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Abstract—The micro-electrode-dot-array (MEDA) architecture
provides precise droplet control and real-time sensing in digi-
tal microfluidic biochips. Previous work has shown that trapped
charge under microelectrodes (MCs) leads to droplets being stuck
and failures in fluidic operations. A recent approach utilizes real-
time sensing of MC health status, and attempts to avoid degraded
electrodes during droplet routing. However, the problem with this
solution is that the computational complexity is unacceptable for
MEDA biochips of realistic size. Consequently, in this work, we
introduce a deep reinforcement learning (DRL)-based approach
to bypass degraded electrodes and enhance the reliability of rout-
ing. The DRL model utilizes the information of health sensing in
real time to proactively reduce the likelihood of charge trapping
and avoid using degraded MCs. Simulation results show that
our approach provides effective routing strategies for COVID-
19 testing protocols. We also validate our DRL-based approach
using fabricated prototype biochips. Experimental results show
that the developed DRL model completed the routing tasks using
a fewer number of clock cycles and shorter total execution time,
compared with a baseline routing method. Moreover, our DRL-
based approach provides reliable routing strategies even in the
presence of degraded electrodes. Our experimental results show
that the proposed DRL-based routing is robust to occurrences of
electrode faults, as well as increases the lifetime and usability of
microfluidic biochips compared to existing strategies.

Index Terms—Biomedical electronics, microelectrodes (MCs),
microfluidics, real-time systems, reinforcement learning.

I. INTRODUCTION

A
S MICROFLUIDIC technology advances, digital

microfluidic biochips (DMFBs) are being utilized to

automate laboratory procedures associated with bioanalyt-

ical assays. DMFBs revolutionize traditional experimental

processes by providing precise control of nanoliter-sized

droplets. Various bio-experiments have been performed using
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DMFBs, such as molecular detection, diagnostic tests for

newborns, portable detection for COVID-19, and aerosol

detection [1]–[6].

In recent years, an improved DMFB structure called

micro-electrode-dot-array (MEDA) has been proposed. MEDA

biochips adopt the concept of sea-of-micro-electrodes and con-

sist of a large number of microelectrodes (MCs), where each

MC contains an individual circuit for real-time control and sens-

ing [7], [8]. In contrast to conventional DMFBs, MEDA biochips

are implemented using a 0.35 µm standard CMOS process [9],

[10]. The size of an MC is around 40 times smaller than the

size of an electrode in a conventional DMFB. Hence, the MCs

can be flexibly grouped to form different types of microfluidic

modules during bioprotocol execution on MEDA biochips.

Both conventional DMFBs and MEDA biochips adopt the

principle of electrowetting-on-dielectric (EWOD) to manipu-

late droplets. A high voltage is repeatedly applied to the elec-

trodes to generate dragging forces on the droplets. However, as

the electrodes are frequently charged and discharged, charge

trapping might occur on the electrodes and result in elec-

trode degradation. The degraded electrodes generate abnormal

EWOD forces, which cause unexpected droplet movements

(or lack thereof) and lead to failure of microfluidic opera-

tions. Therefore, reliability is a major concern for microfluidic

biochips. While solutions have been proposed in the litera-

ture to mitigate the problem of electrode degradation, most

of these methods focus on recovery after erroneous behav-

iors occur. These techniques include the design of fluidic

checkpoints, droplet-aliquot operations, synthesis of recov-

ery protocols using probabilistic-timed-automata, as well as

selective sensing [8], [11]–[15]. On the other hand, preventive

approaches that proactively predict and prevent failures during

the droplet routing stage have not received much attention.

Recently, a reinforcement learning (RL)-based droplet rout-

ing model has been developed to address the reliability

problems in DMFBs [16]. However, the main limitation of

this method is that the RL-developed model can only learn

from the occurrence of failures. In other words, the model

adjusts its policy only after an error has occurred. This limita-

tion prevents the model from being applicable to time-sensitive

applications such as flash chemistry [17].

A new hardware design, which enables real-time sensing of

health status for each MC on MEDA biochips, was first intro-

duced in [18]. A stochastic game-based formal synthesizer was
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proposed to generate adaptive routing strategies based on the

electrode health information derived from MEDA biochips in

real time [19]. However, the formal synthesizer suffers from

the limitation of scalability in terms of biochip size. For a

MEDA biochip of size 20 × 20, around 3 s are needed for the

formal synthesizer to complete a synthesis task for one step,

and a bioassay consists of at least hundreds of such steps.

Therefore, the formal synthesizer is infeasible for practical

applications. For instance, a commercial microfluidic biochip

platform called aQdrop includes 41 000 electrodes [20], which

is around 100 times larger than the size of the biochips used

in [19]. Thus, a formal synthesis method that explores all

the state space cannot be deployed for state-of-the-art biochip

platforms.

Consequently, in this work, we introduce a deep rein-

forcement learning (DRL)-based droplet routing approach that

incorporates real-time health information to provide routing

strategies that proactively avoid the use of degraded MCs. The

routing framework is deployed with a deep neural network

(DNN) agent, which is first trained using offline DRL with

simulated environments. Then, online DRL training is applied

to the agent to adjust the policy under different biochip envi-

ronments. In contrast to the formal synthesizer from [19],

which enumerates all the possible state spaces, the DRL model

efficiently stores routing solutions using the DNN agent. The

agent provides routing strategies with negligibly short com-

puting time. Thus, the proposed DRL model can be employed

under realistic scenarios for different applications.

A preliminary version of this DRL-based routing approach

appeared in [21]. In this article, we present more details

on the DRL model and the training methods for convolu-

tional neural network (CNN) agents. We have also validated

the proposed DRL routing model using fabricated prototype

biochips. Specifically, the main contributions of this article are

as follows.

1) We propose a DRL-based approach (and the correspond-

ing DRL model) for droplet routing on MEDA biochips,

providing reliable routing strategies based on real-time

health information.

2) We introduce a stochastic model to constitute the virtual

training environments for the DRL model. To enhance

training efficiency, we adopt action space parameteriza-

tion and adaptive droplet step movement.

3) We design a DNN agent for the DRL model that ensures

the scalability of the DRL framework. We deploy both

traditional and transfer learning techniques for agent

training, and evaluate their performance.

4) We validate the estimation of degradation parameters

using PCB-based biochips.

5) We compare the performance of the DRL model with

the formal synthesizer by running bioassays for COVID-

19 testing.

6) We design and execute experiments where we evaluate

the trained DNNs on PCB-based biochips, and compare

the proposed solution to baseline routing policies.

The remainder of this article is organized as follows.

Section II provides background on MEDA biochips, adaptive

routing, reinforcement learning, and the problem formulation

for the adaptive droplet routing problem. Section III intro-

duces the proposed DRL model for adaptive droplet routing.

Section IV describes the configurations used for training, the

DNN architecture, the training algorithm, and two approaches

for training multiple DNNs. Section V evaluates the degrada-

tion parameters and compares the performance of the proposed

DRL framework to existing routing methods. Section VI

describes the experiment design and presents results for eval-

uating the trained agents using PCB-based biochips. Finally,

Section VII concludes this article.

II. BACKGROUND AND MOTIVATION

A. MEDA Biochips

MEDA biochips apply the EWOD [22] mechanism to

manipulate individual droplets with droplet volumes in a nano-

liter scale. Typically, one biochip may contain up to thousands

of MCs. Every MC module is composed of three components:

1) an MC; 2) a controlling unit; and 3) a capacitance-sensing

circuit for real-time detection of droplet location. Depending

on the bioassay requirements, the controller can dynamically

reconfigure the grouping of MCs, and thus modules, such as

mixers and splitters can be formed. When a sensing operation

is conducted, a charging and discharging process is applied to

all the MCs to measure the capacitance difference and thus the

locations of droplets can be determined. A scan-chain archi-

tecture is adopted to connect all the MCs into a daisy chain,

whereby the control signals and the sensing data are shifted

in and out as a sequences of bits.

B. Adaptive Droplet Routing

As biochip platforms, such as Illumina, Genmark, and

Baebies [23]–[25], are commercialized by companies, the

reliability of these devices has emerged as a major con-

cern. Manufacturing defects can be detected using the method

proposed in [26]. However, degradation due to charge trapping

in the dielectric layer occurs when electrodes are used over

time. The degraded electrodes lead to the failure of droplet

movement when they are involved in the transportation path.

To overcome the reliability problem, a wear-leveling method

has been proposed to avoid electrode overuse by uniformly dis-

tributing the electrode usage during the mapping of the fluidic

operations to the biochips [27]. However, for droplet routing,

only a few methods consider the dynamic changes of the health

condition of the biochips.

The first RL-based routing model that considers electrode

degradation on DMFBs was introduced in [16]. However,

this method is limited to conventional DMFBs, in which the

unique features for MEDA biochips are not incorporated. For

instance, the model only allows droplets of a single size while

MEDA biochips support droplets of various sizes. Another

limitation of [16] is that this model needs to learn from occur-

rence of failures, which might lead to erroneous outcomes of

bioassay execution.

Recently, a new MC design for MEDA biochips was

proposed in [19]. This design enables real-time sensing of

the health information of individual MCs. A formal synthe-

sizer has been developed to utilize health sensing to provide
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routing strategies that maximize the likelihood of success-

ful bioassay execution. An analytical model that defines the

probabilistic behaviors between the degradation level of MCs

and the corresponding probability of a successful actuation

has also been developed. Based on this analytical model,

the synthesizer provides an optimal routing strategy using

a stochastic game-based formulation. However, the comput-

ing time of this method grows significantly as the size of

biochip increases. Hence, the large runtime is unacceptable

for realistic applications.

C. Reinforcement Learning

RL is a class of machine learning in which the models learn

the optimal strategy in a complicated environment. RL algo-

rithms have been shown to be efficient for applications across

various domains, such as robotic manipulation, playing GO,

video games, and medical devices [28]–[31]. An RL problem

can be formulated using Markov decision processes (MDPs)

using a tuple (S,A, T, R), where S is the set of states; A is the

set of actions; T : S ×A → S is the state transition function;

and R : S × A → R is the reward function. The aim of an

RL agent is to find a policy that maximizes the total reward

received from interactions with an uncertain environment at

discrete time steps. In modern RL applications, DNN agents

are deployed to obtain a near-optimal policy under large state

and action spaces.

D. Problem Formulation

In this work, we address the problem of designing droplet

routing policies for MEDA biochips. We assume that a bioas-

say scheduler breaks down microfluidic operations into a series

of single-droplet routing jobs. Each routing job is characterized

by droplet shape and size, initial and final droplet locations,

and the biochip area within which routing is allowed.

Then, the objective is to design routing policies for droplets

to successfully execute a given routing job. At each control

cycle, a routing policy shall provide the actuation pattern to

be applied. To this end, the routing policy is expected to utilize

both the real-time droplet sensing feedback, as well as the MC

health feedback provided by the on-board sensors.

We also consider the issue of designing such routing poli-

cies for multiple biochip sizes and fault injection levels. From

a run-time perspective, a routing policy need to be available

within a few seconds of receiving the routing job. Furthermore,

at each control cycle, the time between receiving sensor mea-

surements and generating the control pattern should not exceed

200 ms. Those run-time requirements are motivated by typical

applications where the control cycle period is 1 s. In addition,

time-critical microfluidic applications—such as flash chem-

istry [17]—demand timely response on the scale of fractions

of a few seconds.

III. DRL APPROACH FOR MEDA

In this section, we present the DRL-based framework

for designing routing policies for MEDA biochips. We first

introduce the stochastic model that constitutes the virtual train-

ing environment. We then discuss the elements comprising

Fig. 1. Example for droplet coordinates at time steps k and k + 1.

the training environment; specifically, the action space, the

observation space, and the reward function.

For notation, Z, N0, and R denote the set of integer, natural,

and real numbers, respectively. We use 1 : {�,⊥} → {0, 1}

to denote the indicator function over the set of Booleans. We

also utilize U{i, j} and U(a, b) to denote the discrete (i.e., over

integers) and the continuous (i.e., over reals) uniform distribu-

tions over �i, j� and [a, b], respectively. Finally, we use bold

capital letters for matrices, and italic capital letters for their

elements.

A. MEDA Training Environment

Consider an MEDA biochip of size W × H, denoting

the number of MCs in each row and column, respectively.

Following [18], we model a droplet as a quadruple δ =

(xa, ya, xb, yb) ∈ �, where � ⊂ N
4
0 is the set of all pos-

sible droplets. A routing task is characterized by the initial

(start) and target (goal) droplet locations, denoted by δs and

δg, respectively. We use δ(k), k ∈ N0, to denote the droplet

location at the kth control step. Fig. 1 shows an example of

the droplet location.

Let (i, j) be the coordinates of a given MC; Dij ∈ [0, 1] be its

degradation level, where 1 indicates a fully healthy MC and 0

a fully degraded; and nij ∈ N0 be the total number of control

steps at which the MC was actuated. The degradation level

can be estimated as D
(n)
ij = τ

nij/cij

ij ∈ [0, 1], where cij ∈ R>0

and τij ∈ [0, 1) are parameters controlling the degradation rate.

Those parameters are generally unknown, although their range

can be experimentally estimated [32]. The degradation level

of an MC can be measured through the health measurement

unit [18]. Given a health measurement unit with b-number of

bits, the MC measured health is captured by

H
(n)
ij =

⌊

2b · D
(n)
ij

⌋

=
⌊

2b · τ nij/cij

⌋

. (1)

At each control cycle, MEDA biochips support single- and

double-step droplet movements in both the cardinal and ordinal

directions. The movement is achieved by applying an actuation

pattern that corresponds to the movement direction, and the

probability that this movement is successful largely depends

on the health level of the group of MCs—referred to as the

frontier set—primarily responsible for generating the EWOD

force for the action to be performed. We employ the proba-

bilistic transitions modeling from [18]. Each action, along with

the current droplet location, determines the group of MCs to

be actuated. We use U(k) ∈ {0, 1}W×H to denote the actuation
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Algorithm 1: Procedure for Computing Number of Steps

Input: Droplet δ : (xa, ya, xb, yb); goal

δg : (xag, yag, xbg, ybg); action a ∈ A

Output: Signed distance (λx, λy)

1 (λx, λy) ← (0, 0)

2 (�x,�y) ← (xag − xa, yag − ya)

3 (�x,�y) ← (	(xb − xa + 1)/2
, 	(yb − ya + 1)/2
)

4 if a∈{aN, aNE, aNW} then

λy ← �y − (�y − �y) · 1{0<�y<�y};

5 if a∈{aS, aSE, aSW} then

λy ← −�y + (�y + �y) · 1{−�y<�y<0};

6 if a∈{aE, aNE, aSE} then

λx ← �x − (�x − �x) · 1{0<�x<�x};

7 if a∈{aW, aNW, aSW} then

λx ← −�x + (�x + �x) · 1{−�x<�x<0};

8 return (λx, λy)

pattern matrix (pattern, for short) applied at time step k, where

Uij = 1 indicates that the MC MC(i,j) is actuated.

B. Parameterized Action Space

In a traditional action space, an action captures both the

direction and magnitude of the movement. This results in a

large action space cardinality, rendering the model unsuitable

for training. For instance, an action space that supports double-

step movements is comprised of at least 16 actions. Hence, we

propose a parameterized action space where actions capture

only the movement direction, while the number of steps is

defined based on the droplet size, shape, and its location rela-

tive to the goal. The motivation behind the parameterization of

the action space is twofold. First, it reduces the dimensional-

ity of the model by reducing the action space size. Second, it

unifies the action set across different droplet shapes and sizes,

enabling the usage of one trained agent for the entire range

of droplet sizes. Consequently, a parameterized action space

is an efficient representation that allows for moving a droplet

beyond two steps at a time.

We define the parameterized action space as the set A =

{aN, aS, aE, aW, aNE, aNW, aSE, aSW}, where N, S, E, and

W stands for north, south, east, and west, respectively. Let

(λx, λy) ∈ Z be the signed distance (distance, for short) asso-

ciated with the adaptive action a ∈ A. Algorithm 1 presents

the procedure for computing (λx, λy) given the current droplet

location δ, goal location δg, and action a. Basically, the pro-

cedure computes the maximum movement distance based on

the droplet size and the movement direction, while avoiding

overshooting the goal location. The computed distance (λx, λy)

is then used to transform the action a into the corresponding

actuation pattern U. Note that |A| = 8 at all states, reduc-

ing the complexity of the model and, subsequently, the time

required for training.

Example 1: The droplet shown in Fig. 1 is of size 4×3.

Since the maximum reliable distance for the droplet to travel

is (λx, λy) = (	w/2
, 	h/2
) = (2, 1), the adaptive action aNE

attempts to move the droplet one and two steps in the east

and north directions, respectively, during the current control

Fig. 2. Channels comprising the observation space.

cycle. If the goal location is δg = (4, 3, 7, 5), then the distance

is capped at (λx, λy) = (1, 1) to prevent the droplet from

overshooting.

C. Observation Space

At each control step k, the DRL agent can observe the

current sensor matrix Y ∈ {0, 1}W×H. For a droplet δ =

(xa, ya, xb, yb), Yij = 1 for all (i, j) ∈ �xa, xb� × �ya, yb�,

and Yij = 0 otherwise. In addition, the DRL agent can read

the health matrix H(k) ∈
{

0, 1, . . . , 2b − 1
}W×H

. From a DRL

perspective, an observation shall also incorporate the current

droplet location δ, goal location δg, and the hazard bounds δh.

To preserve the spatial relationships among the observed

data, we utilize a 3-D image-based observation space.

Specifically, we define an observation as a 3-D matrix o ∈

[0, 1]H×W×3). As shown in Fig. 2, the first layer captures both

the health matrix and hazard bounds, and is defined as follows:

o(i, j, 1) =

{

H(i, j, 1)/2b, i ∈ [xah, xbh], j ∈
[

yah, ybh

]

0, otherwise

where the hazard bounds are indirectly captured by masking

the health matrix values outside those bounds. The second

layer is defined as follows:

o(i, j, 2) =

{

1, i ∈ [xa, xb], j ∈
[

ya, yb

]

0, otherwise

to capture the droplet location. Similarly, the third layer is

defined as follows:

o(i, j, 3) =

{

1, i ∈
[

xag, xbg

]

, j ∈
[

yag, ybg

]

0, otherwise

to capture the goal location. Note that the elements of the

first layer are scaled so that the observation elements are both

within the range [0, 1] and independent of the actual number

of bits b used for health measurements.

D. Reward Function

The primary goal in adaptive droplet routing is to ensure

that the droplet can reach the target location. Performance met-

rics in this case include the time and distance traveled by the

droplet. Since excessive actuations of individual MCs can lead

to their premature failure, the number of actuations per MC

has to be incorporated in the routing process.

Let a(k) be the action taken at step k from state s(k), resulting

in a new state s(k+1). Thus, the reward is defined as follows:

r(k) = αdisr
(k)
dis + αterr

(k)
ter + αactr

(k)
act
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TABLE I
CNN LAYERS AND THEIR CONFIGURATIONS

where rdis, rdeg, and rter are the distance, terminal, and action

rewards, respectively, and αi ∈ R are the respective hyperpa-

rameters. To incentivize progression toward the target location,

rdis is defined as follows:

r
(k)
dis = D

(

δ(k), δg

)

− D
(

δ(t+1), δg

)

where D(δ(k), δg) denotes the Manhattan distance between two

droplet locations. The terminal reward rter aids in faster con-

vergence by associating reaching the target location with an

additional reward, defined as r
(k)
ter = 1{δ = δg}. Finally, the

action reward ract penalizes selecting an invalid action, i.e., an

action that causes the droplet to exit the routing job area. The

selection of the hyperparameters αi is discussed in Section IV.

Note that a maximum number of cycles per routing job is

imposed during training to allow for diverse sampling. While

the agent is rewarded for reaching the target location, it is

not penalized if the routing job fails due to reaching the max-

imum number of cycles allowed. The reason is that the number

of cycles available for routing is not part of the observa-

tion space. That is, states that only differ by the number of

cycles remaining have identical observations, leading to state

aliasing [33].

IV. DRL AGENT DESIGN AND TRAINING

This section summarizes our approach for design of the

DRL agents, to be employed for routing, including the

employed architecture and training procedure.

A. DNN Architecture and Training Configurations

We first discuss the employed DNN architecture as well as

configuration parameters that affect the training convergence

speed—i.e., MEDA biochip size, droplet size, the initial and

target droplet locations, the initial MC degradation levels, and

the degradation parameters.

DNN Architecture: We deploy a CNN, as shown in Table I,

to learn droplet routing policies due to its potential in

preserving important features of the observation space. As

illustrated in Fig. 2, the input to the CNN is a matrix of size

(H, W, 3). The three channels represent the MC health levels

and routing zone, the goal location, and the current droplet

location. The agent’s goal is to learn a policy that maximized

the expected cumulative reward. For notation, we use H and

H∗ to denote untrained and trained CNN agents, respectively.

Biochip and Droplet Sizes: For training, we considered

biochips of sizes between 30×30 and 180×180. We trained the

agent for the most common droplet sizes, with droplet width

and height w, h ∈ {2, 3, 4, 5, 6}, where w/h ∈ [0.8, 1.25]. We

assume that the droplet size is preserved throughout a single

routing job. Hence, there are two approaches to droplet size

selection during training. In the first, multiple agents are uti-

lized, where each agent is trained for a specific droplet size.

In the second, the same agent is trained against the range

of droplet sizes. Note that a DNN can be feature invariant by

training against the range of values for such feature. Moreover,

the exact size of droplets during execution might slightly vary

outside those specific values. Consequently, we opt for training

a single agent in this framework (i.e., the second approach).

Degradation Parameters: From (1), degradation parameters

of MCs affect their degradation rate, although they are not

directly observable to the agent. For training, we randomly

sample the degradation parameters as cij ∼ U(cmin, cmax) and

τij ∼ U(τmin, τmax), where the distributions are experimen-

tally obtained as described in Section V. On the other hand,

the number actuations nij is updated based on the actuation

patterns applied by the agent at each step.

Initial and Target Locations: In MEDA biochips, a droplet

is either the result of a preceding microfluidic operation or dis-

pensed by an on-chip dispenser. In the former case, the droplet

location can be anywhere on the biochip; in the latter, the

initial location δs is one of multiple, predefined dispenser coor-

dinates. Similarly, the target location δg can be either where

a microfluidic module is (e.g., a mixer or a splitter), or a

predefined exit through one of the biochip reservoirs.

For benchmark bioassays, the percentage of routing jobs

involving initial (e.g., dispensing operations) or target (e.g.,

discarding operations) droplets adjacent to one of the biochip

edges is between 20% and 40% [34]. Thus, during train-

ing both the initial and goal locations are sampled from

a stratified distribution. Specifically, we randomly sample

δs and δg at the start of each training episode such that

xas, xag ∼ U{2, W−w−1}, and yas, yag ∼ U{2, H−h−1}.

B. Agent Training

For training, we use the proximal policy optimization (PPO)

algorithm [35], [36] with the actor-critic architecture. Unlike

policy gradient methods for reinforcement learning where pol-

icy gradients are updated after reading each data sample, PPO

utilizes a surrogate objective to stabilize the training process

via multiple workers. Algorithm 2 summarizes the procedure

for training the agent to learn droplet routing policies. Each

training episode starts with the initial state (δg, H), sampled

according to the distributions described earlier. After each step,

the number of actuations nij is updated for all MCs using the

actuation pattern matrix U.

An episode terminates whenever one of two conditions is

met, namely, reaching a target location (i.e., δ = δg), or reach-

ing a predefined threshold for the number of cycles, denoted

by kmax. Imposing the second condition aids in diversifying

the routing jobs used in training. We use kmax = α(Wh +Hh),

where α ∈ [1, 2] is a hyperparameter, and Wh and Hh are the

width and height of the hazard zone, respectively.

An episode is terminated when either the target location is

reached, i.e., δ = δg, or the maximum number of steps allowed
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Algorithm 2: Procedure for Learning Routing Policies

Input: MEDA biochip size

1 for epoch do

2 resample ← �

3 for iter = 1, 2, . . . , Niter do

4 for actor = 1, 2, . . . , Nactor, running in parallel,

do

5 if resample = � then

6 Sample δs, δg, (τij), (cij), and N

7 resample ← ⊥

8 Run current policy π and obtain rewards and

new state

9 if (k ≥ kmax) ∨ (δ = δg) then

10 resample ← �

11 if (iter · Nactor) mod minibatchsize = 0 then

12 Optimize PPO2 loss function, update current

policy π

has passed, i.e., k = 2(W+H). Using the accumulated rewards,

the gradients for each encountered (s, a) are updated.

To avoid catastrophic unlearning,we adopt a dynamic learn-

ing rate scheduler for training. Specifically, the training pro-

cess starts with a base learning rate η0. At the end of the ith

epoch, the learning rate is discounted with factor βη only if

the agent performance is above a certain threshold, i.e.,

ηi+1 =

{

max (βη ∗ ηi, ηmin ), success rate > 0.99

ηi, otherwise.

Through hyperparameter optimization, we chose η0 = 3.5 ×

10−4, ηmin = 1.0 × 10−6, and βη = 0.7.

C. Training Multiple CNNs

In this work, we explore two approaches for training

multiple CNN agents as shown in Fig. 3. In the first approach,

namely, traditional learning, we train a CNN for each droplet

size and fault injection level, where each training process starts

with a randomly initialized CNN. Since there is no dependency

between the various training processes, CNNs can employ

observations of various sizes independently of each other.

In the second approach, namely, transfer learning, we uti-

lize pretrained CNNs to accelerate the training process for

untrained agents. Specifically, we first train a randomly ini-

tialized CNN H(30,0) on biochips of size 30×30 with no fault

injection, resulting in H∗
(30,0%)

. Next, we use the pretrained

agent to initialize the training of the CNNs used for the next

biochip size and fault injection level. For example, we use

H(60,0%) = H∗
(30,0%)

and H(30,0.1) = H∗
(30,0%)

to obtain the

networks H∗
(60,0%)

and H∗
(30,0.1)

, respectively. The process is

then repeated using the new CNNs as illustrated in Fig. 3.

In order to make the transfer learning process feasible, the

input layer size is unified across all CNNs. This is achieved

by scaling the observation matrix from the original size, i.e.,

(W, H, 3), to a unified observation size (30, 30, 3). The scal-

ing is performed using an algorithm provided by OpenCV

Fig. 3. Dataflow diagram for (a) traditional learning and (b) transfer learning.

library [37] that resamples the original observation using pixel

area relation.

Fig. 4 compares the training performance of the CNNs for

various biochip sizes trained via traditional and transfer learn-

ing. For all biochip sizes, the transfer learning-based CNNs

are able to learn effective policies within the first training

epoch, exhibiting the same performance that the CNNs trained

via random initialization were able to achieve after 15 to 40

epochs. This gain in training performance comes at the cost of

computation required to resize the observations. Nevertheless,

this cost is negligible when compared to the computational

power and time required to train the CNNs for more epochs

using observations of larger sizes. Another consideration is

that training multiple CNNs using transfer learning cannot be

fully done in parallel. Since the initial training is done offline,

training one CNN at a time is considered acceptable.

V. MODEL AND LEARNING EVALUATION

A. Measurement and Modeling of Degradation Parameters

The first series of experiments aims to establish the degra-

dation model and to evaluate the coefficients in (1). We

monitored the processes of electrode degradation in PCB-

based DMFBs, which utilize the same EWOD principle as

MEDA biochips to manipulate droplets. Electrodes of three

sizes are included on our biochips: 2×2 mm2; 3×3 mm2; and

4 × 4 mm2 (see Fig. 5). Four reservoir modules on two sides

of the DMFB are used to dispense different reagent droplets.

The actuation of each electrode can be controlled individually

using a high-voltage relay on the control board. Each high-

voltage relay is controlled using a single configuration bit, and

these configuration bits are stored in the shift register ICs.

Fig. 5 shows the overall hardware design of the DMFB

and the controller. Identical actuation sequences are executed

on two DMFBs simultaneously to accelerate the experimen-

tal process.

A series of actuation sequences are designed to simulate

repeated bioassay executions on the biochips. The electrodes

are activated and deactivated under a high frequency. The
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Fig. 4. Performance results for training CNNs via random initialization (red) and transfer learning (blue).

Fig. 5. Experimental setup.

charging time is monitored via an oscilloscope after each exe-

cution. The charging path can be simplified as an RC circuit

since the electrode and the top plate form a capacitor, and

a resistor is connected in series between the electrodes. The

effective capacitance of an electrode at time t can then be

derived using VC(t) = Vpp(1 − e−t/RC), where VC(t) is the

electrode capacitance at time t. Subsequently, the EWOD force

F can be obtained from [38] and [39] as follows:

F =
C(VC − VT)2

2

dA(x)

dx

where VT = 130 is threshold voltage due to solder mask insu-

lator [39], A(x) is the area of the droplet over the activated

electrode, and x is the droplet position.

The degradation results, including the measured capaci-

tance and the corresponding EWOD force, of five identical

DMFBs are presented in Fig. 6. The capacitance of an elec-

trode increases linearly as the number of actuations grows.

The increase in capacitance leads to a decrease in the induced

EWOD force. The coefficients of (1) are estimated as τ ∈

[0.5, 0.7] and c ∈ [500, 800], which are further used in the

DRL environment for agent training.

B. Evaluation

We next present the results for training agents for vari-

ous configurations by showing the mean score of the agents

after each training epochs for biochips of sizes W × H, where

W = H ∈ {30, 60, 120, 180}. Performance metrics consist of

the mean score, the number of cycles, as well as the suc-

cess rate. The metrics are collected after each training epoch

by testing the agent for 500 random routing jobs, and each

experiment is repeated five times. All experiments were car-

ried out with eight parallel environments and 214 total number

of steps. The training and experiments were conducted on an

Intel Xeon Silver 4208 CPU and an Nvidia RTX 6000 GPU

Fig. 6. Capacitance increase (top) and EWOD force degradation (bottom).

Fig. 7. Performance results for training CNNs on healthy MEDA biochips.

with 24 GB of memory. The training and simulation environ-

ment were implemented using Python, including OpenAI Gym

and Stable-Baselines libraries.

We first trained the CNN on a healthy MEDA biochip, i.e.,

the number of actuations per each MC is reset at the beginning

of each training episode. Fig. 7 presents the CNN performance

metrics versus the number of training epochs. The trends show

that after a low number of epochs, a CNN learns an effec-

tive policy—i.e., the success rate converges to 100% and the

score and the average number of cycles stabilize—at a rela-

tively small number of epochs that ranges from 10 to 40 and

increases with the biochip size.

We also tested the robustness of the trained agents against

randomly injected faults at runtime. We used the agents trained

on healthy biochips to initialize the training against biochips

with randomly injected faults. Before each training episode, a

fixed percentage of fully degraded MCs are randomly placed

in clusters of size 2 × 2. Similar to the previous experiments,

the trained agents were used to initialize the training on a

higher percentage of faults. Fig. 8 shows the performance

results for training against 10% and 20% fault injection modes.

The trends demonstrate that the agents were able to adapt to

the faults within the first training epoch.
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Fig. 8. Performance results for transfer learning in fault injection.

Fig. 9. Probability of successful bioassay completion versus no. of cycles.

Finally, to evaluate the trained CNNs, we run experiments

where we compare their performance against two baselines:

1) health-agnostic policies that aim to minimize the time to

reach the target without knowledge of the MC health lev-

els (referred to as the baseline) and 2) formally synthesized

strategies using the PRISM-games model checker (referred to

as the formal) [18]. Each policy was used to execute two

benchmark bioassays that are employed for COVID-19 test-

ing: 1) PCR-based (COVID-PCR) and 2) rapid antigen-based

(COVID-RAT), are widely used to detect the presence of the

SARS-CoV-2 virus or the body’ response to infection [34].

Fig. 9 presents the probability of successful bioassay com-

pletion within a given number of cycles k. The graph shows

that the DRL-based routing policy outperforms the policies

from the literature by achieving a significantly higher probabil-

ity of success. The gain in performance is primarily due to the

utilization of adaptive movement distance (see Section III). For

instance, the DRL-based policy successfully executed COVID-

PCR within k = 762 with probability p > 0.9, compared to

p < 0.4 when the other policies were used. In addition, the

time needed to obtain a routing policy from the trained CNN

is negligible (t < 0.1 sec) when compared to the formally syn-

thesized policies where t ranged from 5 to 48 s before each

routing job.

VI. EXPERIMENTAL RESULTS

In this section, we present a set of experiments whose

goal is to evaluate the overall performance of the proposed

DRL-based framework. Specifically, we execute routing tasks

on fabricated biochips. In our experiments, we employed a

PCB-based DMFB, which utilizes the same EWOD principle

as MEDA biochips to manipulate droplets.

A. Environmental Setup

1) Fabricated DMFB: The DMFB is a 5.8 × 5.8 cm2

4-layer PCB board containing a 9 × 12 electrode array and

Fig. 10. Design of PCB boards: (a) DMFB and (b) control board.

Fig. 11. Overall system used for our experiments.

four reservoirs, as shown in Fig. 10(a). The size of one elec-

trode is 1.8×1.8 mm2. Every electrode is connected to one of

the control pins at the sides of the DMFB. The control signals

are sent from the control board through the pins to actuate the

electrodes. To reduce the number of required pins and also the

chip area, pin sharing is used in our DMFB design. The 9×12

electrode array is divided into three equal-sized areas, where

each area includes a 9 × 4 electrode array. Electrodes at the

corresponding position in these three arrays can be mapped

to a same pin. As a result, in comparison with the control of

each electrode with individual pins, only one-third of the total

number of pins is needed. A layer of Cytop is coated on the

PCB surface to form the hydrophobic layer on the electrodes.

2) Control Board: The control board is a 11.5 × 13.5 cm2

4-layer PCB design, as shown in Fig. 10(b). Register ICs (P/N

SN74AHC595) are used to store the actuation sequences sent

from the micro-computer. At the same time, every pin that

connects to the DMFB is controlled by a high voltage relay

(P/N AQW210). Thus, 36 relays are needed for our DMFB

design. Each relay receives the signals sent from the register

ICs. Two voltage sources are applied to the control board: 1) a

source of 1 kHz and 200 V for electrode actuation and 2) a

source of 3 V for the ICs.

3) Overall System: The overall system is shown in Fig. 11.

It consists of three parts: 1) A DMFB with a control board;

2) a micro-computer (P/N Raspberry Pi 4); and 3) a camera

module. The routing model is deployed in the micro-computer,

where an image detection program is also executed. With this
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Fig. 12. Steps of the bioassay used for our experiments.

image detection program, real-time images of the DMFB cap-

tured by the camera module are processed to detect the current

droplet position. Based on the detection results, the micro-

computer requests the next droplet action from the routing

model. After receiving the output from the routing model, the

micro-computer sends corresponding actuation signals to the

control board to perform the desired droplet movements.

B. Routing Tasks

Fig. 12 shows the bioassay that we use in our experiments.

This bioassay consists of several fluidic operations, including

dispensing, mixing, splitting, and detection. To focus on the

routing performance of the models, we split the bioassay into

five main routing tasks (T1 to T5). For each routing task,

we set the maximum number of clock cycles as 40, which

is around the perimeter of the electrode array. A routing task

is failed and terminated when the droplet does not reach the

destination after 40 steps.

C. Experimental Settings

We compare the performance of the obtained DRL-based

routing policies with a baseline routing approach, which adopts

the shortest-path algorithm. Both routing policies (i.e., models)

are executed under two different DMFB health environments:

0% injected faults and 10% injected faults, i.e., 10% of

the electrodes are degraded. The injected faults are used to

simulate the aging degradation of the electrodes, which can

be detected by real-time sensing. The information about the

injected faults is provided as the health matrix to the DRL rout-

ing model. For each routing task, the positions of the injected

faults are randomly chosen, and the electrodes that are cho-

sen to insert faults are set to a low voltage to simulate the

degradation.

In addition to injected faults, some inherent defects might

also cause the failure of droplet movements; these include

imperfect coating to incorporate the hydrophobic layer and

PCB manufacturing defects. Unlike aging degradation, which

causes changes in the capacitance and thus can be sensed

in real time, the inherent defects cannot be easily sensed.

Therefore, the information about these defects is not provided

to the DRL routing agent. For our DMFB boards, around 5%

of electrodes suffer from inherent defects. Our results show

that the DRL model can ensure reliable bioassay execution

even in the presence of these defects.

D. Results and Evaluation

We execute the baseline routing model and the proposed

DRL routing model under two different DMFB health

Fig. 13. Average number of clock cycles and average execution time for
each routing task under fault rate of 0% and 10%. When the fault rate is 10%,
ten electrodes on the DMFB are chosen as degraded and set to a low voltage:
(top) Average number of clock cycles for each routing task; (bottom) average
execution time for each routing task.

Fig. 14. Execution of the routing task T1 with degraded electrodes:
(a) Routing task T1, (b) and (c) routing progression using the baseline model,
(d)–(f) routing progression using the DRL model.

environments with five routing tasks (T1 to T5). Fig. 13(top)

shows the average number of clock cycles needed for each

routing task. Under the environment with 0% injected faults,

the developed DRL policy can achieve a similar performance

as the baseline that adopts the shortest path. When the injected

fault rate is 10%, our results show that the DRL model needs

fewer clock cycles than the baseline approach. Similar results

can be seen in Fig. 13(bottom), where the average execution

time for each operation is shown. The execution time for a

routing task includes the computation time of the model and

the electrode actuation time.

Fig. 14 shows an example where the baseline approach and

the DRL-based routing policy execute a routing task with

degraded electrodes on the routing path. Fig. 14(a) shows

the routing task T1, which performs the mixing of droplets

A and B. Thus, we transport droplet A to the location of

droplet B. The two degraded electrodes are marked with red

squares. Fig. 14(b) and (c) shows the routing progression using
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the baseline model. The droplet followed the shortest path

to approach the destination before encountering the degraded

electrodes. When the droplet encountered the degraded elec-

trodes, it got stuck at the same position until the maximum

number of steps was reached and the assay was aborted. On

the other hand, Fig. 14(d) and (f) shows the routing progres-

sion using the DRL model. When the droplet encountered the

degraded electrodes, the DRL-based policy chose an alterna-

tive route and reached the destination successfully. The video

of this example can be found in [40].

Consequently, our experiments show that the proposed

DRL-based routing approach can be effectively integrated into

a DMFB system. The experimental results show that the DRL-

based routing policy provides reliable routing results even in

the presence of degraded electrodes.

VII. CONCLUSION

We have presented a DRL framework that can respond to

MC degradation during droplet routing on MEDA biochips.

Our framework adopts proactive health monitoring on indi-

vidual MCs and uses the captured response to plan more

feasible route for droplet transportation. We have shown that

the bioassay execution time and the number of clock cycles

are significantly reduced when our approach is employed. Our

results also show that the DRL-based routing policies facili-

tate real-time adaptation to faulty MCs as MCs degrade over

time.

REFERENCES

[1] W.-L. Chou, P.-Y. Lee, C.-L. Yang, W.-Y. Huang, and Y.-S. Lin, “Recent
advances in applications of droplet microfluidics,” Micromachines,
vol. 6, no. 9, pp. 1249–1271, 2015.

[2] M. Ibrahim, C. Boswell, K. Chakrabarty, K. Scott, and M. Pajic, “A
real-time digital-microfluidic platform for epigenetics,” in Proc. Int.

Conf. Compliers Archit. Sythesis Embedded Syst. (CASES), Oct. 2016,
pp. 1–10.

[3] R. S. Sista et al., “Digital microfluidic platform to maximize diag-
nostic tests with low sample volumes from newborns and pediatric
patients,” Diagnostics, vol. 10, no. 1, p. 21, 2020. [Online]. Available:
https://www.mdpi.com/2075-4418/10/1/21

[4] S. Huang, J. Connolly, A. Khlystov, and R. B. Fair, “Digital microfluidics
for the detection of selected inorganic ions in aerosols,” Sensors, vol. 20,
no. 5, p. 1281, 2020.

[5] A. Ganguli et al., “Rapid isothermal amplification and portable detec-
tion system for SARS-CoV-2,” Proc. Nat. Acad. Sci., vol. 117, no. 37,
pp. 22727–22735, 2020.

[6] C. Sheridan, “COVID-19 spurs wave of innovative diagnostics,” Nat.

Biotechnol., vol. 38, no. 7, pp. 769–772, 2020.

[7] S. Poddar, S. Ghoshal, K. Chakrabarty, and B. B. Bhattacharya, “Error-
correcting sample preparation with cyberphysical digital microfluidic
lab-on-chip,” ACM Trans. Design Autom. Electron. Syst., vol. 22, no. 1,
pp. 1–29, 2016.

[8] T.-C. Liang, Z. Zhong, M. Pajic, and K. Chakrabarty, “Extending the
lifetime of MEDA biochips by selective sensing on microelectrodes,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11,
pp. 3531–3543, Nov. 2020.

[9] K. Y.-T. Lai, Y.-T. Yang, and C.-Y. Lee, “An intelligent digital microflu-
idic processor for biomedical detection,” J. Signal Process. Syst., vol. 78,
no. 1, pp. 85–93, 2015.

[10] Y. Ho et al., “Design of a micro-electrode cell for programmable lab-
on-CMOS platform,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2016, pp. 2871–2874.

[11] Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design and
error recovery in the synthesis of digital microfluidic lab-on-chip,” ACM

J. Emerg. Technol. Comput. Syst., vol. 6, no. 3, p. 11, 2010.

[12] Z. Zhong, Z. Li, and K. Chakrabarty, “Adaptive and roll-forward error
recovery in MEDA biochips based on droplet-aliquot operations and
predictive analysis,” IEEE Trans. Multi-Scale Comput. Syst., vol. 4,
no. 4, pp. 577–592, Oct.–Dec. 2018.

[13] Z. Li et al., “Error recovery in a micro-electrode-dot-array digital
microfluidic biochip,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided

Design (ICCAD), 2016, pp. 1–8.

[14] Z. Li et al., “Efficient and adaptive error recovery in a micro-electrode-
dot-array digital microfluidic biochip,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 37, no. 3, pp. 601–614, Mar. 2018.

[15] M. Elfar, Z. Zhong, Z. Li, K. Chakrabarty, and M. Pajic,
“Synthesis of error-recovery protocols for micro-electrode-dot-array
digital Microfluidic Biochips,” ACM Trans. Embedded Comput.

Syst., vol. 16, no. 5s, p. 127, Sep. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3126538

[16] T.-C. Liang, Z. Zhong, Y. Bigdeli, T.-Y. Ho, K. Chakrabarty, and R. Fair,
“Adaptive droplet routing in digital microfluidic biochips using deep
reinforcement learning,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020,
pp. 6050–6060.

[17] J.-I. Yoshida, A. Nagaki, and T. Yamada, “Flash chemistry: Fast chem-
ical synthesis by using microreactors,” Chem. A Eur. J., vol. 14, no. 25,
pp. 7450–7459, 2008.

[18] M. Elfar, T.-C. Liang, K. Chakrabarty, and M. Pajic, “Formal synthesis
of adaptive droplet routing for MEDA biochips,” in Proc. Design, Autom.

Test Europe Conf. Exhibit. (DATE), 2021, pp. 324–329.

[19] M. Elfar, T.-C. Liang, K. Chakrabarty, and M. Pajic, “Formal synthesis
of adaptive droplet routing for MEDA Biochips,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 41, no. 8, pp. 2504–2517,
Aug. 2022.

[20] S. Anderson, B. Hadwen, and C. Brown, “Thin-film-transistor digital
microfluidics for high value in vitro diagnostics at the point of need,”
Lab Chip, vol. 21, no. 5, pp. 962–975, 2021.

[21] M. Elfar, T.-C. Liang, K. Chakrabarty, and M. Pajic, “Adaptive
droplet routing for MEDA Biochips via deep reinforcement learning,”
in Proc. Design, Autom. Test Europe Conf. Exhibit. (DATE), 2022,
pp. 640–645.

[22] C. Quilliet and B. Berge, “Electrowetting: A recent outbreak,” Current

Opin. Colloid Interface Sci., vol. 6, no. 1, pp. 34–39, 2001.

[23] “Illumina Official Website.” 2022. [Online]. Available: https://www.
illumina.com/techniques/sequencing/ngs-library-prep/automation.html

[24] “Genmark Official Website.” 2022. [Online]. Available: https://www.
genmarkdx.com

[25] “Baebies Official Website.” 2022. [Online]. Available: https://baebies.
com

[26] F. Su, S. Ozev, and K. Chakrabarty, “Ensuring the operational health of
droplet-based microelectrofluidic biosensor systems,” IEEE Sensors J.,
vol. 5, no. 4, pp. 763–773, Aug. 2005.

[27] Z. Zhong, T.-C. Liang, and K. Chakrabarty, “Enhancing the relia-
bility of MEDA Biochips using IJTAG and wear Leveling,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 10,
pp. 2063–2076, Oct. 2021.

[28] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforce-
ment learning for robotic manipulation with asynchronous off-policy
updates,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2017,
pp. 3389–3396.

[29] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[30] V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[31] Q. Gao et al., “Model-based design of closed loop deep brain stimulation
controller using reinforcement learning,” in Proc. ACM/IEEE 11th Int.

Conf. Cyber-Phys. Syst. (ICCPS), 2020, pp. 108–118.

[32] H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting
and trapping of charge: Model and experiments,” Langmuir, vol. 15,
pp. 6616–6620, Sep. 1999.

[33] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by
trial and error,” Mach. Learn., vol. 7, no. 1, pp. 45–83, 1991.

[34] G. Guglielmi, “Fast coronavirus tests: What they can and can’t do.”
Nature, vol. 585, no. 7826, pp. 496–498, 2020.

[35] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2016, pp. 1928–1937.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[37] (Itseez). The OpenCV Reference Manual, Release 2.4.9.0. (Apr. 2014).
[Online]. Available: http://opencv.org/

Authorized licensed use limited to: Duke University. Downloaded on July 13,2023 at 17:59:59 UTC from IEEE Xplore.  Restrictions apply. 



1222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

[38] Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, T.-Y. Ho, and C.-Y. Lee,
“Droplet size-aware high-level synthesis for micro-electrode-dot-array
digital microfluidic biochips,” IEEE Trans. Biomed. Circuits Syst.,
vol. 11, no. 3, pp. 612–626, Jun. 2017.

[39] R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?”
Microfluidics Nanofluidics, vol. 3, no. 3, pp. 245–281, 2007.

[40] M. Elfar, Y.-C. Chang, H. H.-Y. Ku, T.-C. Liang, K. Chakrabarty, and
M. Pajic. “Recorded Video for the Routing Example.” 2022. [Online].
Available: https://duke.is/mukvr

Mahmoud Elfar received the B.Sc. degree in
mechatronics from Ain Shams University, Cairo,
Egypt, in 2008. He is currently pursuing the
Ph.D. degree in computer engineering with Duke
University, Durham, NC, USA.

He was a Research and Development Engineer
with Schneider Electric, Cairo, and a Software
Engineer with Valeo, Cairo. He is currently a
Research Assistant with the Cyber-Physical Systems
Lab, Duke University. His research interests include
formal methods, model checking techniques and

human–robot interaction, and their applications in cyber–physical systems.

Yi-Chen Chang received the B.S. degree from
the Interdisciplinary Program of Nuclear Science,
National Tsing Hua University, Hsinchu, Taiwan,
in 2019, and the M.S. degree in computer science
from National Tsing Hua University in 2021. She
is currently pursuing the Ph.D. degree with the
Electrical and Computer Engineering Department,
Duke University, Durham, NC, USA.

She was a Design Flow Intern with TSMC,
Hsinchu. She was a DFT Intern with Nvidia Inc.,
Santa Clara, CA, USA. Her current research interests

include design automation and optimization of microfluidic biochips.

Harrison Hao-Yu Ku received the B.S. degree
in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2020. He is cur-
rently pursuing the M.S. degree with the Department
of Electrical and Computer Engineering, Duke
University, Durham, NC, USA.

He was a Software Development Engineer Intern
with Amazon Web Services, Inc., Seattle, WA,
USA. His research interests include optimization
of microfluidic biochips and their applications in
point-of-care diagnostics testing.

Tung-Che Liang received the B.S. degree in
electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2014, and the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from Duke University, Durham, NC, USA,
in 2020 and 2021, respectively.

He is currently a DFT Engineer with Nvidia
Inc., Santa Clara, CA, USA. He was with Synopsys
Inc., Mountain View, CA, USA, as a Research and
Development Engineer, a Yield and Diagnosis Intern
with Intel, Santa Clara, CA, USA, and a DFT Intern

with NVIDIA Inc., Santa Clara, and Apple Inc., Los Altos, CA, USA. His
research interests include deep learning, design automation, and microfluidic
system security.

Krishnendu Chakrabarty received the B.Tech.
degree from the Indian Institute of Technology
Kharagpur, Kharagpur, India, in 1990, and the
M.S.E. and Ph.D. degrees from the University of
Michigan, Ann Arbor, MI, USA, in 1992 and 1995,
respectively.

He is currently the John Cocke Distinguished
Professor of Electrical and Computer Engineering
with Duke University, Durham, NC, USA. His cur-
rent research projects include: design-for-testability
of 3-D integrated circuits, AI accelerators, microflu-

idic biochips, hardware security, AI for healthcare, and neuromorphic
computing systems.

Prof. Chakrabarty is a recipient of the National Science Foundation
CAREER Award, the Office of Naval Research Young Investigator Award, the
Humboldt Research Award from the Alexander von Humboldt Foundation,
Germany, the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS Donald O. Pederson Best Paper
Award in 2015, the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS Prize Paper Award in 2021, the ACM

Transactions on Design Automation of Electronic Systems Best Paper Award in
2017, multiple IBM Faculty Awards and HP Labs Open Innovation Research
Awards, and over a dozen best paper awards at major conferences. He is also
a recipient of the IEEE Computer Society Technical Achievement Award in
2015, the IEEE Circuits and Systems Society Charles A. Desoer Technical
Achievement Award in 2017, the IEEE Circuits and Systems Society Vitold
Belevitch Award in 2021, the Semiconductor Research Corporation Technical
Excellence Award in 2018, the IEEE-HKN Asad M. Madni Outstanding
Technical Achievement and Excellence Award in 2021, and the IEEE Test
Technology Technical Council Bob Madge Innovation Award in 2018. He is
a 2018 recipient of the Japan Society for the Promotion of Science Invitational
Fellowship in the “Short Term S: Nobel Prize Level” category. He is a Fellow
of ACM and AAAS, and a Golden Core Member of the IEEE Computer
Society. He is a member of the DARPA Microsystems Exploratory Council.

Miroslav Pajic (Senior Member, IEEE) received the
Dipl.Ing. and M.S. degrees in electrical engineering
from the University of Belgrade, Belgrade, Serbia, in
2003 and 2007, respectively, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Pennsylvania, Philadelphia, PA, USA, in 2010 and
2012, respectively.

He is currently the Dickinson Family Associate
Professor with the Department of Electrical and
Computer Engineering, Duke University, Durham,
NC, USA. His research interests focus on the design

and analysis of high-assurance cyber–physical systems with varying levels of
autonomy and human interaction, at the intersection of (traditional) areas of
embedded systems, AI, learning and controls, formal methods, and robotics.

Dr. Pajic received various awards, including the ACM SIGBED EarlyCareer
Award, the IEEE TCCPS Early-Career Award, the NSF CAREER Award, the
ONR Young Investigator Program Award, the ACM SIGBED Frank Anger
Memorial Award, the Joseph and the Rosaline Wolf Best Dissertation Award
from Penn Engineering, the IBM Faculty Award, as well as seven Best Paper
and Runner-Up Awards at major cyber–physical systems venues.

Authorized licensed use limited to: Duke University. Downloaded on July 13,2023 at 17:59:59 UTC from IEEE Xplore.  Restrictions apply. 


