PORTABLE SPARSE POLYHEDRAL FRAMEWORK
CODE GENERATION USING MULTI LEVEL
INTERMEDIATE REPRESENTATION

by

Aaron St George

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Boise State University

May 2023

©) 2023
Aaron St George
ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Aaron St George

Thesis Title: Portable Sparse Polyhedral Framework code generation using Multi
Level Intermediate Representation

Date of Final Oral Examination: 27 February 2023

The following individuals read and discussed the thesis submitted by student Aaron
St George, and they evaluated the presentation and response to questions during
the final oral examination. They found that the student passed the final oral
examination.

Catherine Olschanowsky, Ph.D. Chair, Supervisory Committee
Hoda Mehrpouyan, Ph.D. Member, Supervisory Committee
Jim Buffenbarger, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Catherine Olschanowsky;,
Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

ACKNOWLEDGMENTS

[am sincerely grateful to my advisor Dr. Olschanowsky. She funded, supported,
guided, and encouraged me throughout my masters degree. With her help, I've
improved my writing ability, technical proficiency, and knowledge base in compilers.
She guided me towards a thesis topic that’s well aligned with my interests and career
goals. I'm grateful to have met experts in the field and made professional contacts
on travel opportunities she provided. Thank you Dr. Olschanowsky.

I would additionally like to thank my supervisory committee members Dr. Hoda
Mehrpouyan, Dr. Jim Buffenbarger for their feedback on my proposal, thesis, and
oral defense. Also, I would like to thank former member of my committee Dr. Jidong

Xiao who has since left Boise State.

v

ABSTRACT

The Sparse Polyhedral Framework (SPF) provides vital support to scientific
applications, but is limited in portability. SPF extends the Polyhedral Model to
non-affine codes. Scientific applications need the optimizations SPF enables, but
current SPF tools don’t support GPUs or other heterogeneous hardware targets.
As clock speeds continue to stagnate, scientific applications need the performance
enhancements enabled by both SPF and newer heterogeneous hardware.

The MLIR (Multi-Level Intermediate Representation) ecosystem offers a large,
extensible, and cooperating set of intermediate representations (called dialects). A
typical compiler has one main intermediate representation, whereas an MLIR based
compiler will have many. Because of this flexibility, the MLIR ecosystem has many
dialects designed with heterogeneous hardware platforms in mind.

This work creates an MLIR SPF dialect. The dialect enables SPF optimizations
and is capable of generating GPU code as well as CPU code from SPF representations.
Previous C based SPF front ends are not capable of generating GPU code. The
SPF dialect representations of common sparse scientific kernels generate CPU code
competitive with the existing C based front end, and GPU code competitive with

standard benchmarks.

TABLE OF CONTENTS

ABS T R ACT .. e e e e e e v
LIST OF TABLES it et it e e e viii
LIST OF FIGURES ittt ettt it et ee e ix
LIST OF ABBREVIATIONS it e e xii
1 Introduction.......... ...ttt 1
1.1 Problem Statement 4
1.2 Contributions 4
1.3 Organization. 5

2 Background e e e e e e 6
2.1 Sparse Polyhedral Model 6
2.2 MLIR .. 9
2.3 GPU Architecture 13

3 Sparse Polyhedral Framework in MLIR 15
3.1 Representation 16
3.1.1 Example Scientific Kernel In SPF 16

vi

3.1.2 SPF Representation 17

3.1.3 Computation API Representation........................ 21

3.1.4 MLIR Representation 23

3.2 Transformations 32
3.2.1 SPF Transformations In The Jacobi Example............... 32

3.2.2 Transformations In The SPF Dialect 35

3.3 LOWEringo 36
3.3.1 Generating Loops 37

3.3.2 Generating Statement Execution 43

3.3.3 Uninterpreted Function Call Lookup 50

3.3.4 Pipelines Y

3.4 Performance Evaluation 59
3.4.1 Benchmark Suite. 59

3.4.2 Experimental Setup. 60

3.4.3 Results 62

4 Related Work i i i e 66
5 Conclusionttt e e e e 68
REFERENCES. . .. ittt ittt e it e e 70

vil

L

3.1 Initial Constraints . .
3.2 Before Transformation

3.3 After Transformation

IST OF TABLES

viii

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

LIST OF FIGURES

An LLVM based compiler. 2
An MLIR based compiler 3
Example code 6
Example after transformation. 7
[terating over a matrix in CSR. 8
MLIR Dialects (image from [32]) 9
Operation figure from [17] available under CC 4.0 10
Example MLIR Code 11
Example MLIR Code: Basic Blocks 12
GPU Architecture (image from [15]) 13
Jacobiin C 16
Jacobi C Example With Extra Loop 19
Computation API Jacobi 22
MLIR SPFE Jacobi. 25
Fusion Example: Before 33
Fusion Example: After 33
Jacobi C Example After Skew Transformation.................... 34

X

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

Jacobi C Example After Fusion Transformation................... 35

MLIR SPF Jacobi. i 36
Simple Example 39
AT 40
AS T 40
Generating MLIR 41
Jacobi Example: AST Parsed From Generated C 42
Double For Loop 43
Double For Loop After Loop Permutation 43
Jacobi Lowering Step 2. 45
Jacobi Statement 46
Jacobi Lowering: Step 3 46
Jacobi Lowering: Step 4 47
Lowered Transformed Jacobi Example 49
Dense MTTKRP Kernel In C. 50
Sparse COO MTTKRP Kernel In C 50
COO sparse format. 51
Sparse COO MTTKRP Kernel In MLIR 53
Sparse COO MTTKRP AST 54
Example Uninterpreted Function 55
Lowered Sparse MTTKRP Example. 56
Compilation Pipeline 57
Sparse COO TTM Kernel In C 59

3.31 CPU Benchmarks 62

3.32 CPU Speedupo 63
3.33 GPU Benchmarks 64
3.34 GPU Speedup 64

x1

LIST OF ABBREVIATIONS

API — Application Programming Interface
AST — Algebraic Syntax Tree

COO - COOrdinate list

CPD - Canonical Polyadic Decomposition
CPU - Central Processing Unit

CSR — Compressed Sparse Row

CUDA - Compute Unified Device Architecture
FROSTT - Formidable Repository of Open Sparse Tensors and Tools
GCC - GNU Compiler Collection

GNU - GNU’s Not Unix

GPU - Graphics Processing Unit

IR - Intermediate Representation

LLVM - Originally stood for "Low Level Virtual Machine”, as the LLVM compiler
infrastructure grew in scope "LLVM” simply became the name of the project.

MLIR - Mid Level Intermediate Representation

MTTKRP — Matricized Tensor Times Khatri-Rao Product

xil

NUMA - Non-Uniform Memory Access

NVCC - NVidia CUDA Compiler

PASTA - Parallel Sparse Tensor Algorithm benchmark suite
SIMD - Single Instruction Multiple Data

SPF — Sparse Polyhedral Framework

SVD - Singular Value Decomposition

TPU - Tensor Processing Unit

TTM - Tensor Times Matrix

UF — Uninterpreted Function

xiil

CHAPTER 1

INTRODUCTION

Scientific applications need to port among a variety of hardware to obtain the desired
performance. In the past, the performance of scientific applications increased as
hardware improved. Today, clock speed has stagnated and improved performance
comes from the increased parallelism found in new architectures such as GPUs and
TPUs [10, 12]. Legacy scientific applications need to be ported to new architectures
to remain relevant.

Scientific applications need better approaches to memory, as well as faster hard-
ware, to improve performance. New architectures have many of the same bottlenecks
as general purpose ones. Regardless of specialization, a computer requires many more
cycles to load data than to do arithmetic operations [19]. A workload limited by data
access speed is said to be memory bound. A memory bound workload will not see a
speed increase on faster hardware. Scientific applications are often memory bound.

Compiler intermediate representations that enable high-level transformations, such
as the Sparse Polyhedral Framework (SPF), optimize applications by reducing mem-
ory operations. Internally a compiler is free to represent an input program in whatever
form is most amenable to optimization. The Polyhedral Model is a mathematical

representation that is very useful for memory optimizations. Though powerful, the

polyhedral representation cannot represent sparse codes. The Sparse Polyhedral
Framework extends the Polyhedral Model to sparse codes.

Current SPF tools don’t support the portability that is increasingly demanded
by scientific applications. SPF is a representation of a program that enables opti-
mization. SPF must generate code, also known as lowering, either in the final target
language or in another language that can be compiled further. Current SPF tools
lower to C, and are thus as portable as C. Because of this approach, SPF tools can
target most CPUs, but don’t have the portability to reach other hardware targets.

By lowering to something with greater reach, SPF tools would improve portability.

[
O
.
e
. =
[=
= w
[€
= S
[w
O

Back End

Middle End

Passes

Figure 1.1: An LLVM based compiler

SPF tools based around the MLIR (Multi Level Intermediate Representation) [17]
ecosystem could enable SPF based optimizations for a more heterogeneous set of
hardware. MLIR is a compiler framework and not a compiler itself. A typical compiler
has a single internal representation whereas an MLIR based compiler has many: see

Fig: 1.1 vs Fig: 1.2. In an MLIR based compiler, each representation, or dialect

Front End

MLIR Middle End

Passes

I

§ [

Figure 1.2: An MLIR based compiler

as they are known in MLIR, supports only the abstractions it was designed for. A
dialect /representation doesn’t have to be a “one size fits all” solution. Because of
this flexibility, the MLIR ecosystem has many dialects designed with heterogeneous
hardware platforms in mind.

An MLIR based compiler may lower the same code to very different hardware
targets based on the path through the compiler. Dialects lower progressively via
small steps, rather than all at once. Small steps provide many branch points. When
diverging paths are taken, the same high level dialect can lower to GPU, CPU, or
even some more exotic accelerator. SPF tools could integrate into this ecosystem
rather than relying on C and take advantage of the portability the MLIR approach

enables.

1.1 Problem Statement

As clock speeds continue to stagnate, scientific applications will need to be portable
to new architectures to achieve the performance scientists need. SPF tools enable
optimizations that are needed by scientific applications on new and legacy hardware.
Current SPF tools do not have the portability required to provide benefit on newer
architectures. This motivates the research question: how do we build more portable
SPF tools?

We hypothesize that the heterogeneous targets and progressive lowering approach
enabled by MLIR will improve the portability of SPF tools. To evaluate this approach
we will generate kernels that run on both CPUs and GPUs. Existing SPF tools are

not capable of doing this.

1.2 Contributions

This work creates an MLIR SPF dialect. This dialect enables SPF transformations in
a new software ecosystem. MLIR’s multiple levels of representation allow independent
and efficient optimization across different levels of abstraction. Because of this
flexibility, SPF tools utilizing the MLIR dialect can now generate code for both CPU
and GPU. The C based SPF front end used in previous work [29, 23] can only generate
CPU code.

This work heavily leverages pre-existing infrastructure in MLIR. Specifically, this
work creates an MLIR dialect spf, and a lowering pass convert-spf-to-loops. The

convert-spf-to-loops pass lowers from spf to a host of other MLIR dialects not

created by this work. Many other lowering passes and tools within MLIR (not created
by this work) are needed for full CPU and GPU code generation.

A performance evaluation done on common scientific kernels shows competitive
performance for code generated from the MLIR front end on both CPU and GPU.
Performance evaluation consisted of MTTKRP and TTM implementations from the

PASTA benchmark suite, generated from the C front end, and the MLIR front end.

1.3 Organization

This work is organized into several chapters and sections. Chapter 2 provides back-
ground on MLIR, the Polyhedral Framework, and the Sparse Polyhedral Framework
(SPF). Chapter 3 introduces how the SPF MLIR dialect is represented, transformed,
and lowered in MLIR. Chapter 3 also contains the performance evaluation of gener-
ated code. Chapter 4 contains a review of related work. Chapter 5 concludes and

summarizes this work.

N

CHAPTER 2

BACKGROUND

In this chapter we discuss concepts that form the basis of our work: the Sparse
Polyhedral Framework and MLIR. Additionally as this work extends SPF's portability

to GPUs, we give a brief description of GPU architecture.

2.1 Sparse Polyhedral Model

The Polyhedral Model provides a mathematical representation of loop nests that
enables transformations and dependency analysis. The Polyhedral Model represents
each iteration of a loop nest as lattice points in a polyhedron, and the data dependen-
cies between points as relations. The abstraction provided by the Polyhedral Model
allows transformation relations to be applied to the iteration space to change the
order of computation. A transformation that preserves the partial order established

by the data dependency relations is legal.

for(int i = 0; i < n; i++) {
for(int j = 0; j < i; j++) {
3 S0: alil[jI=bl[i][j]
}
}

Figure 2.1: Example code

w N

Consider the example in Fig: 2.1. The code contains an SO marker. The SO marker
doesn’t have any semantic meaning for the code. The Polyhedral Model abstracts over
what a given statement actually does. The Polyhedral Model doesn’t require more
information about the code represented by SO than that it occurs at an iteration tuple
i, 7], reads data from b, and writes to a. Hence, the Polyhedral Model keeps track of

this statement by just referring to it as SO.

+) A

for(int j = 0; j <= n - 2; j+
n-1; i++) {

for(int 1 = j + 1; i ;=
alil[j1=b[i][j]
b

Figure 2.2: Example after transformation

The Polyhedral Model defines the iteration space for statement SO as a set

containing all tuples of induction variables executed by the loop nest.
{[t,j] :0<i<nA0<j<i}

Code will be generated that loops over tuples in lexicographic order established by a

relation called the execution schedule.

{li, 5] — [0,7,0,4,0]}

Creating a composed relation from the execution schedule and the following trans-
formation relation will result in loop interchange ordering. Underscores are used for

unused variables.

N

{[—,i7——7j, 7”] - [O7j707ia0]}

Doing code generation after the composed relation is applied to the iteration space

yields the code in Fig: 2.2.

for(int i = 0; i < N ; i++) {
for(int k = rowptr[il; k < rowptr[i + 1] ; k++) {
int j = coll[k];
S0O: printf ("i: %d, j:%d\n", i, j) ;

Figure 2.3: Iterating over a matrix in CSR

The Polyhedral Model can only express affine iteration spaces. The limited
expressiveness of the Polyhedral Model allows fully decidable proofs that a trans-
formation maintains the partial order established by the data dependency relations
using decision procedures for Presburger Arithmetic. However, affine iteration spaces
cannot express indirect data accesses such as A[B][i]] or non-linear constraints. Sparse
codes operate over sparse data structures with highly irregular access patterns and
require indirect data accesses to function. An example sparse code iterating over a
matrix stored in Compressed Sparse Row (CSR) format is given in Fig: 2.3.

The Sparse Polyhedral Framework (SPF) extends the Polyhedral Model by repre-
senting non affine data accesses with uninterpreted functions. Uninterpreted functions
are treated as a special case of symbolic constants. SPF provides much of the same
functionality as the traditional Polyhedral Model. SPF allows transformations to
be specified as relations, and code to be generated from SPF representations. An

example of the non-affine iteration space of the above CSR code represented using

uninterpreted functions is given below. This example could not be represented in the

Polyhedral Model.
{[¢,4,k] : 0 <i < N Arowptr(i) < k < rowptr(i+ 1) A j = col(k)}

2.2 MLIR

MLIR is a compiler framework that allows for multiple levels of representation.
MLIR’s original goals include reducing fragmentation in the compiler ecosystem,
targeting heterogeneous hardware, and connecting existing compilers together [17].
MLIR has been used extensively in domain specific compilers: for example machine

learning systems [6], and climate simulation [8].

Structure

Payload

Tensor \
\
] ;
|
)

External Dialect
External Format

Utiity

Buffer

fffffff
e s |
o) Lgre) PDLinterp

System

LLVM IR

Figure 2.4: MLIR Dialects (image from [32])

10

An MLIR based compiler allows for many internal representations (called dialects
in MLIR). A more typical compiler has one main representation. Moving away from
a one-size-fits-all approach opens up a lot of design space. MLIR contains many
dialects specialized for particular optimization techniques, or a particular domain.
MLIR optimization passes often interact over multiple dialects. Any MLIR code that
does anything real is almost certain to contain many dialects.

MLIR lowers from high level dialects to low-level (possibly hardware specific)
dialects progressively. A progressive lowering removes structure slowly. As code is
lowered through the levels of abstraction, passes remove structure only after it is
no longer needed. A progressive approach can prevent the need for expensive and
difficult analyses. If structure isn’t removed, a compiler has no reason to run an
analysis to recover it. Some of the many dialects in MLIR and the many lowering
paths between them are shown in Fig: 2.4.

A dialect itself is a container for more fundamental MLIR abstractions. A dialect
groups operations, types, and annotations. Below a discussion of each concept and a

more complete example are given.

blocks. Region

fzhl@(k Block :

ie = "nested.operation"()

Region
"d.oop"() : () == ()
¥) ¢+ () —= (!d.other_type)
"consume.value" (%valu

// 0ps can have a list of attributes.
{attribute="value" : !d.type} : () -> (!d.type, !d.other_type)

Figure 2.5: Operation figure from [17] available under CC 4.0

11

Operations: Operations are the basic building block of MLIR. MLIR doesn’t fix the
set of available operations. Rather, the set of operations is fully extensible. An
Operation can return results, take inputs, and have enclosed regions (containers
for further enclosed operations). See Fig: 2.5. In the human readable format,
MLIR prepends the name of the dialect that an operation is part of before
the name of the operation. From Fig: 2.5 the name of the dialect for the first

operation would be “d”.

Attributes: Attributes define constant data attached to an operation. Attributes

can be of several built-in types, or can be extended to new types.

Types: Every value in MLIR has a type. The type system is fully extensible.

1 scf.for %arg2 = %cO to %5 step %cl {
2 scf.for jarg3 = %cO0 to %6 step %cl {
3 %11 = memref.load %1[%arg2, %arg3] : memref<?7x?xf32>
memref .store %11, %4[%arg2, %arg3] : memref <?7x?xf32>
5 }
C
Figure 2.6: Example MLIR Code

The example in Fig: 2.6 puts these concepts into a more complete context. The
example contains operations from two dialects: scf and memref. scf stands for
‘structured control flow’. The scf dialect contains most of MLIR’s looping constructs.
The memref dialect is used for creating and manipulating references to memory.
The first scf.for contains a region, enclosed in curly braces, that contains another
scf.for operation. This second scf.for’s enclosed region contains a memref.load

operation that produces a value of type (types are always on the right after a colon)

w N

12

of memref<?x?xf23>. The memref represents a reference to a 2D array of unknown
size storing 32 bit floats.

All variables in MLIR are in SSA form [26]. In the human readable form, MLIR
prepends a “%,” before a variable name to indicate that it is in SSA. SSA form ensures
that each variable is assigned exactly once. This property makes various analyses and

transformations easier for compiler writers.

“bb0(%cond: il):
cf.cond_br Y%cond, ~“bbl, “bb2

“bbil:

%a = arith.constant 42 : i64
cf.br “bb3(%a: i64)

Figure 2.7: Example MLIR Code: Basic Blocks

MLIR code is often structured into basic blocks. A basic block is a series of
instructions without branches in except the entry, and without branches out except
exit [9]. Fig: 2.7 shows and example of two basic blocks named: bb0 and bb1: Similar
to the % character for SSA values, MLIR human readable form prepends ~ to the
name of basic blocks. Basic blocks are a common abstraction in most compilers,
unlike other compilers MLIR also provides block arguments. Block arguments behave
in a similar manner to function arguments, but for basic blocks. Block arguments
replace the phi-nodes typically used in SSA compilers [26]. Block arguments shift
the responsibility of choosing the value an SSA variable takes to the code jumping
into a basic block. The caller rather than a phi-node at the entry to a block, the
callee, is responsible for disambiguating SSA values. The MLIR SPF dialect uses

block arguments in the presented abstraction.

13

2.3 GPU Architecture

Lang
L1 Cachsa

Gore

L1 Cachea

LZ Cacha L2 Cacha

L3 Cachea

Figure 2.8: GPU Architecture (image from [15])

Graphics workloads demand doing a lot of relatively simple, parallel, tasks. While
CPUs are designed for low latency, GPUs (Graphics Processing Units) are designed
for high throughput. Fig: 2.8 shows an idealized chip layout for a CPU vs GPU. One
can see that a CPU has a small number of powerful cores with a decent amount of
die area given to caching to improve latency. In contrast, a GPU has a large number
of small, relatively weak cores without much cache. The GPUs design ensures high
throughput for any workload that has very large number of relatively simple, maybe
memory bound, tasks.

While GPUs were originally designed for graphics, CUDA (Compute Unified
Device Architecture) brought compute to GPUs. After 2007 when Nvidia released
CUDA, programmers could compile code written in the CUDA C/C++ API and run
that code on a GPU. GPU cores (typically) have separate memory from CPU cores.
Both a compiled GPU program and any data this program will execute on must be

first moved to the GPU before the program can execute. On Linux, the CUDA API

14

moves data and code to the GPU via a syscall to the GPU driver. The GPU driver

then runs the code on the GPU.

15

CHAPTER 3

SPARSE POLYHEDRAL FRAMEWORK IN MLIR

The SPF MLIR dialect increases the portability of SPF tools by embedding SPF
in an ecosystem designed for heterogeneous computing. SPF is used in a wide
variety of applications, it can be used internally in compilers or in standalone tools,
for example recent work used SPF to synthesize and optimize code for translating
between different sparse tensor formats [24]. Existing SPF front ends integrate with
the C language. While C has excellent portability among CPUs, C cannot naively
target GPUs or other accelerators important for today’s scientific workloads. MLIR
is designed to improve compilation for heterogeneous targets. We present an MLIR
dialect for SPF that broadens the reach of SPF tools.

This chapter will detail SPF’s representation, transformation, and lowering in
MLIR as well as evaluate performance of generated code. Sections proceed in the
order of needs of an SPF based tool. For an SPF based tool to use the MLIR front end,
it needs to be able to naively represent SPF in MLIR. The first section details the SPF
dialect representation. Tools use SPF because it enables transformations that improve
performance. The second section walks through how the SPF dialect represents and
performs transformations. SPF enables transformations, but to produce executable

code SPF representations must generate (also known as lowering to) assembly lan-

N

16

guage. The third section describes the process of lowering SPF representations. The
final section evaluates the performance of lowered code against the existing C front

end, and the PASTA benchmark suite [18].

3.1 Representation

To create MLIR based SPF tools, SPF needs an MLIR representation. MLIR is
designed to be extensible. As discussed in 2.2, MLIR provides dialects as its primary
extension mechanism. To embed SPF into MLIR, this work creates an SPF dialect
which allows users to represent SPF abstractions and transformations in MLIR.
This section details the SPF dialect by first introducing a motivating example, then
describing this example’s representation in SPF, in the existing SPF tool Computation

API (which is leveraged heavily by the MLIR representation), and finally in MLIR.

3.1.1 Example Scientific Kernel In SPF

for (int t = 1; t <= ub_T / 2; ++t) {

for (int x = 1lb_x; x <= ub_x; ++x)

3 S0: Alx] = (B[x - 11 + B[x]l + Blx + 11) / 3;
for (int x = 1lb_x; x <= ub_x; ++x)

; S1: Blx] = (Alx - 11 + A[lx] + Alx + 11) / 3;

Figure 3.1: Jacobi in C

To motivate this work, we present a Jacobi 1D kernel. A C implementation of the
inner kernel is presented in Fig: 3.1. This benchmark is intended to be representative

of a common pattern seen across many domains doing Jacobi-like computations such

17

as heat transfer, and discrete wave equations. The specific kernel presented in Fig: 3.1
could be used to simulate heat dissipation through a theoretical 1D rod [3]. To prevent
mutating the input to the current time step, the kernel stores the results of even and
odd parity timestamps in separate arrays.

A Jacobi kernel written as in the example (which is common in scientific appli-
cations) suffers from poor data locality. Data that could be re-used by the second
loop will be pushed out of cache by loads required from the first loop before it can
be used. The Sparse Polyhedral Framework offers transformations that can improve
data locality of this kernel. An SPF representation of the computation must be

constructed to make use of the transformations.

3.1.2 SPF Representation

SPF transformations can improve the data locality of the example Jacobi Kernel,
but we are required to represent this kernel in SPF first. SPF represents a kernel
using a mathematical representation based on Presburger Arithmetic extended with
uninterpreted functions (discussed in 2.1). This representation makes transformations
easy to do, and easy to check for legality with powerful solvers [25]. We will now walk
through the Jacobi kernel expressed in SPF.

The Jacobi kernel has two statements SO and S1. Each statement executes at
tuples formed from the loop induction variables. SPF calls the set of tuples at which
a statement executes the iteration space. Statement SO and S1 have the same iteration

space:

18
{lt,z] : 1 <t <ub.T/2A1bx <z <ubx}

Transformations, as discussed in 2.1, are applied to the execution schedule. SPF
applies the execution schedule to the iteration space tuples to create execution sched-
ule tuples. Code generation, though the polyhedral scheduling algorithm that will
be discussed in 3.3.1, produces loops iterating over the execution space tuples in
lexicographic order. SPF requires the execution schedule to be an invertible relation,
ensuring that each execution schedule tuple can be mapped back to an iteration space
tuple and hence an execution of the original statement. The example will have the

following execution schedule for SO:

{It,x] — [t,0,2,0]}

When compared to the iteration space tuples, the execution schedule tuples for
statement SO has an added dimension always having the value 0. The added dimension
ensures that the execution schedule tuples of SO sort lexicographically before those

of S1 which has execution schedule:

{[t,z] = [t,1,2,0]}

The added dimension could be thought of as an extra loop as in Fig: 3.2, though
code generation won’t actually produce this superfluous loop. Code generation will
produce code similar to that in Fig 3.1. The statement, iteration space, and execution
schedule abstractions are enough to generate code, but not enough to determine the

legality of a transformation.

2

19

for (int t = 1; t <= ub_T / 2; ++t) {
for (int tmp = 0; tmp <= 1; tmp++)

if (tmp == 0) {

for (int x = 1lb_x;

Alx] = (Blx - 1]

} else if (tmp == 1)

for (int x = 1lb_x;

B[x]l = (Alx - 1]

<= ub_x; ++x)
B[x] + Blx + 11) / 3;

<= ub_x; ++x)
Alx] + Alx + 11) / 3;

N

Figure 3.2: Jacobi C Example With Extra Loop

To establish a partial ordering of execution space tuples, the SPF abstraction
requires read and write access relations for each statement. The input to read and
write relations is the iteration space, and the output indices at which memory array

is accessed. In the Jacobi example statement SO reads from B at:

{[t, 2] = [z = 1]}

{lt,2] = [al}
{[t.2] = [z + 1]}

and writes to A at:

{[t, 2] — [«]}

statement S1 reads from A at:

{[t, 2] = [z — 1]}

20

{[t, 2] = [z]}
{[t,z] = [z + 1]}

and writes to A at:

{[t; 2] — [=]}

The read and write accesses allow SPF to establish the legality of transformations.
For example in Jacobi, before transformation, the lexicographic order on execution
space tuples tells SPF the execution of S1 at iteration space tuple [1, 1] happens after
the iteration of SO at the same tuple. From the write relation for S0, SPF knows that
the execution of statement SO at iteration space tuple [1, 1] writes to A at 1. From the
read relation for S1, SPF knows that the execution of statement S1 at iteration space
tuple [1, 1] reads from A at 1, at 0, and at 2. From the read and write relations, SPF
knows that the execution of statement S1 at iteration space tuple [1,1] reads data
written by the execution of statement SO at iteration space tuple [1,1]. Given the
information in the read and write relations and statement ordering, SPF establishes a
data dependence between the execution of statement SO at iteration space tuple [1, 1]
and the execution of S1 at the same tuple. From this computed data dependence
SPF builds a partial ordering of statements in which S0 at iteration space tuple [1, 1]
comes before S1. The partial order SPF computes contains all the happens before
relationships that are required to be true for the computation to be correct. The
computed partial order can also be thought of as a data-flow graph. SPF can then
verify that any transformation keeps this original partial order intact using powerful

solvers [25].

21

3.1.3 Computation API Representation

This work builds upon the Computation API [23]. The Computation API provides
a single entry point C++ API to Sparse Polyhedral Framework tools. Such tools
include the Inspector/Executor Generation Library (IEGenLib) [28] which provides
set and relation manipulation with constraints involving uninterpreted functions, and
Omega+ for code generation [5]. Internally, the SPF MLIR dialect constructs a
Computation API representation of SPF to take advantage of the capabilities of the
existing tool. Though a user of the SPF MLIR dialect would interact with the tool
through MLIR, and might not know that the Computation API is used internally,
the Computation API forms an integral piece of the MLIR dialect’s functionality.
Fig: 3.3 shows the Jacobi example expressed in Computation API. The Compu-
tation API provides a C++ object-oriented interface though a C++ Computation
class with everything one would need to express an SPF computation. This includes:
statements, data spaces, data dependence relations (Reads/Writes), iteration spaces,

and execution schedules. A description of each of the concepts is given below.

Statements: Statements are essentially a loop body. A statement performs read
and write operations on Data Spaces. A statement will be executed at every
tuple represented in the iteration space. The statement in the example is taken

from the Jacobi example in Fig: 3.1.

Data Spaces: Data spaces represent n-dimensional non-overlapping memory ad-
dresses that are written to or read from by the statement. A 0-dimensional

data space would represent a scalar, such as a single variable. A 1-dimensional

22

Computation jacobi;
jacobi.addDataSpace ("A", "doublex*");
jacobi.addDataSpace ("B", "doublex");
jacobi.addStmt (
new Stmt(/*stmtSourceCodex/ "A(x)=(B(x-1) + B(x) + B(x+1))/3",
/*iterationSpaceStr*/ "{[t,x]: 1<=t<=ub_T and 1lb_x<=x
<=ub_x}",
/*executionScheduleStr*/ "{[t,x]->[t,0,x,0]}",
/*dataReadStrs*/ {
{"B", "{[t,x]->[c]l: c=x-1}"},
{"B", "{[t,x]->[x]}"},
{"B", "{[t,x]->[c]: c=x+1}"}
},
/*dataWriteStrs*/ {{"A", "{[t,x]->[x]1}"}}));
jacobi.addStmt (
new Stmt(/*stmtSourceCodex/ "B(x)=(A(x-1) + A(x) + A(x+1))/3",
/*iterationSpaceStr*/ "{[t,x]: 1<=t<=T and 1<=x<=X}",
/*executionScheduleStr*/ "{[t,x]->[t,1,x,0]}",
/*dataReadStrs*/ {
{"A", "{[t,x]->[c]: c=x-1}"3},
{"a", "{lt,x]->[x]1}"},
{"A", "{[t,x]->[c]: c=x+1}"}
3,
/*dataWriteStrs+*/ {{"B", "{[t,x]->[x]1}"}}));

Figure 3.3: Computation API Jacobi

data space would represent a vector. In the example, the A data space represents

the 1-dimensional array as does B.

Data Reads/Writes: The Computation API uses relations to encode data rela-
tionships between statements. The data dependence relations provide a partial
ordering which any transformation must respect. In the example, each iteration
of the first statement will read from the B data space at x — 1, x, and = + 1;

and write to A at .

Iteration Spaces: The Iteration Space provides an unordered set of all the tuples

23

at which a statement will execute.

Execution Schedules: Execution schedules are a relation that will determine the
order in which statements are executed. SPF will apply the execution schedule
to the iteration space and lexicographically order the result to determine the
correct execution order of the statements. An execution schedule is required
to maintain the partial order established by the read and write relations. The
execution schedule in the example will result in a final generated code that looks

like the C Jacobi example in Fig: 3.1.

3.1.4 MLIR Representation

The MLIR SPF representation provides the same abstraction presented here mathe-
matically and through Computation API, but in an MLIR specific way. As discussed
in the background 2.2, MLIR provides composable abstractions through operations,
attributes, and types. We will walk through the Jacobi example in detail below, but

in brief the SPF dialect adds two main operations to MLIR:

spf .computation: The spf.computation operation is analogous to the Computation
class in the Computation API. All spf.statement operations must be nested

inside the enclosed region (regions are discussed in the background 2.2).

spf.statement: The spf.statement operation is analogous to the Stmt class in the
Computation API. Read and write relations, execution schedules, and itera-

tion spaces are provided as attributes on the spf.statement operation. The

24

spf.statement operation’s arguments are analogous to Data Spaces in the

Computation API.

An example Jacobi kernel represented in SPF MLIR dialect is given in example 3.4.
This example doesn’t include all the code that would be needed for a running example,
it only shows the inner core of the kernel. A running example would require support
code to allocate arrays, set up constants, and create an entry point. The example is
displayed in MLIR’s human readable format. The human readable format is primary
used for testing. MLIR based tools and compilers usually interact with the C++
API. Given its use cases, the human readable format is designed for completeness
and fidelity rather than readability. To ensure that the meanings are clear, we will

walk through the example in detail:

Line 1: This line begins a spf.computation operation. It takes no arguments, and
has one enclosed region. The ({ lexeme denotes opening the spf . computation’s
enclosed region. All operations in MLIR prepend the name of the dialect
that defines them to their name. In the example, arith.addf operation on
line 4 isn’t surrounded by quotes while "spf.computation" is. The presence
or absence of quotes is just a syntactic difference: unless a custom parser is
defined for an operation, the MLIR parser requires that name of the opera-
tion be surrounded by quotes. The arith.addf operation defines a custom
parser, the spf.computation operation does not—hence the quotes around

spf.computation.

Line 2: This line begins the first of two spf.statement operations in the example.

1 "spf.computation" () ({

25

2 "spf.statement" (%ub_T_div_2, %lb_x, %ub_x, %B, %A) ({

3 “stmt (%¥B_x_plus_one: f64, %B_x: f64, %B_x_minus_one: f64):
4 %0 = arith.addf %B_x_plus_one, %B_x f64

5 %1 = arith.addf %0, %B_x_minus_one f64

6 %2 = arith.divf %1, %f3 f64

7 "spf.yield" (%2): (£64) -> ()

8 }) { reads = [

9 [// data access functions for first input
10 affine_map<(t, x) -> (x+1)>,

11 affine_map<(t, x) -> (x)>,

12 affine_map<(t, x) -> (x-1)>

13]

14 1,

15 writes = [[affine_map<(t, x) -> (x)>1],

16 // symbols, ufInputs, inputs, outputs

17 operand_segment_sizes=array<i32: 3,0,1,1>,

18 symbolNames= ["ub_T", "1lb_x", "ub_x"],

19 iteratorTypes = ["reduction", "reduction"],

20 executionSchedule = "{[t,x]->[t,0,x]}",

21 iterationSpace = "{[t,x]: 1<=t<=ub_T and 1lb_x<=x<=ub_x}",
22 transforms = []

23 }:(index,index,index ,memref <10xf64>,memref <10xf64>) ->()
24 "spf.statement" (%ub_T_div_2, %lb_x, %ub_x, %A, %B) ({

25 “stmt (A_x_plus_one: f64, %A_x: f64, JA_x_minus_one: f£f64):
26 %0 = arith.addf J,A_x_plus_one, %A_x f64

27 %1 = arith.addf %0, %A_x_minus_one £f64

28 %2 = arith.divf %1, %f3 f6

29 "spf.yield" (%2): (£f64) -> (O

30 }) { reads = [

31 [// data access functions for first input

32 affine_map<(t, x) -> (x+1)>,

33 affine_map<(t, x) -> (x)>,

34 affine_map<(t, x) -> (x-1)>

35]

36 1,

37 writes = [[affine_map<(t, x) -> (x)>]1],

38 // symbols, ufInputs, inputs, outputs

39 operand_segment_sizes = array<i32: 3,0,1,1>,

10 symbolNames = ["ub_T", "lb_x", "ub_x"],

1 iteratorTypes = ["reduction", "reduction"],
42 executionSchedule = "{[t,x]->[t,1,x]1}",
43 iterationSpace = "{[t,x]: 1<=t<=ub_T and 1lb_x<=x<=ub_x}",
14 transforms = []

15 }:(index ,index ,index ,memref <10xf64>,memref <10xf64>) ->()
6) O -> O

Figure 3.4: MLIR SPF Jacobi

26

In general, spf.statemetnt operations may take a variable number of argu-
ments. The operation, starting on line 4, takes 4 arguments whose expected
types are spelled out on Line 23. All arguments are in SSA form (discussed in
the background section 2.2). Arguments to the statement fall into three named

groupings specified on Line 17-18: symbols, inputs, and outputs.

e The symbols grouping contains the first three arguments %ub_ T div_2,
%1lb_x, and %ub_x. These three arguments will fill in for symbolic constants
in the iteration space. For clarity, the arguments are the same as those
used in the C example in Fig: 3.1 (ub_T, 1b_x, and ub_x) except the first
argument, %ub_T_div_2, which takes the value that the expression ub_T /
2 does in line 1 of the C example (for (int t = 1; t <= ub.T / 2;
++ t) {). All three arguments are of type index, which is the MLIR

equivalent of C’s uint64 _t.

e The inputs grouping contains only the third argument. The third argument
is an input to the statement; it’s the equivalent of the A array from the C

example.

e The outputs grouping contains only the fourth argument. This argument
is an output from the statement (an out parameter); it’s equivalent to B

array from the C example.

Both input and output arguments are of type memref<10xf64> which denotes
a reference to a memory block of ten 64-bit floating point numbers. MLIR’s

memref<10xf64> is equivalent to a *double [10] typein C or a std: :array<double,

Line

27

10> in C++. The final lexeme on line 2 ({ denotes the opening of a region.
This region belongs to this spf.statement operation and continues to line 8

where it closes with the }) lexeme.

3: The MLIR SPF dialect’s version of a statement begins on line 3. Line
3 creates a basic block named stmt. The stmt block forms the MLIR SPF
dialect’s statement abstraction. This statement will become the core of a
loop generated during lowering (discussed in 3.3). stmt’s block arguments:
%B_x_plus_one, %B_x, and %B_x_minus_one (block arguments are discussed in the
background 2.2) are roughly equivalent to variables used in the stmtSourceCode
argument to the Stmt class in the Computation API. Lowering generates loads
from the statement inputs %B such that the variable %B_x_plus_one holds the
same value as the result of the expression B[x+1] on line 5 (A[x] = (B[x-1]
+ B[x] + B[x+1]) / 3;) from the C example 3.1. The same will be true for

%B_x and B[x], and %B_x minus_one and B[x-1].

Lines 4-6: These lines make up the core of the statement. Here, operations from the

Line

arith dialect add all three block arguments together then divide by %f3. %f3
is defined outside of the example and holds the 64 bit floating point number
3.0. Lines 4-6 correspond to (B[x-1] + B[x] + B[x+1]) / 3 on line 5 of the

C example in Fig: 3.1.

7: The spf.yield operation on this line informs lowering of what should be
considered the results of a statement. Lowering generates write operations

that write the outputs of a computation to the appropriate storage. Through

28

lowering, this line is part of what becomes analogous to the += from line 5 of

the C example.

Lines 8-14: Line 8 ends the region that began on Line 2, and begins the attributes

Line

section. Attributes are discussed in the background section 2.2. The first
attribute, read, continues to line 14. The read attribute is equivalent to
dataReadStrs from the Computation API. read’s will become read access
relations in SPF. The Computation API uses C++'s std: :pair to associate a
read access relation with the data space it reads from. For example, line 10 of
the Computation API example in Fig: 3.3 ({"B", "{[t, x]->[x]}") indicates
that the statement reads from data space "B" with the given relation. The
MLIR front end does this association by mapping the position in read list of
lists to the position in the input grouping. Each item in the list at the 0" index
in reads is a read relation associated with the 0'" input to the statement. In this
case, there are three reads from %A for each statement. The SPF dialect expects
each individual read to be of the MLIR affine map type. The affine map type
is an MLIR primitive for affine relations. While SPF doesn’t require data access
relations to be affine like affine map does, in practice non-contrived data access

relations are always affine.

15: This line sets the write attribute. The write attribute mirrors the read

attribute but for write rather than read access relations.

Lines 16-17: These lines and set the operand_segment_sizes attribute. Operations

across the MLIR ecosystem use the operand_segment_sizes attribute. Unlike

29

other attributes used in the MLIR Jacobi example, operand_segment_sizes is
not specific to the SPF dialect. The operand_segment_sizes attribute stores an
array mapping an operation’s operands to groupings that the operation defines.

spf . computation defines four groupings:

symbols holds variables that are expected to fill in for symbolic constants
in iteration spaces. Position in the array on Line 18 determines which
operand should fill in for which symbolic constant. We give an expanded

description of Line 18 below.

ufInputs holds arguments that should be passed to any uninterpreted function
calls when they are realized during lowering. The Jacobi example doesn’t

contain any uninterpreted function calls.

inputs holds inputs to the statement. Using Computation API terminology,
the inputs grouping holds data spaces the statement reads from and does
not write to. Lowering generates load operations reading from inputs based

on the write relations provided.

outputs holds outputs from the statement. Using Computation API terminol-
ogy, the outputs grouping holds data spaces the statement writes to. The
statement may read as well as write an output. For example, if a statement
contains the equivalent of +=. Lowering generates store operations writing

to outputs based on the write relations provided.

In our example there are three symbolic constants, no uninterpreted function

arguments, one input, and one output.

30

Line

Line

Line

Line

18: This line sets the symbolNames attribute on first spf.computation oper-
ation. symbolNames is an array. The SPF dialect requires it to be the same
size as the symbols grouping. Lowering uses the position within the symbols
grouping to map operands to strings in the symbolNames array. The SPF dialect
requires that each symbolic constant used inside the iteration space (which is
given as a string) is mapped to an argument through the symbolNames symbols

grouping paring.

19: This line sets the iteratorTypes attribute. A programmer or tool marks
each loop in the lowered code either as "parallel" or "reduction". The
presence of a "parallel" indicates that a loop is safe to parallelize. For par-
allelizable loops, lowering generates scf.parallel rather than scf.for opera-
tions. The broader MLIR ecosystem provides lowering paths for scf.parallel
loops that target Nvidia GPUs, AMD GPUs, OpenMP, and OpenACC. The

Computation API cannot naively generate code for any of those targets.

20: This line sets the execution schedule. The provided execution schedule
should be a string. Internally, the SPF dialect constructs a Computation API
Stmt object. The SPF dialect passes the executionSchedule attribute as the
executionScheduleStr argument to the Stmt constructor as is shown on lines

7 and 17 in the Computation API example in Fig: 3.3.

21: This line sets the iteration space. Again, the SPF dialect uses this directly

in the corresponding Computation API constructor argument.

31

Line 22: This line would set a list of transformation relations if there were any. The

next section will introduce transformations to the Jacobi example.

Line 23: This line ends the attributes and gives the type of the operation. The type
signature states that this operation takes 5 arguments, 3 of type index and 2

of type memref<10xf64>, and has no results.

Lines 24-44: These lines contain the second spf.statement operation. This oper-

ation largely mirrors the first with two notable differences:

e The C example in Fig: 3.1 has one outer loop over t containing two inner
loops over x. For any t, all iterations of x for the first loop will execute
before any iterations of x for the second loop. While C uses control
structures, SPF enforces this ordering through execution schedules. The
first statement’s execution schedule (set on line 20: "[t,x]->[t,0,x]")
produces execution space tuples which for any t sort all iterations of x
above execution space tuples produced by the second statement’s execution

schedule (set on line 20: "[t,x]->[t,1,x]").

e The first inner loop body in the C example in Fig: 3.1 reads from B and
writes to A. The second inner loop body reads from A and writes to B.
The first statement represents executions of the first loop body. The
first statement takes %B as input and %A as output (seen on line 2). The
second statement represents executions of the second loop body. the second

statement takes %A as input and %B as output (seen on line 24).

32

Line 45: This line closes the spf.computation operations region opened in Line
1 and gives the type for the spf.computation which takes no arguments and

returns no results.

3.2 Transformations

The SPF abstraction exists to make transformations easy to apply and check for
legality. Specifically, SPF enables transformations to improve data access patterns.
Computers require many more cycles to load data from memory than to do arith-
metic operations on that data [19]. The memory hierarchy combats this problem
by building layers of progressively faster but smaller memory caches. SPF enables
transformations that change the order in which steps of a computation are done. That
order matters because each step accesses data, and the order that data is accessed
(i.e. the computation’s data access pattern) determine at what level of the memory

hierarchy the data is likely to be found at.

3.2.1 SPF Transformations In The Jacobi Example

SPF transformations can significantly improve data access patterns in the Jacobi
example in Fig: 3.1. The example suffers from poor data locality. When the first
inner loop writes data, that data will be cached. But for any write, there is a high
probability the data will be pushed out of cache by further progress of the first
inner loop before the second inner loop can use that data. A transformation called
fusion can push the second loop’s data read closer to the first’s write, increasing the

likelihood that data is cached.

33

1 for (int i1 = 0; i < 100; ++i) {
2 b[i]l = f(alil);
3 }
i for (int i = 0; i < 100; ++i) {

cli] = g(bl[il);
6

Figure 3.5: Fusion Example: Before

i for (int i = 0; i < 100; ++i) {
2 bl[i]l = f(alil);

cli]l = g(blil);
1}

Figure 3.6: Fusion Example: After

Loop fusion combines two or more loops into one. If two loop bodies access similar
data, fusing the loops increases the likelihood repeated accesses are served by cache.
Also, after fusion a compiler may be able to remove temporary storage (such as an
array) for values accessed by multiple loops. Fusing the two loops in Fig: 3.5 produces
the code in Fig: 3.8.

The two inner loops in the Jacobi example cannot be directly fused. The first
execution of the second inner loop body reads data written by the first two executions
of the first loop body. If the loops were directly fused, the first execution of the second
inner loop body would happen after only one execution of the first. But, if we offset
the first inner loop relative to the second inner loop, then the loops can be fused.
This transformation is known as a shift.

SPF applies the needed shift to the first statement SO (which stands in for the first
inner loop body) with the following relation (where underscores are used for unused

variables):

34

for (int t = 1; t <= ub_T / 2; ++t) {

for (int x = 1lb_x-1; x <= ub_x-1; ++x)
3 S0: A[x] = (B[x] + B[x + 1] + B[x + 2]) / 3;
; for (int x = 1lb_x; x <= ub_x; ++x)
; S1: Blx] = (Alx - 1] + A[lx] + Alx + 11) / 3;

Figure 3.7: Jacobi C Example After Skew Transformation

([t o2,] — [t,0,2 —1,0]}

SPF applies this transformation to the execution schedule tuples for S0. Note,
the execution schedule tuples for SO are produced by applying the original execution
schedule to S0’s iteration space. After the shift transformation, C code generation
produces the code in Fig: 3.7. As the transformation is applied to the first statement
S0, the transformation shifts first inner loop while leaving the second inner loop
unchanged. The shift transformation alone won’t improve data access patterns.

The shift transformation does enable a fusion transformation. SPF applies the

following relation to statement S1 to fuse the two inner loops:

([t 2,] — [t,0,2,1]}

The fusion relation removes the 1 at index 1 of the left hand side of the execution
schedule (discussed in section: 3.1.2) which forced all inner loop executions of SO
above S1. The transformation still ensures that given the same x and t, execution

tuples of 81 will sort after execution tuples of S0. That ordering is still required. The

35

shift transformation only bumps executions of SO up by one. The first execution of

S1 requires two executions of SO before it can read valid data.

for(t = 1; t <= ub_T; t++) {
SO: A[lb_x] = (B[1lb_x - 1] + B[1lb_x] + B[lb_x + 1]1) / 3;

for(x = 1b_x; x <= ub_x-1; x++) {
SO: Alx + 1] = (B[x] + B[x + 1] + Blx + 2]) / 3;
S1: Blx] = (Alx - 1] + Alx] + A[x + 1]1) / 3;

}

S1: B[ub_x] = (A[ub_x - 1] + Afub_x] + A[ub_x + 1]1) / 3;
}

Figure 3.8: Jacobi C Example After Fusion Transformation

After the fusion transformation, the Jacobi example has improved data locality.
After fusion, C code generation produces the code in Fig: 3.8. Executions of statement
S1 read elements written to A by SO almost immediately after they are written. The
increased temporal locality virtually ensures that elements written to A by SO will
be in cache when read by S1. A further compiler optimization may even be able to

remove the A array entirely.

3.2.2 Transformations In The SPF Dialect

In the MLIR front end, a user would apply the transformations to the MLIR
Jacobi example in Fig: 3.4 using the transforms attribute. The attribute takes a
string representation of relations. Fig: 3.9 shows an abbreviated version of the MLIR
Jacobi example in Fig: 3.4 with the shift and fuse transformations set. The string
representation of shift transformation on line 6 creates a new variable ¢ to hold the
result of x-1. A quirk in the Computation API parser requires an extra variable to

be created; the variable doesn’t have any special meaning.

2

36

"spf.computation" () ({
"spf.statement" (4ub_T_div_2, %lb_x, %ub_x, %B, %A) ({

}) { reads = [
transforms = ["{[t,a,x,b]->[t,0,c,0]:c=x-13}"]
}:(index ,index,index ,memref <10xf64>,memref <10xf64>) ->()
"spf.statement" (4ub_T_div_2, %lb_x, %ub_x, %A, %B) ({
}) { reads = [
transforms = ["{[t,a,x,b]l->[t,0,x,1]}"]

}:(index ,index,index ,memref <10xf64>,memref <10xf64>) ->()

H: O > 0O

Figure 3.9: MLIR SPF Jacobi

Internally, the SPF dialect applies the transformations to its Computation API
representation using the addTransform method on the Computation class. In turn,
the Computation API applies the transformation to its internal representation. The
next section details how the Computation API’s representations are used to generate

executable code.

3.3 Lowering

This section describes lowering, the process of generating executable code from the
SPF dialect. The MLIR SPF dialect we’ve shown so far enables transformations
but it must be lowered to assembly language before execution. Existing SPF front
ends lower to C, then use existing C compilers to produce assembly. To produce
executable code, the SPF dialect generates lower level MLIR dialects. In turn, the

dialects targeted by SPF lowering have lowering passes of their own. Lowering to

37

executable code requires a pipeline of lowing passes, starting with the SPF dialect.
SPF dialect lowering can be broken up into a series of separate tasks: generating
loops, generating statement execution, and uninterpreted function call lookup. Each
piece is contained within the convert-spf-to-loops pass created in this work, all
other passes discussed in this section were not created as part of this work. After
those tasks, lowering has removed all SPF concepts. Lowering passes from the wider
MLIR ecosystem then further lower the generated MLIR to executable code. Below,
we discuss each step of SPF dialect lowering in detail, and touch on the pipeline that

lowers from the generated code to executable code.

3.3.1 Generating Loops

The SPF dialect builds upon the Computation API, and leverages it heavily for loop
generation. From the MLIR SPF interface discussed in Section: 3.1.4, SPF dialect
internally creates a Computation API representation. The SPF dialect primarily uses
an exiting loop generation infrastructure within the Computation API representation.
The Computation API is a single entry point for a variety of sparse polyhedral tools.
Internally, it relies on another tool CodeGen+ [5, 13] to provide loop generation
through an algorithm called polyhedral scheduling.

The Computation API builds on the code generation system CodeGen+. We first
discuss, and give an example of, CodeGen+'s polyhedral scheduling algorithm before
describing its integration with SPF MLIR dialect. Before giving an example of the
underlying algorithm, some preliminaries must first be discussed. CodeGen+ uses the

Omega [25] system to provide Presburger Arithmetic manipulation capabilities. The

38

constraint satisfaction algorithm relies on a few key set and relation manipulation

operations: Project, Gist, and Hull.

Project: This operation eliminates a variable from all equations and inequalities
using an approach based on Fourier-Motzkin. The idea is to eliminate a variable
by projecting its constraints onto the rest of the system. During this process,

Project may generate additional constraints.

Project({r <y+ 10N Ny <15Ay > —x+20},y) = {5 <z <25}

Gist: Gist takes two relations A and B and extracts the constraints in A not already

represented in B.

Gist({i > 10 Aj > 10}, {j > 10}) = {[i] : ¢ > 10}

Hull: Hull takes a large set of constraints and returns a (potentially) smaller set that

must include all the lattice points in the polyhedron formed by the original.

Hul1({0 < i < 10} U {0 <i < 100}) = {i < 100}

The CodeGen+ polyhedral scanning algorithm has two phases. The first phase
takes the constraints provided in Presburger Arithmetic by SPF or some other tool,
and uses Project to construct an initial AST with the constraints that need to

be fulfilled at each node. The second uses Hull and Gist to compute bounds for

V)

39

for(int i = 0; i < I; i++) {
for(int j = 0; j < J; j++) {
3 S0: alil[j] = p[i]1[;]
}
}

Figure 3.10: Simple Example

generated loops and ensures that all constraints are met. The second phase may
modify the AST to fulfill the constraints. Amongst other things, it may add guard
nodes which will yield if blocks in generated code.

For an example, take the code in Fig: 3.10. The code is represented using the

polyhedral model and will have the following constraints for statement SO

{[i,j]:0<i<IA0<j<J}

Generated code will loop over the points in this set in lexicographic order. A compiler
or user of a polyhedral system might apply a loop interchange transformation relation

such as

/

{[i.J] = [, 57:d" =jAj =i}

The execution schedule tuples after applying this transformation will be

{7, :0<i<IANO<j<J}

The first phase of CodeGen+’s polyhedral scanning algorithm will create two AST
nodes with initial constraints by projecting out each dimension in turn.

Table: 3.1 shows the initial generated constraints. The initial constrains can also

[EENN

40

Table 3.1: Initial Constraints
level constraints

0 {0<j < J}

1 [{0<i<INO<j<J}

be read as an AST with two levels. The first level of the AST is required to fulfill the
constraints {0 <= j < J}, and the second is required to fulfill {0 <=1i < I A0 <=

Jj<J}

loop 0 <=j<J

Figure 3.11: AST

for(int j = 0; j < J; j++) {
for(int i = 0; I < n; i++) {
alil[j] = bl[il[j]
}

Figure 3.12: AST

The final step, CodeGen+ computes bounds for the AST. As the first level
establishes the constraint {0 <= j < J}, the second phase will not generate code
that loops over the full polyhedron represented by {0 <=1 < I A0 <= j < J}
during the second phase. Gist will determine that the condition on ¢ has already
been met at a different level, and the second phase will only generate the bounds
that are required. CodeGen+ will then generate C code in Fig: 3.12 from the AST

in Fig: 3.11.

41

MLIR { Lower level dialects \\

SPF-Dalect % Ganl
[
Computation API Omega/CodeGen+

Figure 3.13: Generating MLIR

Initially, the SPF MLIR front end generated MLIR code from the CodeGen+
AST. But with anything but simple examples, several implementation decisions in
CodeGen+ make the underlying AST very difficult to detach from the C generation.
Now, the MLIR front end parses CodeGen+’s generated C code into an AST more
amenable to MLIR code generation, and uses that AST to generate MLIR code.
Fig: 3.13 shows the flow.

The parser produces the AST in Fig: 3.14 (AST displayed in string output format)
from the transformed SPF dialect Jacobi example presented in Fig: 3.9. As discussed
in Section: 3.1.4, lowering translates the AST’s loop nodes straightforwardly into
scf.for or scf.parallel operations (scf dialect discussed in Section: 2.2). After
this step lowering has produced loops and knows where statements need to executed.
To remove all SPF concepts in the Jacobi example, lowering needs to produce code

to execute those statements.

42

i loop{inductionVar:tl,

o

start:int{val:1},
stop:symbol{symbol:ub_T, increment:1},
step:1,
body:[call{statementNumber:0,
args: [symbol{symbol:t1},
int{val:0},
symbol{symbol:1b_x, increment:-17},
int{val:0}]
3,
loop{inductionVar:t3,
start:symbol{symbol:1b_x},
stop:symbol{symbol:ub_x1},
step:1,
body: [
call{statementNumber:0,
args: [symbol{symbol:t1},
int{val: 0},
symbol{symbol:t3},
int{val:0}]
3,
call{statementNumber:1,
args: [symbol{symbol:t1},
int{val: 0},
symbol{symbol:t3},
int{val:1}]
}]
},
call{statementNumber:1,
args:[symbol{symbol:t1},
int{val:0},
symbol{symbol:ub_x},
int{val:1}]
}]

Figure 3.14: Jacobi Example: AST Parsed From Generated C

3

43

3.3.2 Generating Statement Execution

Lowering generates code to execute a statement in four steps.

1. Lowering generates code to recover the iteration space from the execution space.

2. Lowering generates load operations from the inputs to an operation.

3. Lowering in-lines the statement.

4. Lowering generates store operations from the outputs.

for(int i=0; i<I; i++)
for (int j=0; j<J; j++)
Afi,j]l = BI[i,j]

Figure 3.15: Double For Loop
for (int j=0; j<J; j++)

for (int i=0; i<I; i++)
Ali,j] = BI[i,]]

Figure 3.16: Double For Loop After Loop Permutation

Table 3.2: Before Transformation
Execution Space Tuple | Iteration Space Tuple

44

To motivate why the first step is necessary, take a simple double for loop in

Fig: 3.15. In SPF this would have iteration space

{lt,7] :0<i<INO<j<J}

and execution schedule

{1, 4] = 11,41}

Table: 3.2 shows the tuples produced and sorted theoretical execution with I = 1 and

J = 2. If a user applies a loop permutation transformation

{5, 5] = U1}

to produce code such as that in Fig: 3.16 the execution schedule tuples will no longer
correspond to the iteration space tuples. Table: 3.2 shows the tuples produced and

sorted after this transformation.

Table 3.3: After Transformation
Execution Space Tuple | Iteration Space Tuple

CodeGen+, in Section: 3.3.1, generates loops and statement calls on the execution

space tuples. The transformed code in Fig: 3.15 doesn’t index into A at [2,1]. An

45

optimization causing the code to index into A at [2,1], as Table: 3.3 shows the
execution schedule tuples do, would be incorrect. In order for the permutation
transformation to be correct, something has to map the execution space back to
the iteration space.

The loop induction variables keep their original names when permuted between
Fig: 3.15 and Fig: 3.16, allowing variable binding to ensure that the statement is
called correctly. code generated by CodeGen+ won’t have the variable binding the
C example does’. But by inverting the execution schedule, the SPF dialect can use
the Computation API to create a function from the execution space to the iteration
space.

The SPF dialect stores the relation from execution space to iteration space as
an affine map (discussed in Section: 3.1.4). Given an affine map, existing MLIR
infrastructure can generate code to apply that map. To accomplish step 1, lowering
generates code with the affine map infrastructure recover the iteration space from
the loop induction variables running over the execution space generated in the last

Section: 3.3.1.

1 scf.for %arg0d = Y%cl to %1 step %cl {
2 scf.for Yargl = Y%cl to %c9 step %cl {
3 %2 = arith.addi ‘argl, %cl : index
| %3

= memref.load %BI[%2] : memref<10xf64>
5 %4 = memref.load %B[largl] : memref<10xf64>
6 %c-1 = arith.constant -1 : index
7 %5 = arith.addi %argl, %c-1 : index
8 %6 = memref.load %B[%5] : memref<10xf64>

Figure 3.17: Jacobi Lowering Step 2

Given variables in the iteration space from step 1, lowering can straight forwardly

2

46

accomplish step 2. A user of the SPF dialect provides read access relations (discussed
in Section: 3.1.4). Read access relations take iteration space variables as input and
output indices at which reads should be done. Lowering again leverages the existing
affine map infrastructure to compute indices from a read map, then generates a load-
/store at those indices. For example, the read maps for %B from the Jacobi example
in Fig: 3.4 are: affine map<(t, x) -> (x+1)> affine map<(t, x) -> (x)>, and
affine map<(t, x) -> (x-1)>. For step 2 lowering generates lines 3-8 in Fig: 3.17;
lines 1-2 are generated during loop generation in Section: 3.3.1. Lines 3, 6, and 7
compute indices, and lines 4, 5, and 8 do the required loads (the memref and arith

dialects were discussed in Section: 2.2).

“stmt (%4B_x_plus_one: £f64, %B_x: f64, %B_x_minus_one: f64):
%0 = arith.addf %B_x_plus_one, %B_x : f64
%1 arith.addf %0, %B_x_minus_one : f64
%2 = arith.divf %1, %f3 : f64
"spf.yield" (%2): (£64) -> ()

Figure 3.18: Jacobi Statement

scf.for %arg0d = %cl to %1 step %cl {
scf.for ‘argl = %cl to %c9 step %cl {
%2 = arith.addi %argl, %cl : index

%3 = memref.load %B[%2] : memref<10xf64>

%4 = memref.load %Bl/%argl] : memref<10xf64>
%c-1 = arith.constant -1 : index

%5 = arith.addi ‘argl, %c-1 : index

%6 = memref.load %B[%5] : memref<10xf64>

%0 = arith.addf %3, %4 : f64
%1 = arith.addf %0, %6 : f64
%2 = arith.divf %1, %f3 : f64
"spf.yield" (%2): (£64) -> ()

Figure 3.19: Jacobi Lowering: Step 3

A7

To accomplish step 3, lowering only needs to in-line the statement kernel into the
generated code. The MLIR SPF interface expects the statement arguments to be
filled in by generated reads, and now those reads have been generated. For example,
step 3 will in line the first statement Jacobi example without transforms in Fig: 3.18

into the code produced so far in Fig: 3.17 producing the result in Fig: 3.19.

scf.for %arg0d = %cl to %1 step %cl {
scf.for ‘argl = %cl to %c9 step %cl {
%2 = arith.addi %argl, %cl : index

%3 = memref.load %B[%2] : memref<10xf64>

%4 = memref.load Y%Bl/%argl] : memref<10xf64>
%c-1 = arith.constant -1 : index

%5 = arith.addi %argl, %c-1 : index

%6 = memref.load %B[%5] : memref<10xf64>

%7 = arith.addf %3, %4 : f64
%8 = arith.addf %0, %6 : f64
%9 = arith.divf %1, %f3 : f64
memref .store %9, %Allargl] : memref<10xf64>

Figure 3.20: Jacobi Lowering: Step 4

Step 4 proceeds in a similar fashion to step 2. At this point lowering has all
the requirements for building a write: the user provides a write affine map which
can calculate indexes into storage, the statement provides what should be written
with the scf.yield operation, step 1 provides the iteration space input to the write
map. Lowering generates indexing variables from the write map again using the
affine map infrastructure. For the variables a statement provides via scf.yield,
lowering generates stores into the associated storage location at the generated indices.
After step 4, lowering produces the code in Fig: 3.20. Line 12 contains the code step

4 generated with write map affine map<(t, x) -> (x)> on spf.statement output

48

JA.
For reference, the full output of lowering for the transformed Jacobi kernel in

Fig: 3.9 is included in Fig: 3.21.

1 scf.for %argO = Y%cl to %1 step %cl {

N

%2 =
%3 =
%4 =
%5 =
%6 =
%7 =
%8 =
%9 =

arith.addi %cO, %c2 : index

memref .load %alloc_2[%2] : memref<10xf64>
arith.addi %cO, %cl : index

memref .load %alloc_2[%4] : memref<10xf64>
memref .load %alloc_2[%c0] : memref<10xf64>
arith.addf %3, %5 : f64

arith.addf %7, %6 : f64

arith.divf %8, %cst_0 : f64

memref .store %9, %alloc[%4] : memref<10xf64>

scf.f
%16
w17
%18
%19
%20
%21
%22
%23

or hargl = %cl to %c8 step %cl {

= arith.addi %argl, %c2 : index

= memref.load %alloc_2[%16] : memref<10xf64>

= arith.addi Y%argl, %cl : index

= memref.load %alloc_2[%18] : memref<10xf64>

= memref.load %alloc_2[%argl] : memref<10xf64>
= arith.addf %17, %19 : f64

= arith.addf %21, %20 : f64

= arith.divf %22, %cst_0 : f64

memref .store %23, %alloc[%18] : memref<10xf64>

%24
%25
he-
%26
%27
%28
%29
%30

= memref.load %alloc[%18] : memref<10xf64>

= memref.load %alloc[%argl] : memref<10xf64>
1 = arith.constant -1 : index

arith.addi %argl, %c-1 : index

= memref.load %alloc[%26] : memref<10xf64>
arith.addf %24, %25 : f64

arith.addf %28, %27 : f64

arith.divf %29, %cst_0 : f64

memref .store %30, %alloc_2[}argl] : memref<10xf64>

}

%10 =
%11 =
%cT7 =
%12 =
%13 =
%14 =
%15 =

memref .load %alloc[%c9] : memref<10xf64>
memref .load %alloc[%c8] : memref<10xf64>
arith.constant 7 : index

memref .load %alloc[%c7] : memref<10xf64>
arith.addf %10, %11 : f64

arith.addf %13, %12 : f64

arith.divf %14, %cst_0 : f64

memref .store %15, %alloc_2[%c8] : memref<10xf64>

Figure 3.21: Lowered Transformed Jacobi Example

49

50

3.3.3 Uninterpreted Function Call Lookup

The final lowering step concerns uninterpreted functions. Uninterpreted functions

(discussed in Section: 2.1) provide an abstraction allowing SPF to model sparse codes.

The Jacobi example used thus far does not contain any uninterpreted functions. To

motivate this lowering step, we provide an example that does: sparse MTTKRP

(Matricized Tensor Times Khatri-Rao Product).

1 for (uint64_t i = 0; i < I; i++) {

for (uint64_t k = 0; k < K; k++) {
for (uint64_t 1 = 0; 1 < L; 1++) {

// loop over j dimension of A matrix
for (uint64_t j = 0; j < J; j++) {

Afi, j1 += B[i, k, 11 * D[1, jl * Clk, jIl;
}

Figure 3.22: Dense MTTKRP Kernel In C

1 // loop over number of non zero

for (uint64_t i_nnz = 0; i_nnz < nnz; i_nnz++) {

// Read coordinates out of b matrix stored in CO0 format
uint64_t i BCoordsO[i_nnz];

uint64_t k BCoords1[i_nnz];

uint64_t 1 BCoords2[i_nnz];

// Read value out of b matrix stored in CO00 format
double BIKL = BVals[i_nnz];

// loop over j dimension of A matrix
for (uint64_t j = 0; j < J; j++) {
Ali, jl1 += BIKL * D[1, jl * Cl[k, jl;

Figure 3.23: Sparse COO MTTKRP Kernel In C

51

columns (j)
0 1 2 3
o 1 2
31 3
1Y
2
o2
3l 4 5

ow[o [o 13]3]

w[o]2]1]o]3]

w 1]z 3]4]5]

Figure 3.24: COO sparse format

MTTKRP is the bottleneck in various algorithms such as the Canonical Polyadic
Decomposition (CPD) [14]. CPD is tensor generalization of the Singular Value
Decomposition (SVD) for matrices, it approximates a tensor with a sum of rank-1
matrices (vectors). A decomposition factors a tensor into the product of several
smaller constituent parts. The SVD and CPD arrange factored parts in order of
magnitude of effect (as determined by singular value). Principal Component Analysis
and other important techniques rely on CPD decompositions. MTTKRP in dense C
code is shown in Fig: 3.22, and sparse in Fig: 3.23. The sparse code uses the COO
sparse tensor format detailed in Fig: 3.24. MTTKRP can be expressed in index

notation for a dense tensor as

Aij = Bigi - Dij - Cy.

An SPF representation of sparse MTTKRP has the following iteration space

52

{lj,ik,i,1]: 0 <ik < nnzAi = UFi(i_k)Ak = UFk(i_k)Al = UFI(i_k)A0 < j < J}.

Note the use of uninterpreted functions to represent the irregular memory access into
the COO coordinate arrays. An SPF representation of sparse MTTKRP has the

following execution schedule:

{lgyik,i, k1] — [5,ik, i, k, 1]}

The data reads would be the following:

{A{lj ik, ik, 1) = ik, i k03,

(B{[j ik, i,k 1 — [j,ik, i,k 0}},
(C{lj ik, i k1) — [j,ik, i, k,)},
(DA{lj, ki, k1] — [j,ik, i, k, 0]}).

Data writes would be the following;:

(A{lj, ik, k1) — [j,i ki, k,]},

Loop generation in Section: 3.3.1 produces calls to uninterpreted functions (UFs)
as well as statements. Inside CodeGen+ UF calls behave similarly to loops. As
discussed in Section: 3.3.1, CodeGen+ fulfills most constrains, such as 0 < j < J from

the sparse MTTKRP example, with a loop. But if while building the AST, CodeGen-+

23

1 "spf.computation" () ({

2 "spf.statement" (4NNZ, %J, %argb_coord_O, %argb_coord_1,
3 hargb_coord_2, jargb_values, %argc,

| hargd, %harga) ({

5 "bb0(%b_i_k_1

%c_k_j : £6

£64, %d_1_j : f64,
4, %a_i_j : £64):

7 %0 = arith.mulf %b_i_k_1, %d_1_j : £f64

8 %1 = arith.mulf %0, %c_k_j : £f64

9 %2 = arith.addf %1, %a_i_j : f64

10 "spf.yield" (%2) (f64) -> O

11 » {

12 reads = [

13 [affine_map<(z, i, k, 1, j) -> (z)>],

14 [affine_map<(z, i, k, 1, j) -> (k, j)>1,
15 [affine_map<(z, i, k, 1, j) -> (1, j)>]
16 1,

17 writes = [

18 [affine_map<(z, i, k, 1, j) -> (i, j)>]
19] s

20 // symbols, uflnputs, inputs, outputs

21 operand_segment_sizes = array<i32: 2,3,3,1>,
22 symbolNames = ["NNZ", "J"],

23 iteratorTypes = ["reduction", "reduction",

24 "reduction", "reduction", "parallel"],
25 executionSchedule = "{[z,i,k,1,jl->[z,i,k,1,jI1}",
26 iterationSpace = "{[z,i,k,1,j]l: 0<=z<NNZ and
27 i=UFi(z) and
28 k=UFk(z) and
29 1=UF1(z) and
30 O<=j<J}",

31 transforms = []

32 } : (index, index,

33 memref <?7xindex>, memref <?xindex>,

34 memref <?7xindex>, memref <?7xf64>,

35 memref <?7x?7xf64>, memref<7x?xf64>,

36 memref <?7x?7xf64>) -> ()

3731 O =-> O

Figure 3.25: Sparse COO MTTKRP Kernel In MLIR

finds a constraint that must be fulfilled with a UF call, such as | = UFI(i_k) from

sparse MTTKRP, it generates a UF call rather than a loop.

2

54

loop{inductionVar:ti,
start:int{val:0},
stop:symbol{symbol:NNZ},
step:1,
body: [ufAssignment{inductionVar:t2,
ufName: UFi,
args:[symbol{symbol:t1}]},
ufAssignment{inductionVar:t3,
ufName: UFk,
args: [symbol{symbol:t1}]},
ufAssignment{inductionVar:t4,
ufName: UF1,
args:[symbol{symbol:t1}]},
loop{inductionVar:t5,
start:int{val:0},
stop:symbol{symbol:J},
step:1,
body:[call{statementNumber:0,
args: [symbol{symbol:t1},
symbol{symbol:t2},
symbol{symbol:t3},
symbol{symbol:t4},
symbol{symbol:t5}]},
13,
13

Figure 3.26: Sparse COO MTTKRP AST

From the sparse MTTKRP example in Fig: 3.25 CodeGen+ and the C parser pro-
duce the AST in Fig: 3.26. We have already discussed how the loop and call nodes
are lowered, this section is concerned with the ufAssignment nodes. ufAssignment
nodes represent a call to and assignment from a UF. Lowering will eventually produce
something similar to line 4 in the C example (uint64_t i = BCoordsO[i nnz];) in
Fig: 3.23 from the ufAssignment on lines 5-7 in Fig: 3.26.

Lowering generates actual function calls in place of uninterpreted function calls.

The SPF dialect representation of MTTKRP in Fig: 3.25 has 3 ufInputs argu-

25

i func.func private QUFi(%uf_argb_coord_O : memref<?7xindex>,
2 %uf_argb_coord_1 : memref<7xindex>,
%uf_argb_coord_2 : memref<?xindex>,
\ %z: index)-> index {
%i = memref.load %uf_argb_coord_O0[%z] : memref<?xindex>
6 return %i : index
7}

Figure 3.27: Example Uninterpreted Function

ments (shown on line 18). As discussed in Section: 3.1.4, the ufInput argument
grouping stores extra arguments to uninterpreted function calls. Upon finding a
ufAssignment node, lowering looks for an MLIR function taking the ufInput argu-
ments as well as any arguments to the UF the AST identifies. For example when
encountering the ufAssignment on lines 5-7 in Fig: 3.26, lowering will search the
current symbol table for a function such as that in Fig: 3.27. If found, lowering
generates a call operation %0 = func.call QUFi(%arg2, %harg3, %argd, %arg9)
(memref<?xindex>, memref<?xindex>, memref<?xindex>, index) -> index. If
not found, lowering returns an error.

For reference the full output of lowering for the sparse MTTKRP kernel in Fig: 3.25
is included in Fig: 3.21.

Lowering has now replaced all SPF dialect operations with operations from other
MLIR dialects. Lowering is complete. But, the user doesn’t yet have executable
code. Lowering delegates the remaining compilation flow to a further existing lowering

pipeline.

56

1 scf.for Yarg9 =

%cO0 to %arg0d step %cl {

2 %0 = func.call QUFi (%arg2, %arg3,

3 hargd, Yarg9) (memref <?xindex>,
memref <?7xindex>,

5 memref <?xindex>,

6 index) -> index

7 %1 = func.call QUFk(%arg2, %arg3,

8 hargd, Yarg9) (memref <?xindex>,

9 memref <7xindex>,

10 memref <7xindex>,

11 index) -> index

12 %2 = func.call QUF1l(%arg2, %arg3,

13 hargd, Yarg9) (memref <?xindex >,

14 memref <?xindex>,

15 memref <7xindex>,

16 index) -> index

17 scf.parallel (%arglO) = (%c0) to (%argl) step (%cl) {

18 %3 = memref.load %argb[farg9] memref <?7xf64>

19 %4 = memref.load Y%arg6[%l, %arglO] memref <?x?7xf64>

20 %5 = memref.load %arg7[%2, %arglO] memref <?x?xf64>

21 %6 = memref.load %arg8[%0, %arglO] memref <?7x?7xf64>

22 %7 = arith.mulf %3, %5 f64

23 %8 = arith.mulf %7, %4 f64

24 %9 = arith.addf %8, %6 f64

25 memref .store %9, %arg8[%0, %arglo] memref <?x?7xf64>

26 }

27 }

Figure 3.28: Lowered Sparse MTTKRP Example

o7

3.3.4 Pipelines

spf-opt
-convert-spf-to-loops
-lower-affine
-gpu-map-parallel-loops
—-convert-parallel-loops-to-gpu
-lower-affine
-convert-vector-to-scf
—-convert-scf-to-cf
-func-bufferize
—arith-bufferize
-finalizing-bufferize
-gpu-kernel-outlining
| spf-opt -pass-pipeline=’builtin.module(gpu.module(strip-debuginfo,
convert-gpu-to-nvvm, gpu-to-cubin))’
| spf-opt -gpu-to-llvm
—-convert-vector-to-1llvm
—-convert-memref-to-1lvm
—-convert-complex-to-standard
—-convert-math-to-1lvm
—-convert-complex-to-1llvm
—-convert-math-to-libm
-convert-func-to-1lvm
-reconcile-unrealized-casts

Figure 3.29: Compilation Pipeline

Lowering is done with the spf-opt tool which is a lightly wrapped version of
the MLIR tool mlir-opt. The spf-opt tool is a version of mlir-opt built during
this work. The mlir-opt tool provides passes for optimization and transformation
of MLIR code. Lowering proceeds in a series of passes, each of which may transform
the code with an optimization, or lower a dialect to another. A user of mlir-opt

provides passes and parameters to those passes on the command line. The wrapping

o8

adds the -convert-spf-to-loops pass which implements the lowering discussed in
Sections: 3.3.1, 3.3.2, and 3.3.3. All passes besides —convert-spf-to-loops already
existed in MLIR.

While compiling to final machine code, the spf-opt tool generates LLVM IR.
Technically spf-opt produces the MLIR LLVM dialect which is then translated to
LLVM IR via the tool mlir-translate. LLVM is a lower level compiler that can
target CPUs and GPUs [16]. LLVM compiles a restricted set of its common IR with
required GPU-vendor specific intrinsics to GPU code [2, 1]. LLVM cannot target
CPUs and GPUs from the same code as can be done with MLIR. Fig: 3.29 shows a
pipeline that produces LLVM specialized for Nvidia GPUs.

As discussed previously, different pipelines can generate code for a wide variety of
targets from the same SPF dialect representation of a kernel. The pipeline in Fig: 3.29
compiles the MTTKRP example from Section: 3.25 to LLVM code specialized for
Nvidia GPUs, but with minor modifications to the pipeline it will produce CPU
code. Though untested by this work, different pipelines should be able to lower the
scf.parallel operations produced by -lower-affine not only to Nvidia GPU and
CPU but also to AMD GPU, OpenMP, and OpenACC.

This work used the 11c tool to compile LLVM IR to final executable machine code.
There are many potential options, for example the clang compiler can also compile
LLVM IR. The 11lc tool compiles LLVM IR to an object file. The resulting object
file can be linked into an existing program. This work linked object files produced

from SPF MLIR kernels into a bench-marking harness implemented in C++.

1

2

59
3.4 Performance Evaluation

This section details the performance evaluation of code generated from the MLIR
SPE font end. The benchmark suite consists of SPF MLIR implementations of
two common sparse scientific kernels: Sparse Matricized Tensor Times Khatri-Rao
Product (MTTKRP), and Sparse Tensor Times Matrix (TTM). On CPU, the evalua-
tion benchmarks MLIR implementations of the kernels against implementations pro-
duced using the C SPF front end, and implementations from the PASTA benchmark
suite [18]. On GPU, as the C SPF front end cannot produce GPU code, the evaluation
benchmarks MLIR implementations of the kernels only against implementations from
the PASTA benchmark suite. The results show the MLIR implementations have

generally competitive performance on CPU and GPU.

3.4.1 Benchmark Suite

// loop over number of fibers
for (uint64_t f = 0; f < Mf; f++) {
// loop over items in each fiber
for (uint64_t m = fptr[f]l; m < fptr[f + 1]; m++) {
// read value out of constant dimension of CO0 storage
uint64_t k = xCoordConstant[m];
// loop over dimension of U
for (uint64_t r = 0; r <= R - 1; r++) {
y[f * R + r] += xValues[m] * ulk * R + r];
}

Figure 3.30: Sparse COO TTM Kernel In C

60

The benchmark suite consists of implementations of two common sparse scientific

kernels MTTKRP and TTM.

MTTKRP was discussed in Section: 3.3.3.

TTM is the bottleneck in various algorithms such as the Tucker Decomposition [14].
Similarly to CPD, the Tucker decomposition is a generalization of the Singular
Value Decomposition (SVD) for matrices. The Tucker decomposition breaks a
tensor into a “core” tensor and several matrices ordered by magnitude of effect
(as determined by singular value). Principal Component Analysis and other

important techniques rely on Tucker decompositions.

TTM, also known as the n-mode product, is the multiplication of a tensor
X € R xIN with a matrix U € R»*®. The n-mode product multiplies
each mode-n fiber, obtained by holding all modes of X’ constant except n, by the
matrix U. Calculating TTM for COO (COO also discussed in Section: 3.3.3)
sparse X requires first pre-processing to calculate Mg, the number of n-mode
fibers in X, and f,, array size Mp storing the beginnings of each n-mode.
Fig: 3.30 shows sparse TTM in C code. TTM can be expressed in index notation

as

In
yil...in,linﬂ...m = g Xilu.in,linin+1...iNuinr-

in=1
3.4.2 Experimental Setup

The performance evaluation used a GPU node in the R2 cluster at Boise State

University. R2 GPU nodes are configured with two Intel Xeon E5-2680 v4 14-core

61

CPUs running at a base clock of 2.4ghz, and a Max turbo clock of 3.30ghz. The
Xeon E5-2680 CPUs have a 35MB L3 cache, 256K L2 cache, and 32K L1 data and
instruction caches. GPU nodes are configured with with 192GB of memory split
into two NUMA nodes. Each GPU node has two Nvidia Tesla P100 GPUs (the
benchmarks used only one GPU) with 12GB of graphics memory.

Pasta and IEGenLib implementations of the benchmark suite were compiled with
GCC 10.2.0 and NVCC 11.2 using the O3 flag. SPF dialect implementations of the
benchmarks were compiled, as discussed in Section: 3.3.4, with: spf-opt, mlir-translate,
and 11c with -O3 flag. All LLVM and MLIR tools were built from source on LLVM
16 at sha:570117b linked against NVCC 11.2.

Results compare PASTA, IEGenLib, and SPF MLIR implementations of TTM and
MTTKRP. Each implementation is benchmarked on a set of 3 dimensional tensors

from the FROSTT tensor collection [27]. Results compare average time over five runs.

62

3.4.3 Results

platfarm = cpu | benchmark = mttkrp platform = cpu | benchmark = ttm
5000 A
2500 1
4000 A
2000 4
(] 4
E, 3000 implementation
g 1500 = i
a m jegenlib
= 5000 4 = pasta
1000 4
1000 A
500
o
fo-m.tns fb-s.tns nell-1.tns nell-2.tns darpa.tns fb-m.tns fo-s.tns nell-1.tns nell-2.tns
file file

Figure 3.31: CPU Benchmarks

This section presents the results of the performance evaluation. Fig: 3.31 shows the
run time in milliseconds of CPU implementations of the benchmarks. The results

show generally competitive performance between all implementations.

63

benchmark = mttkrp benchmark = ttm

124
10

0.8 1
implementation
N miir
e jegenlin
B pasta

speedup

0.4 1

0.2 1

00 - =
darpa.tns fo-r.tns fiz-5.tns rell-1.tns nell-2.tns darpa.tns fo-r.tns fir-5.tns rell-1.tns nell-2.tns
file file

Figure 3.32: CPU Speedup

Fig: 3.32 shows the speedup of each implementations relative to the SPF dialect
implementation. In this speedup graph the SPF implementation will always have
a value of 1.0. A wvalue higher than 1.0 indicates the competing implementation
ran faster than the MLIR implementation, a value below 1.0 indicates the MLIR
implementation ran faster than the competing implementations. The results show
generally competitive performance between all implementations of MTTKRP. For
TTM, the results show that the SPF dialect implementation has an advantage. All
implementation’s final generated assembly code has very similar characteristics. It’s

not currently understood what causes the increase for the MLIR implementation.

64

benchmark = mttkrp benchmark = ttm
1600 1
100 4 1400 1
1200 1
80 -
1000 1
w
E' implementation
@ 60]
E 800 - i
5 e pasta
600 1
40
400 4
20 4
200 4
o- o-
darpa.tns fo-m.tns fi-5.tns rell-1.tns nell-2.tns darpa.tns fo-m.tns fo-s.tns nell-1.tns nell-2.tns
file file

Figure 3.33: GPU Benchmarks

benchmark = mttkrp benchmark = ttm
20 4
15 4
implementation
. miir

10 1 e pasta
5 -

o

darpa.tns fo-m.tns fiz-s.tns nell-1.tns nell-2.tns darpa.tns fb-m.tns fb-s.tns nell-1.tns nell-2.tns
file file

Figure 3.34: GPU Speedup

Fig: 3.33 shows the run time in milliseconds of GPU implementations of the
benchmarks. Fig: 3.34 shows the same data as a speedup relative to MLIR im-

plementation. The graph does not rank IEGenLib, as the C SPF front end cannot

65

produce GPU code. The results show generally competitive performance between
MLIR and PASTA for MTTKRP, and generally worse performance MLIR relative to
PASTA for TTM. SPF could represent the transformations necessary to turn the CPU
version of MTTKRP into the GPU version, but the current implementation lacks the
required features. The MLIR SPF dialect GPU implementation for MTTKRP is
specialized for GPU, whereas the TTM version is the same as the CPU version just
compiled with a different pipeline. Without an implementation that’s designed for
GPU hardware, the SPF MLIR dialect implementation of TTM can’t compete with

the PASTA implementation.

66

CHAPTER 4

RELATED WORK

This work builds on research done on Polyhedral Model tools, the Sparse Polyhedral
Framework, and MLIR.

Polyhedral Model tools are used to reason about and optimize codes with affine
memory accesses. Examples of such tools include: Polly [7], Pluto [4], Loopy [21],
PolyMage [20], and fpl [22]. Pluto built on existing research in polyhedral scheduling,
providing a way to optimize generated code for parallelization and locality. Polly
provided a way to do polyhedral optimizations on low level program representations,
specifically LLVM IR. This ensures that optimizations can be leveraged by any
language targeting LLVM. The fpl library used transprecision to provide a speed
increase relative to existing Presburger Arithmetic libraries, such as isl [31]. Their
approach ensures that constraints are stored using the smallest possible primitives.
The storage reduction increases performance through decreased memory contention.
PolyMage leverages polyhedral techniques in a domain specific language for image
processing. Loopy allows programmers to specify loop transformations which are
then formally verified using the Polyhedral Model.

This work heavily leverages the object-oriented interface to the Sparse Polyhedral

Framework known as the Computation API [23]. The Computation API provides

67

a single entry point to Sparse Polyhedral Framework tools. Such tools include the
Inspector/Executor Generation Library (IEGenLib) [28] which provides set and rela-
tion manipulation with constraints involving uninterpreted functions, and Omega+
for code generation [5].

This work builds on approaches to GPU code generation in MLIR [11]. This work
attempts uphold the MLIR design goal of building composable high level abstractions
that keep structure needed for optimization [30] as long as it is relevant. Without the

extensible design of the core MLIR infrastructure [17], this work wouldn’t be possible.

68

CHAPTER 5

CONCLUSION

This work creates an SPF MLIR dialect to extend the portability of SPF code
to GPU as well as CPU. Clock speed has stagnated, increased parallelization and
specialization now drives increases in performance. Scientific applications, in which
SPF is used, need memory optimizations and need to be able to run on heterogeneous
hardware. Previous SPF tools could be used to reason about and optimize data flow
for memory optimizations but could only produce CPU code. By integrating SPF
into an ecosystem designed for heterogeneous hardware, this work extends SPF to
GPUs and positions SPF well to integrate with many other hardware platforms.
Performance evaluation showed competitive performance of SPF generated CPU
and GPU code. The benchmark suite contains two common scientific kernels (MT-
TKRP, and TTM) which form the basis many important applications. The evaluation
benchmarked code generated from the SPF MLIR dialect against code generated
using the C SPF front end, and the PASTA benchmark suite. CPU benchmarks
showed competitive to slightly better performance for MLIR generated kernels. GPU
benchmarks showed competitive performance if GPU hardware was considered when

writing the kernel, and worse results for MLIR generated kernels targeted naively to

GPU.

69

Future work could integrate better heuristics and transformations for targeting
GPUs. The foundation laid by this work could be extended to new platforms such
as TPUs or other accelerators. MLIR provides an abstraction known as interfaces
allowing an arbitrary number of dialects to use optimizations written in terms of
the interface rather than a dialect. Future work would could look at providing SPF
transformations as an interface that could be lifted out of the dialect built in this

work.

70

[1]
2]
3]

REFERENCES

LLVM Authors. User guide for amdgpu backend, 2022.
LLVM Authors. User guide for nvptx back-end, 2022.

Ian J. Bertolacci, Catherine Olschanowsky, Ben Harshbarger, Bradford L. Cham-
berlain, David G. Wonnacott, and Michelle Mills Strout. Parameterized diamond
tiling for stencil computations with chapel parallel iterators. ICS ’15, page
197206, New York, NY, USA, 2015. Association for Computing Machinery.

Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A Practical and
Fully Automatic Polyhedral Program Optimization System. PLDI 2008 - 29th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 1-15, 2008.

Chun Chen. Polyhedra scanning revisited. SIGPLAN Not., 47(6):499-508, jun
2012.

IREE Developers. Iree (intermediate representation execution environment).
https://google.github.io/iree. Accessed: 2022-05-29.

Tobias Grosser, Groesslinger Armin, and Christian Lengauer. Polly - performing
polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(04), December 2012.

Tobias Gysi, Christoph Miiller, Oleksandr Zinenko, Stephan Herhut, Eddie
Davis, Tobias Wicky, Oliver Fuhrer, Torsten Hoefler, and Tobias Grosser.
Domain-specific multi-level ir rewriting for gpu: The open earth compiler for

gpu-accelerated climate simulation. ACM Trans. Archit. Code Optim., 18(4),
sep 2021.

Chris Hathhorn. Engineering a compiler, second edition by keith d. cooper and
linda torczon. SIGSOFT Softw. Eng. Notes, 37(1):36-37, jan 2012.

[10]

[11]

[12]

[13]

[17]

71

John L. Hennessy and David A. Patterson. A new golden age for computer
architecture. Commun. ACM, 62(2):48-60, jan 2019.

Navdeep Katel, Vivek Khandelwal, and Uday Bondhugula. High performance
gpu code generation for matrix-matrix multiplication using mlir: Some early
results, 2021.

Paul Kelly. Advanced computer architecture - the von neumann bottleneck and
the turing tax, 2020.

W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In
Proceedings Frontiers '95. The Fifth Symposium on the Frontiers of Massively
Parallel Computation, pages 332-341, 1995.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455-500, 2009.

Steve Lant. Understanding gpu architecture virtual workshop, 2021.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis and transformation. In Proceedings of the International Sym-

posium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization, CGO ’04, page 75, USA, 2004. IEEE Computer Society.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. Mlir: A compiler infrastructure for the end of moore’s law,
2020.

Jiajia Li and Kevin Barker. PASTA: A parallel sparse tensor algorithm bench-
mark suite, Dec 2019.

Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st
Conference on Computing Frontiers, CF 04, page 162, New York, NY, USA,
2004. Association for Computing Machinery.

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Auto-
matic optimization for image processing pipelines. SIGARCH Comput. Archit.
News, 43(1):429-443, mar 2015.

Kedar S. Namjoshi and Nimit Singhania. Loopy: Programmable and formally
verified loop transformations. In Xavier Rival, editor, Static Analysis, pages
383-402, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

72

[22]

[25]

[26]

[29]

[30]

Arjun Pitchanathan, Christian Ulmann, Michel Weber, Torsten Hoefler, and
Tobias Grosser. Fpl: Fast presburger arithmetic through transprecision. Proc.
ACM Program. Lang., 5(O0OPSLA), oct 2021.

Tobi Popoola, Ravi Shankar, Anna Rift, Shivani Singh, Eddie C. Davis,
Michelle Mills Strout, and Catherine Olschanowsky. An object-oriented interface
to the sparse polyhedral library. In 2021 IEEE /5th Annual Computers, Software,
and Applications Conference (COMPSAC), pages 1825-1831, 2021.

Tobi Popoola, Tuowen Zhao, Aaron St. George, Kalyan Bhetwal, Michelle Strout,
Mary Hall, and Catherine Olschanowsky. Code synthesis for sparse tensor format
conversion and optimization. International Symposium on Code Generation and
Optimization.

William Pugh. A practical algorithm for exact array dependence analysis.
Commun. ACM, 35(8):102-114, aug 1992.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 88, page 12-27,
New York, NY, USA, 1988. Association for Computing Machinery.

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu,
and George Karypis. FROSTT: The formidable repository of open sparse tensors
and tools, 2017.

Michelle Mills Strout, Geri Georg, and Catherine Olschanowsky. Set and
relation manipulation for the sparse polyhedral framework. In Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science, pages
61-75. Springer Berlin Heidelberg, 2012.

Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara
Kreaseck, and Catherine Olschanowsky. An approach for code generation in the
sparse polyhedral framework. Parallel Computing, 53:32-57, 2016.

Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravishankar,
Thomas Raoux, Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego
Caballero, Stephan Herhut, Stella Laurenzo, and Albert Cohen. Composable
and modular code generation in mlir: A structured and retargetable approach
to tensor compiler construction, 2022.

73

[31] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei
Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors,
Lecture Notes in Computer Science,, pages 299-302. Springer, September 2010.

[32] Alex Zinenko. Codegen dialect overview, 2021.

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Statement
	Contributions
	Organization

	Background
	Sparse Polyhedral Model
	MLIR
	GPU Architecture

	Sparse Polyhedral Framework in MLIR
	Representation
	Example Scientific Kernel In SPF
	SPF Representation
	Computation API Representation
	MLIR Representation

	Transformations
	SPF Transformations In The Jacobi Example
	Transformations In The SPF Dialect

	Lowering
	Generating Loops
	Generating Statement Execution
	Uninterpreted Function Call Lookup
	Pipelines

	Performance Evaluation
	Benchmark Suite
	Experimental Setup
	Results

	Related Work
	Conclusion
	REFERENCES

