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Abstract—The inverse problem of inferring clinical gold-
standard electrocardiogram (ECG) from photoplethysmogram
(PPG) that can be measured by affordable wearable internet-of-
healthcare-things (IoHT) devices is a research direction receiving
growing attention. It combines the easy measurability of PPG and
the rich clinical knowledge of ECG for long-term continuous
cardiac monitoring. The prior art for reconstruction using a
universal basis, such as discrete cosine transform (DCT), has
limited fidelity for uncommon ECG shapes due to the lack of
representative power. To better utilize the data and improve data
representation, we design two dictionary learning frameworks,
the cross-domain joint dictionary learning (XDJDL) and the
label-consistent XDJDL (LC-XDJDL), to further improve the
ECG inference quality and enrich the PPG-based diagnosis
knowledge. Building on the K-SVD technique, our proposed joint
dictionary learning frameworks largely extend the expressive
power by optimizing simultaneously a pair of signal dictionaries
for PPG and ECG with the transforms to relate their sparse codes
and disease information. The proposed models are evaluated with
a variety of PPG and ECG morphologies from two benchmark
datasets that cover various age groups and disease types. The
results show the proposed frameworks achieve better inference
performance than previous methods with average Pearson co-
efficients being 0.88 using XDJDL and 0.92 using LC-XDJDL,
suggesting an encouraging potential for ECG screening using
PPG based on the proactively learned PPG-ECG relationship.
By enabling the dynamic monitoring and analysis of the health
status of an individual, the proposed frameworks contribute to
the emerging digital twins paradigm for personalized healthcare.

Index Terms—Joint Dictionary Learning, Sparse Coding, ECG,
PPG, Internet-of-Healthcare-Things (IoHT), Digital Twins.

I. INTRODUCTION

ARDIOVASCULAR diseases (CVDs) have become a

leading cause of death globally. From alarming reports

of the World Health Organization, an estimated 17.9 million

people died from CVDs in 2019, representing 32% of all
global deaths [2].

Electrocardiogram (ECG) is a widely-used gold-standard for

cardiovascular diagnostic procedures. By measuring the elec-
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TABLE I
COMPARISON OF DIFFERENT ECG SENSING TECHNIQUES.
ECG Sens. o Need No Active Long-Term &
Tech. Cost Accessibility Participation? ComsAgMonitoring
Standard ECG Medium* Low X X
Apple Watch [5] Medium High X X
KardiaMobile [6] Low High X X
Zio patch [4] Medium* Low v v/ (skin irritation)
Our Proposed Low High v v (little side effect)

*High cost in the U.S. if without medical insurance.

trical activity of the heart and conveying information regarding
heart functionality, continuous ECG monitoring is proven to be
beneficial for the early detection of CVDs [3]. However, most
conventional ECG equipment is restrictive on users’ activities.
Newer clinical ambulatory ECG monitoring devices, such as
the Zio patch [4], have alleviated the above-mentioned issues,
although potential skin irritation during long-term adhesive
wear remains, especially for people with sensitive skin. In
addition, a prescription is needed to obtain the Zio patch, thus
not easily accessible to the general public. Apple Watch [5]
and wearable devices alike, such as KardiaMobile [6], are
moderately affordable and can show real-time ECG without
adhesion to the skin, but they generally require active user
participation and is usually for short duration measurement of
30-second periods, making it infeasible for long-term contin-
uous ECG monitoring. Table I summarizes the comparison of
different ECG sensing techniques discussed above.

Given the constraints of the ECG sensors, researchers have
made efforts toward long-term continuous ECG monitoring by
inferring full ECG waveform from optical sensors, such as the
photoplethysmogram (PPG) sensors [1], [7], [8]. PPG sensors
are ubiquitously seen in the wearable internet-of-healthcare-
things (IoHT) devices and have become a common modality
for monitoring heart conditions due to the maturity of the
technology and low cost [9]. It measures the optical response
of the blood volume changes at the peripheral ends, including
fingertips [10], and provides valuable information about the
cardiovascular system via daily use of the pulse oximeter.
Compared to ECG, PPG is more user-friendly in long-term
continuous monitoring without constant user participation.

PPG and ECG are physiologically related as they embody
the same cardiac process in two different signal sensing
domains. The peripheral blood volume change recorded by
PPG is influenced by the contraction and relaxation of the
heart muscles, which are controlled by the cardiac electrical
signals triggered by the sinoatrial node [11]. The waveform
shape (i.e. signal morphology), pulse interval, and ampli-
tude characteristics of PPG provide important information
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Fig. 1. Illustration of the proposed framework. The ECG and PPG signals are first preprocessed to obtain temporally aligned and normalized pairs of cycles.
80% pairs of ECG and PPG signal cycles from each subject are used for training paired dictionaries D, De, and a linear transform W which will be

applied in the test phase to infer the ECG signals.

about the cardiovascular system [10], including heart rate,
heart rate variability [12], respiration [13], and blood pres-
sure [14]. Therefore, inferring the medical gold-standard ECG
signal using the PPG sensor provides a solution to achieve
a low-cost, long-term continuous cardiac monitoring, which
facilitates further diagnosis and leads to early intervention
opportunities, especially for the low-income, disadvantaged
populations, who have limited access to affordable preventive
care. Our proposed technique embodies the trend of digital
twins in healthcare [15], which is an emerging technology that
plays a pivotal role in advancing personalized healthcare. The
aspects of digital twins that our work contributes to are on
developing a rich representation of an individual supported by
data and models, through which the physiological status of this
individual can be dynamically monitored by various sensors
through IoHT and analyzed over time.

The previous work of ECG reconstruction from PPG using
a universal, data-independent basis of the discrete cosine
transform (DCT) [7], [8] has limited fidelity to represent
uncommon ECG waveform shapes, especially for the group-
based case with a broader range of signal morphologies [16].
We focus on such group-based cases in this paper and consider
data science and learning techniques with richer representative
power to answer the following research question:

o Group-based model: Can a single model, trained from a
group of subjects with a certain determinant of physi-
ology (e.g., age, weight, disease type, etc.), predict the
ECG waveforms from unseen PPG measurements for
individuals in the training group?

To overcome the limitation of the DCT method and develop
the synergy of model and data, our work aims at improving
data representation through a more versatile and adaptive
framework based on dictionary learning to demonstrate the
feasibility of ECG waveform inference from PPG signal as
an inverse filtering problem. In addition to the algorithmic
improvement, sparse coding and dictionary learning frame-
works are proven to perform efficiently in IoT platforms in
terms of cutting down power consumption and computation
cost [17], [18]. Thus, by investigating the dictionary learning

based approach in this paper, we strike a balance between the
model complexity and practical cost in IoT applications.

Our proposed cross-domain joint dictionary learning (XD-
JDL) method for ECG reconstruction from PPG is summa-
rized in Fig. 1. A further-developed label-consistent XDJDL
model (LC-XDJDL) is also proposed when the disease label
information is available. The PPG and ECG signals are first
preprocessed into normalized signal cycles to facilitate the
subsequent training. In the training phase, the ECG-PPG dic-
tionary pair is jointly updated with a stable linear mapping that
relates the sparse representations of the two measurements. In
LC-XDIJDL, an additional linear mapping that enforces the
label consistency for the PPG sparse codes will be learned
to further improve the ECG reconstruction performance and
enrich the knowledge base for diagnosis from PPG.

Extending the preliminary results reported in [1], the con-
tribution of this work is threefold:

1) To the best of our knowledge, together with our earlier
dissemination of preliminary results in a conference publi-
cation [1], this paper presents the first clinical application
of frameworks based on dictionary pair learning for ECG
waveform inference from PPG. The XDJDL framework en-
ables the synergistic utilization of the advantages of PPG and
ECG signals for better preventive healthcare. Furthermore, a
new label-consistent XDJDL (LC-XDJDL) is proposed in this
paper to add the label-consistency constraint for PPG sparse
codes. The benefits of LC-XDJDL are not limited to improving
the quality of ECG reconstruction, but also making the PPG-
based heart disease diagnosis interpretable as the transform
that relates the sparse codes of PPG to disease labels can help
to gain intuitive insights on how a certain disease can impact
PPG.

2) On top of the preliminary work reported in our earlier
conference publication, extended work is included in this jour-
nal version: a) The datasets used for experimental evaluation
are expanded to 75 subjects with a variety of age and ECG
morphological patterns collected from different cardiovascular
pathologies; b) The inferred ECG signals are evaluated in both
overall waveform shape and the morphology and timing of the
subwaves for a fine-granular evaluation; and ¢) Our proposed



frameworks are compared with a series of prior art dictionary
learning algorithms and outperform them, suggesting that the
developed learning methods can accurately infer ECG from
PPG.

3) In the discussions, we extend the evaluation of the
proposed framework when the cardiac cycle information in the
test set can only be obtained from the PPG signals. We analyze
the practicality of applying our proposed ECG inference
techniques in low-power and low-cost healthcare IoT devices.
We also present the limitations of the proposed method in
two challenging cases with a leave-one-out experiment and a
preliminary experiment on an extra dataset where PPG and
ECG are distorted by motion artifacts during running.

II. RELATED WORK
A. ECG Reconstruction From PPG

There are many prior arts extracting physiological param-
eters [19], [20] or classifying arrhythmia [21]-[24] from the
input ECG or PPG signals using machine learning methods.
However, direct parameter estimation or automatic diagnosis
is insufficient for medical practitioners to interpret. The ECG
signal, rather than the derived results via black-box models,
is still the gold-standard tool on which cardiologists rely and
make further decisions. Our proposed technique in this paper
providing the reconstructed ECG waveform offers complemen-
tary support and allows the manual check from cardiovascular
experts with their medical expertise and clinical experiences.

Very limited prior work has been devoted to PPG-based
ECG inference. The pilot study [7], [8] proposed to relate
the waveforms of PPG and ECG in the discrete cosine trans-
form (DCT) domain by a linear model. In the participant-
specific case where a linear model is trained from and
tested for the same individual, this DCT method achieved a
mean reconstruction correlation of 0.94. In contrast, for the
group-based model, the achieved mean correlation degraded
to 0.79. This suggests that there is still substantial room
for improvement when extending to the group-based model
case where a universal mapping needs to be trained by a
wider variety of ECG morphologies from multiple people. To
address these above-mentioned issues, we consider dictionary
learning based sparse representation for ECG and PPG as
it provides a richer and more adaptive representation than
the universal dictionary DCT by better leveraging data. And
we will use this as a foundation to develop joint dictionary
learning models for reconstruction. The theoretical basis of
the principled methods, including the DCT and our proposed
dictionary learning frameworks, is the underlying physiolog-
ical and signal processing mechanisms [8]. Neural networks,
with strong expressive power and high structural flexibility, are
also adopted to solve this problem [25], [26]. However, current
neural network based PPG-to-ECG algorithms using black-
box end-to-end signal synthesis lack interpretability, and our
ongoing efforts are being made to investigate neural networks
with low complexity and interpretability.

B. Dictionary Learning

Algorithms that learn a single dictionary for signal represen-
tation [27]-[29] have been well-studied. They have been suc-

cessfully applied to cardiac signal processing, including recent
research showing that ECG signals can be well-represented as
a sparse linear combination of atoms from an appropriately
learned dictionary for such applications as ECG classification
and compression [30]-[32].

In the domain of image processing and computer vision,
these single dictionary learning strategies [33], [34] have been
extended to joint dictionary learning tasks [35], [36]. For
image super-resolution [16], [37], [38], coupled dictionary
learning frameworks are proposed to learn a dictionary pair
for low- and high-resolution image patches while enforcing
the similarity of their sparse codes with respect to their dic-
tionaries. One assumption from this model is that the transform
matrix between the two sparse codes is an identity matrix. In
person re-identification [39] and photo-to-sketch [40] prob-
lems, a linear mapping between the codings of input and
output images is introduced into the objective function for
semi-coupled dictionary learning. In both training schemes, the
updates of the mapping and dictionaries are separately done
within each iteration, making the dictionary computation less
aware of the signal transform.

Our method aims at boosting reconstruction performance
from PPG to ECG by using a joint dictionary learning frame-
work. Unlike the super-resolution problem [16], [37], [38]
where the input and output reside in the same signal domain,
the problem of ECG reconstruction from PPG extends to two
different sensing domains and an identity transfer matrix may
not be adequate to capture the transform between the domains.
To address this, XDJDL introduces a PPG-to-ECG mapping,
which spans the two sensing modalities with low waveform
correlation, providing more flexibility and generalization for
the two learned dictionaries. Different from [39], [40], we
update the linear transform and the dictionary in the same step,
which can optimize the capability of the obtained dictionaries
for both signal representation and transformation. This kind of
transform-aware joint dictionary learning formulation is one of
the major differences from other coupled dictionary learning
frameworks. This framework can also be easily generalized to
different constraints. For instance, in the proposed LC-XDJDL
model, we add a label-consistency regularization term to the
objective function of the XDJDL model, which encourages the
transformed sparse codes from the same class to be similar.

ITII. PROPOSED FRAMEWORK
A. Physiological Background and Preprocessing

As briefly discussed in the introduction, PPG and ECG are
physiologically related because the corresponding cycles of
them represent the same cardiac process during the respective
heartbeat measured in two sensing modalities. Different phases
in one cardiac cycle progress as follows [10], [41] with fiducial
points labeled in part(a) of Fig. 1: The heart’s pacemaker at the
sinoatrial node first triggers the depolarization and contraction
of the atria, resulting in the P-wave of ECG. The wave of depo-
larization then proceeds to initiate ventricular contraction that
generates the QRS wave complex of ECG. Simultaneously,
blood is pumped to the body and microvascular blood volume
increases, resulting in the ascending slope of PPG. Finally,



ventricular repolarization and relaxation follow to form the T-
wave of ECG and blood flows back towards the heart, leading
to the descending slope of PPG.

To establish the quantitative relationship between the cor-
responding cycles of ECG and PPG, we preprocess the
two signals during the training phase to obtain temporally
aligned and normalized pairs of signals, so that the critical
temporal features of both waveforms are synchronized for
learning and evaluation. We have followed the procedures
used in [7]. The preprocessing method we adopt is rooted
in the aforementioned underlying physiological relationships
between PPG and ECG signals, which is independent of the
dataset selection. First, considering the synchronization issue
between separate ECG and PPG devices, we align the whole
ECG and PPG sequences according to the moment when the
ventricles contract and the blood flows to the vessels, which
corresponds to the R peaks of ECG and the onsets of PPG in
the same cycle. Both the onset and R peaks are detected by the
beat detection functions from the PhysioNet Cardiovascular
Signal Toolbox [42]. Then we detrend the aligned signals
by a second-order difference operator based algorithm [7]
to eliminate the baseline drift related to respiration, motion,
vasomotor activity, and change in contact surface [10]. To
prepare for the learning of the cycle-wise relation during one
heartbeat, the detrended PPG and ECG signals are partitioned
into cycles by the R2R [7] segmentation scheme, where the
partition points are the R peaks of the ECG signal. After the
segmentation, each cycle is linearly interpolated to length d
to mitigate the influence of the heart rate variation. Finally,
we normalize the amplitude of each cycle by subtracting the
sample mean and dividing by the sample standard deviation.
The preprocessed PPG and ECG signal cycles are stored in
data matrices P and E, respectively.

B. Cross-Domain Joint Dictionary Learning (XDJDL)

1) The K-SVD Model: As one of the most popular dictio-
nary learning methods, the K-SVD model is composed of two
main optimization steps: linear sparse coding based on the
current overcomplete dictionary with k atoms, and updating
the dictionary by the SVD method [27].

Let X € R?X™ be a set of input signals, with each column
X; being a training sample. K-SVD aims to solve the following
{y-norm constraint problem in Eq. (1):

. 2
min | X — DA 0

s.t. ||ajH0 < to, _] = 1, N

where D € R%** is the reconstructive dictionary with k
atoms; A € RF*" is the corresponding sparse codes of X,
with each column denoted as a;; and ?y is a parameter for
sparsity constraint. Frobenius norm is used to calculate the
element-wise ¢3-norm in the given matrix.

In this paper, we aim to tackle the ECG inference from PPG
by learning a dictionary pair for ECG and PPG along with
a linear transform between the sparse representations of the
two signals. The reconstructive dictionary pair characterizes
the two structural domains of the two biomedical signals, and
the mapping function reveals the intrinsic relationship between

ECG and PPG signals in the sparse domain. We impose the
linear mapping error as one regularization term in the objective
function, and convert it to a problem that can be optimized
by the K-SVD dictionary learning method. The details of the
model formulation and optimization algorithm are discussed
in the following subsections.

2) Proposed XDJDL Model: We denote the PPG and ECG
datasets as P = [X,,, T,] € R¥>*("*™) and E = [X,, T.] €
REx(n+m) - respectively. Each column of P and E is denoted
as p; € R¥! and e; € R¥*!, representing one PPG/ECG
cycle during the same cardiac cycle. The goal is to learn the
patterns (in terms of dictionaries, mappings, etc.) from the
training data X, € R¥" and X, € RY" to infer the test
ECG dataset T, € R¥*™ from PPG T, € R¥*™,

We formulate the XDJDL framework as:

. 2 2
D. A Dy A, W [Xe = DeAcllp + [ Xp = DpAy |

+BlA — WA,
st l|ap jllg < tp,and|lac ;i < te, J=1, ...,(7;5
where D,, € R”*» and D, € R%**< are dictionaries learned
for X, and X, respectively; A, € RF»>" and A, € RFexn
are the corresponding sparse coding matrices. Each column
of A, and A, is denoted as a, ; and a.; with the sparsity
bounded above by ¢, and ¢..

For the objective function in Eq. (2), || X, — DeAe||§, and
1X, — DpAp||fP are the data fidelity terms for ECG and PPG
cycle sets, respectively. The term [|A. — WA][,Hfv represents
the mapping error between the sparse codes of ECG and
PPG signals, which enforces the transformed sparse codes of
PPG to approximate that of ECG. Intuitively, we can enforce
the two sparse representations for ECG and PPG from the
same cycle to be the same and set the regularization term as
A — Ap||§. However, since ECG and PPG are from two
different signal sensing modalities and the waveform differ-
ence between the two signals is significant, directly pushing
their sparse representations to be similar could compromise
the generalization of the two learned dictionaries.

From the formulation in Eq. (2), we can jointly learn the
dictionaries for ECG and PPG datasets, which produce a good
representation for each sample in the training set with strict
sparsity constraints. Meanwhile, we learn the linear approxi-
mation of the transform that relates the sparse codes of PPG
and ECG, and use it to entail the intrinsic relationship between
certain PPG atoms and ECG atoms from their corresponding
dictionaries.

3) Optimization: Eq. (2) can be rewritten as:

2

Xe D, 0 A
min VaoX, | — 0 VaD, ( e)
eyAe, Dy, A
DA\ o —VBL yEW ) | )

s.t. Hae,jHO < t,and ||ap7j||0 <tp, j=1,.,n

where I is an identity matrix and O is a zero matrix.
Let X £ (X,.,aX,,07 ¢ RE@tk)xn p 2
(D¢, 0, —v/BL0, /aD,, /BW)T € RE¢Hk)x(kethn) - and



A 2 (A, AT € RFetkp) X The optimization of (3) can
be written as the following problem:

min |X — DA%,
D.A ©

st.llay jllg <te,and fla_ ][, <tp, G =1,...,n.

where a, ; denotes the jth column of A,, and A is defined
as the first k. rows of sparse matrix A while A_ is the
last k, rows of sparse matrix A. The formulation in Eq. (4)
now resembles Eq. (1), suggesting that K-SVD can be
adapted for this optimization. The only difference between
Eq. (4) and Eq. (1) is the local sparsity constraint, which will
be addressed in the following optimization procedures.

Step 0: Initialization

To initialize D and A, we need to initialize their compo-
nents: D.,D,, W, A, and A,. First, we randomly select a
subset of columns from training data X, and X, to form
D. and D,. Then, we initialize the sparse codes A. and
A, by solving Eq. (7) with respect to {D., X., t.} and
{D,, X,, tp}, respectively. Finally, we use the ridge regres-
sion model to initialize W:

min [[Ac — WA [ + AW/ 5)
This has a closed-form solution as:
W =AAJ(A,AT+ A (6)

After the initialization, we use a two-step iterative
optimization to minimize the energy in (4), whereby step one
is sparse coding and step two is dictionary updating by SVD.

Step 1: Sparse Coding

Given D, the step of sparse coding finds the sparse repre-
sentation a; for x;, for j = 1,...,n, by solving

. 2
min ||x; — Da;
vin [x; — Da o
s.t. ||ajH0 <t.

where a; is the j" column of the sparse representation matrix
A and x; is the 4" training sample in matrix X.

Many approaches were proposed to solve Eq. (7) [43]. Here
we adopt the orthogonal matching pursuit (OMP) method [44],
which is a greedy method that provides a good approximation
with convergence in limited iterations. As mentioned earlier,
the local sparsity constraints imposed on Eq. (4) will affect
the direct application of OMP. One workaround is to solve
the following problem in Eq. (8) in place of Eq. (4),

min [|X — DA%,
D,A (8)
st lajlly <te+tp, j=1,...,n

where a; is the vertical concatenation of a; ; and a_ ; in
Eq. (4), and t. and ¢, are the sparsity constraints for the
upper and bottom parts of a;, respectively. During the OMP
process in each iteration, we will only keep the largest sparse

coefficients in a; to ensure the local sparsity constraints.
Step 2: Dictionary Update

To update the k" atom, dj, in dictionary D and its
corresponding coefficients, a’f'%, in the k' row of A, we apply
SVD to the residue term Ry £ X — > 2k djaﬁ. In practice,
we only select the training samples that use the atom dj and
avoid filling in the zeros entries of a’j2 during the update. We
do so through denoting the nonzero entries in a}; as a%, and
correspondingly, Ry as R;. The updated atom dj and the

related coefficients é% will then be computed by:

min
dy &,

~ 2
I{k—-dkéﬁHF. 9)

To solve Eq. ~(9), we use the SVD method on the residue
term [27], i.e., Ry = UXVT. And then, d; and 5’& can be
updated as follows:

(10)

Note that taking D £ (D,0,—+/BL0,/aD,,/BW)T
as a whole in the dictionary update phase does not solve this
optimization problem because the zero matrices part and the
identity matrix part in D cannot be guaranteed in the update
of the dictionary by SVD. A remedy to the above problem is
to decompose the dictionary update problem for D into the
following two subproblems by revisiting the matrix form of
the optimization problem in Eq. (3).

(1) Update D., A.:

< D!, A >= argmin | X, — D.A|%.
D€7Ae

(1)

We use SVD to update all atoms in D, and the correspond-
ing nonzero entries in A, by solving Eq. (11) with the same
procedure as in Eq. (9) and (10). The columns of D, are ¢
normalized.

(ii) Update D,,, A,,, and W:

The updated ECG sparse representation matrix A} from
the subproblem (i) then serves as an input to the second
subproblem here to update W, D,,, and A, in Eq. (12).

2
<Dj,A;, W* >= argmin
DAy W

VBAZ VBW

() (4R »

F

We treat (v/aD,,/BW)T as a whole dictionary, and use
the SVD method in Eq. (9) and (10) to update it together
with the nonzero entries in A,,. The linear transform and the
dictionary are updated simultaneously, which addresses the
problem of isolated update raised in [39], [40] and is one of
the major differences from other coupled dictionary learning
models.

After solving the two subproblems, D and A can be
assembled by filling in the submatrices. The main steps of
XDJDL are summarized in Algorithm 1.



Algorithm 1 Cross-domain joint dictionary learning

Input: Training data X, and X, of ECG and PPG cycles,
Testing data T, and T, and sparsity constraints t., t,

Training phase:

Initialization:

o Initialize {D,, D, } by randomly selecting atoms from
the training data.

o Initialize A, A, by solving Eq. (7) with OMP.

« Initialize W by Eq. (6).

while not converged do

e Update D, A by combining updated submatrices.

e Sparse coding: compute A in Eq. (7) with OMP. Zero
out the smallest nonzero entries in the columns of A
if any local sparsity constraint does not hold.

o Dictionary update:

— Update D., A, in Eq. (11) by the SVD method
illustrated in Eq. (9)(10).

- Update D,, A,, W in Eq. (12) by the SVD method
illustrated in Eq. (9)(10).

end while

Testing phase:

for each sample t{; €T, do

e« Compute sparse c0d¢ s% of t:{) under D,, using Eq. (7).

o Calculate s} = WsJ,. ‘ ‘

e  Compute the reconstructed ECG sample as r7 = D.s?,
and store it in matrix R..

end for

Output: R,

C. Label Consistent XDJDL (LC-XDJDL)

For cases where the disease type is known or can be
predicted, such as from the PPG signals that we have, we
can further leverage the disease label. In this subsection, we
examine the effect of adding a label consistency regularization
term to the objective function in Eq. (2) as follows:

min

2 2
o 4 min W||Xe—DCAGHF—FO&HXI,—DPAPHF
eyfre,Up,Ap,

+ B Ae — WAPH?: +71Q - HApHi“
st flapjlly <tp,and |lac ||, <te, j=1,...,n.
(13)
where Q 2 [q1,¢2,...,qn] € R™™ is a discriminative
representation matrix [45] in which each column ¢; =
[0,0,...,0,1,1,0,..,0]" € R™*! corresponds to a discrimina-
tive coding for an input signal. The nonzero elements in g;
occur at the corresponding disease label, which is similar to
the one-hot encoding with the number of ones as a tunable
parameter. The additional regularization term || Q — HAZ,||§7
represents the discriminative sparse code error, which enforces
the transformed sparse codes of PPG to approximate the
discriminative codes in Q. It yields such dictionaries that the
signals from the same class have very similar sparse codes, i.e.
enforcing the label-consistency in the sparse representations.
We add the label-consistency regularization term for two

6

main purposes: One is to improve the ECG reconstruction
quality by using additional class information to constrain the
degrees of freedom of the PPG sparse codes. The other is
to enrich the knowledge base of PPG for the diagnosis of
a certain set of diseases of interest. CVDs weaken the heart
functionality, which further impacts the blood circulation in
the body, thus PPG manifests certain disease information. By
enforcing the consistency between the sparse codes of PPG
and disease labels, one can gain insights into how the disease
is revealed on PPG by inspecting the specific columns of the
PPG sparse coding matrix A, and the label matrix Q.
Similarly, Eq. (13) can be written in the matrix form:

2

X, D. 0
min \/aXP _ 0 \/aDP (Ae>
D.,A.D,, 0 —/BI /BW A,
Awi |\ se) \ o ,

st f|aclly < te;and flag jlly <ty G =1,..,n.

(14)
The two-step optimization method in Section III-B3 can still
be applied to find the optimal solution to both the dictionary
pair and the linear mappings W and H. In the test phase, the
PPG sparse representation matrix A, is obtained by applying
sparse coding with the learned D,,, H, the test sample matrix
T,, and the label matrix Q.

IV. EXPERIMENTAL EVALUATION

A. Dataset

The Medical Information Mart for Intensive Care III
(MIMIC-III) [46], [47] is a publicly-available database assem-
bled by researchers at MIT. It comprises a large number of
ICU patients with de-identified health data from their hospital
stays. To evaluate our proposed framework and algorithm, we
have extracted a small subset of the MIMIC-III database as
follows. First, we select waveforms that contain both lead-II
ECG and PPG signals sampled at 125Hz from the MIMIC-III
waveform database. Then the selected waveforms are cross-
referenced with the corresponding patient profile by subject
ID in the MIMIC-III clinical information database. Patients
with the four types of CVDs are further selected: congestive
heart failure (CHF), myocardial infarction (MI) including
ST-segment elevated (STEMI) and non-ST segment elevated
(NSTEMI), hypotension (HYPO), and coronary artery disease
(CAD). These diseases are all included in the “diseases of
the circulatory system” in the ICD-9 international disease
classification codes. After that, we analyze the signal pair
quality using the PPG SQI function from the PhysioNet
cardiovascular signal toolbox [42] and keep the pair segments
that are evaluated as “acceptable” or “excellent.”

The resulting dataset consists of 33 patients, with each
patient having only one of the four diseases in the record.
Each patient has three sessions of 5-min ECG and PPG
paired recordings collected within several hours, resulting in
34,0004 ECG/PPG cycle pairs in total. Table IT shows the
composition of the collected dataset.



TABLE II
COMPOSITION OF THE COLLECTED DATASET

Disease =~ Number of patients  Number of cycles
CHF 7 7075 (20.6%)
MI 7 7106 (20.8%)
HYPO 7 8281 (24.2%)
CAD 12 11781 (34.4%)
Total 33 34243 (100%)

CHF: congestive heart failure
HYPO: hypotension

MI: myocardial infarction
CAD: coronary artery disease

B. Metrics for Evaluation

As shown in Fig. 3 (a), a complete ECG cycle contains
five major points, including P, Q, R, S, and T, which segment
the ECG cycle into P wave, QRS complex, and T wave.
The shape information of those waves is useful for further
diagnosis. The interval parameters (PR interval, QRS interval,
QT interval) defined by those five fiducial points are also
important for examining a patient’s heart conditions [48].
Thus, to evaluate the quality of the reconstructed ECG, we
take into consideration both the morphological metrics and
the accuracy of time interval recovery.

1) Evaluation of Waveform Morphology: We apply the
Pearson correlation (p) and relative root mean squared error
(rRMSE) as the metrics for evaluating the ECG morphological
reconstruction. They are defined as follows:

2 5)

where x, %X, Z, and & denote the reference ECG cycle, the
recovered ECG cycle, and the average of all coordinates of
the vectors x and X, respectively.

2) Evaluation of Time Interval Recovery: Three important
ECG interval parameters are studied in this work, including the
PR interval, the QRS duration, and the QT interval. Normally,
the PR interval lasts 0.12-0.20 seconds, which begins from
the onset of the P wave and ends at the beginning of the
QRS complex. We use the segment from P point to R point
of ECG as the approximated PR interval in this paper. A
prolonged PR interval can indicate the possibility of first-
degree heart blockage [48]. The duration of the QRS complex
is normally 0.12 seconds or less, for ventricular depolarization.
A prolonged QRS complex indicates impaired conduction
within the ventricles. The QT interval is from the onset of the
QRS complex to the end of the T wave, which is normally
less than 0.48 seconds. A prolonged QT interval may lead to
ventricular tachycardia [48].

We apply a combination of several established algo-
rithms [49]-[51] to detect the major fiducial points of both
the ground-truth ECG and the reconstructed ECG to obtain
the above-mentioned interval parameters. We apply the mean
absolute error (MAE) in Eq. (16) to evaluate the time recovery
accuracy:

N
1
MAE = — Lyee — Lyeg|. 16
N ;I : 7 (16)

TABLE 111
CONFIGURATIONS OF THE MODELS IMPLEMENTED FOR COMPARISON OF
ECG RECONSTRUCTION PERFORMANCE. THE CONFIGURATION INCLUDES

SPARSITY CONSTRAINTS ON THE REPRESENTATIONS AND THE LEARNABLE
LINEAR MAPPING BETWEEN THE REPRESENTATIONS OF PPG AND ECG.

R . Configuration
econstruction - - -
Scheme Spars1Fy Linear Mappmg.
Constraint?  Between Representations?

DCT [8] n.a. v

CPDL [39] n.a. n.a.

ScSR [37] 12 n.a.

SCDL [40] [ v

CDL [38] Lo n.a.
XDJDL (proposed) Lo v

where the L,.. and L,y are the interval length (in seconds)
of the reconstructed ECG and ground-truth ECG signals, re-
spectively, and N is the total number of cycles for evaluation.

C. Overall Morphological Reconstruction

We compare our proposed XDJDL method with the state-
of-the-art in ECG reconstruction from PPG, which used DCT
based method [8]. In addition, we apply several representative
and state-of-the-art models of coupled or semi-coupled dictio-
nary learning, including CPDL [39], ScSR [37], SCDL [40],
and CDL [38], to compare with the proposed XDJDL method
on the ECG reconstruction task. The codes for the prior art
are downloaded from the respective authors’ websites. The
configurations of the prior art methods are listed in Table III.
The characteristics of these models can be concluded as (1)
the way they represent the signals with any sparsity constraints
and (2) whether the cross-domain signal representations are
assumed to be identical or linearly related by a learnable
mapping. We notice that there is newer related work of
dictionary learning, such as [52]. We examine and find the
problem setup in [52] essentially falls in the category (1) that
being an ¢; constrained problem and (2) where the cross-
domain mapping is assumed to be identical. This problem
setup is similar to the setting in ScSR [37] and [52] was
dealing with a different application scenario.

To make a fair comparison, we evaluate the DCT based re-
construction method in the group-model training mode where
a single linear transform Wpc is learned using training data
from all patients, i.e., a generic model is learned to capture
the signal relation for a group of subjects. The normalized
PPG/ECG cycle length is chosen as d = 300. For XDJDL, the
dictionary size for ECG cycles is k. = 320, and the dictionary
size for PPG cycles is k, = 9000. The sparsity parameters are
set to be t. = 10 and ¢, = 10. The weights for regularization
terms are « = 1 and 5 = 1. For other dictionary learning
models, we have also done grid-search for hyperparameter
selection. We split the data from each patient into training
and test sets, and the training data ratio is 80%.

Table IV shows the quantitative comparison of the ECG
morphological reconstruction performance. From the statistics
of the sample mean, standard deviation, and median of p and
rRMSE, we can see that our proposed XDJDL method outper-
forms both the DCT based algorithm and other representative
coupled/semi-coupled dictionary learning models. Specifically,
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Fig. 2. Qualitative comparison of the ECG signals inferred by different approaches. Examples are (a) a 71-year-old female with congestive heart failure, (b)
an 87-year-old female with myocardial infarction, and (c) an 82-year-old female with coronary artery disease. From top to bottom: the input PPG signal from
which the ECG is inferred in group-model mode, results by DCT method [8], CPDL [39], ScSR [37], SCDL [40], CDL [38], and our proposed XDJDL.

TABLE IV
QUANTITATIVE PERFORMANCE COMPARISON FOR ECG WAVEFORM
INFERENCE
Reconstruction P rRMSE
Scheme - - N ~
m med I " med I
DCT [8] 0.71 0.83 031 067 060 0.26
CPDL [39] 074 085 031 063 056 0.35
ScSR [37] 082 089 023 054 052 021
SCDL [40] 083 089 021 052 049 022
CDL [38] 085 095 025 049 034 0.51
XDIJDL (proposed) 08 096 023 039 029 031

the average TRMSE is reduced from 0.49 to 0.39, or 20.4%
lower than CDL [38], which is the second-best among all
competing models.

In Fig. 2, we present three examples of ECG waveform
reconstruction to qualitatively compare all the competing
models with our proposed XDJDL model. The three patients
have different types of disease diagnosis. We observe that
even though the waveform variances between the PPGs are
relatively smaller than those between the ECGs, our proposed
XDJDL method can recover most of the details well in the
ECG signal from the PPG signal, suggesting that our method
has preserved the intrinsic relation between the atoms from
PPG and ECG dictionary pair. In particular, for the second-
best CDL [38] method that can reconstruct the overall shape
of ECG cycles reasonably well, it has glitches in recovering
the details, such as the P wave of the first and last cycle of
Patient 2 and the QRS complex of the first cycle of Patient 3.

When the disease information is available, we can apply
the proposed label-consistent XDJDL (LC-XDJDL) model
from Section III-C to leverage the label information for more
accurate monitoring of ECG from the PPG signal. We con-
sider the following scenarios: 1) For cases where the disease
information is not directly provided in the test phase, we first
predict that from the PPG signals. Here, we have trained an

TABLE V
COMPARISON OF ECG SIGNAL INFERENCE AMONG XDJDL,
LC1-XDJDL, AND LC2-XDJDL METHODS

Reconstruction p rRMSE
Scheme - -
f med G [ med &
XDJDL 088 096 023 039 029 031
LC1-XDJDL 090 096 020 036 027 028
LC2-XDJDL 092 097 017 033 026 025

SVM classifier for the PPG multi-class disease classification
and chosen the best hyperparameters with a five-fold cross-
validation method. The classification accuracy for the PPG test
set reaches 92%. We denote the corresponding label-consistent
model as LC1-XDJDL. It will take the predicted labels to
build the discriminative representation matrix Q. 2) When we
have the ground-truth disease labels in the test phase, we can
leverage that disease information directly as matrix Q and the
corresponding model is named LC2-XDJDL.

We list the comparison of ECG reconstruction performance
using the XDJDL, LC1-XDJDL, and LC2-XDJDL models in
Table V. On average, the Pearson coefficient improves from
0.88 to 0.90 with the predicted label information, and to 0.92
with the ground-truth disease type as input. The improvement
in terms of the rRMSE is also consistent with the Pearson
coefficient. In addition to the reconstruction performance im-
provement, the label-consistent mapping that relates the PPG
sparse codes to disease type in LC-XDJDL helps us understand
the role of PPG in diagnosis with a rich ECG knowledge base.

D. Subwave Morphological Reconstruction

In the above subsection, we have shown that our proposed
XDJDL outperforms the DCT model and other representative
dictionary learning models, and its performance can be better
if the disease label (LC-XDJDL) can be utilized for ECG
reconstruction and monitoring.
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Fig. 3. (a) shows two cycles of the reference ECG signal and (b) shows two
cycles of the inferred ECG signal. In the first cycle of (a), the green curve
represents the P wave, the red curve is the QRS complex, and the dark blue
curve shows the T wave. The PR interval, QRS duration, and the QT interval
are all labeled in the second cycle of (a).

In this subsection, we zoom into the reconstruction perfor-
mance of the subwave of ECG cycles using XDJDL and LC-
XDJDL methods. Because each subwave refers to different
atrial and ventricular depolarization and re-polarization activ-
ities, by zooming in, we can have a better idea of how our
methods behave on the inference for different phases of heart
activities. A combination of the ECG major point detection
algorithms [49]-[51] is used to locate P/Q/R/S/T points of
ECG waveform, which helps segment the ECG cycle into
subwaves for the evaluation of morphological reconstruction.

Fig. 3 shows an example of the major points detection
results on two cycles of the reference ECG (Fig. 3(a)) and
the reconstructed ECG (Fig. 3(b)) from a patient with coronary
artery disease. In this example, we observe that the locations of
the detected major points in both signals are close, indicating
a good reconstruction of the ECG waveform. We empirically
separate the adjacent ECG cycles at a point that splits the
neighboring R-R peaks at the ratio of six to four. After that, a
complete ECG cycle is divided into three subwaves, including
the P wave that starts from the border point on the left of
the ECG cycle and ends at the Q point, the QRS complex
from Q to S point, and the T wave from the S point to the
right border point. Only a very small portion of reference
and reconstructed ECG cycle pairs cannot be detected with
a consistent set of fiducial points. The overall number of
effective cycles for subwave evaluation is around 92% out of
all test cycles, and those effective cycles only have a slightly
improved Pearson coefficient (1% on average) compared to
the original test dataset.

Table VI lists the reconstruction performance on the three

subwaves of the ECG cycle in terms of the mean of Pearson
coefficient and rRMSE using XDJDL, LC1-XDJDL, and LC2-

TABLE VI
COMPARISON OF SUBWAVE RECONSTRUCTIONS IN TERMS OF THE MEAN
OF p AND rRMSE. THE RECONSTRUCTION OF QRS COMPLEX IS THE
BEST COMPARED TO THAT OF T WAVE AND P WAVE.

Reconstruction p rRMSE
Scheme P QRS T P QRS T
wave complex wave wave complex  wave
XDJDL 0.81 0.92 084 053 0.33 0.41
LCI-XDJDL 0.83 0.93 086 049 0.30 0.37
LC2-XDJDL 0.86 0.94 089 045 0.28 0.34
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Fig. 4. Comparison of subwave reconstruction performance across XDJDL,
LC1-XDJDL, and LC2-XDJDL models. The statistics of (a) Pearson coeffi-
cient p and (b) rRMSE are summarized using the boxplots.

XDJDL models. The comparison of results across models
is consistent with the results of the overall comparison in
Table V. We also observe that the reconstruction for the QRS
complex is better than that for the T wave, which is better
than that for the P wave. The mean Pearson coefficient of
the QRS complex by LC2-XDJDL is 0.94, higher than the
overall cycle reconstruction of 0.92, while that of the T wave
is slightly lower than the overall performance with the mean
Pearson coefficient of 0.89 and that of the P wave is 0.86.

In addition to the mean of Pearson coefficient and rRMSE,
Fig. 4 shows the comparison of the statistics of Pearson
coefficient and rRMSE in boxplots for the three subwaves of
ECG so that we can see the overall result distribution of the
two metrics. We observe that the medians of p and rRMSE
for each of the three subwaves are very similar across the
proposed models. Specifically, the medians of p of P wave
are 0.95, 0.96, and 0.96, respectively, those of QRS complex
are all 0.98, and those of T wave are all 0.97; the medians of
rRMSE of P wave are 0.35, 0.33, 0.32, those of QRS complex
are 0.25, 0.23, 0.22, and those of the T wave are 0.27, 0.25, and
0.24, respectively. Analysis of these boxplots suggests that our
proposed models can preserve the relation between PPG and
QRS complex well. The overall reconstruction performance
can be improved if the relations between PPG and P and T



TABLE VII
COMPARISON OF TIMING INTERVAL RECOVERY ACCURACY IN MAE.

Reconstruction Mean (in seconds) MAE (in seconds)
Scheme PR° QRS QT PR QRS QT
XDJDL 0.164 0.115 0331 0.030 0.012 0.030

LC1-XDJDL 0.166 0.116 0331 0.026 0.011 0.027
LC2-XDJDL 0.167 0.115 0331 0.025 0.010 0.025
Reference 0.172  0.113  0.328 -

waves are better learned.

E. Time Interval Recovery

In addition to the morphological reconstruction evaluation,
we evaluate whether the time intervals are well preserved. The
labeling of those intervals is shown in Fig. 3.

From columns 2-4 in Table VII, we can compare the average
of the reconstructed intervals and the reference intervals.
For PR intervals, the difference between the reconstructed
and reference is approximately 4%; for QRS durations, such
difference is within 3%; and for QT intervals, the difference
is less than 1%. This suggests that, on average, the timing
information of the intervals is preserved well. From column 5-
7 in Table VII, we also notice that the MAEs of the PR
interval are 0.030s, 0.026s, and 0.025s using XDJDL, LCI-
XDJDL, and LC2-XDJDL models, respectively. The relatively
large error in the timing of PR interval recovery is consistent
with the result of P wave reconstruction performance shown
in Section IV-D. Nevertheless, the MAE of the timing for the
QRS complex is around 11ms, which is just a quarter of the
smallest grid on the conventional hand copy of ECG recorders
(40 ms) and is negligible given the sampling rate (125 Hz) of
the ECG signal in the MIMIC III dataset. The MAE of the
QT interval is around 27ms, which is less than three-quarters
of the smallest grid on ECG graph paper and is around 8% of
the QT interval (0.331s).

V. DISCUSSIONS
A. Result Using PPG-based Segmentation Scheme

In Section IV, we have evaluated our proposed models based
on the assumption that the cycle information from ECG signals
is available to separate the ECG/PPG time-series signals into
training and test cycles. But in practice, we may not have
the groundtruth of cycle segmentation from ECG. Thus, we
consider such realistic scenarios of reconstructing the ECG
from the “estimated cycles” of PPG that are segmented by the
PPG onsets instead of the R peaks of ECG signals. The PPG
onsets are used for segmentation rather than the PPG peaks
because of the underlying physiological meaning as we have
mentioned in Section III-A. For ease of notation, we denote:

o R2R: segmentation scheme based on R peaks of ECG for
both training and test data, which is used in Section IV;

e 020-1: segmentation scheme based on PPG onsets for
both training and test data;

e 020-2: segmentation scheme based on R peaks of ECG
for training data and based on PPG onsets for test data.

TABLE VIII
QUANTITATIVE COMPARISON OF DIFFERENT SEGMENTATION SCHEMES.

Reconstruction p rRMSE
Scheme - - N -
n med G " med o
XDJDL (020-1) 070 0.84 032 066 057 039
XDIDL (020-2) 080 0.88 024 055 048 032
XDJDL (R2R) 088 096 023 039 029 031

Due to the discrepancy between the detected locations of
PPG onset and R peak of ECG from the same cycle, the
“estimated PPG cycles” using O20 schemes slightly vary
from the PPG cycles which are segmented by R2R. To single
out the contribution to the ECG reconstruction error due
to the discrepancy in the waveform shape rather than the
misalignment of the ECG peaks, we evaluate O20 schemes
after compensating the time offset between the reconstructed
ECG and original ECG signals. This is done by shifting each
reconstructed ECG cycle in time so that the original and
reconstructed ECG signals are matched according to their
R peaks. The comparison result is shown in Table VIII.
Compared to R2R, when using the O20-1 scheme, the average
Pearson coefficient drops from 0.88 to 0.70, and the average
rRMSE rises from 0.39 to 0.66. And using the O20-2 scheme
can help improve the performance compared to O20-1, where
the mean Pearson coefficient becomes 0.80 and the mean
rRMSE becomes 0.55.

B. Evaluation on the Capnobase TBME-RR Dataset

In this subsection, we experimented with the Capnobase
TBME-RR database [53] that contains forty-two eight-minute
sessions from 29 children and 13 adults during elective
surgery and routine anesthesia. Each session corresponds to a
unique participant and contains simultaneously recorded PPG
and ECG signals. The signals are recorded with a sampling
frequency of 300 Hz. The dataset covers a wide range of
participant’s age, which is from one-year-old to sixty-three-
year-old with the median age being fourteen. Thus, this dataset
is used for a supplementary evaluation of the proposed method
from the angle of age variety in addition to disease variety in
the MIMIC-III dataset.

We first pruned the signals according to the artifact labels
provided in the dataset and preprocessed the signals using the
method in Section III-A to obtain aligned and normalized sig-
nal pairs. To be consistent in the evaluation, as in Section IV,
we selected the first 80% of the data from each subject as the
training set and the rest for testing.

Table IX summarizes the performance comparison using the
Capnobase TBME-RR dataset. Our proposed XDJDL method
outperforms all the other groups in terms of the mean and
median rRMSE by a large margin. Even though the CDL [38]
method is 0.1% better than our proposed method in mean
and median correlation coefficient p, our method achieves
26% smaller & of p than the CDL method, showing that
our proposed method achieves good performance of ECG
reconstruction more consistently for all participants.



TABLE IX
QUANTITATIVE PERFORMANCE COMPARISON FOR ECG WAVEFORM
INFERENCE USING THE CAPNOBASE TBME-RR DATABASE

TABLE X
COMPARISON IN TERMS OF COMPUTATIONAL COMPLEXITY, ACCURACY,
AND EXPLAINABILITY TO RECONSTRUCT TEST ECG CYCLES.

Reconstruction p rRMSE

Scheme - - N N

I med G " med G
DCT [8] 0.902 0919 0.066 0427 0413 0.128
CPDL [39] 0956 0968 0.049 0.282 0247 0.150
ScSR [37] 0967 0976 0.039 0.286 0247 0.165
SCDL [40] 0971 0978 0.038 0.191 0.166 0.101
CDL [38] 0980 0991 0.062 0219 0.145 0.296
XDJDL (proposed) 0.979 0990 0.048 0.146 0.105 0.122

C. Feasibility Analysis of The Proposed Method for The
Internet-of-Healthcare-Things (IoHT)

In this subsection, we analyze two important practical-
ity issues when applying our proposed ECG reconstruction
techniques to healthcare IoT devices. One issue is energy
consumption. The sensors used to capture physiological sig-
nals, e.g., PPG signals, are mostly wearable devices, which
are powered by batteries [9]. Thus, being energy-efficient
is necessary to ensure continuous signal acquisition, data
transmission, and monitoring. The other issue is computational
cost. As mentioned in [9], [54], applications that require
lower latency need higher computational capabilities. Thus, the
computational load of the algorithms needs to be considered
in real-world scenarios.

The first issue about energy consumption in wearable de-
vices can be resolved by the existing mature technologies
like the Bluetooth low-energy module commonly applied for
low-power wireless communication in wearable healthcare
devices [55]. In the test phase of our proposed XDJDL and
LC-XDJDL frameworks, PPG signals acquired by wearable
devices can be transmitted to the IoT devices, such as smart-
phones, at low power with the help of those modules. For
the second issue about computational cost, with the dictionary
pairs constructed locally and stored in the cloud or edge
devices, the computational cost is mainly from sparse coding
and lightweight matrix multiplication. Since sparse coding
via OMP in our proposed methods is proven to be able
to be executed on the IoT platform in real-time [18], we
envision that our proposed frameworks can satisfy the practical
requirements well.

To further evaluate quantitatively the feasibility of applying
our proposed method to IoHT platforms, we examine the
following metrics to measure the usage of computational
resources to reconstruct one ECG cycle:

1) Computational time

2) Energy consumption

3) Memory space
The specifications of the laptop we used for the experiment are
as follows: Processor: 17-8650U; Architecture: Intel x86; CPU
Frequency: 1.90GHz; Cores: 4; RAM: 24GB. Our test here is
designed to resemble an online inference scenario in which
new sequences of continuous ECG waveform need to be in-
ferred by the IoHT system with the input PPG waveform. The
experiment is repeated 100 times to evaluate the computational
time and memory space for each cycle. Note that the actual

FLOP
Consumption

Number of

Reconstruction
Model Parameters

Scheme

P TRMSE ‘ Explainability

DCT [8] 0.36M 0.27M 0.71 0.67 v
XDJDL (proposed) 60.21M 5.67TM 0.88 0.39 v
LC2-XDJDL (proposed) 64.72M 5.90M 0.92 0.33 v
TANN [25] 518.79M 10.98M 0.94 0.28 X

energy consumption estimation can be complex, as it depends
on the operating system, the temperature inside and outside
the device, and the efficiency of the power supply. Thus, we
use FLOP (Floating-point Operations) here as the measure
for energy consumption, as it is independent of hardware
configurations given the algorithm. With FLOP, the energy
in joule can be estimated as it is proportional to FLOP given
FLOPS (FLOP per Second) per watt, i.e., FLOPS/W, specified
by the IoT device.

The computational resources consumed by our proposed
methods are as follows: 1) The average computational time
for generating one ECG cycle is 15.67 ms and 18.91 ms
using XDJDL and LC2-XDJDL methods, respectively. This
processing time is one to two orders of magnitude shorter
than a heart cycle (around 0.5s to Is per beat at rest),
suggesting that the processing can be done in real-time; 2) The
60 MFLOP/65 MFLOP and 31 MB/43 MB memory space re-
quired by the proposed XDJDL/LC2-XDJDL methods are well
within the capability of such commonly seen IoT platforms as
the Raspberry Pi 3B (RAM: 1 GB, 0.73 GFLOPS/W) [56]
for the research prototype that has not been optimized for
deployment. Considerable reductions in computing resources
are possible with industry-grade implementation.

To evaluate the trade-off between the accuracy and com-
putational cost, we consider the comparison with the DCT
method [8] and a deep learning method (TANN) for ECG
reconstruction from PPG [25]. TANN [25] was tested using
the source code implementation shared by its authors. Since
TANN [25] and our proposed approaches are implemented
on different platforms (Python versus MATLAB), we mainly
focus on the FLOP and the number of model parameters
as a surrogate of the memory space for a fair comparison
of computational complexity. The FLOP counts the floating-
point operations consumed by each algorithm in synthesizing
a 300-point ECG cycle from a PPG cycle with the same
length. From Table X, we conclude that the DCT method
is the most lightweight PPG-to-ECG algorithm and has an
advantage in computational consumption while its accuracy
is sacrificed by a large margin. As for TANN [25], even
though its accuracy performance is 2% better than LC2-
XDIJDL in terms of mean Pearson coefficient, TANN’s FLOP
consumption is about an order of magnitude higher than that
of our proposed methods and its number of model parameters
almost double ours. This comparison suggests that compared
to neural network approaches, our algorithm has higher com-
putational efficiency, which facilities the deployment of this
new type of ECG monitoring on IoT platforms and supports
real-time applications that require lower latency. In light of
the advantage of deep learning in representing the multi-scale



and fine-granular details of physiological signals, a forward-
looking direction for our ongoing and future effort include
to explore the lightweight implementation of neural network
based PPG-to-ECG mapping, aiming at achieving a better
trade-off between the precision of ECG reconstruction and the
time-space costs. We have also indicated the explainability of
the proposed methods and the comparison models in the last
column of Table X. It is worth noting that TANN is lack of
explainability due to its black-box design of the architectures,
while our proposed methods are based on the underlying
biomedical and statistical relations of PPG and ECG signals
and strive for interpretability.

It is not easy to make a fair comparison with the other
comparative algorithms based on dictionary learning [37]-[40]
in terms of computational resources. This is because 1) Their
inference stages require solving optimization problems that
have already been implemented in the optimized software,
such as .mex files. The .mex files only provide interfaces to
execute the external subroutines developed by C/C++, but the
source codes for solving the optimization problems are not
accessible, making it infeasible to count the FLOP of these
algorithms; and 2) They were mainly proposed in the computer
vision domain rather than specifically targeted at PPG-to-ECG
application.

D. Limitations of The Proposed Method

1) Performance of Leave-One-Out Experiment: As a proof
of concept and considering the current moderate amount of
available data, we have so far split each patient’s data into
training and test sets. This corresponds to the trend of “pre-
cision medicine” to tailor the healthcare practice to individual
patients. Meanwhile, we are curious how the algorithm would
behave if the test patient is never seen in the training phase,
corresponding to the situation of training models for the whole
population or patient groups categorized by gender, age, race,
or other ways. We will examine this through leave-one-out
experiments.

We apply a pre-clustering process based on the ECG data
to select a sub-group of patients with similar ECG features for
the leave-one-out experiment. First, we reduce the dimension
of the ECG cycles by principal component analysis (PCA),
and then we use K-means to cluster the ECG features after
PCA. Based on the clustered ECG features, we select the
largest cluster of ECGs from 19 patients. The mean Pearson
coefficient for the leave-one-out experiment on the 19 patients
is 0.74 (std: 0.15, median: 0.77).

From the result, we can see that as expected, the leave-
one-out experiment is a more challenging case given the large
variability of ECG data morphologies of ICU patients and the
limited number of patients in the collected dataset. Based on
the results in Section IV-C, we see the encouraging capability
of recovering large variations in ECG from relatively small
variations in PPG across cycles and patient populations. This
suggests a strong potential for predicting ECG from PPG
of unseen patients through further research and larger data
collection. In our follow-up work, we are considering an
improved problem definition and data collection procedure to
enhance the generalization capability of learning.

2) Performance Evaluation on A Motion Dataset: So far,
we have demonstrated in this paper the feasibility and im-
proved accuracy of ECG waveform inference from PPG using
the proposed methods on two benchmark datasets [46], [53] in
Section IV-C and Section V-B. Those datasets were collected
under a resting condition with relatively small movement arti-
facts. Noises and artifacts were still present in those datasets
but in a controlled manner, which leads to good quality of
data acquisition and is beneficial for the feasibility study
and accuracy improvement of reconstructing ECG from PPG.
In this subsection, we consider a more challenging scenario
where IoHT devices are worn during exercise and show the
preliminary results with the motion-contaminated signals.

We adopt the 2015 IEEE Signal Processing Cup dataset [57]
for evaluation, which consists of paired PPG and ECG signals
from 13 participants during physical exercises. This dataset
provided by the Samsung Research Lab in the U.S. aimed to
facilitate the study of accurate heart rate (HR) monitoring of
PPG signals from wrist-type sensors and included ECG signals
as a reference. The PPG signals were collected from the wrist
while the subjects ran on a treadmill at speeds of 6 km/h,
8 km/h, 12 km/h, or 15 km/h, respectively. Simultaneously,
the ECG signals were collected from the chest and the
acceleration signal was recorded from the wrist by a three-
axis accelerometer. All signals were sampled at 125 Hz. Each
subject ran once and the total length of the recording was
5 minutes per subject.

Since the quality of PPG signals is crucial to ECG re-
construction, we first use the absolute error of the PPG
estimated HR as a metric to exclude the participants with
extremely corrupted PPG signals. Because HR represents the
frequency characteristic of PPG that affects the accuracy of
determining a PPG cycle. The HR is estimated from the PPG
by a state-of-the-art adaptive multi-trace carving (AMTC) [58]
algorithm that tracks the HR from the spectrogram of PPG by
dynamic programming and adaptive trace compensation. The
reference HR values are given in the dataset. Three out of
the thirteen participants are excluded as their HR estimation
error is quite off likely due to data collection issues and
the remaining ten participants’ data are used for learning
and testing the XDJDL model. In addition, to improve the
quality of noise-contaminated PPG, we employ an off-the-
shelf denoising algorithm by recursive least square (RLS)
adaptive filtering [8], [59]. It treats the contaminated PPG as
the sum of the underlying cleaned PPG and motion-induced
noise. Since the acceleration signals are correlated with the
motion, they are used to estimate the motion artifacts for
PPG noise removal. We will compare the ECG reconstruction
performance from PPG signals before and after denoising.

Fig. 5(a) shows the comparison of the statistics of Pearson
coefficient and rRMSE in boxplots for ECG reconstructed
from the PPG signal without denoising (referred to as “raw
PPG”) and RLS filtered PPG signal (referred to as “cleaned
PPG”). The average Pearson coefficient of the reconstructed
ECG using raw PPG is 0.49 (median: 0.69, std: 0.51) and using
cleaned PPG is improved to 0.61 (median: 0.72, std: 0.37).
This improvement can be attributed to that the spurious peaks
and waves in the motion-contaminated PPG are removed by
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Fig. 5. (a) Statistical distribution of Pearson coefficient (p) and rRMSE for
reconstructed ECG from PPG signals before denoising (“raw PPG”) and PPG
signals after denoising (“‘cleaned PPG”). (b) Qualitative comparison of raw
PPG, cleaned PPG, and the ECG signals inferred from them.

the RLS filtering. While the noise due to motion is mitigated,
distortions in PPG and even ECG waveforms are still present
as shown in Fig. 5(b). Treating potentially corrupted ECG as
the reference and distorted PPG as the input might misguide
the learning system, and produce unreliable waveform recon-
struction. Fig. 5(b) shows an example with close to average
performance. We observe that on one hand, the cleaned PPG
has clearer cycle shapes than the raw PPG; and on the other
hand, some of the physiological characteristics representing
the blood flow process are irregular after RLS motion artifacts
removal, such as the peak in the third cycle and the ascending
and descending slopes in the fifth cycle. Also, the reference
ECG signals contain varying ST segment elevations over
consecutive cycles during motion. We expect such limitations
can be addressed with the development of more advanced PPG
and ECG denoising and waveform preserving approaches for
preprocessing and the availability of a larger dataset under
different types of activities (such as walking, running, driving,
climbing stairs, etc).

E. Future Work Towards Explainable Al

Our proposed XDJDL and LC-XDJDL models accom-
plished to infer the ECG based on PPG by leveraging the
biomedical and statistical relationship between the signals.
This is an initial effort to demonstrate a potential benefit from
our “explainable” Al, rather than black-box data-driven Al,
to provide the more user-friendly PPG measurements inferred
ECG data for the medical professionals to interpret and offer
medical insights. Our framework also helps transfer the rich
ECG knowledge base from decades of medical practice to
augment the PPG diagnosis for public health.

Given the challenge of making the ECG inference more
accurate for an unseen group of subjects, e.g., by age, gender,
or other medical and health condition, we are extending our
current work with a neural network to further enrich the
representation and learn the relation when sufficient data is
available. Our ongoing efforts have been focused on both
developing a data collection pipeline for more diversity and

coverage of training data and exploring an explainable gen-
erative model with strong expressive power to improve the
generalization performance. With the step-by-step capturing
of complex models by utilizing the biomedical, statistical, and
physical meanings, as well as harnessing the power of the data,
we aim to provide explainable Al with our ongoing efforts.

VI. CONCLUSIONS

We have proposed a cross-domain joint dictionary learning
(XDJDL) framework and the extended label-consistent XD-
JDL (LC-XDJDL) model for ECG waveform inference from
the PPG signal. Compared to the prior art using the DCT
method, our proposed method better leverages the data to
improve data representation while extending over a model-
based approach. The promising experimental results with the
average Pearson coefficient being 0.88 using XDJDL and 0.92
using LC-XDJDL validate that our proposed models can learn
the relation between PPG and ECG and reconstruct ECG well.
From the analysis for subwave reconstruction and timing of
interval recovery, we observe that we can restore the QRS
complex and the QT interval in high precision, which is
essential for ECG monitoring and to gain more PPG-based
diagnosis knowledge. This work reveals the potential of long-
term and user-friendly ECG screening from the PPG signals
that we can acquire from the daily use of low-cost, low-power
wearable devices for IoT and digital twins applications in
healthcare.

Our ongoing work and future endeavor will strive to
improve the accuracy and generalization capability of the
ECG waveform inference from PPG while maintaining sound
interpretability. Future research and development may consider
improving the robustness to exercise conditions by develop-
ing more advanced PPG and ECG denoising and waveform
preserving algorithms and collecting datasets under different
types of activities.

REFERENCES

[1] X. Tian, Q. Zhu, Y. Li, and M. Wu, “Cross-Domain Joint Dictionary
Learning for ECG Reconstruction from PPG,” in [EEE Int. Conf.
Acoustics, Speech and Signal Process. (ICASSP), 2020, pp. 936-940.

[2] “Cardiovascular diseases (CVDs),” https://www.who.int/en/news-room/
fact-sheets/detail/cardiovascular-diseases-(cvds), Accessed: 2021-09-27.

[3] A. Rosiek and K. Leksowski, “The Risk Factors and Prevention of
Cardiovascular Disease: The Importance of Electrocardiogram in the
Diagnosis and Treatment of Acute Coronary Syndrome,” Therapeutics
and clinical risk management, vol. 12, p. 1223, 2016.

[4] “How Zio Works,” https://www.irhythmtech.com/patients/how-it-works,
Accessed: 2020-12-25.

[5] “Take an ECG with the ECG app on Apple Watch,” https://support.apple.
com/en-us/HT208955, Accessed: 2022-1-25.

[6] “KardiaMobile: Check in on your heart from home,” https://store.kardia.
com/products/kardiamobile, Accessed: 2022-1-25.

[71 Q. Zhu, X. Tian, C.-W. Wong, and M. Wu, “ECG Reconstruction via
PPG: A Pilot Study,” in IEEE EMBS Int. Conf. Biomed. & Health
Informatics (BHI), Chicago, IL, May 2019.

, “Learning Your Heart Actions From Pulse: ECG Waveform
Reconstruction From PPG,” IEEE Internet of Things Journal, vol. 8,
no. 23, pp. 16734-16748, 2021.

[91 H. Habibzadeh, K. Dinesh, O. Rajabi Shishvan, A. Boggio-Dandry,

G. Sharma, and T. Soyata, “A Survey of Healthcare Internet of Things

(HIOoT): A Clinical Perspective,” IEEE Internet of Things J., 2020.

J. Allen, “Photoplethysmography and Its Application in Clinical Physi-

ological Measurement,” Physio. Measurement, 2007.

[8]

[10]


https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.irhythmtech.com/patients/how-it-works
https://support.apple.com/en-us/HT208955
https://support.apple.com/en-us/HT208955
https://store.kardia.com/products/kardiamobile
https://store.kardia.com/products/kardiamobile

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

A. K. Joshi, A. Tomar, and M. Tomar, “A Review Paper on Analysis
of Electrocardiograph (ECG) Signal for the Detection of Arrhythmia
Abnormalities,” Int. J. Advanced Research in Electrical, Electronics and
Instrumentation Eng., 2014.

E. Gil, M. Orini, R. Bailon, J. M. Vergara, L. Mainardi, and P. Laguna,
“Photoplethysmography Pulse Rate Variability as A Surrogate Mea-
surement of Heart Rate Variability During Non-stationary Conditions,”
Physio. Measurement, 2010.

A. Johansson, “Neural Network for Photoplethysmographic Respiratory
Rate Monitoring,” Medical and Biological Eng. and Comput., 2003.

E. C.-P. Chua, S. J. Redmond, G. McDarby, and C. Heneghan, “Towards
Using Photo-plethysmogram Amplitude to Measure Blood Pressure
During Sleep,” Annals of Biomed. Eng., 2010.

K. Bruynseels, F. Santoni de Sio, and J. van den Hoven, “Digital
Twins in Health Care: Ethical Implications of An Emerging Engineering
Paradigm,” Frontiers in genetics, vol. 9, p. 31, 2018.

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled Dictionary
Training for Image Super-resolution,” IEEE Trans. Image Process.,
2012.

Z. Li, H. Huang, and S. Misra, “Compressed Sensing via Dictionary
Learning and Approximate Message Passing for Multimedia Internet of
Things,” IEEE Internet of Things J., 2017.

M. Al Disi, H. Djelouat, C. Kotroni, E. Politis, A. Amira, F. Bensaali,
G. Dimitrakopoulos, and G. Alinier, “ECG Signal Reconstruction on
the IoT-gateway and Efficacy of Compressive Sensing Under Real-Time
Constraints,” IEEE Access, 2018.

G. Zhang, Z. Mei, Y. Zhang, X. Ma, B. Lo, D. Chen, and Y. Zhang, “A
Noninvasive Blood Glucose Monitoring System Based on Smartphone
PPG Signal Processing and Machine Learning,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 11, pp. 7209-7218, 2020.

R. Banerjee, A. Sinha, A. D. Choudhury, and A. Visvanathan, “Pho-
toECG: Photoplethysmography to Estimate ECG Parameters,” in /EEE
Int. Conf. Acoustics, Speech and Signal Process., 2014.

A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn,
M. P. Turakhia, and A. Y. Ng, “Cardiologist-level Arrhythmia Detection
and Classification in Ambulatory Electrocardiograms Using a Deep
Neural Network,” Nature medicine, vol. 25, no. 1, pp. 65-69, 2019.
U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and
M. Adam, “Application of Deep Convolutional Neural Network for
Automated Detection of Myocardial Infarction Using ECG Signals,”
Information Sciences, vol. 415, pp. 190-198, 2017.

S. K. Bashar, D. Han, S. Hajeb-Mohammadalipour, E. Ding, C. Whit-
comb, D. D. McManus, and K. H. Chon, “Atrial Fibrillation Detection
from Wrist Photoplethysmography Signals Using Smartwatches,” Scien-
tific reports, vol. 9, no. 1, pp. 1-10, 2019.

N. Paradkar and S. R. Chowdhury, “Cardiac Arrhythmia Detection Using
Photoplethysmography,” in 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE, 2017, pp. 113-116.

H.-Y. Chiu, H.-H. Shuai, and P. C.-P. Chao, “Reconstructing QRS
Complex From PPG by Transformed Attentional Neural Networks,”
IEEE Sensors Journal, vol. 20, no. 20, pp. 12374-12 383, 2020.

K. Vo, E. K. Naeini, A. Naderi, D. Jilani, A. M. Rahmani, N. Dutt,
and H. Cao, “P2E-WGAN: ECG waveform synthesis from PPG with
conditional wasserstein generative adversarial networks,” in Proceedings
of the 36th Annual ACM Symposium on Applied Computing, 2021, pp.
1030-1036.

M. Aharon, M. Elad, A. Bruckstein et al., “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” IEEE
Trans. Signal Process., 2006.

K. Engan, S. O. Aase, and J. H. Husoy, “Method of Optimal Directions
for Frame Design,” in IEEE Int. Conf. Acoustics, Speech, and Signal
Process., 1999.

J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, “Supervised
Dictionary Learning,” in Advances in Neural Inf. Process. Systems, 2009.
T. Liu, Y. Si, D. Wen, M. Zang, and L. Lang, “Dictionary Learning for
VQ Feature Extraction in ECG Beats Classification,” Expert Systems
with Applications, 2016.

A. Majumdar and R. Ward, “Robust Greedy Deep Dictionary Learning
for ECG Arrhythmia Classification,” in IEEE Int. Joint Conf. Neural
Netw., 2017.

D. Craven, B. McGinley, L. Kilmartin, M. Glavin, and E. Jones,
“Adaptive Dictionary Reconstruction for Compressed Sensing of ECG
Signals,” IEEE J. Biomed. Health Informatics, 2016.

H. Tang, H. Liu, W. Xiao, and N. Sebe, “When Dictionary Learning
Meets Deep Learning: Deep Dictionary Learning and Coding Network

[34]

(35]

[36]

[37]
(38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

for Image Recognition With Limited Data,” IEEE Trans. Neural Netw.
Learning Systems, 2021.

Z. Li, Z. Lai, Y. Xu, J. Yang, and D. Zhang, “A Locality-Constrained
and Label Embedding Dictionary Learning Algorithm for Image Clas-
sification,” IEEE Trans. Neural Netw. Learning Systems, 2017.

Y. Sun, Z. Zhang, W. Jiang, Z. Zhang, L. Zhang, S. Yan, and M. Wang,
“Discriminative Local Sparse Representation by Robust Adaptive Dic-
tionary Pair Learning,” IEEE Trans. Neural Netw. Learning Systems,
vol. 31, no. 10, pp. 4303-4317, 2020.

Z. Chen, X.-J. Wu, and J. Kittler, “Relaxed Block-Diagonal Dictionary
Pair Learning With Locality Constraint for Image Recognition,” IEEE
Trans. Neural Netw. Learning Systems, 2021.

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image Super-resolution
via Sparse Representation,” IEEE Trans. Image Process., 2010.

J. Xu, C. Qi, and Z. Chang, “Coupled K-SVD Dictionary Training for
Super-resolution,” in IEEE Int. Conf. Image Process., 2014.

K. Li, Z. Ding, S. Li, and Y. Fu, “Discriminative Semi-coupled Projective
Dictionary Learning for Low-resolution Person Re-identification,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

S. Wang, L. Zhang, Y. Liang, and Q. Pan, “Semi-coupled Dictionary
Learning with Applications to Image Super-resolution and Photo-sketch
Synthesis,” in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2012.

E. A. Ashley and J. Niebauer, Cardiology explained. Remedica, 2004.
A. N. Vest, G. Da Poian, Q. Li, C. Liu, S. Nemati, A. J. Shah, and G. D.
Clifford, “An Open Source Benchmarked Toolbox for Cardiovascular
Waveform and Interval Analysis,” Physio. Measurement, 2018.

Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A Survey of Sparse
Representation: Algorithms and Applications,” IEEE Access, 2015.

J. A. Tropp and A. C. Gilbert, “Signal Recovery from Random Mea-
surements via Orthogonal Matching Pursuit,” IEEE Trans. Inf. Theory,
2007.

Z. Jiang, Z. Lin, and L. S. Davis, “Label Consistent K-SVD: Learning a
Discriminative Dictionary for Recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., 2013.

A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “MIMIC-III,
A Freely Accessible Critical Care Database,” Scientific Data, 2016.

A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
“PhysioBank, PhysioToolkit, and PhysioNet: Components of A New
Research Resource for Complex Physiologic Signals,” Circulation, 2000.
J. Hampton and J. Hampton, The ECG Made Easy E-Book. Elsevier
Health Sciences, 2019.

H. Sedghamiz, “BioSigKit: A Matlab Toolbox and Interface for Analysis
of BioSignals,” J. Open Source Software, 2018.

J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,”
IEEE Trans. Biomed. Eng., 1985.

H. Sedghamiz and D. Santonocito, “Unsupervised Detection and Clas-
sification of Motor Unit Action Potentials in Intramuscular Electromyo-
graphy Signals,” in [EEE E-health and Bioengineering Conf., 2015.

Z. Gao, H.-Z. Xuan, H. Zhang, S. Wan, and K.-K. R. Choo, “Adaptive
fusion and category-level dictionary learning model for multiview human
action recognition,” IEEE Internet of Things Journal, vol. 6, no. 6, pp.
9280-9293, 2019.

W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, “Multi-
parameter Respiratory Rate Estimation from the Photoplethysmogram,”
IEEE Trans. Biomed. Eng., vol. 60, no. 7, pp. 1946-1953, 2013.

M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R.
Ahmed, O. Kaiwartya, and A. James-Taylor, “Toward a Heterogeneous
Mist, Fog, and Cloud-Based Framework for the Internet of Healthcare
Things,” IEEE Internet of Things J., 2019.

T. Wu, E. Wu, C. Qiu, J.-M. Redouté, and M. R. Yuce, “A Rigid-Flex
Wearable Health Monitoring Sensor Patch for IoT-Connected Healthcare
Applications,” IEEE Internet of Things Journal, 2020.

Z.U. Ahmed, M. G. Mortuza, M. J. Uddin, M. H. Kabir, M. Mahiuddin,
and M. J. Hoque, “Internet of Things based patient health monitoring
system using wearable biomedical device,” in 2018 international con-
ference on innovation in engineering and technology (ICIET). IEEE,
2018, pp. 1-5.

Z. Zhang, Z. Pi, and B. Liu, “TROIKA: A General Framework for
Heart Rate Monitoring Using Wrist-type Photoplethysmographic Signals
During Intensive Physical Exercise,” IEEE Trans. Biomed. Eng., 2014.
Q. Zhu, M. Chen, C.-W. Wong, and M. Wu, “Adaptive Multi-trace
Carving for Robust Frequency Tracking in Forensic Applications,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 1174-1189, May 2020.



[59] E. Khan, F. Al Hossain, S. Z. Uddin, S. K. Alam, and M. K. Hasan, “A
Robust Heart Rate Monitoring Scheme Using Photoplethysmographic
Signals Corrupted by Intense Motion Artifacts,” IEEE Transactions on
Biomedical Engineering, vol. 63, no. 3, pp. 550-562, 2016.

Xin Tian (Member, IEEE) received the B.E. degree
in Optoelectronic Information Science and Engi-
neering from Huazhong University of Science and
Technology of China in 2017 and her Ph.D. degree
at the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, USA,
in 2022. Her research interests are signal processing,
data science, and machine learning in smart health.
She is a research scientist at Meta since 2022. She
was selected as a Future Faculty Fellow and was
awarded as an Outstanding Graduate Assistant by
the University of Maryland in 2020 and 2021, respectively.

Qiang Zhu (S’ 17-M’20) received his B.E. degree in
control science and engineering from Zhejiang Uni-
versity, Hangzhou, China, in 2010, his M.S. degree
in control science and engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2014,
and his Ph.D. degree in electrical engineering from
the University of Maryland, College Park, USA, in
2020. He is a research scientist at Meta since 2020.
His research interests are signal processing, machine
learning, and information retrieval. He received the
Distinguished Teaching Assistance Award in 2016
from the University of Maryland.

Yuenan Li (M’13-SM’21) received his B. Eng.
and M. Eng. degrees in measurement technology
and instrument, and the Ph.D. degree in informa-
tion and communication engineering, in 2004, 2006,
and 2010, respectively, all from Harbin Institute of
Technology, China. He is currently an Associate
Professor at the School of Electrical and Information
Engineering, Tianjin University, China. From 2019
to 2020, he was a visiting researcher at the Univer-
sity of Maryland, College Park, USA. His research
interests include multimedia signal processing, in-
formation security and forensics, computer vision, and physiological signal
processing.

Min Wu (Fellow, IEEE) received the B.E. degree in
automation and the B.A. degree in economics from
Tsinghua University, Beijing, China, in 1996 with
the highest honors, and the Ph.D. degree in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 2001. She is a Professor and an
Associate Dean of Engineering and a Distinguished
Scholar-Teacher with the University of Maryland,
College Park, MD, USA. Her research interests in-
clude information security and forensics, multimedia
signal processing, and applications of data science
and machine learning in health and IoT. Prof. Wu received a U.S. NSF
CAREER award, a U.S. ONR Young Investigator Award, a TR100 Young
Innovator Award from the MIT Technology Review, an IEEE Harriett B. Rigas
Education Award, and an IEEE SP Society Meritorious Service Award. She
chaired the IEEE Technical Committee on Information Forensics and Security,
and has served as the Vice President—Finance of the IEEE Signal Processing
Society and the Editor-in-Chief of the IEEE Signal Processing Magazine. She
has been elected as 2022-2023 President-Elect of the IEEE Signal Processing
Society. She is a Fellow of AAAS and of the U.S. National Academy of
Inventors.



	Introduction
	Related Work
	ECG Reconstruction From PPG
	Dictionary Learning

	Proposed Framework
	Physiological Background and Preprocessing
	Cross-Domain Joint Dictionary Learning (XDJDL)
	The K-SVD Model
	Proposed XDJDL Model
	Optimization

	Label Consistent XDJDL (LC-XDJDL)

	Experimental Evaluation
	Dataset
	Metrics for Evaluation
	Evaluation of Waveform Morphology
	Evaluation of Time Interval Recovery

	Overall Morphological Reconstruction
	Subwave Morphological Reconstruction
	Time Interval Recovery

	Discussions
	Result Using PPG-based Segmentation Scheme
	Evaluation on the Capnobase TBME-RR Dataset
	Feasibility Analysis of The Proposed Method for The Internet-of-Healthcare-Things (IoHT)
	Limitations of The Proposed Method
	Performance of Leave-One-Out Experiment
	Performance Evaluation on A Motion Dataset

	Future Work Towards Explainable AI

	Conclusions
	References
	Biographies
	Xin Tian
	Qiang Zhu
	Yuenan Li
	Min Wu


