

1 **Title:** Regulation of a surface chlorophyll hotspot by wind-driven upwelling and eddy circulation
2 in the Santa Barbara Channel, Southern California

3

4 **Authors:** Rachel D. Simons^{1*} and Dylan Catlett²

5

6 ¹ Earth Research Institute, University of California, Santa Barbara, CA, USA

7 ² Woods Hole Oceanographic Institution, Wood Hole, MA, USA

8 * Corresponding Author. Address: Email address: simons@eri.ucsb.edu

9

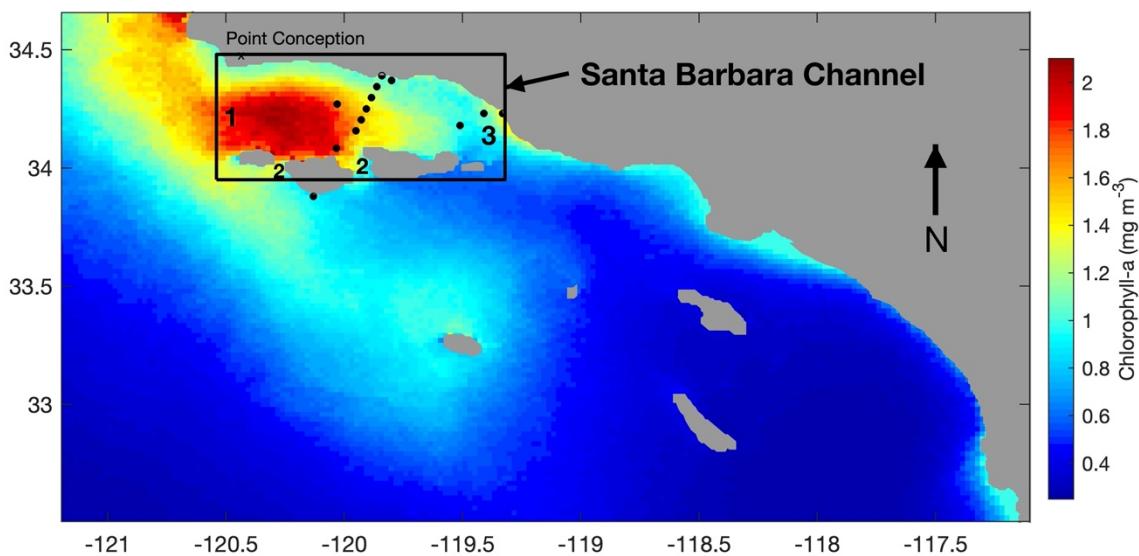
10 **Keywords:** upwelling, eddies, chlorophyll, phytoplankton, ROMS, nitrogen

11

12 **Abstract**
13

14 While most of the U.S. Pacific coast is dominated by strong wind-driven upwelling in the spring
15 and regular seasonal cycles of phytoplankton primary production, the Southern California Bight
16 has weak intermittent wind-driven upwelling and low phytoplankton concentrations due to its
17 irregular sheltered coastline. However, the Santa Barbara Channel (SBC), located in the
18 northern Southern California Bight, contains an anomalous hotspot of phytoplankton biomass.
19 We use 3D ocean circulation and particle tracking models, an empirical temperature-nitrate
20 relationship, and satellite observations of surface chlorophyll from 1998 to 2007 to determine
21 how wind-driven upwelling and cyclonic eddy circulation govern phytoplankton dynamics in the
22 SBC. Our findings show that elevated surface chlorophyll in the spring is driven by the coupling
23 of wind-driven upwelling and cyclonic eddy circulation and requires the presence of both high
24 nitrate from wind-driven upwelling and prolonged residence times from eddy circulation. Long
25 residence times, created by persistent cyclonic eddy circulation, allow nitrate transported into
26 the surface layer by wind-driven upwelling to be retained in the SBC long enough to meet the
27 required timescales for phytoplankton nutrient uptake and accumulation, overcoming the
28 typically weak wind-driven upwelling of the Southern California Bight. Typical spring upwelling
29 periods (SUPs) have high levels of surface chlorophyll, which are produced by the balanced
30 coupling of upwelling strength and cyclonic eddy circulation. For two years of our study, 1998
31 and 1999, the SUP did not correlate with elevated surface chlorophyll. Corresponding to a
32 strong El Niño event, the 1998 SUP had exceptionally weak wind-driven upwelling, which did
33 not produce sufficient levels of nitrate to stimulate elevated surface chlorophyll. For the 1999
34 SUP, a strong La Niña event produced unusually strong wind-driven upwelling, which resulted in
35 very high levels of nitrate, but suppressed eddy circulation and residence times to the point
36 where phytoplankton biomass could not accumulate in the SBC. These anomalous SUPs
37 illustrate that when wind-driven upwelling is too strong or weak, the balance between wind-
38 driven upwelling and cyclonic eddy circulation is disrupted, resulting in a dramatic reduction of

39 surface chlorophyll, which may become more frequent with climate-driven upwelling changes in
40 the future.


41 **1.0 Introduction**

42 While continental margins contain only a fraction of the world's oceans, they have been
43 estimated to produce 10-15% of the global primary production (Thunell et al. 2007; Fennel and
44 Wilkin 2009; Levin et al. 2015). Eastern boundary upwelling systems (EBUSs), which include
45 the California EBUS, are among the most productive continental margin ecosystems in the
46 world and are of particular concern as they are being increasingly impacted from climate
47 change, the harvesting of marine resources, and coastal development (Levin et al. 2015).
48 Encompassing the west coast of the United States, the California EBUS is one of the largest
49 EBUSs in the world and is defined by a seasonal cycle of primary production. Wind-driven
50 upwelling in the California EBUS is strongest in the spring and early summer when alongshore
51 winds drive offshore Ekman transport and nutrients are vertically transported into the surface
52 layer stimulating primary production (Legaard and Thomas 2006; Henson and Thomas 2007;
53 García-Reyes and Largier 2012). Messie and Chavez (2015) found that in addition to nutrient
54 supply, physical export of nutrients is an important regulator of primary production in the
55 California EBUS. Physical export can limit primary production if nutrients introduced to the
56 surface layer are transported off the shelf before uptake by phytoplankton can occur. Thus, to
57 understand the variability of primary production in EBUSs, the physical processes that retain
58 nutrients in the surface layer on the shelf need to be understood (Lachkar and Gruber 2011;
59 Messié and Chavez 2015).

60 Located in the southern region of the California EBUS is the Southern California Bight
61 (SC Bight, Fig. 1), which encompasses the southern California coast and the eight Channel
62 Islands. While most of the California EBUS is dominated by strong spring upwelling and regular
63 seasonal cycles of primary production, the SC Bight has weak, intermittent upwelling due to its
64 irregular, sheltered coastline, which results in low levels of primary production year round
65 (Winant and Dorman 1997; Dorman and Winant 2000). However, the Santa Barbara Channel
66 (SBC), located within the northern SC Bight, regularly contains anomalously high phytoplankton

67 biomass and primary productivity compared to the rest of the SC Bight (Fig. 1, Mantyla et al.
68 1995; Henderikx Freitas et al. 2017; Santora et al. 2017). Due in part to this unusually
69 productive environment, the SBC supports a uniquely biodiverse ecosystem of extensive kelp
70 forests, intertidal habitats, and sandy beaches along with large populations of seabirds, marine
71 mammals, fishes, and plankton (Beers et al. 1986; Fiedler et al. 1998; Miller et al. 2011; Dugan
72 and Hubbard 2016).

73

74
75 **Figure 1:** Mean surface chlorophyll-a concentrations (mg m^{-3}) in the Southern California Bight
76 from satellite data (Kahru et al. 2012, 2015, <http://spg-satdata.ucsd.edu>). Location of the Santa
77 Barbara Channel (SBC) is identified by the black box. SBC boundaries are identified as 1-West,
78 2-South, and 3-East. The solid black circles show the sample locations of the CalCOFI and
79 UCSB Plumes and Blooms programs.

80
81 The SBC is a 50 km wide, 100 km long, and 500 m deep basin, which is bounded to the
82 north by the Southern California coast and the south by the Northern Channel Islands (Fig. 1).
83 To the north of the SBC, the oceanographic regime is characterized by the cold, nutrient-rich
84 waters of the southward flowing California Current (CC), which can extend up to 1,000 km
85 offshore (Hickey 1993; Bray et al. 1999). To the south of the SBC, the oceanographic regime is
86 dominated by the warm, nutrient-poor waters of the northward flowing Southern California

87 Countercurrent (SCC, Hickey 1993; Bray et al. 1999). The SBC is the transition zone where
88 these two regimes meet, creating a dynamic physical and biological environment.

89 The two dominant circulation patterns associated with phytoplankton accumulation in the
90 SBC are wind-driven upwelling and cyclonic eddy circulation (Anderson et al. 2006; Brzezinski
91 and Washburn 2011; Matson et al. 2019). For this paper, wind-driven upwelling will be referred
92 to as “upwelling”, and cyclonic eddy circulation as “eddy circulation”. Driven by persistent,
93 steady winds from the west, upwelling occurs along the mainland coast of the SBC and is
94 strongest in the spring and early summer (Winant and Dorman 1997; Harms and Winant 1998;
95 Melton et al. 2009). Upwelling also occurs in the SBC in the late summer and early fall, but is
96 frequently interrupted by wind reversals, which transport warm nutrient poor waters back
97 towards the coastline (Washburn and McPhee-Shaw 2013). McPhee-Shaw et al. (2007)
98 estimated that spring upwelling accounted for $70\% \pm 15\%$ of the total annual nutrient delivery to
99 the inner-shelf. During spring upwelling, large phytoplankton blooms, covering more than 50%
100 of the SBC, are observed, but smaller blooms can occur at any time during the year (Otero and
101 Siegel 2004; Santoro et al. 2010). Similar to the California EBUS, upwelling intensity in the SBC
102 is affected by the El Niño Southern Oscillation (ENSO) with strong El Niño events suppressing
103 upwelling and strong La Niña events enhancing it (Schwing et al. 2000; Jacox et al. 2018).

104 Eddy circulation is present periodically throughout the year in the western SBC and
105 ranges in diameter from 5 to 40 km, at times penetrating down to 300 m. Eddy circulation
106 occurs when a poleward pressure gradient balances equatorward wind stress (Harms and
107 Winant 1998; Dever et al. 1998; Oey et al. 2004) and persists for an average of two weeks,
108 ranging from a few days to months depending on ocean conditions (Nishimoto and Washburn
109 2002; Beckenbach and Washburn 2004). Eddy circulation is also affected by the ENSO. When
110 El Niño conditions cause atypically weak upwelling and wind relaxation, the equatorward wind
111 stress balances the poleward pressure gradient for unusually long periods of time allowing eddy
112 circulation to persist for months. In contrast, La Niña conditions cause unusually strong

113 equatorward wind stress, which dominates the poleward pressure gradient and does not allow
114 stable eddy circulation to form (Nishimoto and Washburn 2002; Simons et al. 2015).

115 Based on a field study of water column measurements from 16 seasonal channel-wide
116 cruises, Brzezinski and Washburn (2011) found that 80% of the variability in phytoplankton
117 primary production was explained by the presence of upwelling and eddy circulation. Through
118 their work along with Anderson et al. (2006), Krause et al. (2013), and Simons et al. (2015), the
119 following hypotheses were proposed connecting upwelling and eddy circulation to the
120 anomalously high primary production in the SBC. Nutrient-rich water is introduced into the
121 surface layer of the SBC by three processes; (1) upwelling along the mainland coast, (2)
122 advection of upwelled water from the west into the southern SBC by eddy circulation, and (3)
123 eddy circulation through the uplift of isopycnals, also known as eddy pumping (McGillicuddy
124 2016). After these processes occur, eddy circulation retains nutrient-rich water in the SBC by
125 creating an environment of long residence times, allowing phytoplankton to accumulate.

126 In this study, we integrate a high-resolution 3D Regional Ocean Modeling System
127 (ROMS) with satellite and field observations to determine the interactive roles of upwelling, eddy
128 circulation, and nutrient transport in regulating mesoscale phytoplankton blooms in the SBC.
129 The ROMS is used to identify the presence and strength of upwelling and eddy circulation in the
130 SBC over a 10-year period from 1998-2007. Driven by the ROMS, a 3D particle tracking model
131 is used to estimate residence time and the source location of water in the SBC. Surface
132 chlorophyll-a concentrations from satellite data are used as a proxy for phytoplankton biomass.
133 We compare mean decadal, annual, and interannual patterns of modeled upwelling, eddy
134 circulation, nutrient availability, source water location, and residence times to surface
135 chlorophyll-a concentrations.

136

137 **2.0 Methods**

138 ***2.1 Ocean circulation modeling and eddy detection***

139 The 3D ocean circulation model used for this study was a high-resolution Regional
140 Ocean Modeling System (ROMS) applied to the SC Bight (Shchepetkin and McWilliams 2005;
141 Dong and McWilliams 2007; Dong et al. 2009). Our analysis was conducted on 6-hr averaged
142 offline solutions of velocity and temperature from the ROMS for 1998-2007. The model domain,
143 shown in Fig. 1, contains the SC Bight, which includes the SBC. The model grid spans a
144 latitude of 32°17' N to 34°45' N and a longitude of 117°06' W to 121°12' W with 1 km horizontal
145 resolution and 40 vertical levels. The model has been validated for seasonal, annual, and
146 interannual mesoscale circulation (Dong et al. 2009; Ohlmann and Mitarai 2010) and has
147 successfully reproduced upwelling events in the SC Bight (Dong et al. 2011) and the interannual
148 variability of eddy circulation in the SBC (Simons et al. 2015). As shown in Fig. 1, our study
149 area is the SBC, which spans a latitude of 33°57' N to 34°29' N and a longitude of 119°20' W to
150 120°34' W.

151 Since our goal is to determine how upwelling and eddy circulation regulate surface
152 chlorophyll-a concentrations in the SBC, we focus on the SBC surface layer defined as the top
153 30 m of the water column. This definition is based on depth measurements of the SBC euphotic
154 zone of $24\text{ m} \pm 9.5\text{ m}$ from Brzezinski and Washburn (2011) and observations by Krause et al.
155 (2013), which showed that 30 m is generally near or below the base of the surface layer.
156 Venrick (1998) also observed that chlorophyll in the SBC was consistently concentrated in the
157 upper 25 m of the water column.

158 Using the ROMS, eddy circulation in the SBC was quantified using an eddy detection
159 algorithm developed by Nencioli et al. (2010). This eddy detection algorithm was developed
160 using vector geometry and identifies the center, shape, lifespan, and trajectory of all eddies in
161 horizontal flow fields. In previous work, this algorithm has been successfully applied to the
162 ROMS solutions used in the study (Nencioli et al. 2010; Dong et al. 2012; Simons et al. 2015)
163 and to field observations of eddies in the South China Sea (Chen et al. 2011; Wang et al. 2021)

164 and the North Pacific Ocean (Liu et al. 2012). For this analysis, the algorithm was applied to
165 horizontal velocity fields from the ROMS solutions that were depth-averaged over the surface
166 layer, the top 30 m of the water column, and provided a dataset of eddy presence, location,
167 size, and lifespan every six-hours for the 10-year modeling period of 1998-2007.

168 **2.2 Estimating residence time and source water zone with particle tracking**

169 To estimate the residence time and source location of water in the SBC, a 3D particle
170 tracking model (PTM) was used. Driven by the stored flow fields from the ROMS, the PTM used
171 tri-linear interpolation to identify the velocity of the particles within a grid cell and then moved the
172 particles in time using a fourth-order accurate Adams-Bashforth-Moulton predictor-corrector
173 method (Carr et al. 2008; Mitarai et al. 2009). Particles were released daily throughout the SBC
174 surface layer horizontally on a 1 km² grid and vertically every 5 m from 5 m to 30 m below the
175 surface. Particles were tracked passively forward and backwards in time in separate simulations
176 for 60 days, resulting in 54,744 particles released daily and a total of 199.8 million particles
177 tracked for the 10-year modeling period.

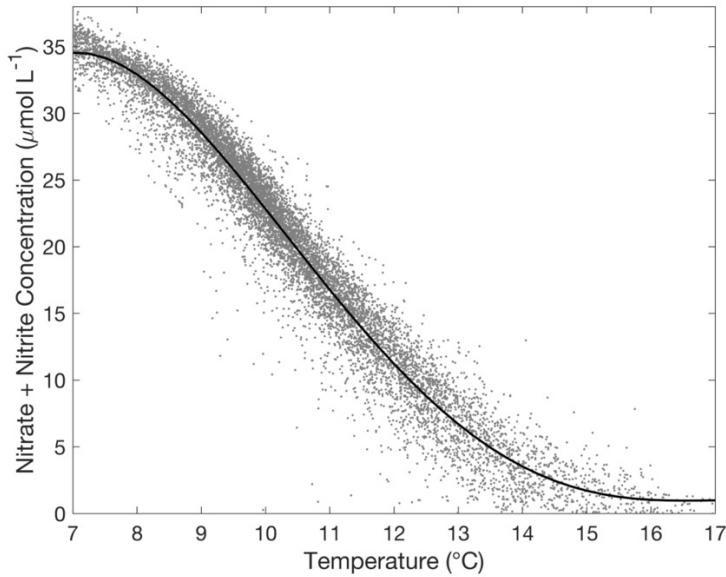
178 The forward particle tracking simulations were used to calculate residence time in the
179 SBC. First, the horizontal location and tracking time for all particles released over the previous
180 60 days were identified for each day of the 10-year modeling period. Then, the mean tracking
181 time of the particles located within each grid cell (1 km²) was calculated for all grid cells in the
182 SBC. This method created a 2D distribution of mean tracking times or residence time (RT) for
183 each day of the modeling period where RT represented the mean length of time that particles
184 remained within a grid cell. The residence time within the eddy (RT_{eddy}) was determined using
185 the eddy detection scheme to identify the horizontal area of the eddy and then averaging the RT
186 over the eddy's area.

187 The reverse particle tracking simulations were used to calculate the percentage of water
188 in the SBC surface layer coming from four different source water zones: West, East, South, and
189 SBC. The source water zone of a particle was defined by the boundary, West, East, or South

190 (Fig. 1), where the particle first entered the SBC. The particles that entered the SBC through
191 the West boundary were assumed to originate from the CC and through the East boundary were
192 assumed to originate from the SCC. The particles that remained in the SBC during the 60-day
193 reverse tracking time were identified as originating from the SBC. Particles that entered the
194 SBC through the South boundary could have come from either the CC or the SCC. These
195 calculations provided the daily percentage of water in the SBC originating from each of the four
196 source water zones.

197 ***2.2 Satellite observations of surface chlorophyll***

198 To quantify the spatial and temporal patterns of chlorophyll concentrations in the SBC,
199 satellite-derived five-day composites of surface chlorophyll-a concentrations (Chl) with 1 km²
200 resolution from 1998-2007 were used. The Chl data set was derived from three ocean color
201 sensors, SeaWiFS, MODIS-Aqua, MODIS-Terra, and MERIS, assembled by the Scripps
202 Photobiology Group at U.C. San Diego (Kahru et al. 2012, 2015, <http://spg-satdata.ucsd.edu>)
203 and has been used in many studies of the California Current System (e.g. Kahru et al. 2012;
204 McClatchie et al. 2016; Jacox et al. 2016b). Chl was used as a proxy for phytoplankton biomass
205 in this study. While known biases can arise in the relationships between Chl and phytoplankton
206 carbon biomass due to variability in phytoplankton physiological status, it is generally thought
207 that phytoplankton biomass is the first-order determinant of Chl variability in productive coastal
208 regions like the SBC (Behrenfeld et al. 2005; Siegel et al. 2013).


209 ***2.3 Estimating nutrient concentrations***

210 The concentrations of macronutrients (nitrate + nitrite, phosphate, and silicate) tend to
211 be highly correlated in the California EBUS, and nitrogen is typically the limiting macronutrient of
212 phytoplankton production in this region (Messié and Chavez 2015; Deutsch et al. 2021). Many
213 previous studies have shown a stable relationship between temperature and inorganic nitrogen
214 in the SBC and SC Bight (Hayward and Venrick 1998; McPhee-Shaw et al. 2007; Omand et al.
215 2012; Snyder et al. 2020). In the California EBUS, prior work has shown that temperature is an

216 adequate predictor of nitrate in areas, like the SBC, that are located within the same latitude and
217 50 km of the shoreline (Palacios et al. 2013; Jacox et al. 2018). Thus, the maximum available
218 nitrate + nitrite concentrations (N_{max}) in the SBC surface layer were calculated using an
219 empirical temperature to nitrate + nitrite relationship derived from water samples collected in the
220 SBC and the 3D temperature solutions from the ROMS. Water sample data came from the
221 CalCOFI (calcofi.org) and the UCSB Plumes and Blooms program (Fig. 1, Catlett et al. 2021).
222 To avoid artifacts in the relationship due to nutrient uptake by phytoplankton, only water
223 samples collected from depths below the surface layer, deeper than 30 m, were used. The
224 empirical temperature to nitrate + nitrite relationship or N_{max} model was derived using 10,311
225 water samples collected at 14 stations in the SBC from depths of 35 m to 517 m over 1980-
226 2018 (Fig. 1). To calculate N_{max} from ROMS temperature, the following fourth-order polynomial
227 using a least squares fit was derived from the water sample data (Fig. 2):

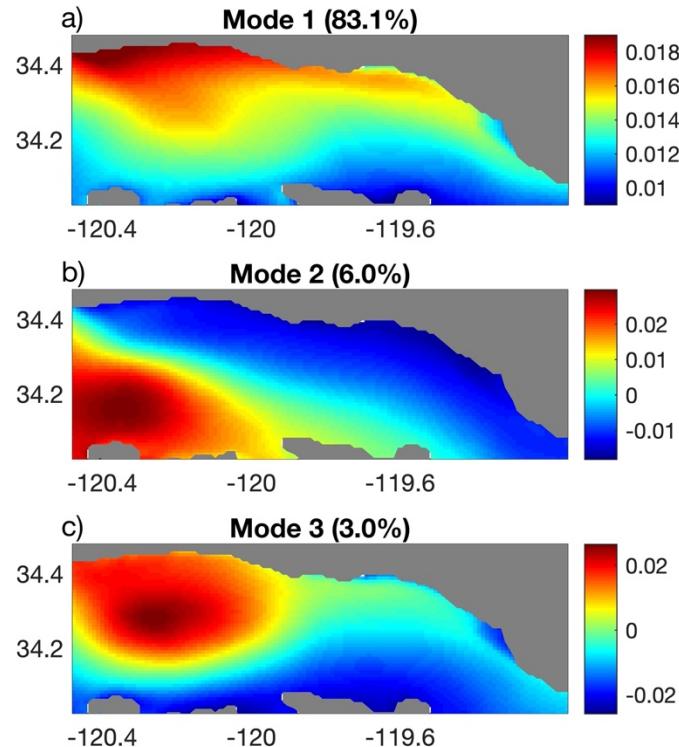
$$228 N_{max} = -0.0108T^4 + 0.5899T^3 - 11.3447T^2 + 87.2050T - 196.3239$$

229 where N_{max} is the maximum available nitrate + nitrite concentration ($\mu\text{mol L}^{-1}$) and T ($^{\circ}\text{C}$) is
230 temperature in the surface layer, the top 30 m of the water column. To create a 3D N_{max} data set
231 for the SBC surface layer, N_{max} was calculated from ROMS temperature horizontally at each
232 grid cell and vertically every meter from the surface to 30 m depth every 6-hr for the 10-year
233 modeling period, 1998-2007. N_{max} in the eddy was determined using the eddy detection
234 scheme to identify the horizontal eddy area and then averaging N_{max} horizontally and vertically
235 over the eddy area.

236
 237 **Figure 2:** Nitrate + nitrite concentrations ($\mu\text{mol L}^{-1}$) vs. temperature ($^{\circ}\text{C}$) from field samples of
 238 UCSB Plumes and Bloom and CalCOFI programs. Black line shows polynomial fit used to
 239 model N_{max} .

240
 241

242 **2.4 Identifying N_{max} transport mechanisms**


243 Upwelling and eddy circulation are the primary processes associated with increased
 244 nutrients and Chl in the SBC (Anderson et al. 2006; McPhee-Shaw et al. 2007; Brzezinski and
 245 Washburn 2011). The strength of upwelling is usually quantified in EBUSs using surface wind
 246 stress or upwelling indices, which are a function of surface wind stress. However, the wind data
 247 used to force the ROMS was not available with the offline solutions of the SC Bight. Thus, to
 248 determine the presence and strength of the mechanisms transporting N_{max} into the SBC surface
 249 layer, Empirical Orthogonal Function (EOF) analysis was used on 2D depth-averaged N_{max} over
 250 the 10-year modeling period. The EOF method is a linear statistical method that identifies the
 251 spatiotemporal variability within a dataset by transforming the dataset into a set of empirical
 252 orthogonal functions or modes. The patterns of these modes can then be correlated with
 253 dynamic mechanisms in the ocean (Thomson and Emery 2014). The advantage of this method
 254 was that only mechanisms that were strong enough to transport elevated N_{max} into the surface
 255 layer were identified. This is particularly useful for the SBC where field studies have shown that

256 while upwelling favorable winds tend to be most persistent in the spring, they occur
257 intermittently all year round in the SBC (Dorman and Winant 2000; Oey et al. 2001). The first
258 EOF mode explained 83.1% of the N_{max} variability. Representing a pattern of wind-driven
259 upwelling, the mode 1 map (Fig. 3(a)) displayed a strong north-south gradient with the highest
260 positive values along the mainland coast and lowest values along the north coast of the islands.
261 Along the mainland coast, a west-east gradient is shown with higher positive values that extend
262 farther from shore in the western than the eastern SBC, indicating that upwelling may be
263 stronger in the western SBC. The second and third modes are associated with eddy circulation.
264 The second EOF mode explained 6.0% of the N_{max} variability. Representing advection of
265 elevated N_{max} water into the south-western SBC by eddy circulation, the mode 2 map (Fig. 3(b))
266 displayed the highest positive values in the south-western SBC with negative values along the
267 mainland coast and eastern SBC. The third EOF mode explained 3.0% of the N_{max} variability.
268 Representing retention of elevated N_{max} by eddy circulation in the western SBC, positive values
269 in the mode 3 map (Fig. 3(c)) show a circular shape in the western SBC with negative values in
270 the eastern SBC. By analyzing horizontal distributions of phytoplankton primary production
271 (PPP) during seasonal channel-wide cruises from 2001-2006, Brzezinski and Washburn (2011)
272 found that wind-driven upwelling was the primary process driving high PPP in the SBC and eddy
273 circulation was the secondary process, supporting our results.

274 **2.5 Analysis**

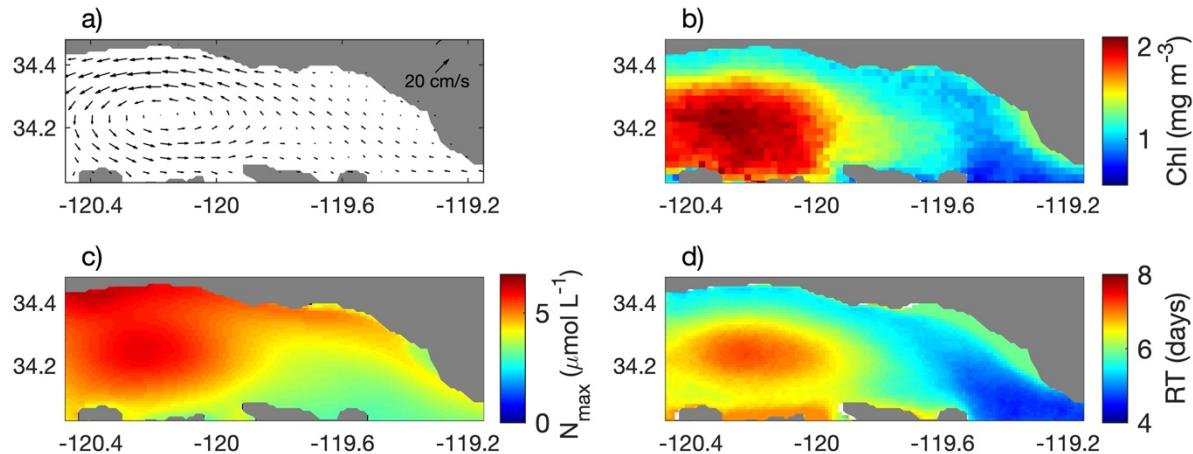
275 Regulation of Chl in the SBC by upwelling and eddy circulation was assessed by
276 comparing satellite observations of Chl to modeled parameters of N_{max} , RT, RT_{eddy} , source water
277 zone, eddy size and lifespan, and N_{max} EOF modes. Physical controls on the spatiotemporal
278 distribution of Chl in the SBC were investigated across the decadal, annual, interannual, and
279 synoptic timescales. Where time-series of channel-wide mean values are presented, Chl and
280 modeled parameters were horizontally averaged over the SBC and, when applicable, depth-
281 averaged over the surface layer, the top 30 m of the water column. Horizontal distributions of

282 modeled parameters were computed by depth-averaging over the surface layer. Where direct
283 comparisons of Chl and modeled parameters are presented, Chl was interpolated to match the
284 horizontal resolution of modeled parameters or modeled parameters were averaged over the 5-
285 day Chl composites.

286

287 **Figure 3:** N_{\max} Empirical Orthogonal Function maps for (a) mode 1, (b) mode 2, and (c) mode 3

288

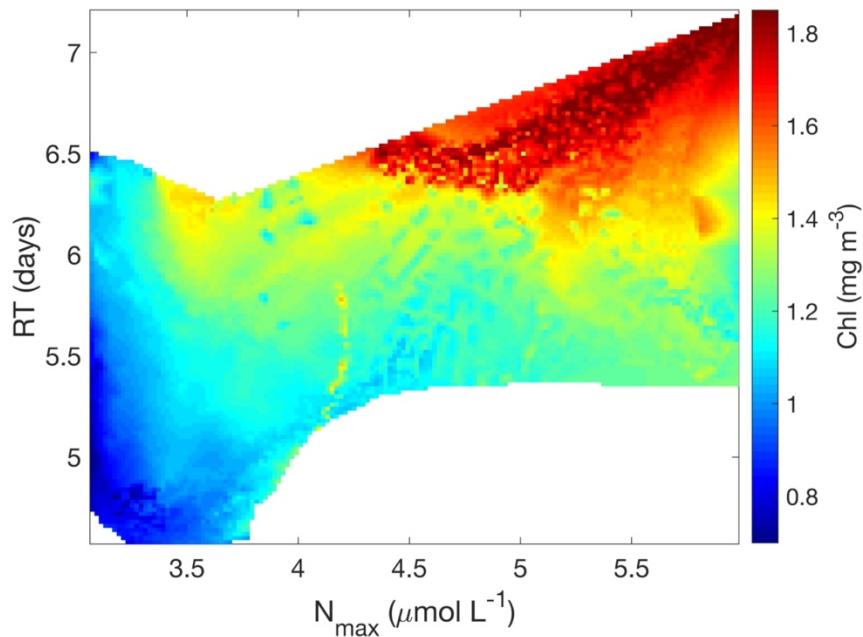

289 **3.0 Results**

290 **3.1 Mean decadal horizontal distributions**

291 Fig. 4 shows the 10-year mean horizontal distributions of currents, Chl, N_{\max} , and RT in
292 the SBC. The mean current pattern in the surface layer (Fig. 4(a)) show that strong eddy
293 circulation, centered mid-channel, dominates the mean circulation in the western SBC with
294 weaker, primarily westward currents observed in the eastern SBC. The magnitude of the mean
295 and maximum currents in Fig. 4(a) are 4 cm s^{-1} and 13 cm s^{-1} respectively. The highest mean
296 Chl are observed in the western SBC where eddy circulation dominates and decreases to the

297 north and east with the lowest values at the southeastern boundary (Fig. 4(b)). This spatial
 298 distribution of Chl has been observed in previous studies (Otero and Siegel 2004; Brzezinski
 299 and Washburn 2011; Henderikx Freitas et al. 2017). The mean Chl varies from $0.1\text{-}3.4\text{ mg m}^{-3}$
 300 across 1 km^2 pixels. The spatial distribution of mean RT reflects the eddy circulation with the
 301 highest values of ~ 7 days in the central western SBC and lowest values of ~ 4 days in the
 302 southeastern SBC (Fig. 4(d)). The spatial distribution of mean N_{\max} shows a distinct east-west
 303 gradient with the highest values of $\sim 6\text{ }\mu\text{mol L}^{-1}$ observed in the western SBC and the lowest
 304 values of $\sim 3\text{ }\mu\text{mol L}^{-1}$ observed in the eastern SBC. Unlike mean Chl and RT, the mean N_{\max}
 305 distribution shows two distinct regions of high concentrations, a circular shaped region in the
 306 central western SBC and a region along the mainland coast in the north-western SBC. The
 307 circular region is located near the center of the eddy circulation (Fig. 4(a)) and coincides with
 308 the area of the highest mean Chl and RT (Fig. 4(b,d)).

309



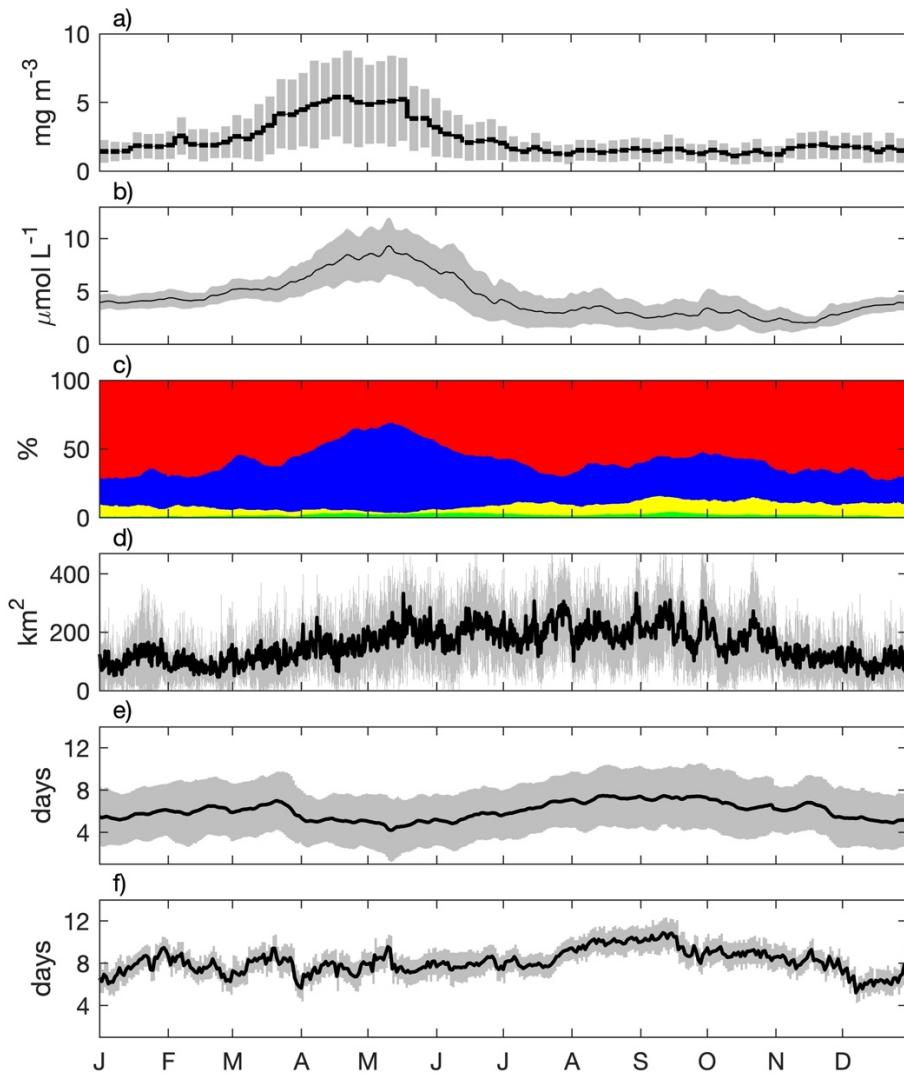
310
 311 **Figure 4:** 10-year mean: (a) ROMS currents, (b) Chl (mg m^{-3}), (c) N_{\max} ($\mu\text{mol L}^{-1}$), and (d) RT
 312 (days). N_{\max} , RT, and currents are depth-averaged over the surface layer.
 313

314 To show the relationship between mean N_{\max} , RT, and Chl, mean Chl is shown as a
 315 function of mean N_{\max} and RT in Fig. 5. Elevated mean Chl, defined by Chl greater than 1.4 mg
 316 m^{-3} , is found where mean N_{\max} and RT are simultaneously greater than $\sim 4\text{ }\mu\text{mol L}^{-1}$ and ~ 5.5
 317 days, respectively. These conditions coincide with eddy circulation in the western SBC. In

318 contrast, although mean N_{\max} is elevated along the north-western mainland coast (Fig. 4(c)), the
319 mean RT in this area is relatively short, less than 5.5 days, suggesting that N_{\max} is advected
320 away from the coast and into the open channel before elevated Chl can be produced. Thus, it
321 appears that for long-term horizontal means, the elevated Chl in the SBC is being produced by
322 a combination of long RT and high N_{\max} .

323

324
325
326 **Figure 5:** Chl (mg m^{-3}) as a function of N_{\max} ($\mu\text{mol L}^{-1}$) and RT (days). White represents where
327 Chl data are not available for N_{\max} -RT combinations.
328
329

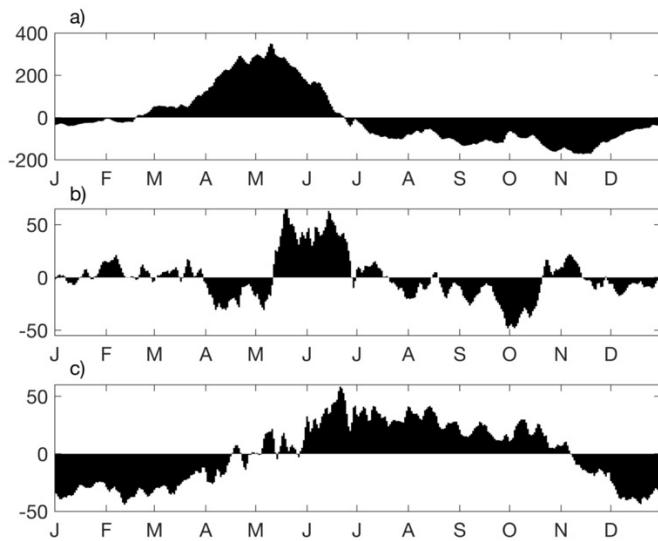

330 **3.2 Mean annual cycle**

331 Mean annual cycles of Chl, N_{\max} , source water zone, eddy size, RT, and RT_{eddy} are
332 displayed in Fig. 6. Chl shows a strong seasonal cycle with elevated values from March through
333 June and maximum values of 3.8-5.4 mg m^{-3} in April and May (Fig. 6(a)). Low mean Chl is
334 observed throughout the rest of the year, averaging 1.6 mg m^{-3} . This seasonal cycle of mean
335 Chl in the SBC has been observed in prior studies (Shipe and Brzezinski 2001; Otero and
336 Siegel 2004; Brzezinski and Washburn 2011; Henderikx Freitas et al. 2017). Mean N_{\max} follows
337 a seasonal cycle similar to mean Chl with elevated values in March through June and maximum

338 values in April and May of 6.1-9.5 $\mu\text{mol L}^{-1}$ (Fig. 6(b)). Low mean N_{\max} is observed throughout
339 the rest of the year with an average of 3.3 $\mu\text{mol L}^{-1}$. By averaging mean N_{\max} in Fig. 6(b) over
340 the 5-day composite window used for Chl (Fig. 6(a)), the annual cycle of mean Chl and N_{\max} is
341 shown to be highly correlated with a Pearson's squared correlation coefficient (r^2) of 0.83.
342 Brzezinski and Washburn (2011) observed a similar relationship in the seasonal cycles of
343 chlorophyll and nitrate in the SBC.

344 The mean annual cycles of physical properties, including source water zone, eddy size,
345 RT, and RT_{eddy} , are shown in Fig. 6(c-f). Of these four physical properties, the annual cycle of
346 source water from the West zone, representing the CC, is the most similar to the annual cycles
347 of N_{\max} and Chl (r^2 of 0.70-0.71) with maximum values of 40-65% from March to June (Fig. 6(c)).
348 When the mean percent of water from the West zone is low in July-February, water in the SBC
349 originates primarily from the East zone or the SCC, accounting for 45-61% of the SBC source
350 water. The mean percent of water from inside the SBC ranges from 1-4% and from the South
351 zone ranges from 5-8% throughout the year without a defined seasonal cycle.

352 Eddy circulation is detected throughout the year as indicated by the eddy size in Fig.
353 6(d)). Eddy size is directly proportional to the strength of eddy circulation and ranges from a few
354 km^2 up to 450 km^2 . The mean annual cycle of eddy size is much less pronounced than the
355 mean annual cycles of Chl, N_{\max} , and West zone source water and displays its largest values in
356 May through October. These results are supported by field studies that observed the presence
357 of eddy circulation most consistently in summer and fall (Harms and Winant 1998; Dever et al.
358 1998; Winant et al. 2003). Mean RT lacks a defined seasonal cycle and ranges from 4.2 to 7.5
359 days (Fig. 6(e)). The daily standard deviation of RT is fairly large, ranging from 2.0 to 3.2 days
360 and indicating that for any single day the RT can vary widely. Mean RT_{eddy} (Fig. 6(f)) is
361 consistently higher than the mean RT, ranging from 5.2 to 10.9 days over the year with a small
362 standard deviation from 0.7-1.6 days and no clear seasonal cycle.

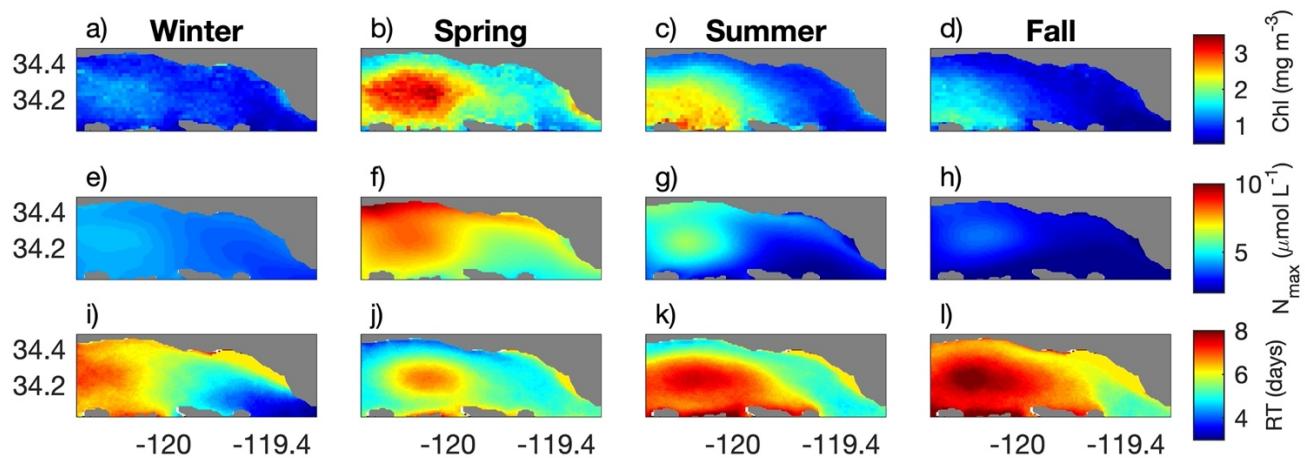


365 **Figure 6:** Mean annual cycle of (a) Chl (mg m^{-3}), (b) N_{max} ($\mu\text{mol L}^{-1}$), (c) source water zone (%)
 366 with West zone (blue), East zone (red), South zone (yellow), and SBC (green), (d) eddy size
 367 (km^2), (e) RT (days), and (f) RT_{eddy} (days). Gray areas show \pm one standard deviation.
 368

369 The mean annual cycle of the principal components for N_{max} EOF modes 1, 2 and 3

370 (PC1, PC2, and PC3) is shown in Fig. 7. From the EOF analysis in Section 2.4, the N_{max}
 371 transport mechanisms represented by each mode are (1) wind-driven upwelling, (2) advection of
 372 high N_{max} water into the south-western SBC by eddy circulation, and (3) retention of N_{max} within
 373 the SBC by eddy circulation. Mean PC1 shows a similar annual cycle as mean Chl, N_{max} , and
 374 West zone source water (Fig. 6(a-c)) with positive values in March through June and maximum

375 values in April and May, reinforcing that upwelling is the primary transport process of N_{max} to the
 376 surface layer in spring. Although much smaller in variance than PC1, mean PC2 and PC3,
 377 representing the transport of N_{max} by eddy circulation, have peak positive values in late May and
 378 June, when PC1 decreases and then becomes negative (Fig. 7). This pattern suggests that as
 379 upwelling weakens, eddy circulation plays a larger role in transporting N_{max} in the SBC surface
 380 layer. Mean PC3 is consistently positive in June through October (Fig. 7(c)), which is when
 381 mean Chl and N_{max} are at their lowest and mean PC1 is negative.

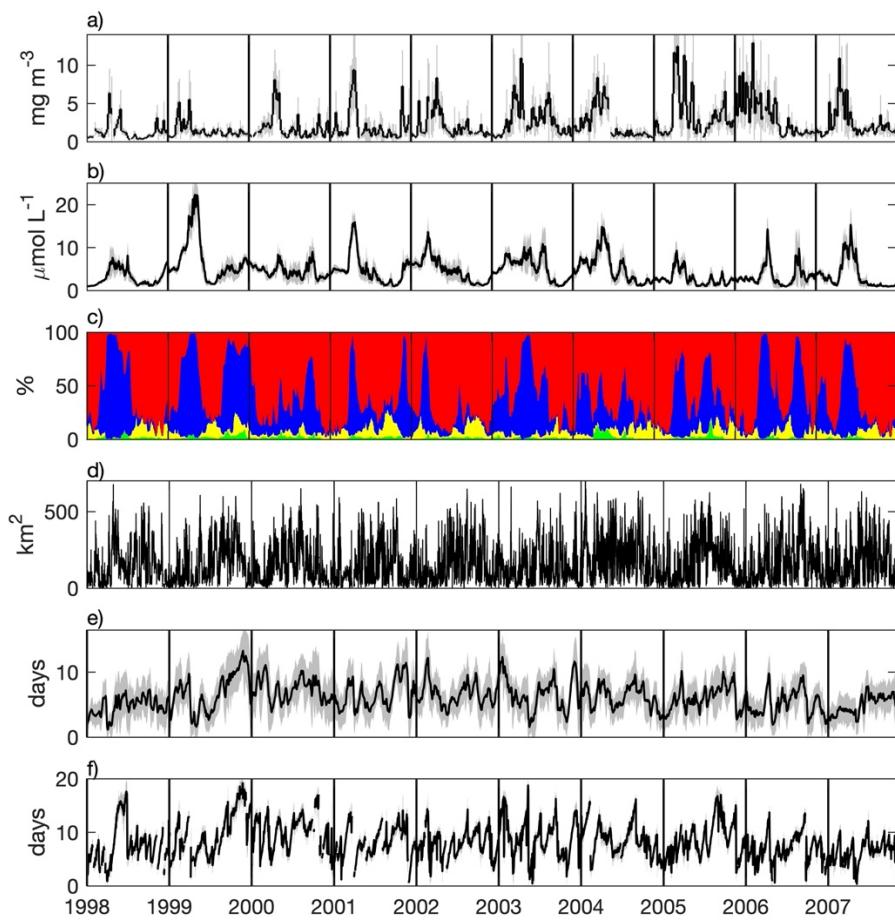


382
 383 **Figure 7:** Mean annual cycle of principal components for N_{max} EOF: (a) mode 1, (b) mode 2,
 384 and (c) mode 3
 385

386 To evaluate the spatial variability in the seasonal cycle of mean Chl, N_{max} , and RT, these
 387 parameters are averaged over the four seasons and shown in Fig. 8. The horizontal
 388 distributions of Chl and N_{max} in spring show the highest concentrations and are most similar to
 389 their decadal horizontal means (Fig. 4(b,c)), implying that spring activity is driving the decadal
 390 mean distributions. Both Chl and N_{max} in spring (Fig. 8(b,f)) display distinct along channel
 391 gradients with high concentrations in the western SBC, low concentrations in the eastern SBC,
 392 and maximum concentrations in the central western SBC where decadal mean eddy circulation

393 is observed (Fig. 4(a)). Compared to spring, Chl and N_{\max} display decreasing concentrations
 394 throughout the SBC in summer and fall, although both parameters continue to show along-
 395 channel gradients with the highest concentrations in the western SBC. In contrast, RT displays
 396 high values in the western SBC of similar magnitude throughout the year with the spatial
 397 distribution of RT varying in shape with the season (Fig. 8(i-l)). Although eddy circulation is
 398 present throughout the year, the eddy is not stationary and moves primarily along-channel in the
 399 western SBC with a tendency to propagate westward (Harms and Winant 1998; Beckenbach
 400 and Washburn 2004; Simons et al. 2015). Shown in Fig. 8(i-l), the oval shape of the longest RT,
 401 greater than approximately 6 days, reflects the along-channel movement of the eddy, which is
 402 smallest in spring, largest in summer and fall, and at its least constrained in winter. Overall, Fig.
 403 8 emphasizes the need for both high N_{\max} and long RT to be present to produce elevated Chl.

404



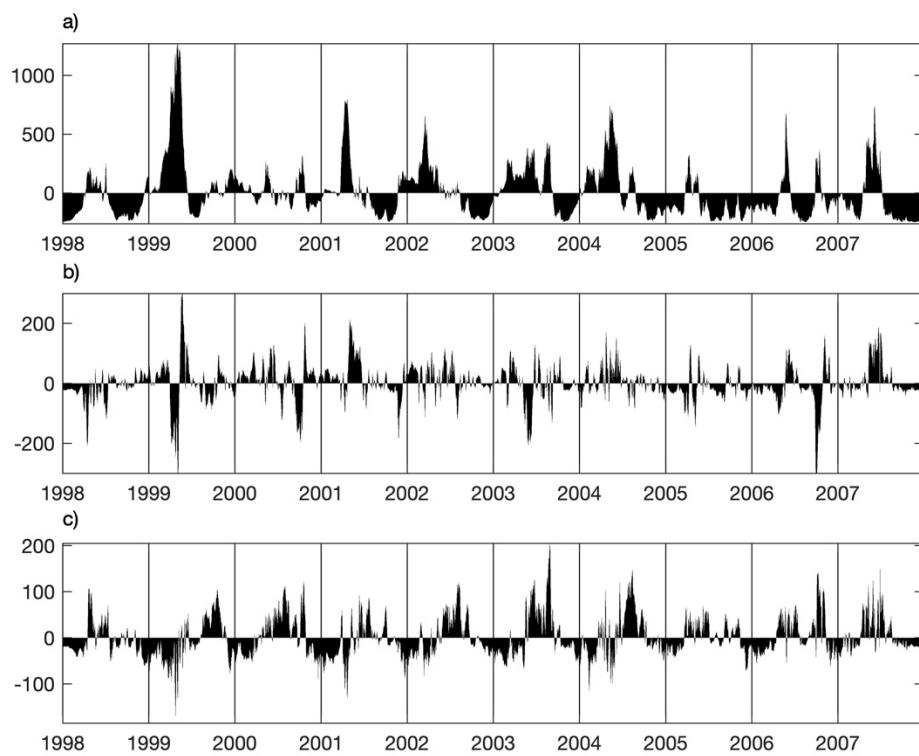
405
 406 **Figure 8:** Mean seasonal cycle of Chl (mg m^{-3}) for (a) winter (Dec-Feb), (b) spring (Mar-May),
 407 (c) summer (Jun-Aug), and (d) fall (Sep-Nov), N_{\max} ($\mu\text{mol L}^{-1}$) for (e) winter, (f) spring, (g)
 408 summer, and (h) fall, and RT (days) for (i) winter, (j) spring, (k) summer, and (l) fall
 409

410 **3.3 Interannual variations in the spring upwelling period**

411 Time-series of Chl and N_{\max} over the 10-year modeling period are shown in Fig. 9(a,b).
 412 Although varying in magnitude between years, the maximum Chl and N_{\max} are consistently
 413 observed in the spring. Similarly, PC1 or upwelling strength shows the largest positive values in

414 the spring (Fig. 10(a)). Based on these results as well as the mean annual cycles, our
 415 interannual analysis focuses on the spring upwelling period (SUP), the time of year with the
 416 strongest upwelling and highest Chl and N_{\max} . The SUP is defined by contiguous positive
 417 values of PC1 that occur in February through July. From 1998 to 2007, the SUP ranges in
 418 length from 42 to 127 days with an annual average of 76 days (Table 1, Fig. 10(a)). Mean
 419 values of Chl, N_{\max} , PC1, RT and RT_{eddy} for yearly SUPs are shown in Table 1. For every year
 420 except 1998 and 1999 when a strong ENSO cycle occurred, the SUP is associated with
 421 elevated mean Chl ranging from 3.7 to 8.3 mg m^{-3} and elevated mean N_{\max} ranging from 6.0 to
 422 10.7 $\mu\text{mol L}^{-1}$ (Table 1, Fig. 9(a,b)). Mean Chl and N_{\max} from times of the year other than the
 423 SUP are 1.6 mg m^{-3} and 3.3 $\mu\text{mol L}^{-1}$ respectively.

424
 425 **Figure 9:** SBC time-series of (a) Chl (mg m^{-3}), (b) N_{\max} ($\mu\text{mol L}^{-1}$), (c) source water zone (%)
 426 with West zone (blue), East zone (red), South zone (yellow), and SBC (green), (d) eddy size
 427 (km^2), (e) RT (days), and (f) RT_{eddy} (days). Gray areas show \pm one standard deviation.


428

Parameter	Units	Year										Yearly Mean
		1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	
Start date		Apr 19	Feb 9	Apr 24	Mar 23	Feb 19	May 13	Mar 21	Mar 27	May 3	Apr 18	Mar 28
End date		Jul 7	Jun 15	Jun 4	May 20	May 20	Jul 19	Jun 23	May 23	Jun 16	Jul 19	Jun 15
Length	days	92	127	42	59	91	68	95	58	45	83	76
Chl	mg m ⁻³	2.2	2.2	4.4	5.3	3.7	4.0	4.9	8.3	4.0	4.2	4.3
N _{max}	μmol L ⁻¹	5.6	12.5	6.0	10.7	8.2	7.4	9.4	6.0	7.6	8.7	8.2
Upwelling strength (PC1)		88	561	103	432	263	218	363	119	218	291	266
RT	days	4.8	5.5	6.4	5.9	6.5	4.9	6.2	5.3	4.7	5.0	5.5
RT _{eddy}	days	11.1	8.1	10.3	6.6	7.0	7.1	8.4	8.5	6.0	6.5	8.0
MEI		1.57	-0.88	-0.10	0.04	0.32	0.07	0.31	0.67	0.57	-0.13	0.3
Maximum eddy lifespan	days	56	30	27	11	22	22	11	6	20	8	21
Eddy size upwelling	km ²	263	116	156	130	62	80	201	137	131	159	144
Eddy size relaxation	km ²	131	131	237	209	131	242	285	208	282	224	208
Maximum RT _{eddy}	days	17.6	13.8	12.9	9.2	14.0	13.5	13.2	11.5	8.4	12.1	12.6
N _{max} in eddy - N _{max} [*]	μmol L ⁻¹	1.7	8.5	6.4	7.3	5.0	4.4	6.9	4.1	8.4	5.4	5.8
Maximum N _{max} Flux	μmol L ⁻¹ day ⁻¹	3.8	13.8	1.7	4.1	2.1	4.4	3.7	2.5	3.7	4.7	4.4

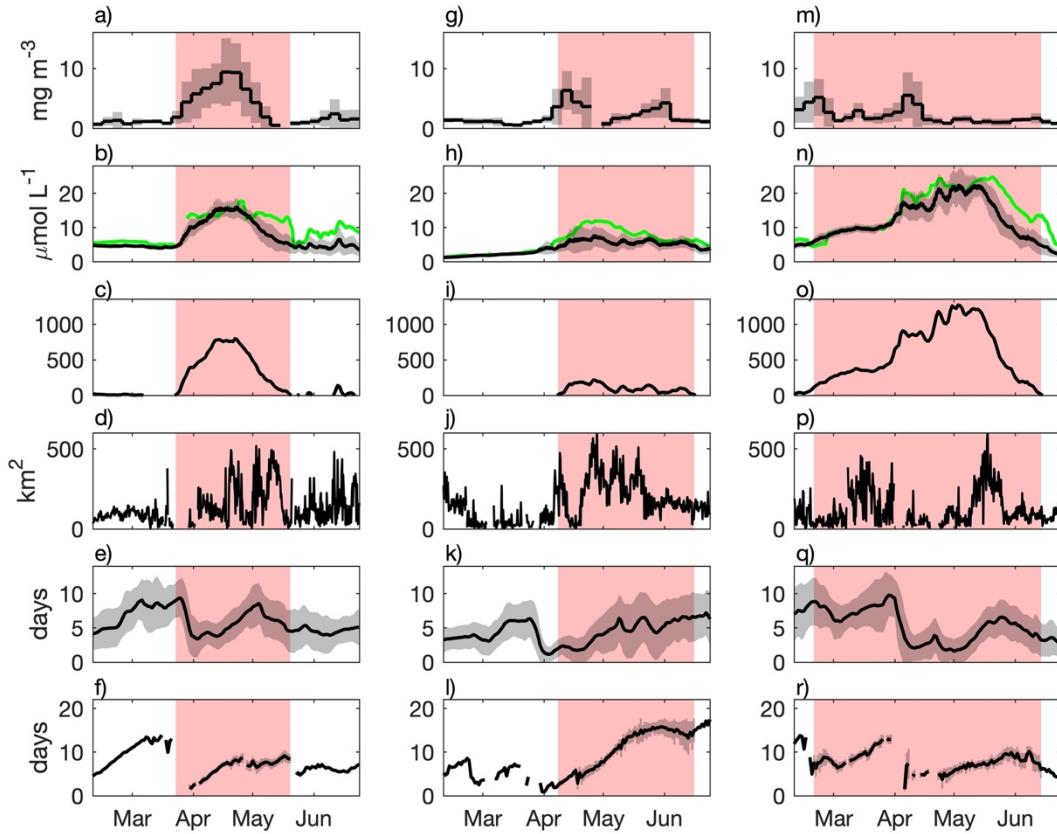
429

430
431

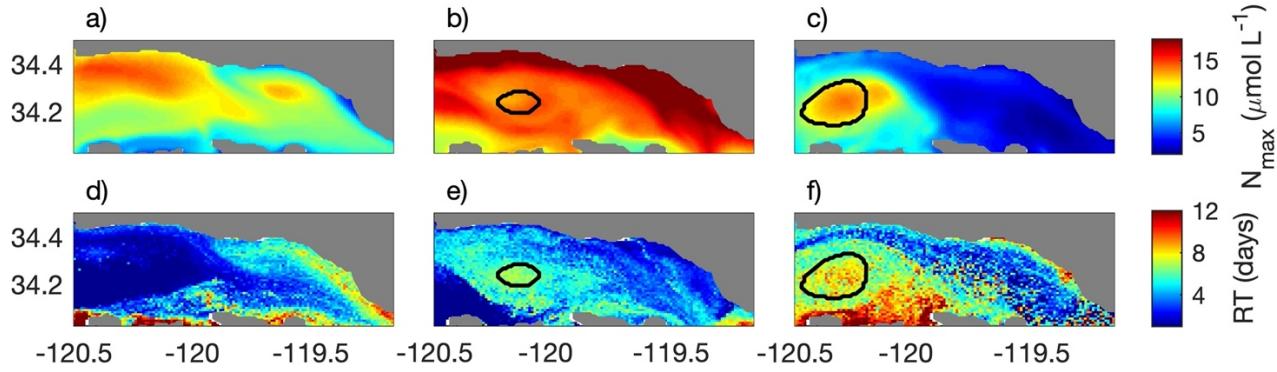
Table 1: Yearly data for the spring upwelling period (SUP). Mean values are displayed unless otherwise indicated. *At the end of the SUP.

434 **Figure 10: Principal components for N_{\max} EOF: (a) mode 1, (b) mode 2, and (c) mode 3.**436 **Section 3.3.1 *Typical spring upwelling period***

437 The strength and timing of N_{\max} transport processes during the SUP are critical to
 438 understanding how upwelling and eddy circulation regulate Chl in the SBC. The SUP consists of
 439 three main phases; (1) the upwelling phase, when upwelling starts and then increases in
 440 strength, (2) the transition phase, when upwelling transitions from increasing to decreasing
 441 strength, and (3) the relaxation phase, when upwelling strength declines until the end of the
 442 SUP. To examine these three phases, time-series of Chl, N_{\max} , PC1, eddy size, RT, and RT_{eddy}
 443 during a typical SUP are examined (Figs. 11(a-f) and 12). The 2001 SUP is presented as a
 444 typical SUP for several reasons. First, PC1 displays a clear three phase cycle. Second, the
 445 2001 SUP has the best agreement between modeled and observed temperature in the SBC
 446 (see SI). Third, the 2001 SUP has a neutral multivariate ENSO index (MEI), which tracks El
 447 Niño and La Niña events in the Pacific Ocean (Table 1, Fig. S1). Although the following analysis


448 focuses on the 2001 SUP, the 2000 and 2002-2007 SUPs display similar results, which are
449 shown for comparison in Table 1 and Figs. 9 and 10.

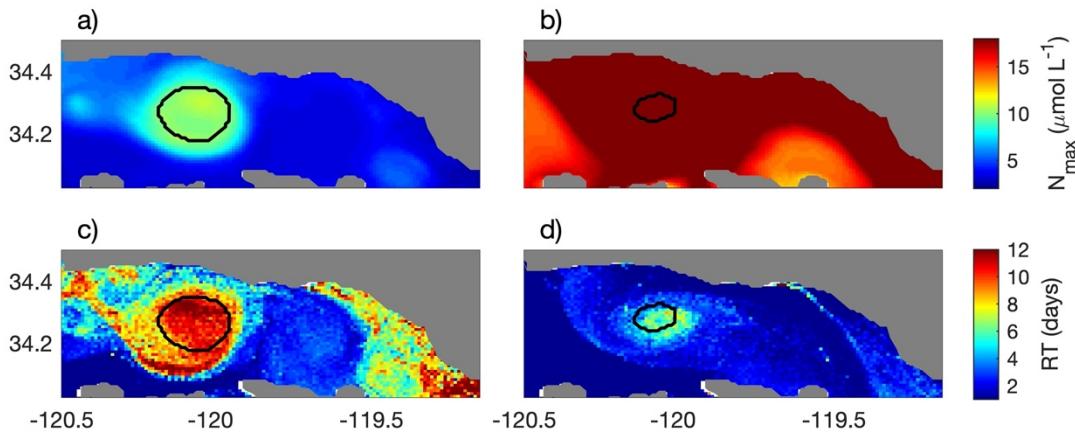
450 In the upwelling phase of the 2001 SUP, upwelling begins and increases in strength as
451 displayed by the increasing values of PC1 from March 23 to April 12 in Fig. 11(c). Chl and N_{max}
452 also steadily increase during this phase (Fig. 11(a,b)). The horizontal advection of upwelled
453 water from the CC into the SBC results in a rapid drop in RT (Fig. 11(e)) and little to no eddy
454 circulation as represented by the small eddy size (Fig. 11(d)). Shown for April 2nd in Fig.
455 12(a,d), the spatial relationship of N_{max} and RT during the upwelling phase displays the intrusion
456 of high N_{max} water from the west, which corresponds to a shortened RT and the absence of
457 eddy circulation. Next in the transition phase, upwelling strength stops increasing as shown by
458 the plateauing values of PC1 from April 13 to 22 in Fig. 11(c). This coincides with maximum Chl
459 and N_{max} and increasing RT and eddy size (Fig. 11 (a-b,d-e)). During the transition phase on
460 April 14th, the horizontal distribution of N_{max} shows values greater than 10 $\mu\text{mol L}^{-1}$ across the
461 entire SBC with the highest concentrations along the mainland coast (Fig. 12(b)). The
462 horizontal distribution of RT on April 14th shows increased RT and eddy circulation compared to
463 the upwelling phase as advection from the west weakens (Fig. 12(e)).


464 The relaxation phase, the last phase of the SUP, displays the greatest deviation from
465 typical upwelling-relaxation cycles in EBUSs due to the presence of eddy circulation. In this
466 phase, upwelling strength decreases, shown by the steady decline in PC1 from April 23 to May
467 20 (Fig. 11(c)). Chl and N_{max} similarly decline during this phase (Fig. 11(a,b)). Horizontal
468 distributions of N_{max} and RT on May 12th (Fig. 12(c,f)) show that the influx of high N_{max} water
469 from the west has stopped and eddy circulation has strengthened. Eddy circulation has trapped
470 high N_{max} water in the western SBC as shown by the high N_{max} and long RT located within the
471 eddy area (Fig. 12(c,f)). N_{max} within the eddy, shown in Fig. 11(b), is similar in magnitude to
472 N_{max} in the SBC during the upwelling and transition phases, but is greater than N_{max} in the SBC
473 by 3-7 $\mu\text{mol L}^{-1}$ throughout the relaxation phase as eddy circulation retains high N_{max} water. The

474 largest difference between N_{\max} within the eddy and N_{\max} in the SBC of $7.3 \mu\text{mol L}^{-1}$ is observed
 475 at the end of the SUP. Similar to the 2001 SUP, the other typical years, 2000 and 2002-2007,
 476 all show an increase in eddy size from the upwelling to the relaxation phase and N_{\max} in the
 477 eddy higher than N_{\max} in the SBC at the end of SUP (Table 1).

478

479
 480 **Figure 11:** Chl (mg m^{-3}) for (a) 2001, (g) 1998, and (m) 1999; N_{\max} ($\mu\text{mol L}^{-1}$, black line) and
 481 N_{\max} in eddy ($\mu\text{mol L}^{-1}$, green line) for (b) 2001, (h) 1998, and (n) 1999; Positive values of PC1
 482 for (c) 2001, (i) 1998, and (o) 1999; eddy size (km^2) for (d) 2001, (j) 1998, and (p) 1999; RT
 483 (days) for (e) 2001, (k) 1998, and (q) 1999; RT_{eddy} (days) for (f) 2001, (l) 1998, and (r) 1999.
 484 Pink areas identify the SUP. Gray areas show \pm one standard deviation.
 485
 486


487
488 **Figure 12:** N_{\max} ($\mu\text{mol L}^{-1}$) for (a) upwelling phase on April 2, 2001, (b) transition phase on April
489 14, 2001, and (c) relaxation phase on May 12, 2001. RT (days) for (d) upwelling phase on April
490 2, 2001, (e) transition phase on April 14, 2001, and (f) relaxation phase on May 12, 2001. Black
491 line identifies the eddy area. N_{\max} and RT have been depth-averaged over the surface layer.
492
493

494 3.3.2 Spring upwelling period during extreme *El Niño* and *La Niña* conditions

495 Patterns of upwelling and eddy circulation during 1998 and 1999 SUPs deviate the most
496 from the typical years and coincide with an exceptionally strong ENSO cycle, an extreme El
497 Niño event in 1998 followed by an extreme La Niña event in 1999. The SUP in both 1998 and
498 1999 have anomalously low mean Chl of 2.2 mg m^{-3} , which is 40-74% lower than the other
499 years of 2000-2007 in the study period (Table 1 and Fig. 11(g,m)). While strong El Niño events
500 historically disrupt primary productivity in the California EBUS, La Niña events are often
501 associated with enhanced upwelling and phytoplankton accumulation (Bograd et al. 2000;
502 Schwing et al. 2000; Bograd and Lynn 2001).

503 The 1998 SUP coincided with an extreme El Niño, which resulted in a mean PC1,
504 upwelling strength, and N_{\max} of 88 and $5.6 \mu\text{mol L}^{-1}$ respectively, the lowest of all yearly SUPs
505 (Table 1, Fig. 11(h,i)). Taking place from April 19 to July 7, the 1998 SUP does not display
506 distinct phases of upwelling, transition, and relaxation, but instead shows very weak upwelling of
507 similar magnitude throughout the SUP. In addition, the 1998 SUP exhibits an anomalous
508 pattern of eddy circulation compared to the typical SUPs of 2000-2007. Unlike a typical SUP
509 where eddy circulation increases in strength from the upwelling phase to the relaxation phase,

510 eddy circulation is strong and continuous for most the 1998 SUP as shown by the eddy size in
 511 Fig. 11(j). During the 1998 SUP, eddy circulation displays a lifespan, defined as a continuously
 512 tracked eddy, of 56 days from May 3 to June 28. Present for 60% of the 1998 SUP, this eddy
 513 lifespan is twice as long as the longest eddy lifespan for the other SUPs (Table 1) and almost
 514 five times longer than the mean SUP eddy lifespan of 12 days. RT_{eddy} is exceptionally long with
 515 an average of 14.3 days over the 56-day eddy lifespan, which is 79% greater than the SUP
 516 mean eddy lifespan of 8 days (Table 1). Horizontal distributions of N_{max} and RT on May 7th, the
 517 midpoint of the 1998 SUP, show that N_{max} within the eddy is only slightly greater than N_{max}
 518 outside of the eddy and that RT is much higher within the eddy than outside (Fig. 13(a,c)).
 519 These horizontal distributions are distinctly different from all phases of the 2001 SUP (Fig. 12).
 520 These results imply that in the presence of very weak upwelling, prolonged periods of eddy
 521 circulation produce long RT , but not high N_{max} or elevated Chl.

522
 523 **Figure 13:** N_{max} ($\mu\text{mol L}^{-1}$) on (a) May 7, 1998 and (b) May 1, 1999. RT (days) on (c) May 7,
 524 1998 and (d) May 1, 1999. Black line identifies the eddy area. N_{max} and RT have been depth-
 525 averaged over the surface layer.
 526

527 In contrast, 1999 is an extreme La Niña year with record high upwelling for the entire
 528 California EBUS (Schwing et al. 2000). This strong upwelling is reflected in the model
 529 predictions for the 1999 SUP, which has the highest mean PC1, upwelling strength, of 561 and
 530 N_{max} of $12.5 \mu\text{mol L}^{-1}$ of all the SUPs (Table 1). The 1999 SUP is the longest SUP, lasting 127

531 days from February 9 to June 15. Although the 1999 SUP has unusually high N_{max} , it does not
532 show elevated Chl with a mean Chl of 2.2 mg m^{-3} , the same as the 1998 SUP, which has the
533 weakest upwelling (Table 1). Similar to the 2001 SUP, the 1999 SUP shows three distinct
534 phases of upwelling, transition, and relaxation shown by the patterns of N_{max} and PC1 (Fig.
535 11(n,o)). However, eddy circulation deviates from the typical SUPs by remaining small
536 throughout the transition phase, which is 38 days from April 7 to May 15 (Fig. 11(p)). During the
537 1999 transition phase, upwelling strength (PC1) and N_{max} are atypically high, averaging 1,044
538 and $18.9 \mu\text{mol L}^{-1}$ respectively (Fig. 11(n,o)), but RT is unusually low, averaging only 2.6 days
539 (Fig. 11(p)). This very low RT indicates that water is being advected through the SBC very
540 quickly. To approximate the N_{max} flux through the SBC, N_{max} is divided by RT for all of the
541 SUPs. All SUPs have a daily N_{max} flux of $4.7 \mu\text{mol L}^{-1} \text{ day}^{-1}$ or less except for the 1999 SUP
542 transition phase where N_{max} flux ranges from 4.8 to $13.8 \mu\text{mol L}^{-1} \text{ day}^{-1}$ (Table 1). The horizontal
543 distributions of N_{max} and RT during the transition phase on May 1, 1999 (Fig. 13(b,d)) are very
544 different than those of the 2001 SUP transition phase (Fig. 12(b,e)) with unusually high N_{max} and
545 low RT throughout the SBC. The eddy is also small on May 1st, containing only slightly elevated
546 RT (Fig. 13 (b,d)). These results suggest that the exceptionally strong upwelling in 1999
547 advected nutrients through the SBC too quickly for Chl accumulation.

548

549 **4.0 Discussion and Conclusions**

550 Our results suggest that spring Chl in the SBC is regulated by the coupling of upwelling
551 and eddy circulation and that elevated spring Chl requires the presence of both high N_{max} from
552 upwelling and long RTs from eddy circulation at mean decadal (Figs. 4-5), mean annual (Figs.
553 6-8), interannual (Figs. 9-11), and synoptic timescales (Figs. 12-13). Unlike most of the coast
554 in the SC Bight that is dominated by the warm poleward flowing SCC, the SBC is a transition
555 zone where the cold equatorward flowing CC and the warm poleward flowing SCC meet, which,

556 along with the bathymetry, creates a pattern of cyclonic eddy circulation (Hickey 1993; Harms
557 and Winant 1998; Oey et al. 2004). Our results show that eddy circulation is present throughout
558 the year in the SBC (Figs. 6(d) and 9(d)) and a critical process driving the Chl hotspot in SBC.

559 **4.1 Upwelling and eddy circulation stimulate a productivity hotspot in the SBC**

560 In the California EBUS, the time required after an upwelling event for phytoplankton to
561 deplete the surface ocean of new nutrients is 3-10 days (Dugdale et al. 1997; Botsford et al.
562 2006; Wilkerson et al. 2006; Krause et al. 2013). Our study predicts a 10-year mean RT of 6.0
563 \pm 2.7 days (mean \pm 1 standard deviation) in the SBC, which meets the above criteria for nutrient
564 uptake. In addition, eddy circulation creates a horizontal oval pattern of long mean RTs in the
565 western SBC, which persists in the spring, summer, and fall and correlates with similar patterns
566 of high mean N_{max} and Chl in the spring (Fig. 8). When comparing the 10-year mean horizontal
567 distributions of RT and N_{max} to Chl, both elevated RT and N_{max} are required to produce high Chl,
568 greater than \sim 1.4 mg m⁻³, with minimum threshold values of \sim 4.0 μ mol L⁻¹ for N_{max} and \sim 5.5
569 days for RT (Fig. 5).

570 On a mean annual scale, the modeling predicts the strongest upwelling in the spring
571 (Fig. 7(a)), which coincides with elevated Chl, high N_{max} , and a large influx of water from the CC
572 (Fig. 6(a-c)). These results reflect previous studies of the SBC that observed high Chl,
573 phytoplankton primary production, and nutrients in the spring followed by low values the rest of
574 the year (Otero and Siegel 2004; Brzezinski and Washburn 2011; Henderikx Freitas et al.
575 2017). The mean annual SUP ranges from March to June as determined by PC1 (Fig. 7(a)) and
576 coincides with the transport of N_{max} by eddy circulation from late-May to June, represented by
577 PC2 and PC3 (Fig. 7(b-c)). While mean RT and RT_{eddy} remain above the nutrient uptake and
578 depletion timescales throughout the year (Fig. 6(e,f)), mean elevated Chl is only observed
579 during the SUP when mean N_{max} is high. While positive PC2 and PC3 are present during the
580 SUP (Fig. 7(b,c)), they are also positive at other times of the year when elevated Chl is not

581 observed. This indicates that eddy circulation without upwelling is unlikely to transport new
582 nutrients into the surface layer in sufficient quantities to stimulate elevated Chl on the spatial
583 scale of this study.

584 On an interannual scale, the SUP is observed for every year of the 10-year modeling
585 period, beginning as early as February and ending as late as July. The SUP ranges in length
586 from 1-4 months and occurs most frequently in April and May. A typical SUP consists of three
587 phases; upwelling, transition, and relaxation. When upwelling increases in strength during the
588 upwelling phase, eddy circulation is weak and RT is short due to the strong westward advection
589 of high N_{max} water from the CC. During the transition and relaxation phases when upwelling
590 strength plateaus and then weakens, eddy circulation strengthens, and RT increases.
591 Consequently, eddy circulation traps and retains nutrients introduced by upwelling in the SBC.
592 This process is clearly demonstrated by N_{max} in the eddy remaining elevated throughout the
593 relaxation phase while N_{max} outside of the eddy decreases (Figs. 11(b) and 12(c), Table 1).
594 Overall, eddy retention of high N_{max} water during the relaxation phase appears to be a critical
595 factor in regulating the Chl hotspot in the SBC.

596 Due to its sheltered coastline, upwelling in the SC Bight is weak and intermittent
597 compared to the Northern and Central California EBUS (Winant and Dorman 1997; Dorman and
598 Winant 2000; Strub and James 2000). However, the SBC contains Chl in the spring that is
599 higher than the rest of the SC Bight and similar in magnitude the coast north of Point
600 Conception (Fig. 1, Mantyla et al. 1995; Henderikx Freitas et al. 2017; Kilpatrick et al. 2018).
601 We hypothesize that eddy circulation when coupled with the relatively weak upwelling amplifies
602 the seasonal Chl cycle in the SBC.

603 ***4.2 ENSO events point toward implications for understanding climate-driven changes in
604 upwelling***

605 There has been much speculation about the impact of climate change on the intensity of
606 upwelling in EBUSs and how this will affect phytoplankton primary production (Bograd et al.

607 2023). ENSO is one of the major drivers of interannual variability in the SC Bight and has been
608 observed to disrupt typical patterns in spring primary productivity (Bograd and Lynn 2001; Shipe
609 and Brzezinski 2001; Shipe et al. 2002). In 1998, an extreme El Niño event occurred in the
610 California EBUS, producing unusually weak upwelling, unseasonably warm water temperatures,
611 and record low Chl (Lynn et al. 1998; Kudela and Chavez 2002). For the 1998 SUP in the SBC,
612 the mean Chl was less than 50% of the yearly average and only slightly greater than
613 background levels (Table 1). The model predicts the weakest upwelling and the lowest N_{max} for
614 the 1998 SUP of the 10-year modeling period. In addition to weak upwelling, the pattern of eddy
615 circulation deviates significantly from a typical SUP with strong continuous eddy circulation
616 lasting for two months. This is the longest period of uninterrupted eddy circulation for all SUPs
617 and is very unusual as the average eddy lifespan for the SUPs is only 12 days. Although the
618 prolonged eddy circulation produces record long RT_{eddy} during the 1998 SUP, neither the strong
619 eddy circulation or the weak upwelling transports sufficient N_{max} into the surface layer to
620 produce elevated Chl.

621 Following the extreme El Niño in 1998, an extreme La Niña event occurred in 1999 with
622 record high upwelling throughout the California EBUS (Bograd et al. 2000; Schwing et al. 2000).
623 The 1999 SUP displays the strongest upwelling of the 10-year modeling period with a mean
624 PC1 and N_{max} that are 100% and 50% greater respectively than the yearly average (Table 1).
625 However, the strong upwelling did not produce elevated Chl as the 1999 SUP has the lowest
626 mean Chl of the 10-year modeling period, matching the mean Chl of the 1998 SUP (Table 1).
627 During the 1999 SUP, maximum upwelling strength and N_{max} occurs in April and May. In
628 contrast, eddy circulation and RT are unusually small during these months due to the fast
629 eastward flow of CC water entering the SBC. Our results show that the flux of N_{max} through the
630 SBC in April and May of 1999 is greater than the maximum flux of N_{max} for all other SUPs. Thus,
631 we hypothesize that the unusually strong upwelling resulted in anomalously low Chl by

632 suppressing eddy circulation and RT to the point where phytoplankton biomass was not able to
633 accumulate in the SBC.

634 Conceptual models of shelf chlorophyll for the Northern and Central California EBUS
635 suggest that maximum shelf chlorophyll occurs when the strength of upwelling favorable winds
636 fall into an optimal mid-range between weak and strong (Botsford et al. 2003; Stone et al. 2020).
637 This optimal upwelling injects sufficient nutrients into the surface layer to stimulate
638 phytoplankton growth, while allowing adequate retention of upwelled waters for phytoplankton
639 nutrient uptake and accumulation. Work by Jacox et al. (2016a) also supports this conceptual
640 model with ROMS simulations of the Northern and Central California EBUS for 13 years
641 including the 1998 El Niño and 1999 La Niña. By comparing the SUPs from the typical years to
642 the two anomalous years of 1998 and 1999, we propose the following conceptual model for the
643 SBC SUP on how Chl is regulated by the interaction of upwelling and eddy circulation. High Chl
644 production in typical years is associated with optimal conditions of intermediate upwelling
645 strength and N_{max} flux, which allows sufficient injection of N_{max} into the surface layer and eddy
646 circulation to retain N_{max} in the SBC. However, when upwelling strength and N_{max} flux are
647 greater than optimal conditions, eddy circulation is too weak to retain N_{max} in the SBC, and N_{max}
648 is advected out of the SBC too quickly to produce high Chl. In contrast, when upwelling strength
649 and N_{max} flux are below optimal conditions, N_{max} is too low to produce high Chl, and strong eddy
650 circulation does not contribute enough N_{max} to the surface layer to produce high Chl.

651 Decadal climate oscillations may also impact our observations, but our ability to resolve
652 these impacts is limited by the relatively short modeling period. In particular, the North Pacific
653 Gyre Oscillation (NPGO) is thought to drive decadal variations in the southern CC ecosystem,
654 including the SBC, but remained in a cold phase for most of the study period except for a short
655 warm phase in 2005 and 2006 (Di Lorenzo et al. 2008; Catlett et al. 2021). The 2005 and 2006
656 SUPs are associated with N_{max} slightly below, but close to, average (Table 1), suggesting that
657 the NPGO warm phase did not exert a significant influence on SBC upwelling strength. Although

658 Chl is above average for the 2005 SUP and below average for the 2006 SUP, highly anomalous
659 Chl are not observed in either year. Previous observations showed that anomalous advection of
660 SCC water into the SBC in 2005 and 2006 was associated with unusual dinoflagellate bloom
661 events (Catlett et al. 2021). However, since the multi-decadal climate variability and the
662 variability in phytoplankton composition on Chl cannot be resolved in the present study, future
663 work should be conducted on the influence of decadal climate oscillations on the SBC.

664 Climate-driven changes in upwelling patterns in EBUSs are a major ecological concern
665 (Bograd et al. 2023). The weak upwelling and warm temperatures of the 1998 El Niño represent
666 conditions of long marine heatwaves, extended periods of unusually warm water temperatures,
667 which have detrimental effects on the ecology and have become more frequent in the SBC and
668 EBUSs globally due to climate change (Cavole et al. 2016; Benthuysen et al. 2020; Michaud et
669 al. 2022). In contrast, Bakun (1990) hypothesized that under climate change, upwelling rates in
670 EBUSs would intensify due to the differential heating response between land and water. More
671 recent studies have shown that upwelling has intensified across some EBUSs, although
672 observed changes are spatially variable (Sydeman et al. 2014; Wang et al. 2015). For the
673 California EBUS, a trend in increased upwelling strength has been observed for the Northern
674 and Central California EBUS, but is not for the Southern California EBUS including the SC Bight
675 (Jacox et al. 2015; Quilfen et al. 2021). The La Niña conditions in 1999 represent the potential
676 consequences for the SBC and other coastal zones when strong upwelling reduces RT to an
677 extent that does not allow nutrient uptake by phytoplankton. As the balance between the
678 upwelling and eddy circulation regulates the Chl hotspot in the SBC, disruptions to this balance,
679 such as those shown during the 1998 and 1999 SUPs, provide a framework for predicting the
680 ecological consequences of climate-driven changes in upwelling for the future.

681
682

683 **Acknowledgements**

684 This research was supported by the National Science Foundation Biological Oceanography

685 Program (OCE-2023693).

686

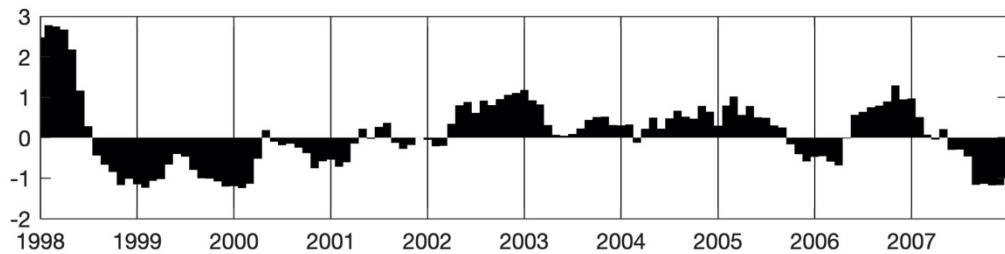
687

688 **References**

- 689 Anderson C, Brzezinski M, Washburn L, Kudela R (2006) Circulation and environmental
690 conditions during a toxicogenic *Pseudo-nitzschia australis* bloom in the Santa Barbara
691 Channel, California. *Mar Ecol Prog Ser* 327:119–133.
692 <https://doi.org/10.3354/meps327119>
- 693 Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. *Science*
694 247:198–201. <https://doi.org/10.1126/science.247.4939.198>
- 695 Beckenbach E, Washburn L (2004) Low-frequency waves in the Santa Barbara Channel
696 observed by high-frequency radar. *J Geophys Res* 109:C02010.
697 <https://doi.org/10.1029/2003JC001999>
- 698 Beers JR, Trent JD, Reid FMH, Shanks AL (1986) Macroaggregates and their phytoplanktonic
699 components in the Southern California Bight. *J Plankton Res* 8:475–487.
700 <https://doi.org/10.1093/plankt/8.3.475>
- 701 Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and
702 phytoplankton physiology from space. *Global Biogeochem Cycles* 19:GB1006.
703 <https://doi.org/10.1029/2004GB002299>
- 704 BenthuySEN JA, Oliver ECJ, Chen K, Wernberg T (2020) Editorial: Advances in understanding
705 marine heatwaves and their impacts. *Front Mar Sci* 7:147.
706 <https://doi.org/10.3389/fmars.2020.00147>
- 707 Bograd S, D'Giacomo PM, Durazo R, et al (2000) The State of the California Current, 1999–
708 2000: Forward to a new regime? *Calif Coop Fish Invest Rep* 41:26–52
- 709 Bograd SJ, Jacox MG, Hazen EL, et al (2023) Climate change impacts on Eastern Boundary
710 Upwelling Systems. *Annu Rev Mar Sci* 15:303–328. <https://doi.org/10.1146/annurev-marine-032122-021945>
- 712 Bograd SJ, Lynn RJ (2001) Physical-biological coupling in the California Current during the
713 1997–99 El Niño-La Niña Cycle. *Geophys Res Lett* 28:275–278.
714 <https://doi.org/10.1029/2000GL012047>
- 715 Botsford LW, Lawrence CA, Dever EP, et al (2006) Effects of variable winds on biological
716 productivity on continental shelves in coastal upwelling systems. *Deep Sea Res Part II:*
717 *Top Stud Oceanogr* 53:3116–3140. <https://doi.org/10.1016/j.dsr2.2006.07.011>
- 718 Botsford LW, Lawrence CA, Dever EP, et al (2003) Wind strength and biological productivity in
719 upwelling systems: an idealized study. *Fish Oceanogr* 12:245–259.
720 <https://doi.org/10.1046/j.1365-2419.2003.00265.x>
- 721 Bray NA, Keyes A, Morawitz WML (1999) The California Current system in the Southern
722 California Bight and the Santa Barbara Channel. *J Geophys Res* 104:7695–7714.
723 <https://doi.org/10.1029/1998JC900038>

- 724 Brzezinski MA, Washburn L (2011) Phytoplankton primary productivity in the Santa Barbara
725 Channel: Effects of wind-driven upwelling and mesoscale eddies. *J Geophys Res*
726 116:C12013. <https://doi.org/10.1029/2011JC007397>
- 727 Carr SD, Capet XJ, McWilliams JC, et al (2008) The influence of diel vertical migration on
728 zooplankton transport and recruitment in an upwelling region: estimates from a coupled
729 behavioral-physical model. *Fish Oceanogr* 17:1–15. <https://doi.org/10.1111/j.1365-2419.2007.00447.x>
- 731 Catlett D, Siegel DA, Simons RD, et al (2021) Diagnosing seasonal to multi-decadal
732 phytoplankton group dynamics in a highly productive coastal ecosystem. *Prog Oceanogr*
733 197:102637. <https://doi.org/10.1016/j.pocean.2021.102637>
- 734 Cavole L, Demko A, Diner R, et al (2016) Biological impacts of the 2013–2015 warm-water
735 anomaly in the Northeast Pacific: Winners, losers, and the future. *Oceanog* 29:273–285.
736 <https://doi.org/10.5670/oceanog.2016.32>
- 737 Chen G, Hou Y, Chu X (2011) Mesoscale eddies in the South China Sea: Mean properties,
738 spatiotemporal variability, and impact on thermohaline structure. *J Geophys Res*
739 116:C06018. <https://doi.org/10.1029/2010JC006716>
- 740 Deutsch C, Frenzel H, McWilliams JC, et al (2021) Biogeochemical variability in the California
741 Current System. *Prog Oceanogr* 196:102565.
742 <https://doi.org/10.1016/j.pocean.2021.102565>
- 743 Dever EP, Hendershott MC, Winant CD (1998) Statistical aspects of surface drifter observations
744 of circulation in the Santa Barbara Channel. *J Geophys Res* 103:24781–24797.
745 <https://doi.org/10.1029/98JC02403>
- 746 Di Lorenzo E, Schneider N, Cobb KM, et al (2008) North Pacific Gyre Oscillation links ocean
747 climate and ecosystem change. *Geophys Res Lett* 35:L08607.
748 <https://doi.org/10.1029/2007GL032838>
- 749 Dong CM, Idica EY, McWilliams JC (2009) Circulation and multiple-scale variability in the
750 Southern California Bight. *Prog Oceanogr* 82:168–190.
751 <https://doi.org/10.1016/j.pocean.2009.07.005>
- 752 Dong CM, Lin XY, Liu Y, et al (2012) Three-dimensional oceanic eddy analysis in the Southern
753 California Bight from a numerical product. *J Geophys Res-Oceans* 117:.
754 <https://doi.org/10.1029/2011jc007354>
- 755 Dong CM, McWilliams JC (2007) A numerical study of island wakes in the Southern California
756 Bight. *Cont Shelf Res* 27:1233–1248. <https://doi.org/10.1016/j.csr.2007.01.016>
- 757 Dong CM, McWilliams JC, Hall A, Hughes M (2011) Numerical simulation of a synoptic event in
758 the Southern California Bight. *J Geophys Res-Oceans* 116:C05018.
759 <https://doi.org/10.1029/2010jc006578>
- 760 Dorman CE, Winant CD (2000) The Structure and Variability of the Marine Atmosphere around
761 the Santa Barbara Channel. *Monthly Weather Rev* 128:261.
762 [https://doi.org/10.1175/1520-0493\(2000\)128<0261:TSAVOT>2.0.CO;2](https://doi.org/10.1175/1520-0493(2000)128<0261:TSAVOT>2.0.CO;2)

- 763 Dugan JE, Hubbard DM (2016) Sandy Beaches. In: Mooney HA, Zavaleta E (eds) Ecosystems
764 of California. University of California Press, pp 389–409
- 765 Dugdale RC, Davis CO, Wilkerson FP (1997) Assessment of new production at the upwelling
766 center at Point Conception, California, using nitrate estimated from remotely sensed sea
767 surface temperature. *J Geophys Res* 102:8573–8585.
768 <https://doi.org/10.1029/96JC02136>
- 769 Fennel K, Wilkin J (2009) Quantifying biological carbon export for the northwest North Atlantic
770 continental shelves. *Geophys Res Lett* 36:L18605.
771 <https://doi.org/10.1029/2009GL039818>
- 772 Fiedler PC, Reilly SB, Hewitt RP, et al (1998) Blue whale habitat and prey in the California
773 Channel Islands. *Deep Sea Res Part II: Top Stud Oceanogr* 45:1781–1801.
774 [https://doi.org/10.1016/S0967-0645\(98\)80017-9](https://doi.org/10.1016/S0967-0645(98)80017-9)
- 775 García-Reyes M, Largier JL (2012) Seasonality of coastal upwelling off central and northern
776 California: New insights, including temporal and spatial variability. *J Geophys Res*
777 117:C03028. <https://doi.org/10.1029/2011JC007629>
- 778 Harms S, Winant CD (1998) Characteristic patterns of the circulation in the Santa Barbara
779 Channel. *J Geophys Res-Oceans* 103:3041–3065. <https://doi.org/10.1029/97jc02393>
- 780 Hayward TL, Venrick EL (1998) Nearsurface pattern in the California Current: coupling between
781 physical and biological structure. *Deep Sea Res Part II: Top Stud Oceanogr* 45:1617–
782 1638. [https://doi.org/10.1016/S0967-0645\(98\)80010-6](https://doi.org/10.1016/S0967-0645(98)80010-6)
- 783 Henderikx Freitas F, Siegel DA, Maritorena S, Fields E (2017) Satellite assessment of
784 particulate matter and phytoplankton variations in the Santa Barbara Channel and its
785 surrounding waters: Role of surface waves. *J Geophys Res Oceans* 122:355–371.
786 <https://doi.org/10.1002/2016JC012152>
- 787 Henson SA, Thomas AC (2007) Phytoplankton scales of variability in the California Current
788 System: 1. Interannual and cross-shelf variability. *J Geophys Res* 112:C07017.
789 <https://doi.org/10.1029/2006JC004039>
- 790 Hickey BM (1993) Chapter 2. Physical Oceanography. In: Dailey MD, Reish DJ, Anderson JW
791 (eds) *Ecology of the Southern California Bight*. University of California Press, pp 19–70
- 792 Jacox MG, Bograd SJ, Hazen EL, Fiechter J (2015) Sensitivity of the California Current nutrient
793 supply to wind, heat, and remote ocean forcing. *Geophys Res Lett* 42:5950–5957.
794 <https://doi.org/10.1002/2015GL065147>
- 795 Jacox MG, Edwards CA, Hazen EL, Bograd SJ (2018) Coastal Upwelling Revisited: Ekman,
796 Bakun, and Improved Upwelling Indices for the U.S. West Coast. *J Geophys Res*
797 *Oceans* 123:7332–7350. <https://doi.org/10.1029/2018JC014187>
- 798 Jacox MG, Hazen EL, Bograd SJ (2016a) Optimal environmental conditions and anomalous
799 ecosystem responses: constraining bottom-up controls of phytoplankton biomass in the
800 California Current System. *Sci Rep* 6:27612. <https://doi.org/10.1038/srep27612>


- 801 Jacox MG, Hazen EL, Zaba KD, et al (2016b) Impacts of the 2015–2016 El Niño on the
802 California Current System: Early assessment and comparison to past events. *Geophys*
803 *Res Lett* 43:7072–7080. <https://doi.org/10.1002/2016GL069716>
- 804 Kahru M, Kudela RM, Anderson CR, Mitchell BG (2015) Optimized merger of ocean chlorophyll
805 algorithms of MODIS-Aqua and VIIRS. *IEEE Geosci Remote Sensing Lett* 12:2282–
806 2285. <https://doi.org/10.1109/LGRS.2015.2470250>
- 807 Kahru M, Kudela RM, Manzano-Sarabia M, Greg Mitchell B (2012) Trends in the surface
808 chlorophyll of the California Current: Merging data from multiple ocean color satellites.
809 *Deep Sea Res Part II: Top Stud Oceanogr* 77–80:89–98.
810 <https://doi.org/10.1016/j.dsr2.2012.04.007>
- 811 Kilpatrick T, Xie S, Miller AJ, Schneider N (2018) Satellite observations of enhanced chlorophyll
812 variability in the Southern California Bight. *J Geophys Res: Oceans* 123:7550–7563.
813 <https://doi.org/10.1029/2018JC014248>
- 814 Krause JW, Brzezinski MA, Siegel DA, Thunell RC (2013) Biogenic silica standing stock and
815 export in the Santa Barbara Channel ecosystem. *J Geophys Res Oceans* 118:736–749.
816 <https://doi.org/10.1029/2012JC008070>
- 817 Kudela RM, Chavez FP (2002) Multi-platform remote sensing of new production in central
818 California during the 1997–1998 El Niño. *Progr Oceanogr* 54:233–249.
819 [https://doi.org/10.1016/S0079-6611\(02\)00051-4](https://doi.org/10.1016/S0079-6611(02)00051-4)
- 820 Lachkar Z, Gruber N (2011) What controls biological production in coastal upwelling systems?
821 Insights from a comparative modeling study. *Biogeosci* 8:2961–2976.
822 <https://doi.org/10.5194/bg-8-2961-2011>
- 823 Legaard KR, Thomas AC (2006) Spatial patterns in seasonal and interannual variability of
824 chlorophyll and sea surface temperature in the California Current. *J Geophys Res*
825 111:C06032. <https://doi.org/10.1029/2005JC003282>
- 826 Levin LA, Liu K-K, Emeis K-C, et al (2015) Comparative biogeochemistry–ecosystem–human
827 interactions on dynamic continental margins. *J Mar Syst* 141:3–17.
828 <https://doi.org/10.1016/j.jmarsys.2014.04.016>
- 829 Liu Y, Dong C, Guan Y, et al (2012) Eddy analysis in the subtropical zonal band of the North
830 Pacific Ocean. *Deep Sea Res Part I: Oceanogr Res Papers* 68:54–67.
831 <https://doi.org/10.1016/j.dsr.2012.06.001>
- 832 Lynn KJ, Baumgaktnek T, Garcia J, et al (1998) The state of the California Current, 1997–1998:
833 Transition to El Niño Conditions. *Calif Coop Fish Invest Rep* 39:25–49
- 834 Mantyla AW, Venrick EL, Hayward TL (1995) Primary production and chlorophyll relationships,
835 derived from ten years of CalCOFI measurements. *Calif Coop Fish Invest Rep* 36:159–
836 166
- 837 Matson PG, Washburn L, Fields EA, et al (2019) Formation, development, and propagation of a
838 rare coastal Coccolithophore bloom. *J Geophys Res: Oceans* 124:3298–3316.
839 <https://doi.org/10.1029/2019JC015072>

- 840 McClatchie S, Jacox MG, Ohman MD, et al (2016) State of the California Current 2015–16:
841 Comparisons with the 1997–98 El Nino. *Calif Coop Fish Invest Rep* 57:5–61
- 842 McGillicuddy DJ (2016) Mechanisms of physical-biological-biogeochemical interaction at the
843 oceanic mesoscale. *Annu Rev Mar Sci* 8:125–159. <https://doi.org/10.1146/annurev-marine-010814-015606>
- 845 McPhee-Shaw EE, Siegel DA, Washburn L, et al (2007) Mechanisms for nutrient delivery to the
846 inner shelf: Observations from the Santa Barbara Channel. *Limnol Oceanogr* 52:1748–
847 1766. <https://doi.org/10.4319/lo.2007.52.5.1748>
- 848 Melton C, Washburn L, Gotschalk C (2009) Wind relaxations and poleward flow events in a
849 coastal upwelling system on the central California coast. *J Geophys Res* 114:C11016.
850 <https://doi.org/10.1029/2009JC005397>
- 851 Messié M, Chavez FP (2015) Seasonal regulation of primary production in eastern boundary
852 upwelling systems. *Progr Oceanogr* 134:1–18.
853 <https://doi.org/10.1016/j.pocean.2014.10.011>
- 854 Michaud KM, Reed DC, Miller RJ (2022) The Blob marine heatwave transforms California kelp
855 forest ecosystems. *Commun Biol* 5:1143. <https://doi.org/10.1038/s42003-022-04107-z>
- 856 Miller RJ, Reed DC, Brzezinski MA (2011) Partitioning of primary production among giant kelp
857 (*Macrocystis pyrifera*), understory macroalgae, and phytoplankton on a temperate reef.
858 *Limnol Oceanogr* 56:119–132. <https://doi.org/10.4319/lo.2011.56.1.0119>
- 859 Mitarai S, Siegel DA, Watson JR, et al (2009) Quantifying connectivity in the coastal ocean with
860 application to the Southern California Bight. *J Geophys Res-Oceans* 114:C10026.
861 <https://doi.org/10.1029/2008JC005166>
- 862 Nencioli F, Dong C, Dickey T, et al (2010) A vector geometry-based eddy detection algorithm
863 and its application to a high-resolution numerical model product and high-frequency
864 radar surface velocities in the Southern California Bight. *J Atmos Ocean Technol*
865 27:564–579. <https://doi.org/10.1175/2009JTECHO725.1>
- 866 Nishimoto M, Washburn L (2002) Patterns of coastal eddy circulation and abundance of pelagic
867 juvenile fish in the Santa Barbara Channel, California, USA. *Mar Ecol Prog Ser* 241:183–
868 199. <https://doi.org/10.3354/meps241183>
- 869 Oey L-Y, Wang D-P, Hayward T, et al (2001) “Upwelling” and “cyclonic” regimes of the near-
870 surface circulation in the Santa Barbara Channel. *J Geophys Res* 106:9213–9222.
871 <https://doi.org/10.1029/1999JC000129>
- 872 Oey L-Y, Winant C, Dever E, et al (2004) A model of the near-surface circulation of the Santa
873 Barbara Channel: Comparison with observations and dynamical interpretations. *J Phys
874 Oceanogr* 34:23–43. [https://doi.org/10.1175/1520-0485\(2004\)034<0023:AMOTNC>2.0.CO;2](https://doi.org/10.1175/1520-0485(2004)034<0023:AMOTNC>2.0.CO;2)
- 876 Ohlmann JC, Mitarai S (2010) Lagrangian assessment of simulated surface current dispersion
877 in the coastal ocean. *Geophys Res Lett* 37:L17602.
878 <https://doi.org/10.1029/2010GL044436>

- 879 Omand MM, Feddersen F, Guza RT, Franks PJS (2012) Episodic vertical nutrient fluxes and
880 nearshore phytoplankton blooms in Southern California. *Limnol Oceanogr* 57:1673–
881 1688. <https://doi.org/10.4319/lo.2012.57.6.1673>
- 882 Otero M, Siegel D (2004) Spatial and temporal characteristics of sediment plumes and
883 phytoplankton blooms in the Santa Barbara Channel. *Deep Sea Res Part II: Top Stud*
884 *Oceanogr* 51:1129–1149. [https://doi.org/10.1016/S0967-0645\(04\)00104-3](https://doi.org/10.1016/S0967-0645(04)00104-3)
- 885 Palacios DM, Hazen EL, Schroeder ID, Bograd SJ (2013) Modeling the temperature-nitrate
886 relationship in the coastal upwelling domain of the California Current: Modeling the T-N
887 Relationship. *J Geophys Res Oceans* 118:3223–3239.
888 <https://doi.org/10.1002/jgrc.20216>
- 889 Quilfen Y, Shutler J, Piolle J-F, Autret E (2021) Recent trends in the wind-driven California
890 current upwelling system. *Remote Sens Environ* 261:112486.
891 <https://doi.org/10.1016/j.rse.2021.112486>
- 892 Santora JA, Sydeman WJ, Schroeder ID, et al (2017) Persistence of trophic hotspots and
893 relation to human impacts within an upwelling marine ecosystem. *Ecol Appl* 27:560–574.
894 <https://doi.org/10.1002/eap.1466>
- 895 Santoro AE, Nidzieko NJ, Dijken GL van, et al (2010) Contrasting spring and summer
896 phytoplankton dynamics in the nearshore Southern California Bight. *Limnol Oceanogr*
897 55:264–278. <https://doi.org/10.4319/lo.2010.55.1.0264>
- 898 Schwing FB, Moore CS, Ralston S, Sakuma KM (2000) Record coastal upwelling in the
899 California Current. *Calif Coop Fish Invest Rep* 41:148–160
- 900 Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-
901 explicit, free-surface, topography-following-coordinate oceanic model. *Ocean Model*
902 9:347–404. <https://doi.org/10.1016/j.ocemod.2004.08.002>
- 903 Shipe RF, Brzezinski MA (2001) A time series study of silica production and flux in an eastern
904 boundary region: Santa Barbara Basin, California. *Global Biogeochem Cycles* 15:517–
905 531. <https://doi.org/10.1029/2000GB001297>
- 906 Shipe RF, Passow U, Brzezinski MA, et al (2002) Effects of the 1997–98 El Niño on seasonal
907 variations in suspended and sinking particles in the Santa Barbara basin. *Progr*
908 *Oceanogr* 54:105–127. [https://doi.org/10.1016/S0079-6611\(02\)00045-9](https://doi.org/10.1016/S0079-6611(02)00045-9)
- 909 Siegel DA, Behrenfeld MJ, Maritorena S, et al (2013) Regional to global assessments of
910 phytoplankton dynamics from the SeaWiFS mission. *Remote Sensing of Environment*
911 135:77–91. <https://doi.org/10.1016/j.rse.2013.03.025>
- 912 Simons RD, Nishimoto MM, Washburn L, et al (2015) Linking kinematic characteristics and high
913 concentrations of small pelagic fish in a coastal mesoscale eddy. *Deep Sea Res Part I:*
914 *Oceanogr Res Papers* 100:34–47. <https://doi.org/10.1016/j.dsr.2015.02.002>
- 915 Snyder JN, Bell TW, Siegel DA, et al (2020) Sea surface temperature imagery elucidates
916 spatiotemporal nutrient patterns for offshore kelp aquaculture siting in the Southern
917 California Bight. *Front Mar Sci* 7:22. <https://doi.org/10.3389/fmars.2020.00022>

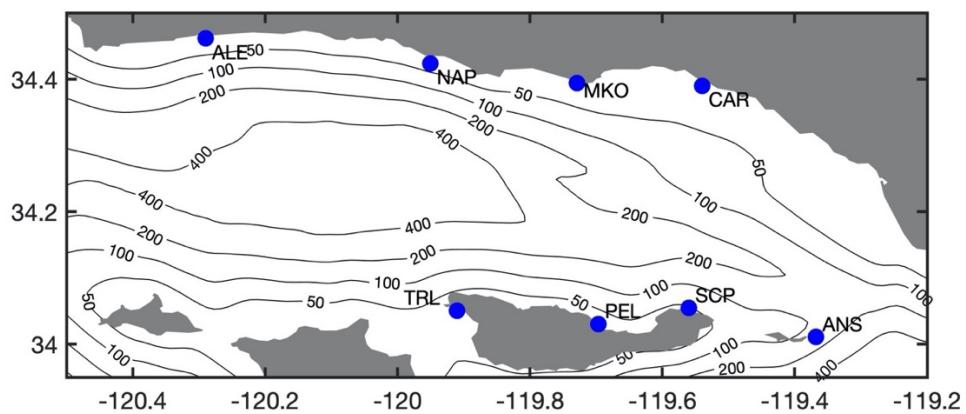
- 918 Stone HB, Banas NS, MacCready P, et al (2020) Linking chlorophyll concentration and wind
919 patterns using satellite data in the Central and Northern California Current System. *Front*
920 *Mar Sci* 7:551562. <https://doi.org/10.3389/fmars.2020.551562>
- 921 Strub PT, James C (2000) Altimeter-derived variability of surface velocities in the California
922 Current System: 2. Seasonal circulation and eddy statistics. *Deep Sea Res Part II: Top*
923 *Stud Oceanogr* 47:831–870. [https://doi.org/10.1016/S0967-0645\(99\)00129-0](https://doi.org/10.1016/S0967-0645(99)00129-0)
- 924 Sydeman WJ, García-Reyes M, Schoeman DS, et al (2014) Climate change and wind
925 intensification in coastal upwelling ecosystems. *Science* 345:77–80.
926 <https://doi.org/10.1126/science.1251635>
- 927 Thomson RE, Emery WJ (2014) The Spatial Analyses of Data Fields. In: *Data Analysis Methods*
928 in *Physical Oceanography*. Elsevier, pp 313–424
- 929 Thunell R, Benitez-Nelson C, Varela R, et al (2007) Particulate organic carbon fluxes along
930 upwelling-dominated continental margins: Rates and mechanisms. *Global Biogeochem*
931 *Cycles* 21:GB1022. <https://doi.org/10.1029/2006GB002793>
- 932 Venrick EL (1998) The phytoplankton of the Santa Barbara Basin: Patterns of chlorophyll and
933 species structure and their relationships with those of surrounding stations. *Calif Coop*
934 *Fish Invest Rep* 39:124–132
- 935 Wang D, Gouhier TC, Menge BA, Ganguly AR (2015) Intensification and spatial homogenization
936 of coastal upwelling under climate change. *Nature* 518:390–394.
937 <https://doi.org/10.1038/nature14235>
- 938 Wang X, Du Y, Zhang Y, et al (2021) Influence of two eddy pairs on high-salinity water intrusion
939 in the Northern South China Sea during fall-winter 2015/2016. *J Geophys Res: Oceans*
940 126:e2020JC016733. <https://doi.org/10.1029/2020JC016733>
- 941 Washburn L, McPhee-Shaw E (2013) Coastal Transport Processes Affecting Inner-Shelf
942 Ecosystems in the California Current System. *oceanog* 26:34–43.
943 <https://doi.org/10.5670/oceanog.2013.43>
- 944 Wilkerson FP, Lassiter AM, Dugdale RC, et al (2006) The phytoplankton bloom response to
945 wind events and upwelled nutrients during the CoOP WEST study. *Deep Sea Res Part*
946 *II: Top Stud Oceanogr* 53:3023–3048. <https://doi.org/10.1016/j.dsr2.2006.07.007>
- 947 Winant CD, Dever EP, Hendershott MC (2003) Characteristic patterns of shelf circulation at the
948 boundary between central and southern California. *J Geophys Res* 108:3021.
949 <https://doi.org/10.1029/2001JC001302>
- 950 Winant CD, Dorman CE (1997) Seasonal patterns of surface wind stress and heat flux over the
951 Southern California Bight. *J Geophys Res* 102:5641–5653.
952 <https://doi.org/10.1029/96JC02801>
- 953
- 954

955 **Supplementary Information**
956

957
958 Figure S1: MEI (pls.noaa.gov/enso/mei, Wolter and Timlin 1993, 1998)
959
960

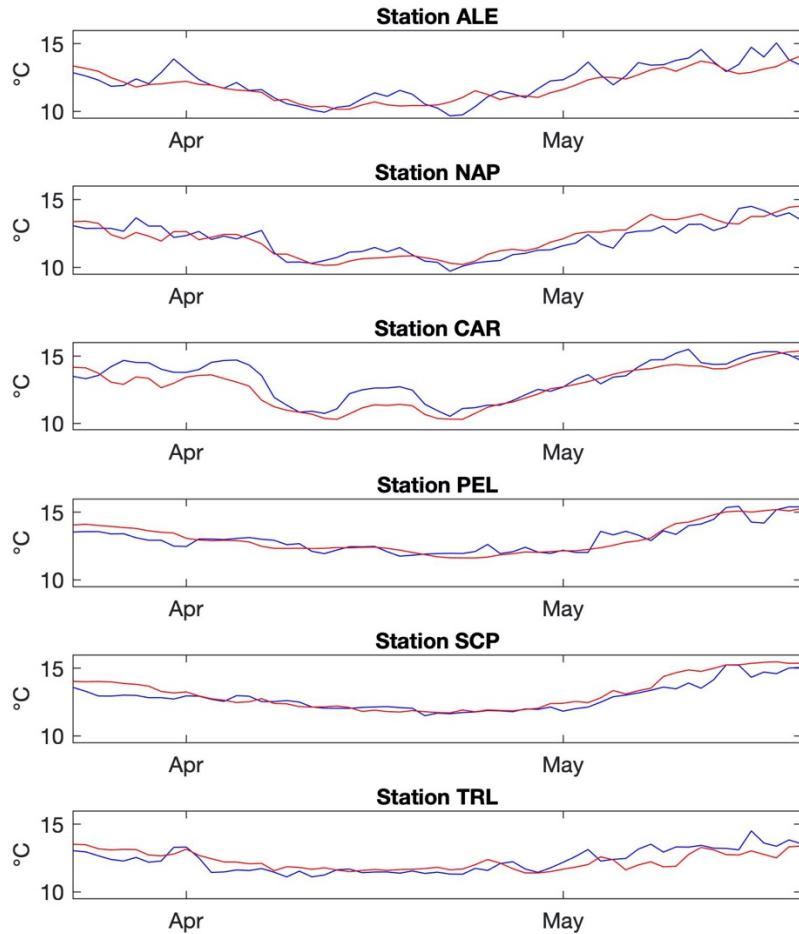
961 Comparison of temperature from ROMS to field observations during the SUP

962 The accuracy of the temperature predictions from ROMS in the SBC surface layer is
963 important for this study as N_{max} , representing nutrient availability, is estimated from temperature
964 (see Section 2.4). To determine the accuracy of the temperature during the SUP, field
965 observations of temperature at 8 stations in the SBC (Figure S2) are compared to temperature
966 predictions from ROMS. The stations are located along the SBC coastline; four (ALE, NAP,
967 MKO, and CAR) on the mainland, three (PEL, SCP, and TRL) on the north coast of Santa Cruz
968 Island, and one on the coast of Anacapa Island (ANS). At these stations, continuously logged
969 temperature data at 14 m depth starting from 2000-2004 through 2007 is available from the
970 Santa Barbara Coastal Long-Term Ecological Research site (sbcler.msi.ucsb.edu, Washburn et
971 al. 2022).


972 For each year from 2000-2007, the root-mean-square error (RMSE) between the
973 temperature from ROMS and the field station during the SUP is calculated and presented in
974 Tables S1. The model and field temperature show good agreement with RMSE ranging from
975 0.6 to 1.6°C per year when averaged over all stations. The year that shows the best
976 agreement is the 2001 SUP with a RMSE ranging from 0.6 to 0.8°C per station. ROMS and
977 field temperature data for the 2001 SUP is shown in Figure 3S for six stations.

978

Station	2000	2001	2002	2003	2004	2005	2006	2007
ALE	1.2	0.7	1.1	1.6	0.9	1.4	1.2	1.0
NAP	NA	0.6	1.1	1.3	1.4	1.5	1.2	1.4
MKO	NA	NA	NA	2.8	2.3	1.1	2.1	1.9
CAR	NA	0.8	1.0	2.3	2.3	1.2	1.9	1.8
PEL	1.4	0.5	1.1	1.0	1.1	1.3	1.6	1.7
SCP	1.3	0.5	1.3	1.0	1.0	1.4	1.5	1.6
TRL	1.2	0.6	0.8	1.0	0.8	1.8	1.2	1.5
ANS	NA	NA	NA	1.6	1.6	1.5	1.3	1.6
Mean	1.3	0.6	1.1	1.6	1.4	1.4	1.5	1.6


979 Table S1: Temperature RMSE ($^{\circ}\text{C}$) between ROMS and field station data

980

981
982
983

Figure S2: Santa Barbara Channel with bathymetry (meters) and temperature stations (blue circles).

984

985 Figure S3: Temperature data for the 2001 SUP. The blue line is the field data, and the red line
 986 is the ROMS data.

987

988 References

989 Washburn L, Gotschalk C, Salazar D (2022) SBC LTER: Ocean: Currents and Biogeochemistry:
 990 Moored CTD and ADCP data from Alegria Reef Mooring (ALE), ongoing since 1999

991

992 Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a Seasonally Adjusted Principal
 993 Component Index. Proceedings of the 17th Climate Diagnostics Workshop, Norman, 18-23
 994 October 1992 52-57

995

996 Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: How does 1997/98 rank?
 997 Weather 53:315-324. <https://doi.org/10.1002/j.1477-8696.1998.tb06408.x>

998

999