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Abstract

Current evaluation schemes for large language

models often fail to consider the impact of the

overlap between pretraining corpus and test

data on model performance statistics. Snoopy

is an online interface that allows researchers to

study this impact in few-shot learning settings.

Our demo provides term frequency statistics

for the Pile, which is an 800GB corpus, ac-

companied by the precomputed performance of

EleutherAI/GPT models on more than 20 NLP

benchmarks, including numerical, common-

sense reasoning, natural language understand-

ing, and question-answering tasks. Snoopy al-

lows a user to interactively align specific terms

in test instances with their frequency in the

Pile, enabling exploratory analysis of how term

frequency is related to the accuracy of the mod-

els, which are hard to discover through au-

tomated means. A user can look at correla-

tions over various model sizes and numbers

of in-context examples and visualize the re-

sult across multiple (potentially aggregated)

datasets. Using Snoopy, we show that a re-

searcher can quickly replicate prior analyses for

numerical tasks, while simultaneously allowing

for much more expansive exploration that was

previously challenging. Snoopy is available at

https://nlp.ics.uci.edu/snoopy.

1 Introduction

Large language models have achieved impres-

sive few-shot performance on various NLP bench-

marks with in-context learning (Black et al., 2022;

Chowdhery et al., 2022; Brown et al., 2020). This

improvement is primarily driven by increasing the

scale of the models and the pretraining data (Ben-

der et al., 2021; Kaplan et al., 2020). By leveraging

diverse data sources such as GitHub and arXiv,

these models have demonstrated the ability to per-

form complicated tasks such as quantitative reason-

ing (Lewkowycz et al., 2022) and writing computer

programs (Chen et al., 2021).
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However, the current evaluation schemes for

these language models often underestimate the

possibility of data leakage between the evaluation

data and the pretraining data. Various studies have

demonstrated the capacity of large language mod-

els to memorize the pretraining data (Carlini et al.,

2021, 2022), as well as the impact of pretraining

term frequency on reasoning performance (Razeghi

et al., 2022). These observations highlight the im-

portance of measuring the impact of pretraining

data in evaluating large language models.

A critical barrier to performing research related

to pretraining data statistics is the cost of analyz-

ing the large corpus of pretraining data. Since

the size of these corpora is usually large (e.g.,

Pile is 800GB), analyses involving the pretraining

data can be time-consuming and expensive. Fur-

thermore, evaluating large language models such

as GPT-J-6B is also expensive—even inference

queries require high-memory GPUs—which fur-

ther impedes analysis of the capabilities and limita-

tions of large language models.

To facilitate research in understanding the rela-

tionship between the pretraining corpus and model

behavior, we introduce Snoopy, an online platform

that assists researchers in studying the impact of

pretraining term frequencies on language model

performance on downstream tasks. Snoopy in-

cludes unigram and low-order co-occurrence statis-

tics of terms in the Pile dataset (the pretraining

data for all of the EleutherAI/GPT models). It uses

these counts to show the correlation between the

model’s few-shot performance on instances and the

frequency of instance terms in the pretraining data

(illustrated in Figure 1). Our web app supports this

analysis on more than 20 NLP benchmarks (mostly

from the lm-evaluation-harness (Gao et al., 2021b))

including, numerical and commonsense reasoning,

natural language understanding, and question an-

swering tasks. In addition, the user can highlight

desired terms on the plots, explore individual in-
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works have illustrated language model capabilities

to memorize parts of the pretraining data (Carlini

et al., 2021; McCoy et al., 2021). Recently, some

works has measured the model’s memorization of

pretraining data through controlled experiments on

fact retrieval (Akyürek et al., 2022), classification

tasks (Magar and Schwartz, 2022), and text gener-

ation (Carlini et al., 2022). All this research em-

phasizes the importance of studying the pretraining

data statistics and considering the pretraining data

in interpreting the model evaluation performances.

Evaluation Frameworks for LMs Since the

emergence of large language models, many works

have provided a unified and easy to use framework

for evaluating them (Wolf et al., 2019; Gao et al.,

2021b; Srivastava et al., 2022). Our demo, Snoopy,

can augment these frameworks by associating pre-

training data statistics to the evaluation scheme.

6 Conclusions

In this paper, we presented Snoopy, a tool that en-

ables researchers to study the impact of pretrain-

ing term frequencies on a model’s few-shot per-

formance without requiring expensive computing

resources. We illustrated how Snoopy could be

used to create performance vs. frequency plots,

aggregate statistics over multiple datasets, and sev-

eral other functionalities for further investigating

pretraining data statistics. We hope that this tool

makes it easier for researchers to study the effect of

term frequencies on language model performance.
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