
NeuGuard: Lightweight Neuron-Guided Defense against
Membership Inference Attacks

Nuo Xu
Lehigh University
Bethlehem, PA, USA
nux219@lehigh.com

Binghui Wang
Illinois Institute of Technology

Chicago, IL, USA
bwang70@iit.edu

Ran Ran
Lehigh University
Bethlehem, PA, USA
rar418@lehigh.com

Wujie Wen
Lehigh University
Bethlehem, PA, USA
wuw219@lehigh.com

Parv Venkitasubramaniam
Lehigh University
Bethlehem, PA, USA
pav309@lehigh.com

ABSTRACT

Membership inference attacks (MIAs) against machine learning

models lead to serious privacy risks for the training dataset used

in the model training. The state-of-the-art defenses against MIAs

often suffer from poor privacy-utility balance and defense gener-

ality, as well as high training or inference overhead. To overcome

these limitations, in this paper, we propose a novel, lightweight

and effective Neuron-Guided Defense method named NeuGuard

against MIAs. Unlike existing solutions which either regularize

all model parameters in training or noise model output per input

in real-time inference, NeuGuard aims to wisely guide the model

output of training set and testing set to have close distributions

through a fine-grained neuron regularization. That is, restricting the

activation of output neurons and inner neurons in each layer simul-

taneously by using our developed class-wise variance minimization

and layer-wise balanced output control. We evaluate NeuGuard

and compare it with state-of-the-art defenses against two neural

network based MIAs, five strongest metric based MIAs including

the newly proposed label-only MIA on three benchmark datasets.

Extensive experimental results show that NeuGuard outperforms

the state-of-the-art defenses by offering much improved utility-

privacy trade-off, generality, and overhead. Our code is publicly

available at https://github.com/nux219/NeuGuard.
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1 INTRODUCTION

Machine learning (ML) has achieved extraordinary success in many

fields, spanning daily image classification, object detection, and
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privacy- and security- sensitive medical diagnosis [33], biomet-

ric authentication [32], and autonomous vehicles [52]. Such suc-

cess mainly depends on training ML models with the large-scale

domain-specific datasets that may contain crucial confidential and

private information, e.g. personal medical records, human faces.

Unfortunately, many recent studies have revealed that such data

information can be retrieved from the trainedMLmodels by various

attacks, such as attribute inference attack, model inversion attack,

and membership inference attack [5, 8, 9, 17, 24, 27, 39, 49ś51, 58].

Among these attacks, membership inference attack (MIA) [39]

has been attracting ever increasing attention, with the goal of identi-

fying whether a given data sample is used for training the target ML

model or not. For instance, if a model is trained using a specialized

medical database, e.g. data pertaining to individuals’ disease, a suc-

cessful MIA could reveal the identity of a person having the disease.

In essence, MIAs are built upon the fact that a model’s response

to the member (training set) and non-member (testing set) can be

different by nature. This difference allows the attacker to either

train neural network (NN) based binary classifiers [30, 39] or use

non-NN metric based approaches [5, 37, 40] for accurate member

inferring. Given the difficulty of fundamentally eliminating such a

difference, defending against MIAs can be challenging.

There exist many studies to address MIAs, including provable

defense like differential privacy (DP) [1, 36], and non-provable de-

fense like training time defense with dropout [37], 𝐿2 norm [39],

MIA-dedicated min-max adversary regularization [30], distillation

based defense [38] and inference time defense via output perturba-

tion [16]. Compared with provable defense like DP that is known

for provable privacy but extremely low model utility [1, 15, 38] (see

Section 9), the non-provable defenses offer privacy empirically but

much better utility. However, as we shall show in Section 3.1, these

solutions are still far from satisfactory in terms of model utility-

defense effectiveness balance, defense generality against a wide

range of MIAs, and training and inference overhead. The underlying

reasons are that existing solutions either regularize and control all

model parameters in a coarse-grained manner with no guarantee of

minimizing the model output distribution difference between training

set and testing set, or directly manipulate output scores for achieving

similar distributions by expensively searching and adding sample-

specific perturbation noise during the real-time inference. To this end,

there has been lack of systematic studies on an important facet,

that is, effectively guiding the model to produce output that would
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ensure that the output distribution for training set and test set are

very close, with much better defense effectiveness and generality

at marginal utility loss and overhead.

To achieve this goal, in this paper, we propose to create a new

paradigm of safeguarding MIAs from a radically different perspec-

tive. Our basic idea is to develop lightweight and fine-grained

neuron-level regularization to simultaneously guide and or-

chestrate the final output neurons and hidden neurons (or

intermediate features) for producing an output confidence

score distribution indistinguishable between the training set

and testing set. The key rationale is that: if we can deliberately and

largely reduce the space of distributions obtained over confidence

score for training data by developing privacy-dedicated neuron-

level training regularization, then such trained model will naturally

confine output score distribution to a very limited space regardless

of input (either training or testing data). In this way, the output

score distribution of testing data produced by this model is also

restricted to the similar space with a much smaller variance (as con-

firmed in Table 10 and 5), and thus is close to that of training data.

While there still exist some score distribution differences between

the training and testing data, the gap between them can be much

smaller compared with existing solutions, thereby offering much

better defense effectiveness against a variety of MIAs. However, the

challenges lie in designing a learnable target output distribution

with much reduced space and neuron regularizations workable for

output and inner neurons with minimized utility loss and overhead.

To overcome these challenges, we design a class-wise variance

minimization regularization that directly acts on the final output

neurons to minimize the variance of output score in training, along

with layer-wise balanced output control regularization for inner

neurons to further guide the learning of intermediate features. As a

result, the output confidence score of any input can be more evenly

distributed with all label’s confidence values close to the mean value

while still maintaining the prediction correctness (see Fig. 2(a)). In

this way, we successfully restrict the value range and distribution

of the output score, and hence reduce the model response difference

between the training set and testing set. We name such a Neuron-

Guided Defense against MIAs as NeuGuard in this work.

We evaluate our proposed NeuGuard against both NN based

attacks and the latest metric based attacks (including the label-only

attack), and compare it with state-of-the-art defenses [16, 30, 40]

on three datasets. Experimental results show NeuGuard delivers

by far the best utility-defense trade-off among the known defense

mechanisms. Our NeuGuard achieves lower attack accuracy against

all attacks at marginal utility drop and much lower training and

inference overhead. Moreover, NeuGuard also provides a much

better generality comparing with prior solutions, that is, models

protected by NeuGuard are resilient to all kinds of NN and Non-NN

metric based MIAs. Our contributions are summarized as follows:

• We, for the first time, investigate the difference between neural

network based membership inference attacks that use sorted out-

put confidence scores or unsorted scores with label information

as two different attack inputs, and find that existing defenses

workable for one attack often do not work for the other.

• We develop a novel, simple and effective neuron-guided defenseś

NeuGuard, to explicitly reduce the model output distribution

difference between training set and testing set. It promises the

best privacy and utility trade-off.

• We extensively evaluate our defense against NN based member-

ship inference attacks and metric based attacks, outperforming

existing defenses on three real-world datasets.

• We explore why defenses cannot reduce the metric-based attacks

to random guessing, and perform analytical and experimental

studies on the upper bound of defense effectiveness.

2 BACKGROUND

2.1 Membership inference attacks

The MIA attempts to infer whether a given data is from the training

set or not that is used to train a target model [5, 37, 39, 40, 42, 55].

There exist many MIAs with different evaluation measurements

and attack capabilities. In this work, we discuss two major classes

of MIAs: neural network based attacks and metric based attacks.

2.1.1 Neural network based attacks. They aim to identify the given

data’s membership using neural networks and are performed in

the white-box or black-box fashion. White-box MIAs assume the

attacker has full access to the target model [22, 31], e.g. model

architecture and parameters. Black-box MIAs assume the attacker

can only observe the output confidence scores of the target model,

which are more realistic and the focus of this work.

Given a data sample and its confidence scores outputted by a

target model, neural network based attack trains a binary classifier

to determine whether the data belongs to the training set or not. In

particular, there are two kinds of black-box attacks, and they major

differ in whether the output confidence scores are sorted before the

attack or not. We would like to emphasize that the existing research

does not explicitly differentiate these two kinds of attacks, and we

notice that a defense being effective to one attack is often not effective

to the other type (Please see Section 6). We, for the first time, notice

the difference between these two attacks, and our proposed defense

NeuGuard shows better defense generality against both the attacks.

NN based attack with sorted input: The first NN based attack

takes the sorted output confidence scores as the attack input. We

name this attack sorted NN attack in short. The binary attack clas-

sifier focuses on learning the difference between training set and

testing set while ignoring the correctness of the class prediction.

Training sorted NN attack can be realized by different approaches: 1)

using a shadow model to represent the target model and training it

by performing MIA with multiple class-wise attack classifiers [39];

2) using a general attack classifier for all classes and achieve similar

attack accuracy [37].

NN based attack with unsorted input: The second NN based

attack uses both the unsorted output confidence scores and label

information as attack inputs [30]. We call it unsorted NSH attack for

short in this paper. This attack uses three neural network models

to construct the binary classifier. One model is used to receive the

unsorted confidence scores, and one takes the one-hot encoded

class label as input. The last one concatenates the outputs from the

other two models and generates a single probability, to determine

whether the given data is a member of the training set or not.

2.1.2 Metric based attacks. Unlike neural network based attacks,

metric-based attacks directly compute customized metrics using
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prediction confidence scores or only the label information to infer

membership or non-membership. We introduce the four state-of-

the-art (strongest) metric based attacks and the newly proposed

label only attack for our later evaluation [5, 40]. Let (𝑥,𝑦) be a data

sample with features 𝑥 and label 𝑦 and 𝐹 be a NN model.

Prediction correctness based MIA. This attack infers the mem-

bership based on whether the given input data is correctly classified

by the target model or not [55]. The associated metric Mcorr is

defined as:

Mcorr (𝐹 ;𝑥) = 𝐼 (argmax 𝐹 (𝑥) = 𝑦), (1)

where 𝐼 (·) is an indicator function.

Prediction confidence basedMIA.This attack determineswhether

an input data is from the training set or not by comparing the most

significant confidence score with a preset threshold. The attack

is first designed by [37] using a single threshold for all classes

and [40] improves it by applying class-wise thresholds to reduce

the impact of confidence differences among classes. The associated

metric Mconf is defined as:

Mconf (𝐹 ;𝑥) = 𝐼 (𝐹 (𝑥)𝑦 ≥ 𝜏𝑦), (2)

where 𝜏𝑦 represents the threshold for the class 𝑦.

Prediction entropy basedMIA.The entropy basedMIA attack [40]

is based on the fact that the testing set prediction entropy should be

much larger than the training set. It identifies the input data 𝑥 as a

member if the prediction entropy is smaller than a preset threshold

(e.g., 𝜏𝑦 ). The associated metricMentr (𝐹 ;𝑥) is defined as:

Mentr (𝐹 ;𝑥) = 𝐼 (−
∑𝑘
𝑖=0 𝐹 (𝑥)𝑖 log (𝐹 (𝑥)𝑖 ) ≤ 𝜏𝑦) . (3)

Modified prediction entropy based MIA. Prediction entropy at-

tack has a major limitation in that it doesn’t contain any label

information [40]. As a result, both correct and incorrect pred-

ication with high score can lead to zero entropy values. Modi-

fied prediction entropy [40] fixes this issue that only high prob-

ability correct prediction can lead modified entropy to 0. Then

such modified entropy ME(𝐹 (𝑥), 𝑦) is presented as: ME(𝐹 (𝑥), 𝑦) =

−
(

1 − 𝐹 (𝑥)𝑦
)

log
(

𝐹 (𝑥)𝑦
)

−
∑

𝑖≠𝑦𝐹 (𝑥)𝑖 log (1 − 𝐹 (𝑥)𝑖 ). The adver-

sary determines an input data as a member if the above modified

value is smaller than the preset class-related thresholdś𝜏𝑦 for class

𝑦. The associated metric MMentr (𝐹 ;𝑥) is defined as:

MMentr (𝐹 ;𝑥) = 𝐼 (ME(𝐹 (𝑥), 𝑦) ≤ 𝜏𝑦) (4)

Label-only MIA [5]. It is a newly proposed MIA that tries to infer

membership or non-membership with only the label information.

Specifically, for a data example (𝑥,𝑦), it first generates an adversar-

ial example 𝑥 ′ (an example close to 𝑥 but has a wrong predicted

label) and calculates the 𝑙2-distance to a model’s decision boundary

as 𝑑𝑖𝑠𝑡𝐹 (𝑥
′, 𝑦). Then 𝑥 is predicted as a member if 𝑑𝑖𝑠𝑡𝐹 (𝑥

′, 𝑦) > 𝜏

(𝜏 is a threshold) since a training data should exhibit higher robust-

ness than testing data. In our evaluation, we adopt the strongest

C&W [3] based label-only MIA to generate adversarial examples.

This attack serves as the upper bound of the label-only MIAs, as it

uses the actual model’s information (e.g. gradient) to generate ideal

adversarial examples for MIAs (white-box setting) [5].

2.2 The state-of-the-art defense methods

Wemainly introduce two kinds of most representative and powerful

defenses for detailed experimental comparisons in Section 6 and 7:

training regularization and inference output perturbation.

2.2.1 Training regularization defense. Manyworks [4, 22, 37, 39, 55]

have pointed out that model overfitting is the main reason that

makes MIAs effective. Based on this observation, adding a regu-

larizer during training to reduce overfitting can be an effective

way to defend against MIA. The common regularization methods

include L2-norm regularization [39], dropout [44], model stack-

ing [37], early stop [40]. However, they mainly focus on model

utility, and thus are unable to greatly reduce membership inference

attack accuracy.

Besides, adversary regularization [30] (AdvReg in short) is specif-

ically designed to defense against MIAs. The method introduces

an NN based membership inference classifier during training to

achieve the defense. The training process needs to simultaneously

minimize the target model’s loss and the attack classifier’s accuracy

over the training set 𝐷tr:

argmin
𝜃

1

|𝐷tr |

∑

x∈𝐷tr
𝐿 (𝐹 (𝑥 ), 𝑦) + 𝜆 log(𝐼 (𝐹 (𝑥 ), 𝑦) ), (5)

where 𝜆 is a hyperparameter to balance the privacy risk and original

classification task, and 𝐼 (·) is the attack classifier.

2.2.2 Inference output perturbation defense. Another effective way

is to directly modify the output confidence scores such that the

information is hidden from the adversary. The basic idea of the

best existing defense methodMemGuard [16] is to add carefully

calculated noise into the output confidence scores and turn the

output into adversarial examples [2] to mislead the attack classifier

for each input. Since the noise is crafted and added at the inference

stage, this method does not influence the training process and

maintains the target model’s accuracy.

3 MOTIVATION AND THREAT MODEL

3.1 Motivation

We aim to satisfy the following requirements to achieve a good

defense against MIAs. Existing solutions, however, are incapable of

addressing challenges to meet such requirements:

• Defense effectiveness: A good defense shall reduce MIA attack

accuracy as close as to a random guess, i.e., 50%.

• Defense generalizability: A good defense shall be able to de-

fend against different types of attacks considering the uncertainty

of experiencing which MIA in practice.

• Utility loss: A good defense shall maintain the target model’s

accuracy on unseen data as much as possible. A defense causing

a large accuracy drop is not desirable.

• Overhead: A good defense shall be lightweight and not incur

significant overhead in training or inference.

Table 1 briefly evaluates the state-of-the-art defense methods

discussed in Section 2.2 using the above four criteria. These results

are summarized based on previous works [16, 30, 40] and our exper-

iment results (details in Section 6.1 and 7). According to the table,

existing defenses all have limitations in some aspects.
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Table 1: Comparing existing MIA defenses.

Method
Defense

effectiveness

Defense

Generalizability

Model

utility
Overhead

Normal training −− −− ++ No

Dropout [37] − − ++ Low

Early stopping [40] + + − No

AdvReg [30] + + − Medium (Training)

MemGuard [16] ++ − ++ High (Inference)

‘++’ indicates the best, ‘−−’ means the worst.

Dropout reduces model overfitting, but exhibits limited MIA

defense, e.g. only slightly better than the baseline. Early stopping

sacrifices model utility to improve defense efficiency, but obtains a

sub-optimal utility-defense trade-off.

AdvReg leverages a min-max game theoretic method to train

the model against MIAs. However, it cannot provide an effective de-

fense while maintaining the utility in practice [38, 40]. The defense

takes effects on the Texas100 when 𝜆 ≥ 3, but it can lead to 8% -

18% accuracy drop (see Table 8 in Appendix). Furthermore, [40]

evaluates AdvReg in metric based MIAs and shows it is no better

than early stopping under a similar test accuracy. The reason is that

AdvReg directly incorporates the MIA classifier as a regularization

term into the training but it may not have an explicit goal to regu-

larize the model towards lowering MIAs. Besides, the difficulty of

jointly optimizing the MIA classifier and original task also leads to

considerable training overhead comparing to regular training.

MemGuard performs defense at the inference stage such that

the model utility is not affected and there is no training overhead.

However, it suffers from the following limitations which hinder it

from satisfying the given defense requirements: First, MemGuard

causes huge inference overhead as it needs to run calculations for

many times (e.g. up to 300×) for each input sample to find out the

best noise output to defend against the attack. Second, its defense

performance is highly dependent on the given trained model. It

may fail to find the noisy outputs for the target model to effectively

defend against the attack, leaving a high attack accuracy. Third,

MemGuard cannot provide general protection against different

attacks. If it uses a sorted NN classifier as the defense classifier,

it cannot defend the attack with the unsorted NSH model and

vice versa (details in Section 6). [40] further evaluates MemGuard

under metric based attacks and shows that the defense works to

a limited degree and is not much better than the baseline model.

In addition, as demonstrated in [5], post-processing output scores

like MemGuard fails to defend against label-only attacks as model

produced raw scores remain unchanged (i.e., unchanged distance

between input to decision boundary to infer members in label-only).

Based on the above limitation analysis of existing defenses, we

believe a better way to defend against MIAs is to develop a method

that is unlike AdvReg and has fine-grained regularization control

guided by more specific objectives with the guarantee of lowered

MIAs. The defense method should also maintain the model utility

and provide a good utility-defense trade-off, work under different

MIAs (e.g., sorted NN, unsorted NSH, metric-based attacks), and

has much lower overhead than existing defenses (e.g. MemGuard).

3.2 Threat model

In this work, we adopt a threat model consistent with previous

defenses [16, 30]. We assume model providers have a private train-

ing dataset (e.g., financial records, healthcare dataset, or location

dataset). They train a machine learning model with the private

ClassClass

C
o
n
fi

d
en

ce
 s

co
re

General

decision 

rule

Predict training data

Predict testing data
Sorted NN attack: 75%

Class1 

decision 

rule

Class2 

decision 

rule

Predict training data

Predict testing data
Unsorted NN attack: 100%

Class1 - red color, Class2 - green color,     - training example,     - testing example.

(a) Sorted output confidence score (b) Unsorted output confidence score

Figure 1: (a) Sorted, (b) Unsorted output confidence distribution for

binary classification model. (Class1:𝐷𝑡𝑟𝑎𝑖𝑛 :[0.9, 0.8],𝐷𝑡𝑒𝑠𝑡 : [0.8, 0.2];

Class2: 𝐷𝑡𝑟𝑎𝑖𝑛 :[0.3, 0.7], 𝐷𝑡𝑒𝑠𝑡 : [0.4, 0.6]).

dataset and deploy the trained model as a service provided by

the cloud server such as Machine-Learning-As-A-Service (MLaaS).

Users can perform inferences and receive prediction results (score

or label) from the server. We also assume the model providers can

apply defense methods in the training and/or inference stages. The

providers’ goal is to make the model have satisfactory test per-

formance and capable of defending against various membership

inference attacks. The attackers aim to infer the membership of

the private data in the training set from the deployed model. We

assume the attacker could receive the output confidence scores or

predicted labels directly generated by the target model from the

server, instead of the shadow models estimated by attackers locally,

to maximize MIA effectiveness for attackers. However, attackers

cannot access the model itself or the model parameters.

Partial knowledge of the training/testing data: To consider

a strong attack, we assume the attacker also has access to part of the

training/testing data and the attacker has the capability to query

sufficient data samples from the target model to perform MIAs

including label-only attacks. The attack classifier is trained based on

the output of these known data samples from the target model. This

assumption allows more reasonable and realistic attacks and aligns

with the state-of-the-art defense studies on MIAs [16, 30, 40]. In

practice, if the attacker has less information, the attack performance

would be weaker than what we have considered.

4 DESIGN

4.1 Design overview

To develop a defense that can fulfill all requirements in Sec. 3.1, it

is important to understand the differences of MIAs and the impact

of these differences on the defense. In particular, we notice that

the sorted and unsorted NN attacks learn different information

from the different input formats. The former learns ONLY sorted

output confidence scores with label information eliminated (unified

highest to lowest scores via sorting for any class), while the latter

learns original unsorted scores together with label information. The

former relies on a general rule among all classes to infer members,

thus attack accuracy is greatly impacted when the score difference

between training and testing data at different classes is different, as

Fig. 1(a) shows. The latter learns a different output distribution for

each class to attack like Fig. 1(b), however, incorrect prediction

results introduce noises into attack training to reduce attack accu-

racy. Consequently, one attack is not uniformly stronger than the

other, and it is necessary for a good defense to work against both.

With the understanding of the difference of MIAs, we now ex-

plore the ordinary case where the training accuracy and testing

672



NeuGuard: Lightweight Neuron-Guided Defense against Membership Inference Attacks ACSAC ’22, December 5ś9, 2022, Austin, TX, USA

 (      +      ) - (     +      )  

h1 h2

Hidden layers

Data

Output layerInput layer

Mean list 
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(a) Target output distribution (b) Actual output distribution on CIFAR10 

Figure 2: An overview of our proposed neuron guided defense method with class-wise variance minimization 𝐿𝑣𝑎𝑟 and layer-wise balanced

output control 𝐿𝑏𝑜𝑐 . (a) is the ideal output distribution that we aim to achieve by our proposed method (value space limited). (b) shows the

actual output score distributions of training and testing set on the CIFAR10 by normal training.

accuracy have a large gap, leading to a huge difference in distri-

butions of confidence scores over the training and testing sets. For

example, Fig. 2(b) shows the Alexnet model’s output distribution

on a real-world dataset CIFAR10 with 10 classes, where we can

observe a substantial difference between the two output distribu-

tions of the training set and testing set. It is indeed the difference

between these distributions that is exploited by various attacks in

different ways to infer membership in the training set. Existing

defenses either propose to add an adversarial regularization term

during the training or to manipulate the model’s outputs during

the inference stage to reduce the distribution gap. However, they

either cannot provide enough distortions in training to suppress

the difference (see Fig. 4(b)) or can only defend against one type

of attacks (see Fig. 4(a), where the perturbed output cannot defend

against unsorted NN attack, because the false predicted testing set

can be easily distinguished by the attack classifier).

In summary, we can learn that formodels with overfitting and

a large accuracy gap between training and testing data, only

a uniform distribution with marginal difference between

classes can deceive both sorted and unsorted NN attacks and

serve as an effective distribution against MIAs. One possible

path to this end is to restrict all confidence scores to be evenly

distributed and thus reduce the output distribution gap between

the training set and testing set. As the example in Fig. 2(a) shows, in

a 10 class output, when all of the confidence scores of each class are

close, the value of each confidence score should be close to the mean

value (e.g. 0.1), where the score of correct label is slightly higher

than the mean value and that of others are lower than it. Note that

while it is not possible to łknow" the distribution of scores for the

testing set, limiting the distribution space of the model output is an

indirect way to ensure closeness of the distributions arising from

training and testing sets.

To achieve this goal, we propose a novel framework to control

the output confidence score through dedicated output and inner

(hidden) neuron control. As Fig. 2 shows, we seamlessly integrate

our class-wise variance minimization (for output neurons) into the

customized layer-wise balanced output control (for hidden neurons)

intermediate results to construct the privacy preserving neural

network model. In the following, we will first detail the class-wise

variance minimization regularization, then the layer-wise balanced

output control regularization, and finally present the combined

training process to generate defense-efficient outputs.

4.2 Class-wise variance minimization

We propose to enforce the output confidence scores of all classes

close to their mean distribution during the training. In this way,

we expect that the output distribution can be in a similar range

in both the training and testing set. In particular, we choose to

add the class-wise variance as a regularization term 𝐿𝑣𝑎𝑟 into the

loss function. Since variance directly measures the spread around

the mean value, minimizing the variance allows us to control the

space of output distributions such that the training and test output

distributions are close to an łidealž distribution.

𝐿𝑣𝑎𝑟 =
1

𝑁

∑𝑁
𝑖=0 (𝐹 (𝑥 ) − 𝜇𝑦 )

2 (6)

where 𝐹 (𝑥) is the target model output confidence score for the

training data (𝑥,𝑦), and 𝑁 is the batch size. 𝜇𝑦 represents the mean

list of corresponding class 𝑦 that is used to calculate the expecta-

tion of the squared deviation of the output. For example, as Fig. 2

shows, the mean list 𝜇1 is a three dimensional vectorś(𝜇𝑃11 , 𝜇
𝑃2
1 , 𝜇

𝑃3
1 )

corresponding to three output neurons, which is an average output

confidence score vector for data samples with the class label 1.

There are different ways to calculate the mean vector 𝜇 for the

variance minimization to train neural networks. In the following

we discuss three of them and provide a reasoning for choosing the

class-wise approach. We briefly show the model accuracy and the

neural network based MIA of CIFAR10 classification task with three

different variance calculation methods on Table 2.

Batch-wise: The simplest way is to perform the batch-wise vari-

ance calculation that minimizes the variance of each batch’s output.

The mean list calculated in each batch can have different results and

the variance minimization may not have a consistent goal. Thus,

this method can maintain the model accuracy at the standard level,

but it does not provide the necessary defense.

Single-sort: Another way is to calculate variance with a single

sorted mean list, which means to sort all outputs and maintain

a sorted mean list for all data to calculate the variance of each

output. This approach provides a uniform goal unlike the batch

method, however the distribution and accuracy for each class is

highly variable. As a result, training with this regularization term

cannot converge and leads to a huge model accuracy loss.

Class-wise: In order to set a consistent goal for the variance mini-

mization as well as consider the effects of each class, we proposed a

fine-tuned approach to calculate the output variance across multiple

predictions from the same class via updating the class-wise mean
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Table 2: Testing/MI accuracy on unsorted NSH and sorted NNmodel

with variance minimization training on CIFAR10.

𝛽 = 300 Batch-wise Single-sort Class-wise

Training set accuracy 74.09 51.77 71.29

MI

accuracy

Sorted NN 71.41 60.18 50.4

Unsorted NSH 62.39 55.74 57.41

list. Since we calculate the empirical mean of the output confidence

scores for each class, we do not need to sort the output confidence

scores and can learn more information from the relationship of each

label in the output distribution. Table 2 shows that the class-wise

variance minimization can provide best utility-defense trade-off.

While class-wise variance addresses the output distribution dif-

ference between training and testing set to an extent, weakness of

existing defenses against a sorted NN attack suggests that a finer

control of model training is required for which we propose the

layer-wise output control, described in the subsequent section.

4.3 NN layer-wise balanced output control

In this section, we propose to perform a neuron regularization

through layer-wise balanced output control in the training process

to further constrain the output distribution. The neuron regular-

ization is first introduced to determine the weight values in favor

of the pruning goals during the training process [53, 59]. Unlike

their design to manipulate the parameters to 0 or some specific

values, our design focuses on balancing the parameters [34] in each

layer so that there will be no particular parameters to dominate

the prediction results. To perform the layer-wise balanced output

control, we separate the output of each layer into two groups, cal-

culate the summation within each group and finally add the mean

square error for the group output difference at each layer. The final

summation 𝐿𝑏𝑜𝑐 is as a regularization term and added to the loss

function for training.

𝐿𝑏𝑜𝑐 =
∑𝑀
𝑙=1

1
𝑆𝑙










∑⌊𝑆𝑙 /2⌋
𝑖=1 ℎ𝑙𝑖 −

∑𝑆𝑙
𝑖=⌊𝑆𝑙 /2⌋+1

ℎ𝑙𝑖










2

𝐹
(7)

In the equation,𝑀 is the number of layers, and 𝑆𝑙 is the number

of layer 𝑙 ’s outputs.ℎ𝑙𝑖 denotes the 𝑖’s output on layer 𝑙 . The balanced

output control on each layer can help to regularize the effects of

individual outputs in a general sense as we try to minimize the

difference of the output groups. Thus there will be no extremely

large values and the intermediate results will be more balanced.

Combining this layer-wise balanced output control with variance

minimization method for the model training, we can train the target

model with high utility and defense effects to the best trade-off.

4.4 Neuron regularization-based training flow

With two regularization terms used for the training, our overall

loss function is as follows:

𝐿𝑜𝑠𝑠 = 𝐿(𝐹 ) + 𝛼 · 𝐿𝑏𝑜𝑐 + 𝛽 · 𝐿𝑣𝑎𝑟 , (8)

where we use hyperparameter 𝛼 and 𝛽 to control the balance be-

tween the optimizing classification task and the effects to constrain

the output distribution to perform the defense. Here we present

the loss calculation algorithm that contains both class-wise vari-

ance minimization and layer-wise balanced output control. During

each batch of training, the training algorithm will first calculate

the difference of two evenly split groups in each layer 𝑙 using the

intermediate results ℎ𝑙 to compute 𝐿𝑏𝑜𝑐 . Then it will update the

class-wise mean list 𝜇𝑦 with all data records. With the updated 𝜇𝑦 ,

it can calculate the variance 𝐿𝑣𝑎𝑟 for the data. Finally, the total loss

can be added and used for the weight update. The detailed pseudo

code is shown in Algorithm 1 in Appendix.

Using our proposed regularization method, we can further im-

prove the performance by amplifying the layer-wise intermediate

features. In some cases such as convolutional layers, given the com-

plex feature extraction from coarse to fine through a layer-wise

manner, the original feature maps may not be salient enough for our

proposed method to learn during the training. Thus in practice, we

can perform a layer-wise amplification to intentionally enlarge the

top 𝜂% of the feature maps’ values in the training process, so that

the proposed solution in Eqn. 8 can better learn and regularize the

most important features, making the model output scores converge

to desired distributions easily. Furthermore, we could also leverage

such layer-wise amplification during the inference to alleviate the

effect of amplified features by training for better maintaining the

model utility. We demonstrate its effectiveness in Appendix A.4.

5 EXPERIMENTAL SETUP

Datasets and parameter setting.Weuse three benchmark datasets

Texas100 [39], CIFAR10 and CIFAR100 [20] to demonstrate the ef-

fectiveness of our NeuGuard defense against membership infer-

ence attack for different application scenarios. We follow the data

splitting strategy in [16, 30] (See Table 9) and have the detailed

description in the Appendix A.1.

We compared our method with three state-of-the-art MI defense

methods, i.e., training time based adversarial regularization (Ad-

vReg) [30], Early stopping [40], and inference time based Mem-

Guard [16]. We also select the regular model without defense

for comparison. We use the publicly available source code of the

three methods for evaluation. All methods are implemented in Py-

torch [35]. All experiments are run on a linux PC with AMD Ryzen

Threadripper 2990WX 32-Core Processor, 128 GB memory and

NVIDIA GeForce RTX 2080 Ti GPU with 11 GB graphic memory.

We follow the training method and hyperparameter setup on

each defense methods proposed by the authors and use the pub-

lished code to evaluate the corresponding defense mechanism. We

choose the best results to compare in the evaluation. The detailed

setting can be found in Appendix A.2.

As for our proposed method, we apply the NeuGuard meth-

ods with different settings. For the fully connected model on the

Texas100 dataset, we apply the variance minimization method with

𝛽 = 3000 and layer-wise balanced output control with 𝛼 = 100. For

CIFAR100 task, we set the 𝛽 = 1000 and 𝛼 = 5. For the proposed

methods to better learn and control the output, we amplify the

top 10% of the convolution layer’s feature map 2 times during the

training, and amplify 2 times of the top 25% feature map in the

inference stage. For CIFAR10 task, we set the 𝛽 = 200, 𝛼 = 30,

and amplify 1.5 times the top 10% feature map in training. For the

inference stage, we amplify 1.5 times of the top 35% feature map to

obtain the best utility-privacy trade-off.

Attack setup.We consider the existing two types of attack models:

neural network (NN) based attack and metric based attack. We

follow the model structure and standard setup in [16, 30] that use
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Figure 3: Loss distribution on CIFAR10 with regular training, ad-

versarial regularization training, and our NeuGuard.

different fully connected neural network as attack classifier. The

sorted NN attack classifier contains three hidden layers with 512,256

and 128 neurons, respectively. The unsorted NSH attack classifier

consist of three neural networks as introduced in Section 2.1.1.

Please also see the detailed description in Appendix A.3.

The metric-based MIAs use the output confidence score vector to

calculate metrics and compare the results with preset thresholds to

determine the prediction. We evaluate our work with four state-of-

the-art metrics for MIAs following the approach proposed in [40],

which includes prediction correctness, prediction confidence, pre-

diction entropy and modified prediction entropy (see Section 2.1.2).

Moreover, we follow the strongest label attack from [5] that use

C&W attack to generate adversarial examples to further demon-

strate the effectiveness of our defense method.

In our evaluation, we follow [30, 31], which implies a strong

adversary that knows a substantial part of the training set and

will use it to train the inference attack models. In particular, we

sample the input data from training set and testing set with an

equal 0.5 probability following prior works [39, 42, 55] to maximize

the uncertainty of membership inference attacks. In this way, we

can make the attack accuracy unbiased and easy to analyze.

Evaluation metrics. We use three metrics to evaluate defenses.

• Membership inference (MI) accuracy: It is the accuracy of an

attack to infer the membership of data in the training set. A good

defense should lead the membership inference attack accuracy

to a random guess (e.g. ∼ 50%).

• Testing accuracy: It is the accuracy of a defense method on the

testing set. A good defense should obtain the testing accuracy

close to the trained model without defense.

• Running time:We measure the model training time and infer-

ence time of the defense methods and set the time used for a

regular model as the baseline. A good defense should not cause

large overhead compare to the baseline.

6 EVALUATION ON NN BASED ATTACKS

In this section, we evaluate our proposed defense against neural

network based MIAs (see Section 2.1.1). For comprehensive eval-

uations, we consider the existing two well-known attack models:

sorted attack and unsorted attack.

6.1 Experimental results comparison

Table 3 shows the testing accuracy, MI accuracy, and running time

of the compared defenses on the three benchmark datasets. We

have the following observations:

Our NeuGuard achieves the best utility-privacy trade-off

against both the sorted and unsorted attacks among evalu-

ated solutions, indicating by far the best defense effectiveness

Table 3: Results of compared defenses against NN based MI attacks.

AdvReg and MemGuard are originally designed to defend against

sorted NN and unsorted NSH attacks, respectively. Baseline is the

normal training without defense.

Texas100 Baseline Early stopping AdvReg MemGuard NeuGuard

Testing accuracy 58.5 50.9 51.2 58.5 55.8

MI

accuracy

Unsorted NSH 65.75 57.42 64.18 50.83 50.58

Sorted NN 60.98 53.32 53.48 60.52 54.54

Training time(s) 0.006 0.006 0.328 0.006 0.045

Training overhead 1× 1× 54.7× 1× 7.5×

Inference time(s) 0.002 0.002 0.002 1.8 0.002

Inference overhead 1× 1× 1× 900× 1×

CIFAR100 Baseline Early stopping AdvReg MemGuard NeuGuard

Testing accuracy 43.8 41.0 39.6 42.9 43.0

MI

accuracy

Unsorted NSH 80.95 60.70 62.67 50.41 51.42

Sorted NN 81.42 59.62 58.64 59.63 57.82

Training time(s) 0.017 0.017 0.050 0.017 0.045

Training overhead 1× 1× 2.96× 1× 2.62×

Inference time(s) 0.017 0.017 0.017 1.7 0.025

Inference overhead 1× 1× 1× 100× 1.47×

CIFAR10 Baseline Early stopping AdvReg MemGuard NeuGuard

Testing accuracy 76.6 71.1 71.1 76.6 74.6

MI

accuracy

Unsorted NSH 71.70 60.07 61.20 51.43 51.57

Sorted NN 70.59 57.47 56.18 62.73 55.60

Training time(s) 0.017 0.017 0.050 0.017 0.046

Training overhead 1× 1× 2.94× 1× 2.71×

Inference time(s) 0.017 0.017 0.017 1.7 0.027

Inference overhead 1× 1× 1× 100× 1.59×

and generality while maximizing the achievable utility. As

Table 3 shows, NeuGuard effectively mitigates both the unsorted

NSH attack and sorted NN attack. Specifically, with NeuGuard, the

unsorted attack only achieves anMI accuracy close to random guess-

ing on all the three datasets. For the sorted NN attack, NeuGuard

can significantly decrease the MI accuracy from 60.98%, 81.42%,

and 70.59% to 54.54%, 57.82% and 55.6% on the three datasets, re-

spectively. Moreover, the testing accuracy obtained by NeuGuard is

close to those obtained by the Baseline method without defense. We

also observe that while MemGuard can maintain the same testing

accuracy, it cannot defend against both kinds of NN based attacks

simultaneously. To comprehensively compare MemGuard with our

defense approach, 1)we obtain its defense results using an unsorted

NSH attack classifier as the target defense model to generate the

noised output confidence scores. As expected, MemGuard achieves

comparable results as our NeuGuard in defending against the un-

sorted NSH attack. However, it is not effective enough against the

sorted NN attack, e.g., 60%MIA accuracy on all the three datasets.

2) For the original design using a sorted NN attack classifier as the

defense model, MemGuard exhibits a similar behavior: defending

against sorted NN attack to ∼ 50% but > 60% for unsorted NSH

attack. We further show the output confidence scores distribution

in this case in Fig. 4(a) and analyze the reasons why this is not a gen-

eral defense in the following section.AdvReg and Early stopping

show similar defense effects on both attacks in most cases, which is

also verified in [40]. Comparing with NeuGuard, they achieve the

similar level of defense effectiveness against the sorted NN attack,

but perform much worse against the unsorted NSH attack on the

three datasets. In addition, they also incur a non-negligible (more

prominent) utility loss, i.e., large testing accuracy gaps between

them and the Baseline method.

Our NeuGuard has smaller overhead and better performance.

For the training and inference overhead, we compare our method
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Figure 4: Output distribution of training and testing samples with class ł2" in CIFAR10 for the compared defenses. Each color

line represents a sample’s output confidence scores.

with AdvReg and MemGuard separately. In Table 3 we calibrate the

training and inference time for processing a single batch of data

and use the regular training and inference time as the baselines

for overhead comparisons. As the data loader used to load each

batch of images dominates the processing time [54], the training

and inference time on CIFAR100 and CIFAR10 are the same in the

table. Specifically, since we apply layer-wise amplification in both

training and inference stages, this incurs some overheads.

In the fully connected neural network case on the Texas100

dataset, our NeuGuard training method has ∼ 7.5× overhead while

AdvReg training method causes ∼ 54.7× overhead compared to the

regular training. As for the inference stage, the MemGuard method

causes ∼ 900× overhead as it might need to run several hundred

times of inference to search the noisy output confidence vector

satisfying their requirements. Our methods, however, leads to no

overhead since we have no additional operation in the inference.

For convolutional neural network models, the training overhead

incurred by our defense approach and the other approaches are all

fairly close to each other. The overhead caused by our method in

the inference stage is much less than the MemGuard method (1.47×

and 1.59× vs. 100× and 100× in CIFAR100 and CIFAR10 cases). This

is mainly because our layer-wise amplification is a simple one-time

process added in the inference stage. In conclusion, our defense

can achieve the best defense effectiveness with a marginal model

accuracy drop. The overheads caused in training and inference are

relatively low compared to other defense mechanisms.

6.2 Why does NeuGuard perform better?

One key reason that our defense obtains the best utility-privacy

trade-off is because it generates the output confidence scores of

the training set and testing set with the smallest variance. Table 10

shows the variance of the output confidence scores calculated on

the training set and testing set for CIFAR100 with different methods.

We observe the similar results for Texas100 and CIFAR10.

NeuGuard obtains the smallest variance of the output con-

fidence scores. Our defense reduces the variance of the output

(a) (b) (c)

Figure 5: Test accuracy and NN based MI accuracy with different 𝛽

for class-wise variance minimization control term. (a) Texas100, (b)

CIFAR10, and (c) CIFAR100.

confidence score by three orders of magnitude compared to the

baseline model, while all other defense methods keep it at the same

level. Our method also decreases the variance gap between the

training set and testing set (see Table 10 in Appendix). The results

show NeuGuard can effectively suppress final outputs’ variance.

NeuGuard delivers the most consistent loss distribution be-

tween the training set and testing set. Fig. 3 illustrates the loss

distributions of the training set and testing set for CIFAR10 under

different training methods. Here we use CIFAR10 as an example,

since we observe the similar trend on Texas100 and CIFAR100. With

the normal training in the baselinemethod, the training set accuracy

will reach ∼ 100%when model is overfitted and the loss distribution

ranges from 0 to 0.07 while that of the testing set ranges from 0 to

18. AdvReg attempts to reduce the gap between training set and

testing set by reducing the training set accuracy and leading the

loss distribution range to [0, 50] for the training set. However, the

noise introduced by AdvReg also causes a test accuracy drop and

significantly increases the range of the testing set loss to [0, 750].

In contrast, our NeuGuard constructs two similar loss distributions

for both the training set and the testing set, and restricts them to a

very small rangeś[1.9, 2.5].

Visualizing data samples’ output confidence scores. To bet-

ter understand the different defense results among the compared

defenses, we further visualize the output confidence score vectors

of the training and testing samples generated by these defenses.
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(a)
                                                               

(b)
                                                              

(c)

Figure 6: Test accuracy and NN-based MI accuracy with different

𝛼 for layer-wise balanced output control term. (a) Texas100, (b) CI-

FAR10, and (c) CIFAR100.

Specifically, we randomly choose a class (class ł2" in our experi-

ment) from CIFAR10 and show the output confidence score vectors

of 1000 training and testing samples each from this class in Fig. 4.

Note that each color line corresponds to one sample’s output confi-

dence score vector (each has ten scores for ten classes). We have

the following observations:

First, MemGuard with the sorted NN attack classifier as defense

model can construct two similar output distributions for the training

set and testing set, i.e., the output confidence score vector has one

extremely large score for one class and almost equally small scores

for all the other classes and most of the outputs overlap as Fig. 4

(a) shows. In this case, by sorting the confidence score vectors for

training and testing samples, the output distributions of training

set and testing set are almost the same. This observation explains

why MemGuard in this case can defend against the sorted attacks.

However, without sorting, the two output distributions are unlike,

i.e, the classes associated with the largest output confidence scores

are different (see Fig. 4 (a)) and the unsorted attacks can capture

this information to perform the attack. Thus, MemGuard cannot

effectively defend against unsorted attacks.

Second, AdvReg perturbs the training samples during training

and attempts to make the training set output distribution similar

to the testing set output distribution. However, as we observe from

Fig. 4 (b), the two distributions are not close enough. Therefore, be-

sides suffering from testing accuracy loss, AdvReg neither exhibits

strong defense effectiveness.

Third, unlike MemGuard and AdvReg, with the class-wise vari-

ance minimization and layer-wise balanced output control, Neu-

Guard controls and orchestrates the final output neurons’ results

and intermediate neurons’ results for a destined output (confidence

score) distribution. As a result, NeuGuard can generate the targeted

output confidence score vectors for all training and testing samples,

where all values in the score vector are close to the mean value, i.e.,

one over the number of total classes, as shown in Fig. 4(c). Such

results have two important implications: i) The output confidence

scores of member and non-member training samples are similar,

making NeuGuard effective to defend against (both sorted and un-

sorted) membership inference attacks; ii) The output distributions

of training samples and testing samples are very close, meaning that

NeuGuard has good generalization ability. Therefore, NeuGuard

obtains the best utility-privacy trade-off.

6.3 Hyperparameters setting and ablation study

6.3.1 Hyperparameter setting rules. Hyperparameter setting is es-

sential to achieve effective defensive training by NeuGuard. We

provide a general guideline to tune the key parametersś𝛼, 𝛽 for

layer-wise balanced output control and class-wise variance mini-

mization. 1) for 𝛽 which minimizes the variance, its initial value

can be set as 10 times #classes, e.g. 𝛽 = 100 (1000) for CIFAR10

(CIFAR100/Texas100). Then the maximum output confidence score

𝐹 (𝑥)𝑚𝑎𝑥 at each training batch can be obtained to guide the tuning:

increase 𝛽 if 𝐹 (𝑥)𝑚𝑎𝑥 diverges rapidly from mean, and decrease 𝛽

if accuracy remains unchanged after first several epochs. 2) The

initial values of 𝛼 can be set to 𝛼 = 1, 10, 100 for different models.

We adopt the similar hyperparameter tuning approach that is used

for 𝛽 . With above steps, the hyperparameters can easily enter into

a suitable range that provides effective defense results with less

sensitivity to their actual values. In the following, we investigate

the individual contribution to defense of these two regularization

terms through an ablation study.

6.3.2 Effectiveness of class-wise variance minimization. Fig. 5 shows

the impact of 𝛽 on the testing accuracy and (both sorted and un-

sorted) MI accuracy obtained by our NeuGuard, where only the

class-wise variance minimization is used. We select 𝛽 roughly based

on the number of classes in each dataset, and 𝛽 trades off the utility

(i.e., testing accuracy) and privacy (i.e., MI accuracy). Specifically,

when 𝛽 becomes larger, the class-wise variance should be smaller.

This can enforce that all values in output confidence score vectors

are closer, and thus reveal less information to the attacker, lowering

the attack accuracy in general. On the other hand, similar values

make output confidence score vectors not discriminative enough,

which could negatively affect the testing accuracy. In summary,

while the class-wise variance minimization provides an effective

defense under certain conditions, that alone is insufficient for good

generalizability against a range of attacks, e.g. far better defense

against Unsorted NSH attack than Sorted NN attack.

6.3.3 Effectiveness of the layer-wise balanced output control. Fig. 6

(a), (b) and (c) show the test accuracy and NN-based MI accuracy

when we only deploy the layer-wise balanced output control with

different 𝛼s for Texas100 dataset (using the fully connected neural

network), CIFAR-100 and CIFAR-10 datasets (using CNNs), respec-

tively. Here the convolution layers’ output balancing also involves

feature amplification, as discussed in Sec. 4.4. Its impact is discussed

in detail in Appendix A.4. We can observe that, unlike the results of

only applying the variance minimization in Fig. 5, applying layer-

wise balanced output control generally can havemore impact on the

defense against the sorted NN attacks. Particularly, it has stronger

constraint on producing balanced intermediate results in each layer

as 𝛼 grows. This restricts the impact of some model parameters

that may originally dominate the output prediction, in a layer-wise

manner. Then the difference between the output predicted by the

training data and testing data can be further reduced.

6.3.4 Summary. The above analysis shows that our class-wise

variance minimization contributes more on defending against the

unsort NSH attack and layer-wise balanced output control can

further reduce the sort NN attack. Therefore, NeuGuard consisting

of these two terms can better defend against both kinds of NN based

MIAs as demonstrated in Table 3.
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Table 4: Evaluation on metric based MI attacks.

Texas100 Baseline MemGuard Early stopping AdvReg NeuGuard

Testing accuracy 56.0 56.0 54.5 54.0 54.4
Accuracy gap 30.4 30.4 26.1 29.0 19.6

MI
accuracy

Correctness 65.2 65.2 63.1 64.5 59.8
Confidence 69.1 68.1 65.8 66.6 62.6
Entropy 62.2 60.6 60.5 60.6 54.4

Modified entropy 69.1 68.4 65.7 66.8 62.7

CIFAR100 Baseline MemGuard Early stopping AdvReg NeuGuard

Testing accuracy 43.8 42.9 41.8 39.7 43.0
Accuracy gap 56.2 30.3 24.2 25 17.4

MI
accuracy

Correctness 78.1 65.1 61.9 62.5 58.7
Confidence 84.8 65.0 62.6 63.1 59.7
Entropy 80.8 56.1 59.6 55.5 55.7

Modified entropy 84.8 64.9 62.9 63.1 59.6

CIFAR10 Baseline MemGuard Early stopping AdvReg NeuGuard

Testing accuracy 76.6 76.6 74.1 71.1 74.6
Accuracy gap 23.4 23.4 22.2 21.0 17.8

MI
accuracy

Correctness 61.7 61.7 61.1 60.5 58.9
Confidence 72.3 64.8 63.3 61.0 60.4
Entropy 70.5 58.6 60.4 58.0 55.9

Modified entropy 72.1 65.0 63.2 61.1 60.4

7 EVALUATION ON METRICS ATTACKS

In this section, we further evaluate our defense against the latest

metrics based MI attacks [5, 40], as introduced in Sec. 2.1.

Experimental results comparison. Table 4 reports the testing

accuracy, accuracy gap between training and testing set, attack

accuracy based on the four metrics (i.e., prediction correctness,

prediction confidence, prediction entropy and modified prediction

entropy) on CIFAR100, CIFAR10, and Texas100, respectively. For

these attacks, we have the following observations:

Our NeuGuard always achieves the best results. This conclu-

sion is consistent with the results on NN based attacks, demonstrat-

ing the superior generality and scalability of our NeuGuard.

Our NeuGuard has the smallest gap between training accu-

racy and testing accuracy, which further implies that the output

distribution of training set and that of testing set are the most

similar. Here, we further propose to verify this claim quantita-

tively. Specifically, we adopt three metrics, i.e., Euclidean distance

(𝐸𝑢𝑐) [46], KullbackśLeibler divergence (𝐾𝐿) [26], Total Variation

Distance (𝑇𝑉 ) [23], which are used to measure the similarity be-

tween two distributionsÐa smaller value of these metrics indicates

a larger similarity of two distributions. We denote the two probabil-

ity distributions as 𝑃 and 𝑄 , respectively. For 𝑃 and 𝑄 in the same

probability space Ω, we have 𝐾𝐿(𝑃 ∥𝑄) =
∑

𝜔∈Ω 𝑃 (𝜔) log
(

𝑃 (𝜔 )
𝑄 (𝜔 )

)

and 𝑇𝑉 (𝑃,𝑄) = 1
2

∑

𝜔∈Ω |𝑃 (𝜔) −𝑄 (𝜔) |.

In our evaluation, we use histograms to calculate the probabil-

ity distribution of the training set 𝑃 and that of the testing set 𝑄

after the strongest modified entropy attack is applied (one can see

that all defenses achieved the worst performance against the modi-

fied entropy attack in Table 4). Table 5 displays the results of the

three metrics on the three datasets. All the results are obtained by

selecting the best-performing model for each defense. We can ob-

serve that our NeuGuard has the lowest values evaluated by all the

three metrics and significantly outperforms the compared defenses.

These results indicate that our NeuGuard can produce models with

smallest difference between the training set and testing set outputs.

Thus, our defense has the best effect on metric based MIAs.

NeuGuard delivers the best defense effectiveness against the

strong C&W label-only attack. Table 6 compares the testing

accuracy (utility), the prediction correctness attack accuracy (MI

Table 5: Euclidean Distance, KL Divergence, and TV Distance of the

empirical output distributions.

Texas100 CIFAR100 CIFAR10

Metrics Euc KL TV Euc KL TV Euc KL TV

Baseline 92.88 0.2971 0.3265 132.44 0.8487 0.5829 324.04 0.3147 0.2700

AdvReg 100.41 0.2441 0.2964 1127.68 0.3013 0.3092 76.97 0.1467 0.1864

MemGuard 654.16 0.2645 0.2854 649.26 0.2896 0.3148 323.57 0.3229 0.2625

Early stopping 72.21 0.2142 0.2717 104.19 0.1462 0.2212 182.77 0.2198 0.2435

NeuGuard 7.39 0.0943 0.1636 11.93 0.0681 0.1578 6.68 0.1151 0.1840

Table 6: C&W label-only attack results on CIFAR datasets.

Dataset Accuracy Baseline MemGuard Early stopping AdvReg NeuGuard

CIFAR

10

Testing dataset 76.6 76.6 74 71.9 74.6

MI correctness 61.7 61.7 59.1 58.1 58.9

C&W label attack 69.2 69.2 59.7 59.2 55.3

CIFAR

100

Testing dataset 44.8 44.8 41.6 39.7 43

MI correctness 77.5 77.5 61.6 64.6 57.8

C&W label attack 80.9 80.9 61.7 63.3 54.4

correction as a baseline), and C&W label attack accuracy among

different defenses. Again, NeuGuard outperforms all other defenses

while offering great utility (e.g. closer to baseline) against the C&W

label attack. The C&W attack accuracy is even 3.6% (CIFAR10) and

3.4% (CIFAR100) lower than the correctness attack baseline. This is

because NeuGuard refines model parameters during the training

and assures more evenly distributed output confidence scores. As a

result, the needed adversarial perturbations to generate adversarial

examples that alter prediction results to untargeted incorrect labels

become similar for the training and testing data.

Defenses against metrics based attacks are not as effective

as against NN based attacks. When comparing the results in

Table 4 with those in Table 3, we can see that metrics based at-

tacks (except entropy) have larger MI accuracies than NN based

attacks. This is because the performance of defenses against metrics

based attacks, except entropy, are bounded by the accuracy gap

between the training set and the testing set. When the accuracy

gap is larger, all the defenses would achieve worse performance.

The accuracy gap fully determine the prediction correctness attack,

more detailed description and mathematical analysis can be found

in Appendix A.5. In other words, as long as the accuracy gap

exists, no defense can reduce the MI accuracy obtained by

the prediction correctness attack to 0.5, i.e., random guessing.

The best defense performance we can achieve is to bring down the

MI accuracy based on confidence prediction and modified predic-

tion entropy attacks close to the correctness attack accuracy. We

analyze two corner cases to further illustrate these metric-based

attacks are bounded by the prediction correctness in Appendix A.5.

8 NEUGUARD AGAINST OTHER MIAS

We also discuss and evaluate NeuGuard against some newly pro-

posedMIAs. For instance, [57] proposed a self-attentionMIA (SAMIA)

focusing on enlarging the prediction KL divergence between train-

ing and testing data. Our NeuGuard can well defend against SAMIA,

as its objective is actually tominimize the prediction KL divergenceÐ

Table 5 shows that NeuGuard significantly reduces the KL diver-

gence. We also conduct experiments on CIFAR10/100 datasets by

following the setting from [57]. Particularly, our NeuGuard can

reduce attack accuracy from 77.73% and 69.29% on Alexnet for

CIFAR100 and CIFAR10 to 57.95% and 51.37%, respectively. [13]

proposed a blind membership inference attack called BLINDMI,
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wherein the threat model only assumes knowledge of the output

distribution, and nothing about the target model’s architecture or

training dataset. Our considered threat model is stronger, as part

of the training/testing data is available to the attacker, and the at-

tacker also has the ability to query sufficient data samples from

the target model. BLINDMI includes two different variants, i.e.,

BLINDMI-1CLASS and BLINDMI-DIFF. BLINDMI-1CLASS lever-

ages the one-class SVM to learn the one-class semantics of non-

member labeled samples, while BLINDMI-DIFF iteratively performs

differential comparison to infer membership. Table 7 shows our

NeuGuard defense results against them. We can observe that our

NeuGuard can effectively defend against BLINDMI-1CLASS and

BLINDMI-DIFF on both CIFAR10 and CIFAR100 datasets.

In addition to attacking the traditional (non-defended) NN mod-

els for classification tasks, several recent works study MIAs against

defended NN models (e.g., pruned sparse models [57], adversarially

trained models [41]), GANs for unsupervised learning [4, 10, 25],

federated learning [11, 27, 51], etc. Directly integrating NeuGuard

into these models to defending against the MIAs is challenging

because these methods have different goals as that of NeuGuard.

However, our key idea of controlling inter-neuron and output is

flexible and exploring this idea in the above models to better defend

against MIAs datasets will be an interesting future work.

9 RELATED WORK

Many methods have been proposed to defend against member-

ship inference attacks (MIAs). We categorize existing defenses as

training time based defense (e.g., dropout [37], 𝐿2 norm regular-

ization [39], model stacking [37], label smoothing [45], min-max

adversary regularization (AdvReg) [30], differential privacy [1, 28],

early stopping [40], knowledge distillation [38]) and inference time

based defense (e.g., output perturbation (MemGuard) [16]).

Label Smoothing (LS) [45] is a hard label augmentation ap-

proach to reduce model overfitting by assigning uniform proba-

bilities to classes. However, studies [18, 29] show that LS pushes

the model to output smoother and more uniform probabilities for

the training data, and erases less information on testing data than

training data. As a result, LS leads to greater discrepancies between

the training data and testing data predictions, and thus increases

model’s MIA vulnerabilities. However, NeuGuard exploits privacy-

dedicated regularizations to constrain inner and output neurons

with the goal of restricting the value range of output prediction

during training. This explicitly reduces the prediction difference

between training set and test set, and thus can defend against MIAs.

Differential privacy (DP) [7] is a probabilistic privacy mecha-

nism that provides an information-theoretical privacy guarantee.

Many works aim to integrate DP into machine learning as a general

approach to provide theoretical privacy guarantees for the mod-

els [1, 36]. The basic idea is to add noise to the gradient used for

the stochastic gradient descent [1, 43, 56] or the objective function

for the model learning [14] to achieve DP. The main drawback of

the current DP mechanism is that it cannot provide a satisfactory

privacy-utility trade-off. As evaluated in [15, 36, 38] and discussed

in [16], while DP demonstrates defense effectiveness against MIAs,

its resulting model utility is fairly low. For example, [38] showed

that DP-SGD [1] only delivers a 52.2% testing accuracy for the

Table 7: NeuGuard against BLINDMI on CIFAR datasets.

Attack BLINDMI-1CLASS BLINDMI-DIFF

Dataset CIFAR100 CIFAR10 CIFAR100 CIFAR10

Model Baseline NeuGuard Baseline NeuGuard Baseline NeuGuard Baseline NeuGuard

Test Acc 41.36 42.93 77.83 74.47 41.36 42.77 77.85 74.47

Attack Acc 60.10 50.00 55.48 50.00 71.15 55.24 68.01 56.65

Precision 65.18 0.00 57.32 0.00 71.66 56.97 61.02 56.10

Recall 43.37 0.00 42.94 0.00 69.96 42.78 99.73 61.23

F1 score 52.08 0.00 49.10 0.00 70.80 48.87 75.71 58.55

Alexnet-CIFAR10 setting when the MIA accuracy is 51.7%, while

NeuGuard offers a 74.6% testing accuracy at a similar level of mem-

bership privacy leakage.

Knowledge distillation [12, 19] uses teacher-student models

for model training. Distillation For Membership Privacy (DMP) [38]

firstly trains a teacher model with unprotected data and then trains

the target model using an unlabeled reference dataset that aims to

obtain a similar prediction entropy with the private training data.

With limited access to the private data, the trained student model

should not leak information. Compared to our NeuGuard, this de-

sign requires more complex training procedures and additional

reference datasets to facilitate the knowledge distillation between

the teacher model and student model. However, public reference

datasets from the same domain may not be available in real-world

applications, especially in fields like medical and financial analy-

sis, where the data are private and confidential. Furthermore, one

alternative solution to this is to generate synthetic data using the

generative adversarial networks (GANs). However, [38] shows that

it would result in significant model utility drop. [6], [47] improve

the defense without requiring public data, but they require more

complex training strategies, different training phases for teacher

and student models, and require sufficient training data since they

need to split data into several parts for training.

10 CONCLUSION

We explored state-of-the-art defenses and showed they are inef-

fective in defending against existing MIAs, especially sorted and

unsorted NN attacks. We advocate a more effective defense is to or-

chestrate the output of the training set and testing set for the same

explicitly designed distribution that is more evenly distributed in a

restricted small range. To achieve this goal, we propose a simple yet

effective defense mechanismśNeuGuardśbuilt upon the technique

of fine-grained neuron-level regularization, to simultaneously con-

trol and guide the final output neurons and hidden neurons towards

constructing a defensive model. NeuGuard consists of a class-wise

variance minimization and layer-wise balanced output control to

regularize output and inner neurons in a layer-wise manner. We

validate the effectiveness of NeuGuard on three different datasets

against not only two NN based MIAs, but also five (strongest) met-

rics based MIAs including the label-only attack. We further discuss

the defense upper bound of the metrics based MIAs through theo-

retical and experimental analysis. With a flexible parameter control,

NeuGuard always offers the best utility-privacy trade-off with much

lower overhead, comparing with all evaluated defenses.
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A APPENDICES

Table 8: Model accuracy and NN based MI accuracy with dif-

ferent 𝜆 values for the adversary regularization on Texas100.

𝜆 1 2 3 5

Training set accuracy 85.99 86.08 66.67 47.77

Testing set accuracy 58.51 58.17 50.92 40.59

MI

accuracy

Sorted NN 68.56 68.31 64.18 55.81

Unsorted NSH 60.41 60.44 53.48 52.24

A.1 Datasets

We use the following three benchmark datasets to demonstrate the

effectiveness of our NeuGuard against membership inference attack

for different application scenarios.

Texas100 [48] is a dataset generated from Hospital Discharge

Data Public Use Data File that contains information about inpa-

tients stays in several health facilities. The data is published by the

Texas Department of State Health Services (DSHS) and we obtained

the preprocessed dataset from [39]. This dataset contains 67,330

data records with 6,170 binary features. These features indicate

the external causes of injury (e.g., drug misuse and suicide), the

diagnosis (e.g., schizophrenia, illegal abortion), the procedures the

patient underwent (e.g., surgery), and generic information such

as gender, age, race, hospital ID, and length of stay. The records

are clustered into 100 classes representing the 100 most frequent

medical procedures. Following the existing methods [16, 30, 31],

we use 10,000 data records for training and 57,330 data records for

testing.

CIFAR10 and CIFAR100 are benchmark datasets widely used

in image classification tasks [20]. Specifically, CIFAR-10 consists

of 32×32 color images from 10 classes and each class contains

6,000 images. It includes 50,000 training images and 10,000 testing

images. CIFAR100 contains the same size color images from 100

non-overlapping classes, each with 500 training images and 100

testing images. Table 9 summarizes the statistics of these datasets.

A.2 Parameter setting

For the Texas100 classification task, we use a fully connected neural

network with four hidden layers, which have layer sizes 1024, 512,

256, 128, respectively. We use the Tanh activation function for the

hidden layers and use the softmax function for the final layer. We

use the cross-entropy loss function and Adam optimizer to train

the model. We train the model with an initial learning rate 0.001

and a decay by 0.1 in every 20 epochs.

Table 9: Dataset split configurations.

Dataset Training set Testing set Training members Training non-members

CIFAR10 50,000 10,000 25,000 5,000

CIFAR100 50,000 10,000 25,000 5,000

Texas100 10,000 57,330 5,000 10,000

Algorithm 1 Loss calculation using proposed method

1: Input: ML model 𝐹 , a batch of data (𝑥𝐵 , 𝑦𝐵 ) with 𝑁 records, class-wise mean
list vector 𝜇𝑦 , model layer number𝑀

2: Output: Loss value 𝐿𝑜𝑠𝑠 calculated for this batch

3: {𝑜𝑢𝑡𝑝𝑢𝑡𝑠,ℎ1, ℎ2, ..., ℎ𝑀−1 } = 𝐹 (𝑥𝐵 )
4: 𝑠𝑜 𝑓 𝑡𝑜𝑢𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑜𝑢𝑡𝑝𝑢𝑡𝑠 )
5: for 𝑙 in𝑀 − 1 do

6: 𝐿𝑏𝑜𝑐 = 𝐿𝑏𝑜𝑐 + 1
𝑆𝑙













∑⌊𝑆𝑙 /2⌋
𝑖=1 ℎ𝑙𝑖 −

∑𝑆𝑙
𝑖=⌊𝑆𝑙 /2⌋+1

ℎ𝑙𝑖













2

𝐹
7: end for
8: for 𝑖 in 𝑁 do
9: 𝑐𝑜𝑢𝑛𝑡𝑦𝑖 + = 1

10: 𝜇𝑦𝑖 = 𝜇𝑦𝑖
𝑐𝑜𝑢𝑛𝑡𝑦𝑖 −1

𝑐𝑜𝑢𝑛𝑡𝑦𝑖
+

𝑠𝑜𝑓 𝑡𝑜𝑢𝑡𝑖
𝑐𝑜𝑢𝑛𝑡𝑦𝑖

11: end for
12: 𝐿𝑣𝑎𝑟 =

1
𝑛

∑𝑛
𝑖=0 (𝐹 (𝑥𝑖 ) − 𝜇𝑦 )

2

13: 𝐿𝑜𝑠𝑠 = 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 (𝑥𝐵 , 𝑦𝐵 ) + 𝛼 × 𝐿𝑏𝑜𝑐 + 𝛽 × 𝐿𝑣𝑎𝑟
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Figure 7: The attack classifier architecture of Sorted NN and

Unsorted NSH attack used in the evaluation

For CIFAR10 and CIFAR100 image classification tasks, we use

Alexnet[21], which is a convolutional neural network with param-

eters trained with a cross-entropy loss function and stochastic

gradient descent (SGD) optimizer. We set the initial learning rate

as 0.01 and decay by 0.1 in every 20 epochs.

We follow the training method and hyperparameter setup pro-

posed by the authors and use the published code to evaluate their

defense mechanism. The adversarial regularization parameter is set

as 𝜆 = 3 for Texas100 model and 𝜆 = 6 for CIFAR10 and CIFAR100.

The Early stopping model is introduced following the [40] to show

the defense efficiency of the regular trained model with the similar

test accuracy of the AdvReg trained model. We evaluate the Mem-

Guard defense by using Sorted NN model [16] and Unsorted NSH

model [30] as its defense classifiers to generate the noisy output,

respectively. Since in some cases, the defense classifier with Sorted

NN attack model under the constraint of MemGuard, is unable to

produce effective noisy output for defense, we select the Unsorted

NSH attack model which offers better defense effectiveness as the

classifier, for fairly comparing the defense efficiency.
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(a) (b) (c)

Figure 8: Testing accuracy and NN-based MI accuracy with different hyperparameters for layer-wise operations. For the fully

connect model for Texas100 classification, we set 𝛽 = 3, 000 in the class-wise variance minimization regularization, and we

change the 𝛼 value in (a) to show the effects of the layer-wise balanced output control. For convolutional models, we set 𝛽 = 200

on CIFAR10 and 𝛽 = 1, 000 on CIFAR100. We amplify the top 10% feature map values for 1.5 and 2 times, respectively. (b) and (c)

show the results with different selected top feature map values during the inference on CIFAR100 and CIFAR10.

Table 10: Variance of the output confidence scores on the

training set and testing set for CIFAR100.
Model Baseline Early stopping AdvReg MemGuard NeuGuard

Training set 5.37E-03 4.57E-03 6.99E-03 4.30E-03 4.44E-06

Testing set 4.08E-03 3.48E-03 5.89E-03 3.52E-03 3.88E-06

A.3 Neural network based attacks setup

We summarize neural network based attacks as sorted attack and

unsorted attack. The major difference is whether the output confi-

dence score used by the the attack model is sorted or not.

Sorted attack: For the Sorted NN attack, we adopt the standard

setting in [16] and use a three-layer fully connected neural network

as the attack classifier. See Fig. 7(a).

Unsorted attack: To evaluate the Unsorted NSH attack, we follow

the model structure and setup in [30] to construct and train the

attack classifier. The Unsorted NSH attack classifier takes two pieces

of information as input. One is the unsorted confidence score vector,

and the other one is the one-hot encoded label (all elements except

the one that corresponds to the label index are 0). The classifier

consists of three fully connected sub-networks. See Fig. 7(b).

We adopt the Relu activation function for the hidden layers and

the sigmoid activation function for the output layer for both attack

classifiers. The attack classifier predicts the input as a member if

and only if the final prediction probability 𝑏 (·) ≥ 0.5; otherwise,

it predicts as a non-member. To train the attack classifier, we use

the mean squared error (MSE) criterion and Adam optimizer with a

learning rate of 0.001. For better convergence, we decay the learning

rate by 0.1 in the 40th and 90th epoch for 100 epoch training for

the Sorted NN attack, and decay the learning rate by 0.1 in the 30th

epoch for 200 training epochs for Unsorted NSH attack.

A.4 Effectiveness of the layer-wise feature map
operations

In this section, we show some supplementary results with com-

bined NeuGuard training methods and tune one of the component’s

hyperparameter to further demonstrate the effectiveness of the

proposed methods.

Fig. 8 (a) shows the test accuracy and NN-based MI accuracy

when we vary 𝛼 for layer-wise balanced output control on the

Texas100 dataset. Here we set 𝛽 = 3000 for the class-wise vari-

ance minimization. Unlike the results obtained by only applying

the variance minimization in Fig. 5 (a), with 𝛼 growing, the attack

accuracies of both Unsorted NSH attack and Sorted NN attack de-

crease prominently at the cost of limited utility reduction. A larger

𝛼 indicates a better defense effectiveness but a slightly degraded

testing accuracy.

As discussed in Sec. 4.4 and Sec. 6.3.3, we adopt the layer-wise

feature map amplification for the convolutional layers in CNNs at

both training and inference stages to 1) better assist the proposed

learning regularization for converging model output scores towards

desired distributions (for defense effectiveness); 2) better maintain

model inference accuracy (for model utility). For the hyperparam-

eters setting of feature amplification, we can empirically amplify

top 0 − 10% feature maps to 1 − 1.5 times during training guided

by the accuracy growth trend. Then at inference we amplify top

0 − 50% feature maps using the same amplification rate to reduce

the accuracy gap with an acceptable utility loss. To validate its

effectiveness, we conduct experiments based on the CNN-based

CIFAR100 and CIFAR10 image classification tasks and tune the

amplified percentage of feature maps during the inference time. As

Fig. 8 (b) and (c) show, the test accuracy on CIFAR100 and CIFAR10

drops slightly as the percentage of amplified features increases,

while the attack accuracy of both Sorted NN and Unsorted NSH at-

tack decreases more significantly, demonstrating a much improved

trade-off between defense effectiveness and model utility using

our method. This is because: 1) The impact of the most significant

portions of a feature map that are amplified during training de-

creases as other parts of the feature map is also enlarged due to

the increased amplified percentage during inference; 2) The oper-

ation is analogous to introducing some noise to model inference,

making the output distribution of training set and test set closer

and resulting in reduced MI accuracy for both attacks. However,

amplifying too many intermediate features will cause more obvious

utility drop despite the minor attack accuracy reduction. Therefore,

the optimal parameter of our proposed defense can be identified by

observing MI accuracy reduction and utility loss, e.g. 25% and 30%

for CIFAR100 and CIFAR10 as shown in Fig. 8 (b) and (c).
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(b) NeuGuard
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Figure 9: Empirical CDF of modified entropy on CIFAR100 with (a) and (b) fully connected layer amplification in inference.

Amplify top 50% for 20×; and with (c) and (d) convolution layer amplification in inference. Amplify the top 1% for 1000×.

A.5 Defense effectiveness analysis for metric
based attack

We first show the close relationship between prediction correctness

and accuracy gap between the training set and testing set. Then, we

discuss why the defenses cannot reduce the MI accuracy of metrics

based attacks to random guessing.
Let𝑑𝑡𝑟 and𝑑𝑡𝑒 denote the number of training samples and testing

samples, respectively. Note that in our experiments, we have the
same value of 𝑑𝑡𝑟 and 𝑑𝑡𝑒 and we let 𝑑𝑡𝑟 = 𝑑𝑡𝑒 = 𝑑 . Moreover, we
denote the training accuracy and testing accuracy as 𝐴𝑐𝑐𝑡𝑟 and
𝐴𝑐𝑐𝑡𝑒 , respectively. Then, we have:

Mcorr (𝐹 ;𝑧 ) = 𝐼 (argmax 𝐹 (𝑥 ) = 𝑦) =
𝐴𝑐𝑐𝑡𝑟 × 𝑑𝑡𝑟 + (𝑑𝑡𝑒 − 𝐴𝑐𝑐𝑡𝑒 × 𝑑𝑡𝑒 )

𝑑𝑡𝑟 + 𝑑𝑡𝑒

=
𝑑 × (𝐴𝑐𝑐𝑡𝑟 − 𝐴𝑐𝑐𝑡𝑒 ) + 𝑑

2𝑑
=

1

2
× 𝐴𝑐𝑐𝑔𝑎𝑝 +

1

2

(9)

Eqn 9 implies that the prediction correctness can be completely

determined by the accuracy gap. In other words, as long as the

accuracy gap exists, no defense can reduce the MI accuracy

obtained by the prediction correctness attack to 0.5, i.e., ran-

dom guessing. Furthermore, from Eqn 2 and Eqn 4, we note that

prediction confidence and modified prediction entropy are

also highly related to prediction correctness, as they both use

the predicted label information. In an extreme case where the

model outputs the same distribution of confidence score vectors,

e.g. a single large score with all others being equally small values,

regardless of member or non-member data, the calculation of both

prediction confidence and modified prediction entropy can con-

verge to two valuesśone value for all correctly predicted data and

another for all incorrectly predicted data, e.g. CDF with only two

values in the x-axis as we shall show in Fig. 9(a). As a result, their

attack accuracies are the same as that of prediction correctness for

any preset threshold chosen between these two values.

The best defense performance we can achieve is to bring

down the MI accuracy based on confidence prediction and

modified prediction entropy attacks close to the correct-

ness attack accuracy. We explore the two cases on CIFAR100

through the proposed layer-wise intermediate results amplification

to demonstrate that the defense performance is upper bounded by

applying the prediction correctness attack. We need to point out

that this kind of defense is easy to achieve through our layer-wise

amplification. In this case, these metric based attacks are equivalent

to the prediction correctness attack.

Table 11 shows the testing accuracy and metric based attack

results on two cases that lead the attack accuracy of prediction

confidence and modified prediction entropy close to the prediction

Table 11: Metric based eval. on two corner cases on CIFAR100.

Model
Baseline

FC layer amp
NeuGuard

FC layer amp
Baseline

Conv layer amp
NeuGuard

Conv layer amp

Test accuracy 43.6 43.4 43 43
Accuracy gap 26.6 17.1 25.6 17.3

Correctness 63.2 58.5 62.8 58.7
Confidence 63.7 58.9 63.5 59.7
Entropy 51.7 55.6 55.5 55.4

Modified entropy 63.2 58.9 63.8 59.7

correctness attack. We apply two amplification strategies to the

model and both of them can maintain the test accuracy at the same

level as the baseline model. These two strategies show the analysis

of two extreme cases. The choice of hyperparameters is intended

to amplify the amplification impact of certain feature maps while

maintaining the accuracy of the model. The first strategy is to

amplify top 50% of the intermediate results of the last three FC

layers for 20×. Fig. 9(a) and Fig. 9(b) show the absolute modified

entropy distribution of this strategy applied on the regular trained

model and NeuGuard. The output confidence score is amplified to

the case that only one label has large value (e.g., close to 1) and

all the others have equally small values (e.g., close to 0). In this

case, the modified prediction entropy for the correctly classified

data is 0 and for the misclassified data is about 138. As the figure

shows, the only difference in the modified entropy value is made by

the correctness of the model classification. The attack accuracies

of prediction correctness, confidence and modified entropy are

similar as shown in Table 11 for both the regular trained model and

NeuGuard.

The second case is explored by amplifying the most significant

part of the feature map in the convolution layers while ensuring

the model utility. In the experiments, we amplify the top 1% feature

map values to 1000× for all the convolution layers. The absolute

modified entropy distribution of the normal model and NeuGuard

are shown in Fig. 9(c) and Fig. 9(d) and the results are in Table 11.

The modified prediction entropy has almost no difference for train-

ing set and testing set as all of them are close to zero. Nevertheless,

the attack accuracy of the modified prediction entropy is still simi-

lar to that of the prediction correctness in both the regular trained

model and our NeuGuard. This aligns well with our observation

that the metric-based attacks are bounded by the prediction

correctness that is further determined by the accuracy gap

in Eqn 9, despite the indistinguishable prediction entropy.

Minimizing the training and testing accuracy gap is the most viable

approach to further improve the defense effectiveness against these

attacks, which further explains why ourNeuGuard always performs

the best among existing defense solutions (see Table 4).
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