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Abstract—In many network applications, dense subgraphs
have proven to be extremely useful. One particular type of
dense subgraph known as the k-core has received a great deal
of attention. k-cores have been used in a number of important
applications, including identifying important nodes, speeding up
community detection, network visualization, and others. How-
ever, little work has investigated the ‘skeletal’ structure of the
k-core, and the effect of such structures on the properties of
the overall k-core and network itself. In this paper, we propose
the Skeletal Core Subgraph, which describes the backbone of
the k-core structure of a graph. We show how to categorize
graphs based on their skeletal cores, and demonstrate how
to efficiently decompose a given graph into its Skeletal Core
Subgraph. We show both theoretically and experimentally the
relationship between the Skeletal Core Subgraph and properties
of the graph, including its core resilience.

Index Terms—graph, k-core, structure

I. INTRODUCTION

Over the last decade, k-cores have been used in a number
of important applications, ranging from network visualization
[1]-[3] to community detection [4]. The k-core of a graph is
the maximal subgraph such that all nodes in the subgraph have
at least degree k in the subgraph [5]; the highest £ such that
a node u belongs to the k-core is the core number of node u;
and the set of all nodes with a given coreness k is the k-shell.

A key question in the study of k-cores is quantifying the
extent to which the hierarchy-based properties of a graph’s k-
core decomposition are due to connections within shells vs.
between shells. To understand this organization, we propose
the concept of a Core-Valid Subgraph (CVS). A CVS of a
graph G is a spanning subgraph such that the core numbers of
all nodes in the subgraph are the same as their core numbers
in the original graph. One can further define a Skeletal Core
Subgraph (SCS), which is a minimal CVS— one for which
removal of even one edge will reduce the core number of at
least one node. Intuitively, one can think of a SCS as a skeleton
of the k-core structure.

We first provide a fast greedy algorithm to generate an SCS.
Next, based on the SCS, we propose the Core Centralized
Score (CCS) for graphs, which measures how centralized the
graph’s hierarchical structure is, and can be used to visualize
a graph. We analyze minimal SCSs on 33 real-world networks
from a variety of domains. Among other things, we observe
that networks from different domains tend to have different
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centralization levels. Finally, we present an application of
SCSs to the task of community detection.

II. MOTIVATION

There are a number of reasons why one might wish to find
a skeletal core subgraph (SCS).

First, like any ‘backbone’-type structure, SCS is a minimal
structure that retains key properties of the network. The SCS,
of course, retains a network’s core structure, but as we show
in Sections VIII, by using a node scoring function related to a
graph’s SCSs, one can identify a set of nodes that captures
key non-k-core aspects of a graph’s structure (community
structure, in this case). Such structures can be used when,
for instance, space or processing time is an issue.

Second, the SCS structure of a graph gives overall insight
into the organization of its k-core. It is well-known that
different types of graphs have different k-core structures, but
by using the SCS, we provide a single scoring function that
quantifies the degree to which a graph’s k-core organization
is centralized (lower shells depend on higher shells) or de-
centralized (more independence between shells). Because an
important application of k-cores generally is understanding the
resilience of a network to cascading deletions (e.g., as in [6]),
having a single score for such properties is useful.

Third, by finding a SCS or set of SCSs, one gains a better
understanding of which edges are most important to the k-
core structure of the network, and which are redundant. This
is useful for an edge-focused analogue to the anchored k-
core problem, which seeks to identify which nodes are most
important to keep in the k-core to protect it from cascading
failures [7]: if it is known that certain edges are present
in many SCSs, then preserving those edges is of special
importance.

III. RELATED WORKS

Seidman [5] and Matula and Beck [8] defined the k-core
subgraph as the maximal connected subgraph where each
vertex has at least degree k. Matula and Beck showed how
to find the core number of each vertex, and for finding the
k-core hierarchy of the graph [8]. The k-core decomposi-
tion has found application in many important domains, and
gives insight into the hierarchical organization of the graph.
Applications include network visualization [9], studying the
topology of large networks (such as the Internet) [10], and
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Notation
G = (Vk, Ek)

Description

The k-shell subgraph.

The edges between the ¢-shell and the j-shell.
The core number of node v in graph G.

B
kv, G), k(v)

k*(G), Vi The degeneracy and corresponding k-core of the graph G
(highest value of k& for which there is a non-empty k-core).

(v, G) The neighbors of v in graph G in k(v, G) — core.

CS(u) The core strength of u

TABLE I: Notations used in this paper.
accelerating community detection [4]. k-cores have also been
used across many scientific fields, such as for explaining
jamming transitions in particles [11] and for predicting the
structural collapse of ecosystems [12].

The literature contains various other concepts of network
backbones, including types of spanning trees have been pro-
posed. The Minimum Spanning Tree has found application as
a way to study the backbone of a transportation network [13].
In [14], the authors proposed the Maximum Spanning Tree
and showed that it can be used to extract the backbone of a
city network.

IV. DEFINITIONS

Our goal in this work is to gain insight into the k-core struc-
ture of a graph by understanding the relationships between its
k-shells (each containing nodes with core number equal to
k). As we will show, these relationships can give significant
insights into the behavior of the graph across various tasks.

To understand the k-core structure of a graph, we propose
the notion of a Skeletal Core Subgraph (SCS) of a graph G. A
SCS is a minimal spanning subgraph in which all nodes have
the same core number as in GG, and can be interpreted as a k-
core ‘skeleton’ of the graph. By examining the structure of a
SCS, one can identify the type of hierarchical organization
displayed by the graph. Then, using the SCS, we propose
a metric to characterize how centralized or decentralized a
particular network is. For the rest of our discussion, we will
use the notations described in Table I. In cases where the graph
is clear from the context, we will drop G for brevity.

Definition IV.1. Given a graph G = (V, E), a Core Valid
Subgraph (CVS) of G is a spanning subgraph of G (i.e.,
includes every node from () in which every node has the
same core number as in G.

Definition IV.2. A skeletal core subgraph (SCS) o(G) =
(V,o0(E)) of G is a minimal CVS of G- i.e., one in which
removal of even a single edge will change the core number of
at least one node.

Note that G is a CVS of itself, and there may be multiple
CVSs and SCSs of a given graph.

V. FINDING SKELETAL CORE SUBGRAPHS

Here, we first provide relevant background on the types of
modifications that one can make to a node while preserving its
core number. Next, we describe a fast greedy heuristic to find a
single minimal SCS. Finally, we describe the Core Centralized

Score, a metric for describing how centralized a network’s k-
core structure is.!

A. Background

The core strength of a node v in graph G was previously
defined as the minimum number s for which there exist s of
neighbors of u, such that disconnection of those neighbors
from u would cause the core number of u to decrease by at
least 1 [6]. C'S(u) is computed as d,(u) — x(u) + 1, where
dy(u) is defined as the number of connections that u has to
nodes of equal or higher core number.

Note that because of how core numbers are defined, it is
possible for an edge removal to cause a cascading drop in
core numbers across a chain of nodes. That is not accounted
for in this definition of core strength; however, because our
goal is to use core strength to determine which edges can
be safely removed while preserving core numbers, no node’s
core number should drop with an edge removal, and so such
cascades are impossible. We will use C'S(u,G) (or CS(u),
when clear from context) to denote the core strength of v in
graph G in the rest of the discussion.

The core strength of all nodes in a graph can be efficiently
calculated by performing a k-core decomposition, and then,
for each node u, counting the number of neighbors with equal
or greater core number than itself. The time complexity is
O(E)).

Theorem V.1. Given a graph G with core numbers defined
by k(u, @), the removal of edge (u,v) will affect the core
numbers of G if and only if either: (1) CS(u) = 1 and k(v) >
k(u) or (2) CS(v) =1 and k(u) > k(v).

Proof. In this discussion, let x(u) represent the core number
of u before removal of edge (u,v).

First, we will show that if one of the two conditions is met,
then the core numbers of G will change. WLOG, suppose
condition (1) is met. If C'S(u) = 1, that means that if « loses
one edge to a neighbor with equal or higher core number, u
will have fewer than x(u) connections to neighbors with core
number greater than or equal to x(u), and so its core number
will drop.

Next, suppose that the core numbers of G change after
removal of edge (u, v). This must mean that the core numbers
of u and/or v have also changed. That is, it is not possible
for neither v and v to change core number but another node
to change when edges (u,v) is deleted. WLOG, suppose
node u changed core number. It is clear that removal of an
edge cannot increase a node’s core number; thus, u’s core
number must have dropped on removal of edge (u,v). If
u’s core number is now less than x(u), it must have fewer
than x(u) connections to nodes of core number > r(u).
However, because it previously had core number x(u), it had
at least x(u) such connections. Thus, either (a) node v has core
number > k(u) and v had exactly x(u) connections to nodes

ICode is available at https://www.dropbox.com/sh/cg6ghtqlhhleeuw/
AABtN7DtDEgIw3v_H7YOZMOaa?d1=0.

1018

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 14,2023 at 14:10:52 UTC from IEEE Xplore. Restrictions apply.



with core number > k(u): i.e., condition (1) in the theorem
statement is met, or (b) node v had core number > r(u)
originally, removal of edge (u,v) dropped node v’s core
number to below x(u), and u had exactly x(u) connections to
nodes with core number > k(u): i.e., conditions (1) and (2)
in the theorem statement are both met. O O

Corollary V.1. o(G) = (V,0(E)) is a minimal skeletal core
subgraph of G if and only if there exists no edge (u,v)
such that CS (u,0(G)) > 1 and CS (v,0(G)) > 1, where
CS (u,0(Q)) is the core strength of node u in o(G) [6].

B. Finding a Skeletal Core Subgraph: A Greedy Algorithm

In this section, we present a fast randomized greedy algo-
rithm for finding a SCS. This algorithm relies on Theorem V.1,
which provides us a way to efficiently check whether a given
graph is a SCS: after performing the k-core decomposition,
calculate the core strength of all the nodes, and check if there
are any edge where both endpoints have core strength greater
than 1.

Algorithm: In this section, we describe GreedySCS, a
randomized greedy algorithm for finding a SCS. The algorithm
repeatedly deletes edges from the graph, using the result from
Theorem V.1 to check that the subgraph’s core numbers are
correct. At each step, all the edges that connect nodes with
core strength greater than 1 are candidates for deletion. A
random edge from these candidates is selected and removed
from the graph. Then, the core strengths are recomputed and
the candidate sets are generated again. This continues until no
more candidate edges remain.

Algorithm 1 Greedy algorithm to reduce a graph to a minimal
skeletal core subgraph.

1: function GREEDYSCS(G = (V, E))

2: R+ 0

3 repeat

4: CS < CoreStrength (G)

5 R+ {(u,v) € E: (CS[u] >1ACSpw] > 1)V

(CSJu] > 1ACS[v] =1AK(u) < k(v))}
X < Random element of R
E+ FE\{X}
until R = ()
return G

0o %2 =

Theorem V.2 (Complexity of Algorithm 1). The time and
space complexity of Algorithm 1 are both O(|E|).

Proof. Computing the core strength of all the nodes for the
first time can be done in O(|E|). For the subsequent steps,
instead of recomputing it, we can simply calculate it for only
those nodes involved in an edge deletion since we have the
guarantee that the core number does not change due to the
edge deletion. (This follows directly from the definition of core
strength. If both endpoints have core strength greater than 1,
both have ’extra’ edges that can be deleted without affecting
the core numbers.)
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(1) Decentralized Skele-
tal Core Subgraph

(2) Centralized Skeletal
Core Subgraph

Fig. 1: Toy example showing Decentralized (Figure 11 and
Centralized (Figure 12) SCSs. The red, green and blue nodes
have core numbers of 3, 2 and 1 respectively. In the left graph,
all the nodes connects to a node in the degeneracy core (red
node). In the right graph, all the nodes are connected to another
one with the same core number.

Then, updating the core strength of a node can be done
in constant time with a proper data structure. The loop in
Algorithm 1 repeats at most | E| times, and each edge deletion
results in update of the core strength of two nodes. Inside each
loop, the sets R and E can be found quickly through proper
pruning.

So, the overall running time of Algorithm 1 is O(|E]).

The space required to store the graph is O(|E|), the core
strengths of all the nodes can be stored in O(|V|), and that
for R is O(|E)).

So, the overall space complexity of Algorithm 1 is O(|E|).

O O

VI. MEASURING HIERARCHY: THE CORE CENTRALIZED
SCORE

To better understand the effects of different type of changes
to the core structure of a SCS, we need to categorize them
into different types. We start by categorizing the edges based
on the core numbers of its endpoints:

1) Inter-Shell Edges: These are the edges whose end
vertices have the same core number.

2) Intra-Shell Edges: These are the edges whose end
vertices have different core numbers.

Depending on the number of inter and intra-shell edges, we
have two extreme cases of skeletal core graphs. We refer to
these two extremes as centralized and decentralized skeletal
core graphs.

1) Decentralized Skeletal Core Subgraph: These are the
skeletal core graphs with no inter-shell edges.

2) Centralized Skeletal Core Subgraph: These are the
skeletal core graphs with: (a) no intra-shell edges, except
in the degeneracy core, and (b) all the inter-shell edges
have one endpoint in the degeneracy core.

As an example, consider the graphs shown in Figure 1. The
color of the nodes indicates their core number — red is 3, green
is 2 and blue is 1. Both graphs are SCSs. In Figure 2.1 all
the nodes connect only to others with the same core number,
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making this an example of a decentralized SCS. In Figure 2.2,
all nodes connect to a node in the degeneracy core (red nodes),
making this an example of a centralized skeletal core graph.
In the rest of the discussion, we will use op(G) =
(V,op(E)) and o¢(G) = (V,oc(E)) to denote de-
centralized skeletal and centralized core graphs respectively.

A. Core Centralized Score

For any graph, depending on the number of inter and intra-
shell edges, its minimal SCSs will fall between the extreme
decentralized and centralized structures. To quantify where a
graph falls within this range, we propose the Core Centralized
Score measure.

The basic idea behind the Core Centralized Score is that for
a node u, the closer its neighbors in the x(u)-core are to the
degeneracy core, the more central the node is u. So, for a SCS
0(G) = (V,0(E)), we define the Core Centralized Score as,

1 1 K(u) — k(v
PN =7 % i e

k* — k() ’
veV uw€el (v) ( )

(1

where V =V \ Vi=. (Refer to Table I for notation.)

Higher values of this score indicate that a graph’s SCSs are
closer to a centralized SCS, and lower values indicates that its
SCSs are closer to a de-centralized SCS. Decentralized graphs
have a centralized score of 0, and centralized graphs have a
score of 1.

Core Centralized Score for General Graphs: To quantify
how far a graph is from a centralized or decentralized skeletal
core, we extend the concept of Core Centralized Score to a
general graph. The core centralized score of a general graph
is defined as the average core centralized score over all of its
SCSs.

Recall that a graph may have many SCSs. Thus, to compute
this value, we compute the likelihood of each edge remaining
in a SCS. For a graph G = (V, E), the likelihood of an edge
(u,v) remaining in a SCS is dependent on the core number
and number of neighbors in the same core of the node with
lower core number (both nodes if they have the same core
number). That is,

s k() = k(v)
plu,v) = ;; if r(w) < k(v) 2)
2(5> if k(u) > Kk(v)
where,
e(u) = [T'(u,G)|. 3)

For edge (u,v), p((u,v),G’) gives us a measure of how
likely the edge is to be in the skeletal core. If p((u, v), G') = 1,
the edge (u,v) has to be in all the minimal SCSs of G.

Then, we define the Core Centralized Score of graph G as,

CE(G) = %Z ! Z p(u,v)w. 4

= o —
veV |F(U)| wel (v) K(v)

Range
Minimal
Type  Network V] |E| k* CE  SCSs

733_19971108" 3015 5196 9 053 91.3-91.6%
733_199903097 4759 8896 12 0.49 92.9-93.1%

AS Orel_0103317 10,670 22,002 17 0.56 94.5-94.6%
Orel_010428" 10,886 22,493 17 0.56 94.8-94.9%
BIO Dmela¥ 7393 25,569 11 0.47 87.8-88.0%
Yeast_Protein® 1846 2203 5 0.16 82.1-82.8%
GrQc" 5241 14,484 43  0.05 89.4-89.6%
CA HepTh' 9875 25973 31 0.05 83.4-83.6%
Erdos992% 5094 7515 7 038 91.2-91.5%
OpenFlights? 2939 15,677 28 0.44 90.3-90.6%
INF Power? 4941 6594 5  0.06 79.9-80.4%
USAir97+ 332 126 26  0.63 92.5-92.9%
PoP Gnutella08" 6301 20,777 10 0.27 78.4-78.7%

Gnutella09" 8114
Gnutella25" 22,687

26,013 10 0.32 85.1-85.3%
54,705 5  0.89 80.4-80.5%

Hamsterster: 2426
SOC  Advogato® 5167

16,097 24 0.34 89.3-89.5%
39,432 25 0.70 89.6-89.7%

Wiki_Vote? 889 2914 9 039 84.2-85.0%
Wiki_talk’ 2.3M 5.0M 131 0.89 99.0-99.0%
Youtube 1.1IM 3.0M 51 0.62 93.5-93.5%
PGP* 10,680 24316 31 0.08 84.5-84.8%

TECH Routers_rf* 2113 6632 15 0.26 86.2-86.6%

WHOIS* 7476 56,943 88 0.36 91.5-91.6%
WEB Spam?* 4767 37,375 35 0.40 91.7-91.9%
Webbase? 16,062 25,593 32 0.07 94.1-94.2%
Amberst 2235 90,954 63 0.69 80.4-80.6%
SOCFB BowdoiirT' 2250 73,643 56 0.67 83.2-83.4%
Colgate* 3482 155,053 65 0.68 79.6-79.7%
Caltech? 762 16,651 35 0.81 80.9-81.2%
Univ* 1133 5451 11 0.38 84.5-85.0%
EMAIL EU* 32,430 54397 22 0.75 97.2-97.3%
Enron’ 33,606 180,811 43 0.49 93.5-93.6%

ITEM Amazon' 334,863 925,872 6  0.67 80.6-80.7%

TABLE II: Networks used for experiments. In this table, |V|
is the number of nodes, |E| is the number of edges, and k*

is the degeneracy. These data were downloaded from SNAP
(denoted by ) and Network Repository (denoted by ).

VII. ANALYSIS OF SKELETAL CORE GRAPHS

In this section, we first present a technique for visualizing
the skeletal core subgraphs of various real-world networks.
Then, we perform a comparative analysis of the subgraphs
found by the algorithm presented in Section V.

We consider networks from diverse domains, presented in
Table II. In Table II, the domains of the network are indicated
by AS for the autonomous system networks, BIO for biological
networks, CA for collaboration, INF for infrastructure, P2P for
peer-to-peer, SOC for social, TECH for technological, WEB
for internet, SOCFB for Facebook, EMAIL for email, and
ITEM for item. k* represents the degeneracy of the network
and CE is the core centralized score.?

2Data downloaded from https:/networkrepository.com/index.php and https:
//snap.stanford.edu/data/.
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Fig. 2: Visualization of SCS structure of various real networks, as described in text. Graphs are arranged in increasing order

of their core centralized score.

A. Visualization

Using the concepts defined earlier, one can nicely visualize
the core structure of a graph G via the following steps:

1) If G is not already a skeletal core subgraph, assign
edge weights as in Equation 2. If G is itself a skeletal
core subgraph, edges have weight of 1. Denote the edge
weights by w(u,v).

2) Merge nodes belonging to the same shell into a super-
node containing all the nodes in V;.

3) Two super-nodes s; and s; have an edge between them if
there is an edge (u,v) such that: (a) u € V; and v € V,
and (b) (u,v) € E.

4) Suppose that ¢ < j. Then the weight of edge (s;, s;) is
given by:

z:(u711):u€\/7-,/\vev_j w(u,v)

Z(u,v):ue\/i w(u7 U)

w(s;, sj) =

That is, the weight of (s;,s;) is the ratio of the sum
of all the edges between V; and V; and the sum of all
the edges with at least one endpoint in V;. Note that we
allow for self-loops, and the edges are directed (from ¢
to 7).

5) The node weight of s; is the sum of all the in-edges to
Si.

6) The super-nodes are arranged in a circle in decreasing
order of the k value for each shell. The degeneracy shell
is at the 12 O’clock position.

7) The size of each node is adjusted according to the node
weight, and the thickness of edges is adjusted according
to the edge weight. That is, larger nodes represent the
shells on which other shells depends on for their core
number, and thicker edges represents strong dependence
of the lower shell to the higher shell.

Figure 2 shows the skeletal core subgraph visualization
for various real-world graphs. The graphs are arranged in
increasing order of their core centralized scores. In these
figures, edges with weight less than 0.1 are not shown for
visual clarity.

We observe that in the cases of very low core centralized
scores (left), different shells are almost independent of each
other, with few inter-shell connections. On the other extreme

(right) we have those cases with very high core centralized
score — almost all shells depends on the degeneracy shell.

These visualizations give us an intuitive understanding of
some properties such as the resilience and cascading collapse.
As an example, in a cascading collapse of k-core structure [6],
there are few inter-shell connections in a decentralized graph,
and so cascading failures are limited. On the other hand, in
centralized graphs, a failure in a higher shell can affect lower
shells as well.

We observe some consistent patterns across domains. For
instance, co-authorship networks tend to have a low core
centralized score, possibly indicating large, mostly disjoint
cohorts of collaborating researchers. In contrast, online social
networks have high values. We hypothesize that this is because
adding new friends takes almost no effort, and the only path for
information flow is thorough such connections. Thus, there is
a huge incentive to connect to the central parts of the network.

B. Properties of Skeletal Core Subgraphs

Here, we analyze the structures of the minimal SCSs.
For each graph, we first generate 100 minimal SCSs using
GreedySCS, and present their sizes. Then, we compute the
core centralized score CE(G), as described earlier. Higher
values indicate a more centralized core structure.

Results are presented in Table II. In all datasets, the minimal
SCSs are quite large: the smallest (P2P_Gnutella08) is still ap-
proximately three-quarters the size of the entire network. The
P2P networks and SOCFB networks all exhibit comparatively
small minimal SCSs, suggesting that a significant fraction of
edges in these networks do not go towards supporting the
core structure. In contrast, the autonomous systems networks
have large minimal SCSs, indicating that almost every edge is
important to the core structure.

The Facebook networks tend to exhibit relatively high CE
(core centralized) scores, while the tech and co-authorship
networks are much less centralized. We hypothesize that this
is due to the role of the networks: in online social media
networks, connecting to central/influential nodes is easy and
desirable, while forming connections to central nodes in other
types of networks may be harder. The power network is
extremely decentralized, perhaps because it was designed
specifically to be resilient.
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. Skeletal Core Subgraph

Networks

(1) Comparison of community quality detected by [4] to the SCS
modification. ‘Modularity ratio’ indicates the ratio of the modularity
of the communities found using a seed subgraph to that of the
communities found by using the entire network. Higher is better.

i it

Networks

Speedup

(2) Comparison of speedup to detect community by [4] to the Skeletal
Core Subgraph modification. Higher values are better. Running times
include the time required to find the seed subgraph.

Fig. 3: Experimental comparison demonstrating the application
of Skeletal Core Subgraph in community detection. In both
plots, higher values are better. With SCSs, we are able to find
good quality communities, significantly faster.

VIII. APPLICATION: COMMUNITY DETECTION

k-cores can be used to accelerate community detection
using the technique described in [4]. This method first runs
a community detection algorithm on a k-core subgraph of
appropriate size and then extrapolates results outwards. We
modify the method described in [4] by changing the seed
subgraph selection: instead of selecting the seed nodes as those
with highest core numbers, we select the same number of
nodes, but those that are in the shells with the highest sum
of weights in the visualization as described in Section VII.

To verify, we run community detection using Louvian
method [15] to act as a basis for comparison. We then per-
form community detection as described in [4] (with subgraph
selected by core number), and then with the skeletal core
subgraph modification. In both cases, the number of nodes
in the seed subgraphs are the same— roughly 30% of the
nodes in the graph, though this varies by graph. We compare
the quality of the communities detected by both methods
through modularity. We consider the ratio of modularity of
the communities found through [4], and then with the skeletal
core subgraph modification to the ones found by performing
community detection on the whole graph.

Figure 3 shows the results of the experiments on various
real-world graphs. We can see that with the skeletal core

subgraph modification, the algorithm is able to achieve better
communities compared to the original method. We can also
see that the speedup for the community detection, shown in
Figure 3, is improved significantly. In nearly all networks,
using the SCS to define the seed subgraph is faster and results
in higher quality communities (as measured by modularity),
as compared to using the k-core to define the seed subgraph.

IX. CONCLUSION

In this paper, we introduced the concept of the Skeletal
Core Subgraph (SCS) of a network. A SCS can be thought
of as a skeleton of the k-core Structure of the graph. We show
that graphs can be categorized along the spectrum between
Decentralized Skeletal Core Subgraph and Centralized
Skeletal Core Subgraph. We provided a greedy heuristic to
find SCSs, and then studied the SCS properties of 30 real-
world graphs from different domains. Finally, we explored the
application of the Skeletal Core Subgraph on the process of
community detection of graphs, showing that the SCS can be
used to find good quality communities, while improving the
speedup of the process.
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