c al bitstr e a ms t h at ar e c orr e ctl y
i d e nti fi e d as n o n- criti c al.

• Cl assi fi c ati o n a c c ur a c y ( A c ) is t h e r ati o of t h e n u m b er of
c orr e ct pr e di cti o ns t o t h e t ot al n u m b er of pr e di cti o ns.

• F or a n i n p ut bitstr e a m, t h e criti c alit y m etri c γ is f or m ul at e d
as: γ = S 1

k × S 2 , 1 ≤ k ≤ ψ , 0 ≤ γ ≤ 1 , w h er e S 1
k is

t h e hi g h est c o n fi d e n c e s c or e ( c orr es p o n di n g t o t h e wi n d o w
ϕ k

ψ ) r et ur n e d b y t h e St a g e 1 M L cl assi fi ers a n d S 2 is t h e
c o n fi d e n c e s c or e ass o ci at e d wit h t h e l a b el (i. e., criti c al or
n o n- criti c al) pr e di ct e d b y t h e St a g e 2 C N N m o d el. Aft er
r u n ni n g si m ul ati o ns o n a v ari et y of t est bitstr e a ms ( b e ni g n
a n d m ali ci o us), w e c o n cl u d e t h at a bitstr e a m wit h γ > 0 .7
is criti c al. I n g e n er al, γ c a n b e d et er mi n e d o n t h e b asis of
t h e d at a us e d f or tr ai ni n g t h e C N N m o d el.

• R c is t h e p er c e nt a g e of criti c al bitstr e a ms t h at ar e c orr e ctl y
cl assi fi e d as criti c al.

C. O v er all Tr ai ni n g a n d E v al u ati o n R es ults

1) C h oi c e of M L Cl assi fi er a n d S el e cti o n of ψ
We p erf or m k -f ol d cr oss- v ali d ati o n a n d e v al u at e t h e F 1-

s c or es t o d et er mi n e a s uit a bl e M L cl assi fi er f or tr ai ni n g a n d
t h e i nf er e n ci n g of m ali ci o us R O- b as e d si g n at ur es i n St a g e 1 of
o ur d et e cti o n fr a m e w or k. We s el e ct k = 5 as it is c o m m o nl y
us e d i n pr a cti c e [ 1 7]. We pr es e nt t h e p erf or m a n c e r es ults of t h e
M L cl assi fi ers i n Fi g. 4( a). We o bs er v e t h at S V M pr o vi d es t h e
hi g h est F 1-s c or e. I n Fi g. 4( b), w e o bs er v e t h at ψ = 1 4 is t h e
b est c h oi c e f or wi n d o w- b as e d p artiti o ni n g of t h e bitstr e a ms.

2) A n al ysis of R O Criti c alit y
As s h o w n i n Ta bl e III, t h e b est r es ults ar e o bt ai n e d w h e n

w e s el e ct ti m e- d o m ai n ( T D)- b as e d m ali ci o us bitstr e a m d et e c-
ti o n e x cl usi v el y i n St a g e 1 a n d fr e q u e n c y- d o m ai n ( F D)- b as e d
criti c alit y a n al ysis p arti c ul arl y i n St a g e 2 of t h e pi p eli n e. We
o bs er v e t h at s el e cti n g ot h er c o m bi n ati o n of f e at ur e e xtr a cti o n
t e c h ni q u es r es ults i n p o or p erf or m a n c e m etri cs f or t h e t w o-
st a g e fr a m e w or k. A d diti o n all y, i n Ta bl e III, w e hi g hli g ht t h e

T A B L E III: E v al u ati o n r es ults usi n g diff er e nt fr a m e w or ks.

Fr a m e w or k St a g e 1 St a g e 2
A c ( %) T P R m a l ( %) R c ( %) T N R b e n ( %)

T D ( 1) + T D ( 2) 9 6. 7 3 1 0 0 8 2. 7 8 5. 1 8
T D ( 1) + F D ( 2) 9 6. 7 3 1 0 0 9 6. 5 5 1 0 0
F D ( 1) + T D ( 2) 4 0. 2 5 5. 1 7 4 8. 2 7 6 2. 0 6
F D ( 1) + F D ( 2) 4 0. 2 5 5. 1 7 6 5. 5 4 4. 8 2
Pri or w or k [ 5] 9 3. 4 7 9 4. 8 2 7 6. 9 2 7 9. 3 1

T A B L E I V: E v al u ati o n of γ f or t est bitstr e a ms.
T y p e C o u nt A v g. v al u e of γ

B e ni g n 3 4 0. 0 0 8
M ali ci o us b ut n o n- criti c al 2 9 0. 1 1 5

M ali ci o us a n d criti c al 2 9 0. 8 6 3

str e n gt h of t h e pr o p os e d m et h o d o v er pri or w or k o n d et e cti o n
of m ali ci o us R O si g n at ur es [ 5]. T h e a v er a g e γ v al u es f or e a c h
t y p e of bitstr e a m ar e list e d i n Ta bl e I V. T h e ti m e o v er h e a d
d uri n g t h e i nf er e n ci n g p h as e is 1. 1 mi n ut es.

D. E v al u ati o n f or Ot h er F P G A F a mili es

F or a K U 0 8 5 F P G A bitstr e a m (si z e: 4 8 2 5 1 5 2 0 b yt es), w e
o bt ai n ψ = 9 b y h y p er p ar a m et er t u ni n g. N ot e t h at t h e tr ai ni n g
a n d t est d at as et i n cl u d e t h e cir c uits d es cri b e d i n S e cti o n V- A.
T h e e v al u ati o n (i n %) of t h e t w o-st a g e fr a m e w or k o n a t est
d at as et of 3 0 b e ni g n a n d 5 2 m ali ci o us bitstr e a ms yi el ds: A c =
9 1 .4 6 , T P Rm al = 9 3 .3 3 , Rc = 9 5 .4 5 , a n d T N R b e n = 9 1 .3 .
T h e ti m e o v er h e a d ass o ci at e d wit h t h e criti c alit y ass ess m e nt
of a t est bitstr e a m is l ess t h a n 1 mi n ut e.

VII. C O N C L U S I O N

We h a v e pr es e nt e d a m et h o d f or ef fi ci e ntl y d et e cti n g R O-
li k e si g n at ur es a n d d et er mi ni n g t h e criti c alit y of diff er e nt
R O v ari a nts i m pl e m e nt e d vi a F P G A c o n fi g ur ati o n bitstr e a ms.
O ur m et h o d c a n b e e asil y e xt e n d e d t o ot h er F P G A f a mili es,
wit h mi ni m al m o di fi c ati o ns. T h e pr o p os e d t w o-ti er M L/ C N N-
b as e d fr a m e w or k a c hi e v es a si g ni fi c a ntl y hi g h er cl assi fi c ati o n
a c c ur a c y c o m p ar e d t o b as eli n e d et e cti o n fr a m e w or ks.
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