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Abstract—In the early stages of a pandemic, epidemiological
knowledge of the disease is limited and no vaccination is available.
This poses the problem of determining an Early Mitigation
Strategy. Previous studies have tackled this problem through
finding globally influential nodes that contribute the most to
the spread. These methods are often not practical due to their
assumptions that (1) accessing the full contact social network
is possible; (2) there is an unlimited budget for the mitigation
strategy; (3) healthy individuals can be isolated for indefinite
amount of time, which in practice can have serious mental health
and economic consequences.

In this work, we study the problem of developing an early
mitigation strategy from a community perspective and propose
a dynamic Community-based Mitigation strategy, ComMit. The
distinguishing features of ComMit are: (1) It is agnostic to the
dynamics of the spread; (2) does not require prior knowledge of
contact network; (3) it works within a limited budget; and (4)
it enforces bursts of short-term restriction on small communities
instead of long-term isolation of healthy individuals. ComMit
relies on updated data from test-trace reports and its strategy
evolves over time. We have tested ComMit on several real-world
social networks. The results of our experiments show that, within
a small budget, ComMit can reduce the peak of infection by 73%
and shorten the duration of infection by 90%, even for spreads
that would reach a steady state of non-zero infections otherwise
(e.g., SIS contagion model).

Index Terms—community, contagion, spread, mitigation

I. INTRODUCTION

In response to a viral spread, multiple factors determine the
efficacy of different mitigation strategies, namely the epidemi-
ological knowledge of the spread dynamics, the possibility of
medical intervention (i.e., vaccination), and the existence of
mobility and interaction data [1, 2, 3, 4].

In the early stages of a pandemic, the disease dynamic
is unknown, the contact network is partially known at best,
and no vaccination is available. These are the challenges
against an Early Mitigation Strategy. The objective of such
a strategy is to minimize the peak and/or total number of
infections with the least possible perturbations introduced to
the social network (through, e.g., quarantine and isolation
approaches) [3, 5, 6]. In contrast, once a vaccine is available,
the objective of the Immunization problem is to minimize the
amount of time it takes to halt the spread effectively with the
least amount of vaccine. Despite the similarity of approaches,
immunization problem and early mitigation strategy optimize
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different objective functions and the former does not introduce
perturbations to the network; the candidate nodes chosen in
an early mitigation setting will be isolated for the duration
of the disease (removal of edges in the contact network), but
in immunization problem they are vaccinated and no network
perturbation is introduced.

The majority of studies on the two mentioned strategies
are based on detecting globally influential nodes (e.g., degree
centrality [7] and betweenness centrality [8]) that contribute
the most to the spread (targeted strategies). Despite promising
theoretical results, these methods are generally difficult to
implement due to their assumption of full knowledge of
the contact network [9]. Additionally, complex social net-
works demonstrate high clustering and individuals tend to
form groups (communities) [10], which can both alleviate
and aggravate viral expansion [1, 11]. The global centrality
measures do not consider the local influence of the node in
their respective communities [3]. We argue that for tackling
these shortcomings, a practical mitigation strategy should not
assume a prior knowledge of the contact network structure and
the dynamics of the spread. It also should consider the cost
of a certain intervention scheme and avoid isolating healthy
members of the population.

In this work, we study the problem of developing an early
mitigation strategy from a community perspective and propose
a dynamic Community-based Mitigation strategy, ComMit,
that only utilizes geographical information to infer community
membership and data from test-trace to update its knowledge
of the spread, without enforcing any assumptions about the
nature of the disease. Because ComMit relies on updated
data from test-trace reports, it is dynamic and the mitigation
strategy can evolve over time. Unlike previous works, we have
designed ComMit with two important assumptions: (1) there
is no global information on the social network contacts; (2)
the candidates for isolation are small clusters instead of single
healthy individuals. The second condition aims to minimize
the economic and psychological damage ([12], [13]).

Using the information from the test-trace step, ComMit

introduces appropriate network perturbations to combat the
magnitude of the spread based on the current knowledge of the
underlying network and testing outcome. These perturbations
are aimed to fragment the network communities. ComMit

achieves that through the divider block that forms small
clusters of nodes (sub-clusters) that are to be temporarily
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Fig. 1: ComMit pipeline. Start. Contact network Gs is unknown and the known graph to the algorithm, G⇤
, is empty. The dashed lines show

the communities known to the algorithm. The figure shows the first iteration of the algorithm. Test-Trace. The coloring of the pivot indicates

the result of the test (red is infectious). Tracing of the pivots updates the edges of G⇤
. Divider. The block uses the updated information on

G⇤
t and identified infections from S⇤

t to form sub-clusters (in purple), whose isolation fragments the communities, reducing the magnitude

of the spread. The network perturbations by divider updates Gs on which the spread runs. The iteration continues until the termination

condition is met (see Section IV-C).

isolated as a community from the rest of the network. After
a certain time has passed these sub-clusters are released back
to the network and will not be isolated until some time has
passed from their last isolation. The pipeline for ComMit is
shown in Figure 1.

Our contributions can be summarized as follows,

• We formulate the early mitigation problem based on real-
world constraints.

• To the best of our knowledge, we are the first to propose
an early mitigation strategy that (1) works with no
knowledge of either the social network structure and the
spread dynamic; (2) considers the practical cost of the
strategy and operates within a limited budget.

• We validate our mitigation strategy, ComMit, on five real-
world datasets that are obtained from national address
database and Copenhagen project (see Section V).

• The results of our experiments show that within its
limited budget, ComMit is very effective in reducing the
peak and duration of infection, reducing them up to 73%
and 90%, respectively. In all of our case studies, ComMit

successfully turns a steady state spread process1, such
as SIS contagion model, into a dying process with a
relatively short absorption time2

• We open-source the repository containing our processed
datasets and code for reproducing the result of the exper-
iments in this paper3.

1A spread dynamic that reaches a steady state of maintaining a non-zero
number of infectious nodes.

2The time that it takes for the number of infectious nodes to become zero.
3https://github.com/Pegayus/ComMit

II. RELATED WORK

Our work involves three bodies of research; targeted inter-
vention strategies against viral spread, the impact of commu-
nity structure on dynamics of such a spread, and community-
based intervention strategies.

A. Targeted Intervention Strategies

Early Mitigation Strategy
Gross et al. [14] is the closest study to ours in modeling

a contact network based on geo-spatial data. Their contact
network model is a modular 2D lattice in which each module
represents a city and each city can only connect to its
immediate neighboring module. Their proposed mitigation
strategies are social distancing and reducing degrees in and
outside of the communities by isolating individuals. Our
approaches differ in that ComMit (1) does not limit contact
network to a 2D lattice; (2) considers a mixture of sampling
(testing) and isolation; (3) does not isolate any healthy
individuals; (4) does not assume complete knowledge of the
contact data.

Immunization Strategy
Rosenblat et al. [2] challenge the popular target-based

immunization strategies by studying different immunization
methods in the presence of partially observed network data.
They conclude that popular targeted methods, such as degree
and betweenness centralities, only perform well with little to
no missing data, but self-reported local information from sam-
pled individuals compensates for a large volume of missing
data. Salathé et al. [15] place a similar emphasis on partially
observed networks and propose a heuristic method to find
community bridge nodes (CBF that stands for Community
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Bridge Finder). They show how targeting bridge nodes for
immunization outperforms acquaintance immunization (the
only other network structure agnostic method) [16], in which
the most frequently visited acquaintances of randomly selected
nodes are vaccinated first. CBF relies on random walks and
constant path finding between current and visited nodes. This
limits its value in a practical dynamic setting where these
computations need to run iteratively. In our method, we show
how we can avoid such costly (and impractical) computations
by leveraging the known geo-spatial communities that are
shown to be predictors of contact-based communities [17, 18].

B. Community Structure and Dynamics of Spread

Topı̂rceano [19] shows the importance of geo-spatial in-
formation in predicting the dynamics of an outbreak. This
paper offers a Geo-spatial Population Model (GPM) that
estimates the predictors of mobility between different regions
in a country based on the region’s population density. Their
results suggest that changing the number of regions and their
population density directly impacts the size and duration of
the outbreak.

C. Community-based Intervention Strategies

The definition of community in these studies is diverse: from
subgraphs with the highest number of subgraph intra edges

number of subgraph inter edges and k-cores
to geo-spatial and ground truth communities. Serafino et al. [6]
showed that disconnecting bridge nodes that connect super-
spreader k-cores considerably reduces the radius of the spread.
However, they rely on betweenness centrality which is a global
measure that requires full knowledge of the contact network.

Yang et al. [20] propose a flow-based edge betweenness
measure to minimize the p-norm of the flow between commu-
nities in the network. They show that the bridge-based methods
are superior to degree-based intervention methods.

Block et al. [12] consider social behavior patterns within
communities and propose to (1) limit interaction to few
repeated contacts; (2) choose those contacts based on some
similarity (e.g., homophily); (3) strengthen contact with those
pairs that interact in more than one community. We leverage
their finding and that of Topı̂rceano [19] to design the frag-

mentation step in ComMit (see IV-B). The main problem with
their strategy is the assumption of full network knowledge.

Yuan et al. [3] emphasize the local importance of the nodes
to their community in contrast with their global centrality.
They measure how important nodes are to their communi-
ties and how important their communities are to the overall
network. Their scores are based on eigenvalue and eigenvector
pairs obtained from the spectral clustering of the neighborhood
matrix. This method is susceptible to edge percolation and
loses its performance with partial network data.

III. PROBLEM STATEMENT

Inspired by the findings of Block et al. [12] and Topı̂rceano
[19], we argue that fragmenting network communities into
small clusters (sub-clusters) and isolating these sub-clusters,
rather than isolating individuals, is the best strategy during the

TABLE I: Notations.

Symbol Definition
Input to blind network fragmentation problem

G⇤
t = (V,E⇤t) Learned contact social network at time t

S⇤
t (.) Partially known outcome of St(.) at time t

I⇤
t Set of identified infected nodes at time t

bf Budget for forming sub-clusters (divider block)
Additional input to ComMit algorithm

Gg = (V,Eg ,Wg) Geo-proximity network
Cg Geo communities inferred from Gg

bt Budget for testing (test-trace block)
at Accuracy of self-reports in contact tracing
✏t Value of ✏ for testing at time t
d✏ Decaying factor for updating ✏t
tr Restriction period of isolating sub-clusters

Other notations
Ct Set of sub-clusters at time t
Gs = (V,Es) Contact social network
St(.) = {svt |v 2 V } Outcome of spread at time t
It = {v 2 V |svt = I} Set of infected nodes at time t

early stages of a contagion. We refer to the problem of finding
such sub-clusters as the Network Fragmentation Problem and
it is the backbone of the ComMit algorithm.

Assume the beginning of an unknown viral infection within
an unknown contact network with a known underlying geo-
spatial structure (e.g., the geographic coordinates of domi-
ciles). Suppose we have the power of restraining individ-
uals to limit their interactions within a certain group in
exchange for a compensation. This introduces perturbations
in the underlying unknown contact network that changes the
dynamic of the spread. The main question is how to choose
groups of individuals such that isolating them as a group
from the rest of the network, while maintaining their inner-
group interaction, most efficiently inhibits the spread. This is
the network fragmentation problem that we formally define
in Section III-D, but first, we discuss the population model,
contagion model, and assumptions on network perturbations,
as follows. The notations used in this and next section are
summarized in Table I.

A. Population Model

Empirical studies on human contact have shown geo-spatial
distance to be the most important factor in forming connec-
tions [17]. More recent studies on online social networks show
the geo-spatial distance also influences the presence of online
contacts and they are inversely correlated by a power-law [18].
This observation can be used to compensate for having no
knowledge of the contact network structure.

We model our population as a two-layer network consisting
of the contact network Gs = (V,Es) and its underlying geo-
location graph Gg = (V,Eg,Wg). Both layers are undirected
and share the same set of nodes, V . Gg is a complete graph
and a weighted edge (i, j, wg

ij) 2 Eg indicates a geo-distance
of wg

ij between nodes i and j. Gs, however, is sparse and
an edge (i, j) 2 Es implies the existence of contact between
nodes i and j. We assume the distance between individual
domiciles and their contact patterns do not change.

The community membership of each node is inferred from
Gg , while the infection spreads through the links in Gs. The
key underlying assumption is the inverse relationship between



Wg and Es, as demonstrated in [17, 18]. More specifically,
the empirical results in [18] suggest a Zipf’s law:4 i.e., the
probability of an edge between nodes (i, j) in Gs is

p((i, j) 2 Es) ⇡
b

wij
g

, 0 < b  1, 1  wij
g (1)

for a constant b. We use this rule in building our datasets in
Section V. From the perspective of a mitigation strategy, Es

is partially known. We represent this partially known network
at time t by G⇤

t = (V,E⇤
t ). In each iteration, G⇤

t is updated by
the information from test-trace (Figure 1). If nothing about Es

is known (i.e., in the start of the algorithm, or in the absence
of test-trace block), E⇤

t is empty.

B. Contagion Model

Consider a viral spread with unknown dynamics, St(Gs) =
{svt |v 2 V }, that impacts the contact network Gs by changing
the state of nodes in V at each timestamp. In this definition, svt
denotes the state of node v 2 V at time t, and St(.) is a graph
function whose domain and range are V and a pre-defined set
of possible states, respectively. The only known facts about
St(Gs) from the perspective of an early mitigation strategy
are (1) infectious (svt = I) is one of the possible states, and
(2) the infection spreads through direct contact.

C. Network Perturbations

The only network perturbations required for the network
fragmentation problem are edge deletion and edge addition.
The edge addition is only limited to the edges that have been
previously deleted by the algorithm (isolation process) and are
to be released. Since one of the criteria for the early mitigation
strategy is to minimize the isolation of healthy individuals,
the selection of edges for perturbation is performed through
selection of sub-clusters of nodes. The healthy individuals
are restricted through isolation of these sub-cluster; i.e., the
members of a sub-cluster can only contact others within the
sub-cluster and not outside of it. This means the intra-cluster
edges of the sub-cluster will be preserved while the inter-
cluster edges are removed.

To limit the amount of network disturbance (e.g., due to
economic cost), there is a budget for the selection of sets
of nodes to form sub-clusters. This budget, which we refer
to as bf , represents the cost of restricting the movement of
individuals in a network (e.g., daily monetary compensation).
As such, it is logical to consider bf in terms of the number
of restricted nodes per timestamp rather than the number of
edges that are perturbed (e.g., we pay restricted individuals the
same compensation regardless of their number of contacts).

D. Network Fragmentation Problem Statement

Given the contact network Gs(V,Es), the outcome of a
temporal spreading process St(.), and a fragmentation budget
bf , the network fragmentation problem is to find a set of sub-
clusters Ct(Gs, bf ) at time t whose isolation minimizes the

4In [18], the exponent of the best power-law fit if sound to be �1.03 with
a standard error of 0.03, which can be approximated by a Zipf’s law.

total number of infectious nodes at time t+1. In formation of
these sub-clusters, only known infectious nodes are allowed to
form singleton sub-clusters. Formally,

Ct(Gs, bf ) = min
Gs,St(.)

|It+1| (2)

s.t
X

C2Ct(Gs,bf )

|C|  bf

|C| > 1 , 8C 2 Ct(Gs, bf ) if svt 6= I , 8v 2 C

|C| = 1 , 8C 2 Ct(Gs, bf ) if svt = I , 8v 2 C.

With known Gs and St(.), and It  bf , the answer to this
problem is trivial: putting all infectious nodes in It in singleton
sub-clusters and isolating them gives the optimal solution.

The problem is non-trivial once we add the assumptions of
the early mitigation strategy: partially known Gs and St(Gs) at
time t, which are shown as G⇤

t and S⇤
t in Table I, respectively.

This problem, which we will refer to as Blind Network

Fragmentation Problem, is then formulated as follows,

Ct(Gs, bf ) = min
G⇤

t ,S
⇤
t (Gs)

|It+1| (3)

s.t
X

C2Ct(Gs,bf )

|C|  bf

|C| > 1 , 8C 2 Ct(Gs, bf ) if s⇤vt 6= I , 8v 2 C

|C| = 1 , 8C 2 Ct(Gs, bf ) if s⇤vt = I , 8v 2 C,

in which s⇤vt 2 S⇤
t . Note that the difference between 2 and

3 is that 3 uses the information from partial observations, G⇤
t

and S⇤
t , to minimize It+1. ComMit is a heuristic algorithm

that aims to minimize 3. The next section outlines its details.

IV. METHOD

Here, we introduce the ComMit algorithm for dynamically
perturbing a network to inhibit the progress of a viral spread,
as defined in 3. ComMit does not require a priori knowledge
of the contact network structure. Other methods with a similar
assumption (which mainly deal with immunizations), over-
come this limitation by relying on extensive sampling from the
contact network (in the form of random walks and/or random
node sampling) [2, 15, 16]. In practice, assuming there is an
unlimited budget for sampling is unrealistic.

Another assumption of ComMit is blindness to the dynamic
of the spread, which in turn calls for an efficient testing
strategy to identify as many infectious nodes as possible.
Although the intuition behind sampling and testing is different
(one tries to learn about the network structure whereas the
other aims to locate the infectious nodes), the mechanism by
which they operate is the same: they select candidates from the
pool of nodes in the network based on certain criteria and both
within a limited budget in real-world scenarios. Considering
their similarity, we combine the sampling and testing into
one temporal algorithm. At each timestamp, the goal of this
algorithm is to update ComMit’s knowledge about the network
structure and the infectious hubs simultaneously. We refer to



this algorithm in the ComMit’s pipeline as test-trace block.
Iteratively, the output of this block is fed into the divider

block in which the fragmentation-based mitigation strategy of
ComMit perturbs the network to inhibit the spread (Figure 1).
Below, we discus the details of these two blocks.

A. Test-Trace Block

As evident from the name, the test-trace block consists of
two steps: Testing. The selection of candidates (pivots) from
the population to be tested. This step determines whether these
candidates are infectious or not. Tracing. Contact tracing of
pivots in order to update the known contact network, G⇤. Note
that the traced contacts will not be tested.

Consider a temporal testing strategy, Tt(Gs, bt) =
{svt |svt 2 St(Gs)} with limited budget bt, whose purpose is
two-fold: (1) finding as many infectious nodes in It as pos-
sible; (2) gathering information about unknown Gs network
to update the known G⇤

t network. More formally, an optimal
testing strategy would minimize the following,

Tt(Gs, bt) = min
Gs,St(Gs)

dist(Gs, G
⇤
t ) + dist(St(Gs), S

⇤
t (Gs))

s.t. |Tt(Gs)|  bt, (4)

in which dist(a, b) denotes the distance between a and b. This
problem is similar to the exploration-exploitation scenario.

A well-known algorithm to address the exploration-
exploitation problem in machine learning is ✏-greedy. This
algorithm selects an action from a set of possible actions based
on a given reward function; the action that maximizes the
reward function is selected with probability p = 1 � ✏ and
a random action is chosen with probability p = ✏. We adapt
this idea to our graph-based exploration-exploitation problem
and select the pivots as follows,

pivott =

(
randomly choose from I⇤

t�1, p = 1� ✏t
randomly choose from V, p = ✏t

(5)

in which I⇤
t�1 is the set of infected nodes identified in

the previous timestamp. At each time, ComMit selects as
many pivot nodes as allowed by bt. As time progresses, we
have more knowledge about the network and can rely on
exploitation more than exploration. To make that possible,
the value of ✏ is updated through a decaying factor d✏ as
✏t = max (✏t�1 � ✏t�1

d✏
, 0), d✏ > 0.

Once the pivots are tested and I⇤
t is updated, the tracing

strategy is straightforward: the pivots are asked to provide
the information about their immediate neighborhood. This
information may have less than 100% accuracy (i.e., missing
edges). We denote this accuracy by at and study its impact in
Section V-F. The new edges obtained from tracing update G⇤

t

which will be used by the divider block.

B. Divider Block

The divider is the main building block of ComMit that
handles the network perturbations aimed at decreasing the

magnitude of the spread. The intuition behind divider is to
fragment the bigger communities by reducing the density of
its inter-connections. Using the updated I⇤

t and G⇤
t from test-

trace, the divider identifies a new set of sub-clusters, Ct, to be
temporarily isolated from the network. It does so by attributing
a score to each candidate node for forming a sub-cluster.
The score is calculated for the community C 2 Cg of each
node, where Cg is the geo-communities inferred from Gg .The
scoring function has three components:

score =
1

3
(norm-size + inf-rate + density), (6)

norm-size =
|C|
|V | , (7)

inf-rate =
|{v 2 C|s⇤vt = I}|

|C| , (8)

density =
1

|E⇤
t |
(|{(v1, v2) 2 E⇤

t |v1, v2 2 C}|�

|{(v1, v2) 2 E⇤
t |v1 2 C, v2 62 C}|), (9)

which, in order, are: (1) normalized community size, (2)
proportion of nodes within community that are known to be
infectious, and (3) community density as the proportion of
edges in the known contact network that are inside of the
community (i.e., excluding the outgoing edges). The nodes
within a community all have the same score. The divider
randomly picks bfs candidates from the top 20th percentile of
the scores as the seed for the sub-cluster. It ensures the sub-
cluster is not singleton by randomly adding bfn neighbors of
each seed that are available (e.g., not isolated with another
sub-cluster) to the sub-cluster. Hence, the overall budget of
the divider is bf = bfs ⇥ bfn. The isolation of a sub-cluster
refers to cutting all the outgoing edges from a sub-cluster while
maintaining the edges inside.

The divider is also responsible for releasing the currently
isolated sub-clusters that have served their isolation time (tr).
To assure these released sub-clusters do not get restricted again
and indefinitely, divider places the members of these sub-
clusters in a banned list that inhibits these nodes from forming
another isolated sub-cluster for at least tr time. The steps for
the divider algorithm at time t are,

1) Release sub-clusters isolated at time t� tr.
2) Add the members of the released sub-clusters in the

banned list and remove those who have been in the list
for tr time.

3) Put recently identified infectious nodes (I⇤
t�1) into sin-

gleton sub-clusters.
4) Calculate the community score according to 6 for nodes

that are neither in an isolated sub-cluster nor in the
banned list.

5) Pick bfs seed nodes with the score in the top 20th per-
centile of scores and form their sub-clusters by selecting
bfn of their neighbors at random. If the neighboring list
is empty, we remove the corresponding seed node from
the candidates.

6) Remove outgoing edges of the new sub-clusters to
isolate them.



C. ComMit Algorithm

Combining the test-trace and divider blocks into a pipeline
that iteratively perturbs the contact network yields the final
ComMit algorithm (see Algorithm 1). An important note is
when ComMit terminates. Ideally, it would terminate when
either there is no more budget allocated from time t onward,
or the spread has dies out (i.e., |It| = 0). Since It is unknown,
we set the latter termination condition such that if for T
consecutive timestamps no new infectious node is found (i.e.
|I⇤

ti | = 0, for ti 2 {t� T, t� T + 1, ..., t}), the spread is
considered eradicated.

Algorithm 1: ComMit()
Input: V , Gg , tr , bfn, bfs, bt, ✏, d✏

1 Cg  ExtractCommunities(Gg)
2 S⇤

0  {s⇤v0 = Ī|v 2 V } // Ī = non-infectious
3 G⇤

0  (V, {}); I⇤
0  {}; t 1

/* iterate while termination condition not met */
4 while NotTerminated() do

/* TestTrace() operates on unknown network, Gs */
5 I⇤

t , S
⇤
t , G

⇤
t  TestTrace(I⇤

t�1, S
⇤
t�1, G

⇤
t�1, ✏, d✏, bt)

/* Divider() updates Gs on which spread runs */
6 Divider(I⇤

t , S
⇤
t , G

⇤
t , Cg , tr, bfn, bfs)

7 t t+ 1
8 end

D. Budget Analysis

ComMit has two budgets: the testing budget (bt as the
number of nodes tested at time t) and the fragmentation budget
(bf as the number of non-infectious nodes that are members
of restricted sub-clusters t). The latter is divided into two
separate budgets; one for choosing the sub-cluster seed nodes
(bfs) and the other for selecting a certain number of known
immediate neighbors of each seed node (bfn). Empirically,
we have witnessed that, for bfn values greater than two,
no significant performance gain is achieved. The other two
budgets are expressed as a proportion of |V |: bfs = ↵|V |
and bt = �|V |. Thus, the total budget for ComMit becomes
(bfn ⇥ ↵ + �)|V |, which can be tuned by setting ↵ and �
accordingly (see V-F).

V. EXPERIMENTS & DISCUSSION

A. Contagion Model for Simulation

The majority of previous studies use SIR model in their
simulations as the permanent immunity condition facilitates
the analytical tractability [9]. To explore a less investigated
direction, we consider the SIS model as the underlying dy-
namic of the spread. The SIS contagion model models viruses
such as common cold, influenza, and COVID-19 [21]. In the
SIS model, each node at time stamp t can either be susceptible
(S) or infectious (I). The transition from S to I is controlled
by the infection rate �. The infected nodes transition back to S
once they pass the disease duration td. The default values for
� and td in our experiments are 0.5 and 3, unless otherwise
is specified. We initialize an infection by selecting 0.01⇥ |V |
nodes form the population uniformly at random.

TABLE II: Datasets general information (Gs).

Albany Syracuse Rochester Copenhagen Ithaca
|V | 2, 858 2, 385 1, 312 512 127
|Es| 4, 641 1, 756 4, 742 1, 416 315
|Cg | 4 4 5 16 3

B. Dataset

The ideal real-world dataset for testing our geo-social net-
work model should contain the information on both the geo-
locations and social interactions between the nodes. To the
best of our knowledge, due to privacy concerns, such datasets
are not available. To navigate this problem, we use equation 1
and consider two types of data: (A) data with real-world geo-
locations and their pairwise distance, and (B) the data with
real-world social interactions and their pairwise probability
of contact. We use the following strategies to process each
category.

• Constructing social network from geo network: We
first map the pairwise distances to [1, inf) interval. Then,
using equation 1 with b = 1, we obtain the probability of
contact between each pair. We keep the edges with non-
zero probability values (rounded to one decimal). Com-
munity membership is obtained via k-means clustering
[22] with optimal k that minimizes the inertia.

• Constructing geo network from social network: We
first form the social network from mobility data with edge
weights (wij

s ) in (0, 1]. Equation 1 for b = 1 gives the
Geo network weights wij

g . This is a partially constructed
geo network as some edges in the social network are
non-existent. To complete the geo network, we use the
weighted shortest-path length between two nodes in the
partially constructed geo network. The community mem-
berships are obtained using Louvain algorithm [23] on
the constructed geo-network.

NAD Dataset. For datatype A, we use the U.S National
Address Database (NAD)5 (see II) and build four different geo-
networks: Syracuse, Albany, Rochester, and Ithaca. pairwise
distance is computed using latitude and longitude.

Copenhagen Dataset. For datatype B, we consider the
Copenhagen Network Study Interaction Data [24] (see II).
In this study, students were followed through their Bluetooth
devices across the campus for 28 days. Every five minutes,
the Bluetooth devices detected in their vicinity are recorded.
Following the definition of close contact by CDC6, we trans-
late these recordings as close contact if at least 15 minutes of
contact is observed within a 24-hour interval for each pair of
students. The social network weights are defined as average
daily frequency of each close contact and are mapped into
(0, 1] interval to represent the pairwise probability of contact.

5https://www.transportation.gov/gis/national-address-database/
national-address-database-nad-disclaimer

6https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/
contact-tracing-plan/appendix.html

https://www.transportation.gov/gis/national-address-database/national-address-database-nad-disclaimer
https://www.transportation.gov/gis/national-address-database/national-address-database-nad-disclaimer
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html


TABLE III: Performance of various mitigation strategies. Community-based and degree-based ComMit consistently reduce the peak of

infection and the absorption time with limited budget, whereas the other methods do not give consistent performance gain across all

datasets. The results are averaged among 10 runs of the simulation.

Albany Syracuse Rochester Copenhage Ithaca
max bud duration inf peak max bud duration inf peak max bud duration inf peak max bud duration inf peak max bud duration inf peak

commit cscore 0.056 43.0 0.051 0.029 19.0 0.022 0.120 61.7 0.167 0.209 49.2 0.510 0.117 16.9 0.121
commit dscore 0.064 36.2 0.045 0.053 12.9 0.020 0.112 69.0 0.152 0.204 58.4 0.487 0.098 21.6 0.113
commit iscore 0.043 46.2 0.047 0.018 24.3 0.024 0.085 88.4 0.274 0.088 200.0 0.753 0.057 30.5 0.138

acq imm 0.086 200.0 0.136 0.066 178.1 0.025 0.087 200.0 0.356 0.088 200.0 0.790 0.069 146.3 0.190
com isolation 0.830 200.0 0.180 0.018 200.0 0.025 0.785 200.0 0.374 0.952 200.0 0.727 0.476 146.4 0.211
no mitigation NA 200.0 0.186 NA 200.0 0.025 NA 200.0 0.373 NA 200.0 0.856 NA 146.0 0.209

Fig. 2: The change in the dynamic of the spread due to mitigation

strategies for Copenhagen dataset. The community-based and degree-

based ComMit have the best performance in terms of lowering the

peak of infection and shortening the absorption time.

C. Evaluation Metric

A spread can be described by its (1) absorption time (the
time it takes until no infectious node exists in the population,
i.e., |It| = 0); and (2) the peak of infection. In the absence of a
vaccine, SIS spreads often reach a steady state of maintaining
non-zero infection rather than absorption state. Hence, we limit
the simulation time to 200 steps. We will show that ComMit

effectively absorbs the steady-state SIS infection in a short
time for all of our datasets.

D. Benchmarks

To the best of our knowledge, there are no temporal
mitigation strategies that consider all the limitations of the
early-stages in a viral spread (i.e., no knowledge of the
network structure and dynamics of the spread, and limitation
of the sampling and network perturbation budgets). For a fair
comparison, we build our benchmarks by using the same test-
trace method as in ComMit to give the advantage of efficiently
probing the network within a limited budget. Our benchmarks
for the divider block of ComMit are: ComMit CScore. The
original ComMit pipeline discussed in Section IV. Com-
Mit DScore. Similar to ComMit CScore, but uses the degree
centrality in G⇤

t to score and choose seed nodes. Com-
Mit IScore. Inspired by test-based strategies whose goal is
to find the most number of infectious nodes to isolate, we
change the divider such that it selects the seed nodes from the
known infectious by their degree centrality in G⇤

t . Acq Imm.
Similar to acquaintance immunization method in [16], we
randomly select seed nodes and their neighbors to form sub-
clusters. Note that in this method there are no singleton
sub-clusters and identified infectious nodes may or may not

be included in the sub-clusters. Com Isolation. Considering
the good performance of community-based isolation (with
known contact network) in our previous study [5], we use
the information from test-trace to decide whether to isolate
the entirety of a community. This method does not form sub-
clusters. Once the ratio of the infectious nodes within the
community surpasses a certain threshold, the community is
isolated for the duration of tr (the same value across all
baselines). Our experiments show a threshold of 0.1 gives the
best reasonable trade-off between the budget and performance.
No Mitigation. The baseline without any mitigation strategy.

E. Results

The results of our simulations are shown in Table III. In
addition to the evaluation metrics, we also report the maximum
divider budget for each strategy (the test budget is the same
for all). The default values for hyperparameters are: at = 1,
bt = 0.1 ⇥ |V |, bfs = 0.01, bfn = 2, and tr = 3.
The results show that ComMit variants, commit_cscore
and commit_dscore, yield similar performance with the
exception that the former has a shorter absorption time on
average. The other two variants, commit_infscore and
com_isolation, do not have guaranteed performance as
in some cases they either do not terminate the spread or use
an unrealistically large budget. Acquaintance immunization
(acq_imm) consistently yields a poor performance across all
datasets. Figure 2 is an example of changing spread dynamic
for each strategy. At its best, ComMit reduces the peak of
infection by 73% and the absorption time by 80% (see the first
row for Albany). At its worst, it reduces the peak by 6% and
the absorption time by 90% (see the first row for Rochester);
a trade-off that still beats the other baselines.

F. Ablation Studies & Final Remarks

Figure 3 depicts the results of our ablation study on Com-

Mit’s hyperparameters. The experiments are run with the de-
fault parameters as above and reported for commit_cscore.
Figure (a) and (b) show that by increasing the divider’s budget,
bfs and bfn, no significant performance boost is observed. In
Figure (c), we keep the duration of infection, td, as 3 and
change the divider’s restriction time, tr. The result shows
that choosing a value closer to the actual infection time
yields a shorter absorption time. The impact of self-reports
accuracy, at, is tested in Figure (d). Higher accuracy results
in discovering more edges quickly, but does not change the
performance of ComMit drastically. This result suggests that
ComMit does not rely on full knowledge of the graph to reach



Fig. 3: Ablation studies. Figures (a) to (e), in order, study bfs, bfn, tr , at, bt. The inf_peak, norm_duration, max_bud, and

num_edges signify the peak of infection, the duration of infection normalized by the duration of simulation, the maximum divider budget

in terms of number of restricted nodes normalized by |V |, and the number of edges discovered by the test strategy normalized by the number

of edges in Gs, respectively.

its best performance. In Figure (e), we see that increasing
the test budget bt, for at = 1, can drastically shorten the
absorption time. However, small values of bt still do well at
probing the full graph.

ComMit relies on geo-network for estimating the commu-
nity structure in the contact network. If these communities are
known through other means (e.g., government survey data),
no geo information is required. Limitation & Ethical Issue:
ComMit relies on commitment of individuals to follow the
isolation instruction and is not tested on the disobedience
scenario. Moreover, owing to the exploration component, it
is possible to test a candidate with low infection probability.
There are ethical issues involved with violating one’s privacy
by requiring their social information when they are not likely
to put others in danger.

VI. CONCLUSION

We formally defined the problem of early mitigation strategy
and offered a dynamic algorithm, ComMit, that incorporates
the realistic assumptions of blindness towards network and
spread dynamics. ComMit relies on an exploration-exploitation
test-trace strategy to gain more information about both network
and status of the spread, and introduces network perturbations
that control the magnitude of the spread by following a
community fragmentation strategy. Our experiments showed
effectiveness of ComMit in reducing the peak and duration of
infection.
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