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Abstract—The micro-electrode-dot-array (MEDA) architecture
provides precise droplet control and real-time sensing in digi-
tal microfluidic biochips. Previous work has shown that trapped
charge under microelectrodes (MCs) leads to droplets being stuck
and failures in fluidic operations. A recent approach utilizes real-
time sensing of MC health status, and attempts to avoid degraded
electrodes during droplet routing. However, the problem with this
solution is that the computational complexity is unacceptable for
MEDA biochips of realistic size. Consequently, in this work, we
introduce a deep reinforcement learning (DRL)-based approach
to bypass degraded electrodes and enhance the reliability of rout-
ing. The DRL model utilizes the information of health sensing in
real time to proactively reduce the likelihood of charge trapping
and avoid using degraded MCs. Simulation results show that
our approach provides effective routing strategies for COVID-
19 testing protocols. We also validate our DRL-based approach
using fabricated prototype biochips. Experimental results show
that the developed DRL model completed the routing tasks using
a fewer number of clock cycles and shorter total execution time,
compared with a baseline routing method. Moreover, our DRL-
based approach provides reliable routing strategies even in the
presence of degraded electrodes. Our experimental results show
that the proposed DRL-based routing is robust to occurrences of
electrode faults, as well as increases the lifetime and usability of
microfluidic biochips compared to existing strategies.

Index Terms—Biomedical electronics, microelectrodes (MCs),
microfluidics, real-time systems, reinforcement learning.

I. INTRODUCTION

S MICROFLUIDIC technology advances, digital
microfluidic biochips (DMFBs) are being utilized to
automate laboratory procedures associated with bioanalyt-
ical assays. DMFBs revolutionize traditional experimental
processes by providing precise control of nanoliter-sized
droplets. Various bio-experiments have been performed using
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DMFBs, such as molecular detection, diagnostic tests for
newborns, portable detection for COVID-19, and aerosol
detection [1]-[6].

In recent years, an improved DMFB structure called
micro-electrode-dot-array (MEDA) has been proposed. MEDA
biochips adopt the concept of sea-of-micro-electrodes and con-
sist of a large number of microelectrodes (MCs), where each
MC contains an individual circuit for real-time control and sens-
ing [7], [8]. In contrast to conventional DMFBs, MEDA biochips
are implemented using a 0.35 pum standard CMOS process [9],
[10]. The size of an MC is around 40 times smaller than the
size of an electrode in a conventional DMFB. Hence, the MCs
can be flexibly grouped to form different types of microfluidic
modules during bioprotocol execution on MEDA biochips.

Both conventional DMFBs and MEDA biochips adopt the
principle of electrowetting-on-dielectric (EWOD) to manipu-
late droplets. A high voltage is repeatedly applied to the elec-
trodes to generate dragging forces on the droplets. However, as
the electrodes are frequently charged and discharged, charge
trapping might occur on the electrodes and result in elec-
trode degradation. The degraded electrodes generate abnormal
EWOD forces, which cause unexpected droplet movements
(or lack thereof) and lead to failure of microfluidic opera-
tions. Therefore, reliability is a major concern for microfluidic
biochips. While solutions have been proposed in the litera-
ture to mitigate the problem of electrode degradation, most
of these methods focus on recovery after erroneous behav-
iors occur. These techniques include the design of fluidic
checkpoints, droplet-aliquot operations, synthesis of recov-
ery protocols using probabilistic-timed-automata, as well as
selective sensing [8], [11]-[15]. On the other hand, preventive
approaches that proactively predict and prevent failures during
the droplet routing stage have not received much attention.

Recently, a reinforcement learning (RL)-based droplet rout-
ing model has been developed to address the reliability
problems in DMFBs [16]. However, the main limitation of
this method is that the RL-developed model can only learn
from the occurrence of failures. In other words, the model
adjusts its policy only after an error has occurred. This limita-
tion prevents the model from being applicable to time-sensitive
applications such as flash chemistry [17].

A new hardware design, which enables real-time sensing of
health status for each MC on MEDA biochips, was first intro-
duced in [18]. A stochastic game-based formal synthesizer was
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proposed to generate adaptive routing strategies based on the
electrode health information derived from MEDA biochips in
real time [19]. However, the formal synthesizer suffers from
the limitation of scalability in terms of biochip size. For a
MEDA biochip of size 20 x 20, around 3 s are needed for the
formal synthesizer to complete a synthesis task for one step,
and a bioassay consists of at least hundreds of such steps.
Therefore, the formal synthesizer is infeasible for practical
applications. For instance, a commercial microfluidic biochip
platform called aQdrop includes 41 000 electrodes [20], which
is around 100 times larger than the size of the biochips used
in [19]. Thus, a formal synthesis method that explores all
the state space cannot be deployed for state-of-the-art biochip
platforms.

Consequently, in this work, we introduce a deep rein-
forcement learning (DRL)-based droplet routing approach that
incorporates real-time health information to provide routing
strategies that proactively avoid the use of degraded MCs. The
routing framework is deployed with a deep neural network
(DNN) agent, which is first trained using offline DRL with
simulated environments. Then, online DRL training is applied
to the agent to adjust the policy under different biochip envi-
ronments. In contrast to the formal synthesizer from [19],
which enumerates all the possible state spaces, the DRL model
efficiently stores routing solutions using the DNN agent. The
agent provides routing strategies with negligibly short com-
puting time. Thus, the proposed DRL model can be employed
under realistic scenarios for different applications.

A preliminary version of this DRL-based routing approach
appeared in [21]. In this article, we present more details
on the DRL model and the training methods for convolu-
tional neural network (CNN) agents. We have also validated
the proposed DRL routing model using fabricated prototype
biochips. Specifically, the main contributions of this article are
as follows.

1) We propose a DRL-based approach (and the correspond-
ing DRL model) for droplet routing on MEDA biochips,
providing reliable routing strategies based on real-time
health information.

2) We introduce a stochastic model to constitute the virtual
training environments for the DRL model. To enhance
training efficiency, we adopt action space parameteriza-
tion and adaptive droplet step movement.

3) We design a DNN agent for the DRL model that ensures
the scalability of the DRL framework. We deploy both
traditional and transfer learning techniques for agent
training, and evaluate their performance.

4) We validate the estimation of degradation parameters
using PCB-based biochips.

5) We compare the performance of the DRL model with
the formal synthesizer by running bioassays for COVID-
19 testing.

6) We design and execute experiments where we evaluate
the trained DNNs on PCB-based biochips, and compare
the proposed solution to baseline routing policies.

The remainder of this article is organized as follows.

Section II provides background on MEDA biochips, adaptive
routing, reinforcement learning, and the problem formulation
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for the adaptive droplet routing problem. Section III intro-
duces the proposed DRL model for adaptive droplet routing.
Section IV describes the configurations used for training, the
DNN architecture, the training algorithm, and two approaches
for training multiple DNNSs. Section V evaluates the degrada-
tion parameters and compares the performance of the proposed
DRL framework to existing routing methods. Section VI
describes the experiment design and presents results for eval-
uating the trained agents using PCB-based biochips. Finally,
Section VII concludes this article.

II. BACKGROUND AND MOTIVATION
A. MEDA Biochips

MEDA biochips apply the EWOD [22] mechanism to
manipulate individual droplets with droplet volumes in a nano-
liter scale. Typically, one biochip may contain up to thousands
of MCs. Every MC module is composed of three components:
1) an MC; 2) a controlling unit; and 3) a capacitance-sensing
circuit for real-time detection of droplet location. Depending
on the bioassay requirements, the controller can dynamically
reconfigure the grouping of MCs, and thus modules, such as
mixers and splitters can be formed. When a sensing operation
is conducted, a charging and discharging process is applied to
all the MCs to measure the capacitance difference and thus the
locations of droplets can be determined. A scan-chain archi-
tecture is adopted to connect all the MCs into a daisy chain,
whereby the control signals and the sensing data are shifted
in and out as a sequences of bits.

B. Adaptive Droplet Routing

As biochip platforms, such as Illumina, Genmark, and
Baebies [23]-[25], are commercialized by companies, the
reliability of these devices has emerged as a major con-
cern. Manufacturing defects can be detected using the method
proposed in [26]. However, degradation due to charge trapping
in the dielectric layer occurs when electrodes are used over
time. The degraded electrodes lead to the failure of droplet
movement when they are involved in the transportation path.
To overcome the reliability problem, a wear-leveling method
has been proposed to avoid electrode overuse by uniformly dis-
tributing the electrode usage during the mapping of the fluidic
operations to the biochips [27]. However, for droplet routing,
only a few methods consider the dynamic changes of the health
condition of the biochips.

The first RL-based routing model that considers electrode
degradation on DMFBs was introduced in [16]. However,
this method is limited to conventional DMFBs, in which the
unique features for MEDA biochips are not incorporated. For
instance, the model only allows droplets of a single size while
MEDA biochips support droplets of various sizes. Another
limitation of [16] is that this model needs to learn from occur-
rence of failures, which might lead to erroneous outcomes of
bioassay execution.

Recently, a new MC design for MEDA biochips was
proposed in [19]. This design enables real-time sensing of
the health information of individual MCs. A formal synthe-
sizer has been developed to utilize health sensing to provide
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routing strategies that maximize the likelihood of success-
ful bioassay execution. An analytical model that defines the
probabilistic behaviors between the degradation level of MCs
and the corresponding probability of a successful actuation
has also been developed. Based on this analytical model,
the synthesizer provides an optimal routing strategy using
a stochastic game-based formulation. However, the comput-
ing time of this method grows significantly as the size of
biochip increases. Hence, the large runtime is unacceptable
for realistic applications.

C. Reinforcement Learning

RL is a class of machine learning in which the models learn
the optimal strategy in a complicated environment. RL algo-
rithms have been shown to be efficient for applications across
various domains, such as robotic manipulation, playing GO,
video games, and medical devices [28]-[31]. An RL problem
can be formulated using Markov decision processes (MDPs)
using a tuple (S, A, T, R), where S is the set of states; A is the
set of actions; T : S x A — S is the state transition function;
and R : § X A — R is the reward function. The aim of an
RL agent is to find a policy that maximizes the total reward
received from interactions with an uncertain environment at
discrete time steps. In modern RL applications, DNN agents
are deployed to obtain a near-optimal policy under large state
and action spaces.

D. Problem Formulation

In this work, we address the problem of designing droplet
routing policies for MEDA biochips. We assume that a bioas-
say scheduler breaks down microfluidic operations into a series
of single-droplet routing jobs. Each routing job is characterized
by droplet shape and size, initial and final droplet locations,
and the biochip area within which routing is allowed.

Then, the objective is to design routing policies for droplets
to successfully execute a given routing job. At each control
cycle, a routing policy shall provide the actuation pattern to
be applied. To this end, the routing policy is expected to utilize
both the real-time droplet sensing feedback, as well as the MC
health feedback provided by the on-board sensors.

We also consider the issue of designing such routing poli-
cies for multiple biochip sizes and fault injection levels. From
a run-time perspective, a routing policy need to be available
within a few seconds of receiving the routing job. Furthermore,
at each control cycle, the time between receiving sensor mea-
surements and generating the control pattern should not exceed
200 ms. Those run-time requirements are motivated by typical
applications where the control cycle period is 1 s. In addition,
time-critical microfluidic applications—such as flash chem-
istry [17]—demand timely response on the scale of fractions
of a few seconds.

ITI. DRL APPROACH FOR MEDA

In this section, we present the DRL-based framework
for designing routing policies for MEDA biochips. We first
introduce the stochastic model that constitutes the virtual train-
ing environment. We then discuss the elements comprising
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Fig. 1. Example for droplet coordinates at time steps k and k + 1.

the training environment; specifically, the action space, the
observation space, and the reward function.

For notation, Z, Ny, and R denote the set of integer, natural,
and real numbers, respectively. We use 1 : {T, L} — {0, 1}
to denote the indicator function over the set of Booleans. We
also utilize U{i, j} and U(a, b) to denote the discrete (i.e., over
integers) and the continuous (i.e., over reals) uniform distribu-
tions over [i, ;] and [a, b], respectively. Finally, we use bold
capital letters for matrices, and italic capital letters for their
elements.

A. MEDA Training Environment

Consider an MEDA biochip of size W x H, denoting
the number of MCs in each row and column, respectively.
Following [18], we model a droplet as a quadruple § =
(Xas Ya» Xp, ¥b) € A, where A C Né is the set of all pos-
sible droplets. A routing task is characterized by the initial
(start) and target (goal) droplet locations, denoted by §; and
dg, Tespectively. We use 8®, k € Np, to denote the droplet
location at the kth control step. Fig. 1 shows an example of
the droplet location.

Let (i, j) be the coordinates of a given MC; D;; € [0, 1] be its
degradation level, where 1 indicates a fully healthy MC and 0
a fully degraded; and n;; € Ny be the total number of control
steps at which the MC was actuated. The degradation level
can be estimated as Dl(j") =T; € [0, 1], where ¢;j € Rg
and 7;; € [0, 1) are parameters controlling the degradation rate.
Those parameters are generally unknown, although their range
can be experimentally estimated [32]. The degradation level
of an MC can be measured through the health measurement
unit [18]. Given a health measurement unit with b-number of
bits, the MC measured health is captured by

HY = Lzb : D?,”’J - Pb . f"iz/Ca'J. (1)

At each control cycle, MEDA biochips support single- and
double-step droplet movements in both the cardinal and ordinal
directions. The movement is achieved by applying an actuation
pattern that corresponds to the movement direction, and the
probability that this movement is successful largely depends
on the health level of the group of MCs—referred to as the
frontier set—primarily responsible for generating the EWOD
force for the action to be performed. We employ the proba-
bilistic transitions modeling from [18]. Each action, along with
the current droplet location, determines the group of MCs to
be actuated. We use U® ¢ {0, l}W><H to denote the actuation
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Algorithm 1: Procedure for Computing Number of Steps

Input: Droplet §: (x4, Ya, Xb, yp); goal
8¢t (Xags Yags Xbgs Ybg); action a € A

Output: Signed distance (A, Ay)
(Axs Ay) <= (0,0)
(Ax, Ay) < (xag — Xas Yag — Ya)
(Ax, Ay) < (Lo — x4 + 1)/2], LOb — ya + 1)/2])
if ae{an, ang, anw} then
Ay < Ay — (Ay — Ay) - IL{0<Ay<Ay}§
5 if ae{ag, age, agy} then

)",V < —Ay =+ (Ay =+ Ay) . ]l{—Ay<Ay<O};
6 if ac{ag, ang, agg} then

Ay < Ay — (Ax — Ax) - 1{O<Ax<AX};
7 if ae{aw, anw, asw} then

Ay <= =Ax+ (Ax + Ax) - 1{—AX<AX<0};
8 return (Ax, Ay)

a W N =

pattern matrix (pattern, for short) applied at time step k, where
Uj; = 1 indicates that the MC MC; ;) is actuated.

B. Parameterized Action Space

In a traditional action space, an action captures both the
direction and magnitude of the movement. This results in a
large action space cardinality, rendering the model unsuitable
for training. For instance, an action space that supports double-
step movements is comprised of at least 16 actions. Hence, we
propose a parameterized action space where actions capture
only the movement direction, while the number of steps is
defined based on the droplet size, shape, and its location rela-
tive to the goal. The motivation behind the parameterization of
the action space is twofold. First, it reduces the dimensional-
ity of the model by reducing the action space size. Second, it
unifies the action set across different droplet shapes and sizes,
enabling the usage of one trained agent for the entire range
of droplet sizes. Consequently, a parameterized action space
is an efficient representation that allows for moving a droplet
beyond two steps at a time.

We define the parameterized action space as the set A =
{an, as, ag, aw, anE, anw, asg, asw}, where N, S, E, and
W stands for north, south, east, and west, respectively. Let
(Ax, Ay) € Z be the signed distance (distance, for short) asso-
ciated with the adaptive action a € A. Algorithm 1 presents
the procedure for computing (A, Ay) given the current droplet
location §, goal location §g, and action a. Basically, the pro-
cedure computes the maximum movement distance based on
the droplet size and the movement direction, while avoiding
overshooting the goal location. The computed distance (A, Ay)
is then used to transform the action a into the corresponding
actuation pattern U. Note that | A| = 8 at all states, reduc-
ing the complexity of the model and, subsequently, the time
required for training.

Example 1: The droplet shown in Fig. 1 is of size 4 x 3.
Since the maximum reliable distance for the droplet to travel
is (Ax, Ay) = (Iw/2], [h/2]) = (2, 1), the adaptive action ang
attempts to move the droplet one and two steps in the east
and north directions, respectively, during the current control
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Fig. 2. Channels comprising the observation space.

cycle. If the goal location is §; = (4, 3,7, 5), then the distance
is capped at (Ax,Ay) = (1,1) to prevent the droplet from
overshooting.

C. Observation Space

At each control step k, the DRL agent can observe the
current sensor matrix Y € {0, }WH. For a droplet § =
(Xa, Ya, Xp, yp), Yij = 1 for all (i,7) € [xa, xp] X [Ya> o]
and Y; = 0 otherwise. In addition, the DRL agent can read
the health matrix H® ¢ {0, L,...,2b -1 WXH. From a DRL
perspective, an observation shall also incorporate the current
droplet location §, goal location &g, and the hazard bounds §j.

To preserve the spatial relationships among the observed
data, we utilize a 3-D image-based observation space.
Specifically, we define an observation as a 3-D matrix o €
[0, 117>Wx3) A5 shown in Fig. 2, the first layer captures both
the health matrix and hazard bounds, and is defined as follows:

. _ H(LJ? 1)/2179 ie [xahvxbl’l]sj € [)’ah, ybh]
oli,), 1) = {O, otherwise

where the hazard bounds are indirectly captured by masking
the health matrix values outside those bounds. The second
layer is defined as follows:

.. _ 15 le [xa,xb]»j € [ydv )’b]

0(i.j,2) = {0, otherwise
to capture the droplet location. Similarly, the third layer is
defined as follows:

.o _ 17 i€ [—xag, xbg],j € [yagv ybg]

0@i.j,3) = {0, otherwise

to capture the goal location. Note that the elements of the
first layer are scaled so that the observation elements are both
within the range [0, 1] and independent of the actual number
of bits b used for health measurements.

D. Reward Function

The primary goal in adaptive droplet routing is to ensure
that the droplet can reach the target location. Performance met-
rics in this case include the time and distance traveled by the
droplet. Since excessive actuations of individual MCs can lead
to their premature failure, the number of actuations per MC
has to be incorporated in the routing process.

Let a® be the action taken at step k from state s, resulting
in a new state s®*1_ Thus, the reward is defined as follows:

k k k
r(k) = Oldis"((ﬁz + Olterrt(er) + aactr;(icz
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TABLE I
CNN LAYERS AND THEIR CONFIGURATIONS

Layer Type Activation Size Stride Padding
L1 Convolution ReLU 64 3 1
L2 Convolution ReLU 128 3 1
L3 Convolution ReLU 128 3 1
L4 Fully-connected ~ ReLU 256 3 1
L5 Output ReLU 8 - -

where rgis, 7deg, and reer are the distance, terminal, and action
rewards, respectively, and «; € R are the respective hyperpa-
rameters. To incentivize progression toward the target location,
rdis 18 defined as follows:

i =D(59.5,) = D5 5,)

where D(8%®), 8,) denotes the Manhattan distance between two
droplet locations. The terminal reward r; aids in faster con-
vergence by associating reaching the target location with an
additional reward, defined as rt(er) = 1{6 = &;}. Finally, the
action reward ryc; penalizes selecting an invalid action, i.e., an
action that causes the droplet to exit the routing job area. The
selection of the hyperparameters «; is discussed in Section IV.

Note that a maximum number of cycles per routing job is
imposed during training to allow for diverse sampling. While
the agent is rewarded for reaching the target location, it is
not penalized if the routing job fails due to reaching the max-
imum number of cycles allowed. The reason is that the number
of cycles available for routing is not part of the observa-
tion space. That is, states that only differ by the number of
cycles remaining have identical observations, leading to state
aliasing [33].

IV. DRL AGENT DESIGN AND TRAINING

This section summarizes our approach for design of the
DRL agents, to be employed for routing, including the
employed architecture and training procedure.

A. DNN Architecture and Training Configurations

We first discuss the employed DNN architecture as well as
configuration parameters that affect the training convergence
speed—i.e., MEDA biochip size, droplet size, the initial and
target droplet locations, the initial MC degradation levels, and
the degradation parameters.

DNN Architecture: We deploy a CNN, as shown in Table I,
to learn droplet routing policies due to its potential in
preserving important features of the observation space. As
illustrated in Fig. 2, the input to the CNN is a matrix of size
(H, W, 3). The three channels represent the MC health levels
and routing zone, the goal location, and the current droplet
location. The agent’s goal is to learn a policy that maximized
the expected cumulative reward. For notation, we use H and
H* to denote untrained and trained CNN agents, respectively.

Biochip and Droplet Sizes: For training, we considered
biochips of sizes between 30x30 and 180x 180. We trained the
agent for the most common droplet sizes, with droplet width
and height w, h € {2, 3, 4, 5, 6}, where w/h € [0.8, 1.25]. We

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

assume that the droplet size is preserved throughout a single
routing job. Hence, there are two approaches to droplet size
selection during training. In the first, multiple agents are uti-
lized, where each agent is trained for a specific droplet size.
In the second, the same agent is trained against the range
of droplet sizes. Note that a DNN can be feature invariant by
training against the range of values for such feature. Moreover,
the exact size of droplets during execution might slightly vary
outside those specific values. Consequently, we opt for training
a single agent in this framework (i.e., the second approach).

Degradation Parameters: From (1), degradation parameters
of MCs affect their degradation rate, although they are not
directly observable to the agent. For training, we randomly
sample the degradation parameters as ¢;; ~ U (Cmin, Cmax) and
T;j ~ U(Tmin, Tmax), Where the distributions are experimen-
tally obtained as described in Section V. On the other hand,
the number actuations n;; is updated based on the actuation
patterns applied by the agent at each step.

Initial and Target Locations: In MEDA biochips, a droplet
is either the result of a preceding microfluidic operation or dis-
pensed by an on-chip dispenser. In the former case, the droplet
location can be anywhere on the biochip; in the latter, the
initial location &; is one of multiple, predefined dispenser coor-
dinates. Similarly, the target location §; can be either where
a microfluidic module is (e.g., a mixer or a splitter), or a
predefined exit through one of the biochip reservoirs.

For benchmark bioassays, the percentage of routing jobs
involving initial (e.g., dispensing operations) or target (e.g.,
discarding operations) droplets adjacent to one of the biochip
edges is between 20% and 40% [34]. Thus, during train-
ing both the initial and goal locations are sampled from
a stratified distribution. Specifically, we randomly sample
ds and 8, at the start of each training episode such that
Xas, Xag ~ U2, W-w-1}, and ya, Yag ~ U{2, H-h-1}.

B. Agent Training

For training, we use the proximal policy optimization (PPO)
algorithm [35], [36] with the actor-critic architecture. Unlike
policy gradient methods for reinforcement learning where pol-
icy gradients are updated after reading each data sample, PPO
utilizes a surrogate objective to stabilize the training process
via multiple workers. Algorithm 2 summarizes the procedure
for training the agent to learn droplet routing policies. Each
training episode starts with the initial state (84, H), sampled
according to the distributions described earlier. After each step,
the number of actuations n;; is updated for all MCs using the
actuation pattern matrix U.

An episode terminates whenever one of two conditions is
met, namely, reaching a target location (i.e., § = J;), or reach-
ing a predefined threshold for the number of cycles, denoted
by kmax. Imposing the second condition aids in diversifying
the routing jobs used in training. We use kpax = o(Wp, +Hp),
where «a € [1, 2] is a hyperparameter, and W), and Hy, are the
width and height of the hazard zone, respectively.

An episode is terminated when either the target location is
reached, i.e.,§ =6 ¢» Of the maximum number of steps allowed
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Algorithm 2: Procedure for Learning Routing Policies

Input: MEDA biochip size
1 for epoch do

2 resample <— T

3 for iter = 1,2, ..., Nitr do

4 for actor = 1,2, ..., Nactor, running in parallel,

do

5 if resample = T then

6 Sample &5, 8, (1), (cj), and N

7 L resample <— L

8 Run current policy 7 and obtain rewards and

new state

9 if (k> kmax) V (8§ = §;) then

10 L resample <— T

1 if (iter - Ngctor) mod minibatchsize = 0 then

12 Optimize PPO2 loss function, update current
| policy

has passed, i.e., k = 2(W+H). Using the accumulated rewards,
the gradients for each encountered (s, a) are updated.

To avoid catastrophic unlearning,we adopt a dynamic learn-
ing rate scheduler for training. Specifically, the training pro-
cess starts with a base learning rate ng. At the end of the ith
epoch, the learning rate is discounted with factor 8, only if
the agent performance is above a certain threshold, i.e.,

max (B * Ni, Mmin),  success rate > 0.99

Mit+l = {ni, otherwise.

Through hyperparameter optimization, we chose 179 = 3.5 x
1074, Nmin = 1.0 x 107, and g, = 0.7.

C. Training Multiple CNNs

In this work, we explore two approaches for training
multiple CNN agents as shown in Fig. 3. In the first approach,
namely, traditional learning, we train a CNN for each droplet
size and fault injection level, where each training process starts
with a randomly initialized CNN. Since there is no dependency
between the various training processes, CNNs can employ
observations of various sizes independently of each other.

In the second approach, namely, transfer learning, we uti-
lize pretrained CNNs to accelerate the training process for
untrained agents. Specifically, we first train a randomly ini-
tialized CNN H 30,0y on biochips of size 30x30 with no fault
injection, resulting in sz30,0% )- Next, we use the pretrained
agent to initialize the training of the CNNs used for the next
biochip size and fault injection level. For example, we use
Heo,0%) = HéO,O%) and H3p,0.1) = HEF?aO,O%) to obtain the
networks sz()o,o% ) and HE%O,O. 1y respectively. The process is
then repeated using the new CNNs as illustrated in Fig. 3.

In order to make the transfer learning process feasible, the
input layer size is unified across all CNNs. This is achieved
by scaling the observation matrix from the original size, i.e.,
(W, H, 3), to a unified observation size (30, 30, 3). The scal-
ing is performed using an algorithm provided by OpenCV
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Fig. 3. Dataflow diagram for (a) traditional learning and (b) transfer learning.

library [37] that resamples the original observation using pixel
area relation.

Fig. 4 compares the training performance of the CNNs for
various biochip sizes trained via traditional and transfer learn-
ing. For all biochip sizes, the transfer learning-based CNNs
are able to learn effective policies within the first training
epoch, exhibiting the same performance that the CNN trained
via random initialization were able to achieve after 15 to 40
epochs. This gain in training performance comes at the cost of
computation required to resize the observations. Nevertheless,
this cost is negligible when compared to the computational
power and time required to train the CNNs for more epochs
using observations of larger sizes. Another consideration is
that training multiple CNNs using transfer learning cannot be
fully done in parallel. Since the initial training is done offline,
training one CNN at a time is considered acceptable.

V. MODEL AND LEARNING EVALUATION
A. Measurement and Modeling of Degradation Parameters

The first series of experiments aims to establish the degra-
dation model and to evaluate the coefficients in (1). We
monitored the processes of electrode degradation in PCB-
based DMFBs, which utilize the same EWOD principle as
MEDA biochips to manipulate droplets. Electrodes of three
sizes are included on our biochips: 2 x 2 mm?; 3 x 3 mm?; and
4 x 4 mm? (see Fig. 5). Four reservoir modules on two sides
of the DMFB are used to dispense different reagent droplets.
The actuation of each electrode can be controlled individually
using a high-voltage relay on the control board. Each high-
voltage relay is controlled using a single configuration bit, and
these configuration bits are stored in the shift register ICs.

Fig. 5 shows the overall hardware design of the DMFB
and the controller. Identical actuation sequences are executed
on two DMFBs simultaneously to accelerate the experimen-
tal process.

A series of actuation sequences are designed to simulate
repeated bioassay executions on the biochips. The electrodes
are activated and deactivated under a high frequency. The
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Fig. 4. Performance results for training CNNs via random initialization (red) and transfer learning (blue).
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Fig. 5.

Experimental setup.

charging time is monitored via an oscilloscope after each exe-
cution. The charging path can be simplified as an RC circuit
since the electrode and the top plate form a capacitor, and
a resistor is connected in series between the electrodes. The
effective capacitance of an electrode at time ¢ can then be
derived using V(1) = Vp,(1 — e /RC) where Vc(2) is the
electrode capacitance at time ¢. Subsequently, the EWOD force
F can be obtained from [38] and [39] as follows:

p_ CWVe = Vr)? dAw
N 2 dx

where V7 = 130 is threshold voltage due to solder mask insu-
lator [39], A(x) is the area of the droplet over the activated
electrode, and x is the droplet position.

The degradation results, including the measured capaci-
tance and the corresponding EWOD force, of five identical
DMFBs are presented in Fig. 6. The capacitance of an elec-
trode increases linearly as the number of actuations grows.
The increase in capacitance leads to a decrease in the induced
EWOD force. The coefficients of (1) are estimated as t €
[0.5,0.7] and ¢ € [500, 800], which are further used in the
DRL environment for agent training.

B. Evaluation

We next present the results for training agents for vari-
ous configurations by showing the mean score of the agents
after each training epochs for biochips of sizes W x H, where
W = H € {30, 60, 120, 180}. Performance metrics consist of
the mean score, the number of cycles, as well as the suc-
cess rate. The metrics are collected after each training epoch
by testing the agent for 500 random routing jobs, and each
experiment is repeated five times. All experiments were car-
ried out with eight parallel environments and 2'* total number
of steps. The training and experiments were conducted on an
Intel Xeon Silver 4208 CPU and an Nvidia RTX 6000 GPU

Capacitance (nF)

Force (mN)

400 600 800

Number of Actuations n

1,000

Fig. 6. Capacitance increase (top) and EWOD force degradation (bottom).
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Fig. 7. Performance results for training CNNs on healthy MEDA biochips.

with 24 GB of memory. The training and simulation environ-
ment were implemented using Python, including OpenAl Gym
and Stable-Baselines libraries.

We first trained the CNN on a healthy MEDA biochip, i.e.,
the number of actuations per each MC is reset at the beginning
of each training episode. Fig. 7 presents the CNN performance
metrics versus the number of training epochs. The trends show
that after a low number of epochs, a CNN learns an effec-
tive policy—i.e., the success rate converges to 100% and the
score and the average number of cycles stabilize—at a rela-
tively small number of epochs that ranges from 10 to 40 and
increases with the biochip size.

We also tested the robustness of the trained agents against
randomly injected faults at runtime. We used the agents trained
on healthy biochips to initialize the training against biochips
with randomly injected faults. Before each training episode, a
fixed percentage of fully degraded MCs are randomly placed
in clusters of size 2 x 2. Similar to the previous experiments,
the trained agents were used to initialize the training on a
higher percentage of faults. Fig. 8 shows the performance
results for training against 10% and 20% fault injection modes.
The trends demonstrate that the agents were able to adapt to
the faults within the first training epoch.
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Fig. 9. Probability of successful bioassay completion versus no. of cycles.

Finally, to evaluate the trained CNNs, we run experiments
where we compare their performance against two baselines:
1) health-agnostic policies that aim to minimize the time to
reach the target without knowledge of the MC health lev-
els (referred to as the baseline) and 2) formally synthesized
strategies using the PRISM-games model checker (referred to
as the formal) [18]. Each policy was used to execute two
benchmark bioassays that are employed for COVID-19 test-
ing: 1) PCR-based (COVID-PCR) and 2) rapid antigen-based
(COVID-RAT), are widely used to detect the presence of the
SARS-CoV-2 virus or the body’ response to infection [34].

Fig. 9 presents the probability of successful bioassay com-
pletion within a given number of cycles k. The graph shows
that the DRL-based routing policy outperforms the policies
from the literature by achieving a significantly higher probabil-
ity of success. The gain in performance is primarily due to the
utilization of adaptive movement distance (see Section III). For
instance, the DRL-based policy successfully executed COVID-
PCR within k = 762 with probability p > 0.9, compared to
p < 0.4 when the other policies were used. In addition, the
time needed to obtain a routing policy from the trained CNN
is negligible (# < 0.1 sec) when compared to the formally syn-
thesized policies where 7 ranged from 5 to 48 s before each
routing job.

VI. EXPERIMENTAL RESULTS

In this section, we present a set of experiments whose
goal is to evaluate the overall performance of the proposed
DRL-based framework. Specifically, we execute routing tasks
on fabricated biochips. In our experiments, we employed a
PCB-based DMFB, which utilizes the same EWOD principle
as MEDA biochips to manipulate droplets.

A. Environmental Setup

1) Fabricated DMFB: The DMFB is a 5.8 x 5.8 cm?
4-layer PCB board containing a 9 x 12 electrode array and
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Fig. 11. Overall system used for our experiments.

four reservoirs, as shown in Fig. 10(a). The size of one elec-
trode is 1.8 x 1.8 mm?. Every electrode is connected to one of
the control pins at the sides of the DMFB. The control signals
are sent from the control board through the pins to actuate the
electrodes. To reduce the number of required pins and also the
chip area, pin sharing is used in our DMFB design. The 9 x 12
electrode array is divided into three equal-sized areas, where
each area includes a 9 x 4 electrode array. Electrodes at the
corresponding position in these three arrays can be mapped
to a same pin. As a result, in comparison with the control of
each electrode with individual pins, only one-third of the total
number of pins is needed. A layer of Cytop is coated on the
PCB surface to form the hydrophobic layer on the electrodes.

2) Control Board: The control board is a 11.5 x 13.5 cm?
4-layer PCB design, as shown in Fig. 10(b). Register ICs (P/N
SN74AHCS595) are used to store the actuation sequences sent
from the micro-computer. At the same time, every pin that
connects to the DMFB is controlled by a high voltage relay
(P/N AQW210). Thus, 36 relays are needed for our DMFB
design. Each relay receives the signals sent from the register
ICs. Two voltage sources are applied to the control board: 1) a
source of 1 kHz and 200 V for electrode actuation and 2) a
source of 3 V for the ICs.

3) Overall System: The overall system is shown in Fig. 11.
It consists of three parts: 1) A DMFB with a control board;
2) a micro-computer (P/N Raspberry Pi 4); and 3) a camera
module. The routing model is deployed in the micro-computer,
where an image detection program is also executed. With this
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Fig. 12. Steps of the bioassay used for our experiments.

image detection program, real-time images of the DMFB cap-
tured by the camera module are processed to detect the current
droplet position. Based on the detection results, the micro-
computer requests the next droplet action from the routing
model. After receiving the output from the routing model, the
micro-computer sends corresponding actuation signals to the
control board to perform the desired droplet movements.

B. Routing Tasks

Fig. 12 shows the bioassay that we use in our experiments.
This bioassay consists of several fluidic operations, including
dispensing, mixing, splitting, and detection. To focus on the
routing performance of the models, we split the bioassay into
five main routing tasks (T1 to T5). For each routing task,
we set the maximum number of clock cycles as 40, which
is around the perimeter of the electrode array. A routing task
is failed and terminated when the droplet does not reach the
destination after 40 steps.

C. Experimental Settings

We compare the performance of the obtained DRL-based
routing policies with a baseline routing approach, which adopts
the shortest-path algorithm. Both routing policies (i.e., models)
are executed under two different DMFB health environments:
0% injected faults and 10% injected faults, i.e., 10% of
the electrodes are degraded. The injected faults are used to
simulate the aging degradation of the electrodes, which can
be detected by real-time sensing. The information about the
injected faults is provided as the health matrix to the DRL rout-
ing model. For each routing task, the positions of the injected
faults are randomly chosen, and the electrodes that are cho-
sen to insert faults are set to a low voltage to simulate the
degradation.

In addition to injected faults, some inherent defects might
also cause the failure of droplet movements; these include
imperfect coating to incorporate the hydrophobic layer and
PCB manufacturing defects. Unlike aging degradation, which
causes changes in the capacitance and thus can be sensed
in real time, the inherent defects cannot be easily sensed.
Therefore, the information about these defects is not provided
to the DRL routing agent. For our DMFB boards, around 5%
of electrodes suffer from inherent defects. Our results show
that the DRL model can ensure reliable bioassay execution
even in the presence of these defects.

D. Results and Evaluation

We execute the baseline routing model and the proposed
DRL routing model under two different DMFB health
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each routing task under fault rate of 0% and 10%. When the fault rate is 10%,
ten electrodes on the DMFB are chosen as degraded and set to a low voltage:
(top) Average number of clock cycles for each routing task; (bottom) average
execution time for each routing task.

Fig. 14. Execution of the routing task T1 with degraded electrodes:
(a) Routing task T1, (b) and (c) routing progression using the baseline model,
(d)—(f) routing progression using the DRL model.

environments with five routing tasks (T1 to T5). Fig. 13(top)
shows the average number of clock cycles needed for each
routing task. Under the environment with 0% injected faults,
the developed DRL policy can achieve a similar performance
as the baseline that adopts the shortest path. When the injected
fault rate is 10%, our results show that the DRL model needs
fewer clock cycles than the baseline approach. Similar results
can be seen in Fig. 13(bottom), where the average execution
time for each operation is shown. The execution time for a
routing task includes the computation time of the model and
the electrode actuation time.

Fig. 14 shows an example where the baseline approach and
the DRL-based routing policy execute a routing task with
degraded electrodes on the routing path. Fig. 14(a) shows
the routing task T1, which performs the mixing of droplets
A and B. Thus, we transport droplet A to the location of
droplet B. The two degraded electrodes are marked with red
squares. Fig. 14(b) and (c) shows the routing progression using
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the baseline model. The droplet followed the shortest path
to approach the destination before encountering the degraded
electrodes. When the droplet encountered the degraded elec-
trodes, it got stuck at the same position until the maximum
number of steps was reached and the assay was aborted. On
the other hand, Fig. 14(d) and (f) shows the routing progres-
sion using the DRL model. When the droplet encountered the
degraded electrodes, the DRL-based policy chose an alterna-
tive route and reached the destination successfully. The video
of this example can be found in [40].

Consequently, our experiments show that the proposed
DRL-based routing approach can be effectively integrated into
a DMFB system. The experimental results show that the DRL-
based routing policy provides reliable routing results even in
the presence of degraded electrodes.

VII. CONCLUSION

We have presented a DRL framework that can respond to
MC degradation during droplet routing on MEDA biochips.
Our framework adopts proactive health monitoring on indi-
vidual MCs and uses the captured response to plan more
feasible route for droplet transportation. We have shown that
the bioassay execution time and the number of clock cycles
are significantly reduced when our approach is employed. Our
results also show that the DRL-based routing policies facili-
tate real-time adaptation to faulty MCs as MCs degrade over
time.
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