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It has been observed that real-world social networks often exhibit stratification
along economic or other lines, with consequences for class mobility and access
to opportunities. With the rise in human interaction data and extensive use of
online social networks, the structure of social networks (representing connec-
tions between individuals) can be used for measuring stratification. However,
although stratification has been studied extensively in the social sciences, there
is no single, generally applicable metric for measuring the level of stratification
in a network. In this work, we first propose the novel Stratification
Assortativity (StA) metric, which measures the extent to which a net-
work is stratified into different tiers. Then, we use the StA metric to
perform an in-depth analysis of the stratification of five co-authorship net-
works. We examine the evolution of these networks over 50 years and show
that these fields demonstrate an increasing level of stratification over time,
and, correspondingly, the trajectory of a researcher’s career is increasingly
correlated with her entry point into the network.

1. Introduction

Human social networks play a critical role in the trajectories of people’s lives. A
highly desirable property of dynamic societal networks is that they should
allow for individuals to rise and fall on the basis of their own merits, rather
than their inherited positional inequalities [1]. This basic property has been
described many times in the sociological and philosophical literature [2].

However, in real societies, individuals in human networks are commonly
divided into a hierarchical arrangement based on different attributes such as
importance, wealth, knowledge and power. This phenomenon is known as
social stratification [3], and stratification along economic or class-based lines has
been one of the most important topics of study in the modern social sciences [4].
Social stratification, as well as its counterpart social mobility, governs the trajectories
of people’s lives, including the extent of prejudice that they face [5], their careers
and occupations [6] and the likelihood that they will experience violence [7].

Historically, social science researchers studying stratification have been
armed with domain knowledge about the nature of stratification in the system:
in particular, knowledge of the classes of interest, such as upper, middle and
lower socioeconomic classes). These classes are often defined with respect to occu-
pation, living conditions, socioeconomic status, etc. [89]. Existing empirical
analysis of stratification tends to either study social mobility as a proxy for strati-
fication or, if network connections are known, examine inter-class connections
between predefined classes [10]. However, these methods tend to be ad hoc,
relying on a priori knowledge about the classes.

Although stratification has been extensively documented (especially in non-
network settings), to our knowledge, there is no single metric to quantify the level of
stratification in a network and there is a need for an interpretable, quantitative
metric to summarize network stratification in a single number. There are several
reasons for this. (i) In many cases, one may not know the classes ahead of time.
While economic classes are well established, this may not be the case for other domains.
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(i) When comparing different ecosystems (e.g. Facebook versus
Twitter), it is useful to have a single number in order to perform
a quantitative comparison. In the long run, this may lead to
discovery of universal laws about stratification.

In the first part of our work, we introduce the Stratifi-
cation Assortativity (StA) metric, which measures a
network’s stratification with respect to an attribute of interest.
Sta differs from existing assortativity metrics in that it is
based on scalar characteristics that give rise to a set of ordered
classes, whereas other assortativity metrics are either based
on categorical characteristics that divide a network into
non-ordered groups or scalar characteristics that do not
consider group memberships [11].

In the second part of our work, we apply our proposed
metric to understand stratification in scientific co-authorship
networks. A fair amount of work has examined collaboration
networks with respect to stratification and equality. Most of
these studies use centrality metrics to show the correlation
between an individual’s position within the collaboration
network and their success; and the ramifications of such corre-
lation to stratification and inequality [12,13]. None of them
have studied the evolution of co-authorship networks with
respect to long-term stratification and the success of researchers.

We perform an in-depth analysis of five co-authorship
networks with respect to author h-index,' examining the evol-
ution of these networks over 50 years, and demonstrate that
networks evolve into a highly stratified state. Using our pro-
posed StA metric, we show that these fields demonstrate high
levels of stratification. Interestingly, we also find that while
other types of assortativity decrease over time, stratification
increases: in other words, while individuals collaborate with a
more diverse set of researchers (with respect to h-index) over
time, stratification actually increases. Moreover, as stratification
increases, the trajectory of a researcher’s career becomes
increasingly correlated with her entry point into the network.

The major contributions of this work are as follows:
(i) we propose the novel StA metric and introduce an algor-
ithm for identifying classes in a stratified network, and (ii) we
perform an extensive analysis of stratification in scientific co-
authorship networks and show how networks evolve into a
highly stratified state as they age, using both topological
properties and success score of researchers.

2. Background

In this section, we provide background on social stratification
in societies and social networks and describe existing
research on stratification in collaboration networks.

2.1. Sodial stratification overview

The study of social stratification has been one of the most
important topics in modern sociology and economics [4].
While, historically, there has been disagreement on what
exactly constitutes a stratified system, there is some consensus
that, at the least, a stratified system requires a ranking or hier-
archy of people and groups; acknowledgement, acceptance
and legitimation of that ranking; and a correlation between
one’s position in the ranking and access to power, prestige or
resources [14]. Note that social stratification is not synonymous
with social inequality: while social inequality can be a cause
of social stratification [9], there are societies in which such

inequalities have not created the separate classes present in a [ 2 |

stratified society [15].

In the Marxian perspective, stratification or class divisions
occur due to the division of individuals based on ‘control and
ownership of the means of production and labour power’
[14,16]. Weber extended this one-dimensional view of social
stratification to multi-dimensions and considered other
types of ownership such as skills, status and organizational
power [14,17]. These views are in contrast to the functional
view of stratification espoused by Durkheim, who distin-
guished external inequalities (those imposed by society)
from internal inequalities (based on personal merits, such
as talent), and believed that the latter type are necessary for
the functioning of society [14].

Alternative notions of class also exist: for example, Bourdieu
suggested that a class is a set of people with similar nature and
living conditions [8]. In Bourdieu’s perspective, class structure
in a society is a multi-dimensional space which is shaped by
the distributions of different forms of social, economic and
cultural capital. For Bourdieu, social classes are constructed
as social groups, through ‘articulation, representation and
mobilization, by relevant parties or unions’ [18,19].

Intrinsically connected to the notion of social stratification
is that of social class. When analysing the stratification of a
society, it is useful to identify specific social classes. Defined
social classes can directly be used to measure social stratifica-
tion or be used as a basis of other analysis. For instance, some
studies have examined social mobility between classes [10].
Social class refers to hierarchical social categories arising
from different relationships in the society [20]. These social
classes either divide individuals into categories where
boundaries are clearly identified [21] or divide individuals
into points along a one-dimensional scale [21].

The study of social stratification is closely related to that
of social mobility [22], and social mobility (or the lack
thereof) is a driving process behind social stratification [23].
It is known that social stratification can influence prejudice
[5], social capital [24], probability of victimization [7], occu-
pation [6] and other crucial factors in the lives of individuals.

Many existing measures of social networks can provide evi-
dence of stratification, but we are not aware of any measures
that confirm its presence. For instance, aggregate-level social
metrics like the Gini coefficient measure inequality [25].

Another well-studied type of inequality is the Matthew
effect (the rich-get-richer or preferential attachment phenom-
enon) [26], and numerous works have explored quantifying
the strength of such a phenomenon [27].

With the rise in human interaction data and extensive use
of online social networks, the structure of social networks can
be used to study social classes and social stratification [9]. For
instance, the capability of individuals to be upwardly mobile
can be estimated by examining their connections to higher
status individuals in networks [28]. In other words, networks
provide an opportunity to study the emergence of social stra-
tification [3], which can help to understand how decisions of
individuals can lead to a socially stratified network.

Some empirical analyses on networks have examined social
mobility as a proxy for stratification or, if network connections
are known, individually examine inter-class connections between
predefined classes [10]. These methods are closer to the phenom-
enon of stratification than measures of inequality, but they are
nonetheless indirect (inferred from its consequences). Moreover,
measuring social mobility requires long-term temporal data,
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and looking at inter-class connections between predefined classes
is not generalizable.

For instance, Hodler et al. use an index which measures
the probability that for any random pair of individuals, the
poorer individual is deprived of opportunities associated
with ethnic class boundaries. This metric uses ethnicity as a
proxy for social distance and examines connections between
individuals in the context of wealth [5]. However, the
phenomenon targeted by Hodler’s metric could arise for
other reasons (e.g. racism), and it does not explicitly examine
the division of the network into social classes.

Various measures of homophily are also related to stratifi-
cation, but do not distinguish between ordered strata. For
example, the scalar sssortativity coefficient (SAC) [11] is like
the Matthew effect in that it can reveal a process of preferential
attachment, but is better understood as a measure of overall
inequality without considering the division of the network
into any specific classes. Modularity [29] and the discrete assor-
tativity coefficient (DAC) [11] consider the division of network
into classes, but these classes are not necessarily tiered and do
not satisfy the social class definitions. Details of these metrics
(modularity, discrete/scalar assortativity) are provided in elec-
tronic supplementary material, appendix. None of the existing
metrics measure the extent to which the network is divided
into ordered classes. Our first major contribution in this paper
is to propose a metric that satisfies this requirement.

2.2. Stratification in collaboration networks
The structures of collaboration networks are important for the
diffusion and production of scientific knowledge, and can have
an impact on the productivity and work done by the research-
ers [30]. Social connections in these networks affect the career
trajectories of researchers [31,32]. Accordingly, the study of
stratification and inequality in collaboration networks has
attracted recent attention.

Most of these studies use centrality metrics to analyse networks.
For instance Yin et al. [31] studied COLLNET, a small collaboration
network with respect to stratification. This work demonstrated that
certain nodes in favoured locations that are densely connected
cause inequality or stratification. Abbasi et al. and Liu et al. study
co-authorship networks and show the research performance of
researchers in terms of their i-index [12,13]. McCarty et al. [33]
show the importance of the positions of researchers in a co-
authorship network by predicting the i-index of authors in the
future from their current position. Most of the works in this
area focus on analysing one snapshot of the network. However,
there are some works on analysing the evolution of collaboration
networks. For instance, Servia-Rodriguez et al. [34] study the aca-
demic success of researchers using co-authorship networks over
time and show the correlation between centrality and citations.

Other works have studied stratification and inequality in
collaboration networks from different perspectives. Some of
these works examine the inequality of citations among
researchers. Dong et al. [35] used the Gini index and quantified
inequality in citation impact in different stages of academic life,
and showed that the majority of citations come from a small
percentage of researchers.

3. Proposed metric; stratification assortativity

In this section, we first introduce the problem of measuring
social stratification in networks. Then, we propose (Sta),

an assortativity metric for measuring network social [ 3 |

stratification.

3.1. Goal

Assume that we are given an undirected, unweighted
network/graph G(V, E) with vertices V and edges E and
binary adjacency matrix A. Nodes in G have a numeric charac-
teristic attribute of interest. This characteristic attribute
represents a node’s status (e.g. wealth, professional success,
etc.), with higher values indicating a higher status. This attri-
bute is used to identify the social class hierarchy in the
networks that causes social stratification. (Note that while
the attribute is required, specific class boundaries are not.)

Our goal is to propose an assortativity metric for measuring
network social stratification, the division of a network into ordered
tiers (social classes) based on the attribute of interest.

At a high level, a network is socially stratified if nodes can
be partitioned into social classes corresponding to contiguous
intervals of the attribute value, such that (i) those classes
are separated in the graph topology and (ii) individuals
tend to connect to others with similar attribute values. This
latter requirement suggests that to the extent that inter-class
connections exist, they should be between nodes in similar
classes. For instance, later in this study we will consider co-
authorship networks, where nodes represent authors and
edges represent collaborations. In such networks, a reason-
able attribute of interest is the h-index of authors. Such a
network may be considered stratified if nodes separate into
e.g. classes (groups) of high, medium and low h-indices,
and both inter- and intra-class connections tend to be with
nodes of similar scores.

3.1.1. Desired properties
The proposed metric should have the following properties:

Property 3.1. The characteristic attribute should be a scalar
characteristic and the actual values of the characteristic attribute
should be taken into account. The metric should more greatly
reward connections between nodes with very similar attribute
scores, and more greatly penalize connections with very differ-
ent attribute scores. This property ensures that inter-class
connections between nodes in very different tiers are penalized
more greatly than those in adjacent tiers.

Property 3.2. The scalar characteristic should be tied to a
status feature that allows for grouping into multiple, ordered
tiers (social classes). Categorical properties are not appropriate,
unless they can be associated with a numerical status-related
property. Separation with respect to such properties is better
measured using other assortativity metrics.

Property 3.3. The metric should use class membership; these
classes can be known/unknown ahead of time. Like other
assortativity metrics, it should be based on connections
within and between classes, where more connections within
the same class and fewer connections between different
classes tend to increase the metric value. Note that this prop-
erty is different from property 3.2, as property 3.2 takes
orders into account, while property 3.3 does not
(e.g. modularity/DAC are based on class membership, and
so satisfy property 3.3, but not property 3.2).
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Table 1. Summary of desired properties and whether different metrics satisfy them.

scalar
metrics values
modularity no
discrete assortativity no
scalar assortativity yes
stratification assortativity yes

Property 3.4. Mutual segregation is needed for stratification of
two classes. If, due to differences in class sizes, the fraction of
connections inside a class A is much higher than the fraction
of connection between A and B, but the fraction of connections
within B is not higher than those from B to A, then A and B are
not considered highly segregated. For instance, suppose that
A is large and B is small, and that there are n; intra-class
connections inside A, 1, intra-class connections inside B and
n3 inter-class connections. If 11; >>n3, the fraction of intra-class
connections is very high. However, this high fraction does not
necessarily correspond to a high level of stratification, because
while 73 > 11,, members of B are connected to members A as
much as they are connected to each other. Such a network
should not be considered highly stratified.

A real-world example of this can be seen in socioeco-
nomic classes where the size of the upper class is much
smaller than the middle class and lower class. Whether the
upper class is segregated or not has a huge impact on the
social stratification of the society.

3.2. Measuring stratification assortativity

The StA metric is inspired by DAC and SAC [11], which
measure the tendency of nodes in the networks to connect
with like-minded others, and is reformulated in a way that cap-
tures the desired properties as explained in the previous
section. Table 1 shows a summary of desired properties and
whether these metrics satisfy them. As we see, the DAC and
SAC metrics do not satisfy all the desired properties.

StA measures stratification in the given network by
first defining the network stratification score as the average stra-
tification over all classes. It considers a class to be maximally
stratified if nodes of the class only have connections to nodes
inside the same class, and minimally stratified if nodes of
the class only have connections to nodes in the most distant
classes. Then, the stratification score is compared with the
expected stratification score of a random graph with similar
properties in order to determine whether the observed network
structure is statistically surprising. This is based on the idea that
if the number of inter-class connections is significantly more or
significantly less than what we expect in a random network,
then something interesting is happening in the network [29].
Finding the statistical significance of a property by comparing
it with a random structure is common in different network
science studies [36,37]. Finally, the final score is normalized
to have a value between —1 and 1.

3.2.1. Input
(i) An undirected, unweighted graph G=(V, E), where
each node u has a characteristic attribute value, denoted

ordered class mutual
tiers membership segregation
no yes no

no yes no

no no no

yes yes yes

by s(u). (Definitions can be easily modified for a
weighted graph.)

(ii) Social similarity function w(s;, s;) which measures the
distance between characteristic attribute scores s; and
$. In this work, we define w(s(u), s(v)) =1 — (I1s(u) —
s(®) | /max(S) — min(S)), where S is the score distri-
bution for all nodes in the network G and u, veV.
Depending on the domain, other functions may be
more appropriate. These weights are intended to cap-
ture the effect of the actual values of node scores
(property 3.1).

(iii) If classes are known: k classes C = {cy, ¢y, ..., i}, where
each ¢, represents the nodes with scores within a con-
tiguous portion of the range of possible score values
(property 3.2). Let c(u) represent the class membership
of u (i.e. if s(u) is in the range represented by c;, then
c(u) =1i) (property 3.3) (in §3.3.1, we explain how to
find classes if they are not known ahead of time).

3.2.2. Computation

First, we define a weighted version of graph G, where the
weight of each edge (u, v) €E is computed by the social
similarity function. We then define the StA of the weighted
network G as

E(Sstrat (G/)

o Sstrat (G) — )
StA(G) — E(Sarat(G))

o Max(Sstrat(G))

Here, Ssrat(G) is the stratification score of the weighted network
G, E(Sstrat(G)) is the expected stratification score of a random
network G’ with the same weighted degree distribution as
network G and Max(Sgat(G)) is the maximum stratification
score among all networks with the same density and set of
nodes with the same scalar attribute and class membership
as nodes in G. These values are computed as

sim(u, v, ¢;)

SStrat(G):Z Z sim(u, v, ¢;) 4 dissim(u, v, ¢;)”

¢ EC(u,0)EE

E(sim(u, v, ¢;))

ESsnat(G) = Z Z E(sim(u, v, ¢;)) + E(dissim(u, v, ¢;))

¢ EC (u,v)EE

and Max(Serat(G)) =k,

where sim(u, v) and dissim(u, v) are the similarity and dissim-
ilarity of nodes u and v, respectively, and E(sim(u, v)) and
E(dissim(u, v) are the expected similarity and dissimilarity of
nodes 1 and v in networks with the same weighted degree dis-
tribution as G. Details on how these values are defined are
provided in electronic supplementary material, appendix.
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Figure 1. Stratification comparison between G, and G,. Node scores are written inside the nodes. There is no inter-class connections in G, thus G; is more stratified
than G, but SAC of G, is lower than G,. (@) G1: StA= 1.0, DAC= 1.0, SAC=10.92 and (b) G2: StA = 0.96, DAC =0.83, SAC=0.94
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Figure 2. Stratification comparison between G3 and G,. Node scores are written inside the nodes. Distance between low-score nodes and high-score nodes in G; is
higher than G,, thus G5 is more stratified than G, but DAC of G5 is equal to G4 (@) G3: StA =0.96, DAC = 0.85, SAC=0.91 and (b) G4: StA = 0.85, DAC = 0.85,

SAC=0.68.
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Figure 3. Stratification comparison between Gs and Gg. Node scores are written inside the nodes. High-score nodes are segregated from the rest of the network in
G, thus Gg is more stratified than Gs but DAC of G is equal to Gs. (a) G5: StA =0.90, DAC=0.81, SAC=0.93 and (b) G6: StA = 0.93, DAC=0.81, SAC=0.97.

3.3. Properties of StA metric

StA is a real number between —1 and 1, with 1 representing a
network that is fully stratified and —1 corresponding to a dis-
stratified network and O corresponding to a network with
balanced inter- versus intra-class connections.

In a fully stratified network with k classes, all connections
are between nodes of one class (intra-class connections) and
there are no connections between nodes of different classes
(inter-class connections). In a fully unstratified network, all
connections are inter-class connections. StA is greater than
0 if there are more normalized weighted connections between
similar nodes from one class than dissimilar nodes from
different classes and StA is lower than 0 if there are more nor-
malized weighted connections between dissimilar nodes
from different classes than similar nodes from one class.

Next, we explain why StA properly measures stratifica-
tion, while other assortativity metrics (DAC and SAC)
cannot measure it.

For purposes of this discussion, suppose that we have a
set of networks with 16 nodes where each node has a merit
score (here, the node ID is equal to its score). Suppose
nodes are divided into four classes: low-score nodes (nodes
1-4), medium-low-score nodes (nodes 5-8), medium-high-
score nodes (nodes 9-12) and high-score nodes (nodes 13-16).

Figure 1 shows two networks with these nodes and
different topologies. In graph Gj, there are no inter-class
connections. AS Sgat (G) = Max(Seat(G)) when there are no
inter-class connections, the StA of G; is equal to 1 as
expected. In graph G,, we see three inter-class connections
and the StA of G, is equal to 0.96 which is lower than G,
as expected. However, if we compare the SAC of graphs
G1 and G, SAC(G;) < SAC(Gy). This happens because SAC
does not consider specific classes (property 3.3) and ordered
tiers (property 3.2). In graph G, there is a path from nodes
in any class to nodes from other classes, whereas in graph
Gy, there is no path from nodes of one class to the other

classes. Thus, network G; is more stratified, as described
by stA.

Next, consider graphs G; and G4 as showed in figure 2. The
node properties of these networks are similar to G, and G,. If we
compare graphs Gz and G4, we see that the number of intra-class
connections and inter-class connections are the same. However,
inter-class connections in G; are edges between similar nodes
whereas intra-class connections in G4 are edges between dissim-
ilar nodes. In other words, the distance between low-score
nodes and high-score nodes is higher in G; compared with
Gs. Thus, we expect StA of Gz to be higher than G,. We see
that StA(G3) > StA(G,) as expected. However, if we compare
the DAC of graphs G; and G4, DAC(G3) = DAC(G,). This hap-
pens because DAC does not consider scalar values (property
3.1) and ordered tiers (property 3.2).

Finally, consider graphs Gs and G¢ as shown in figure 3. The
node properties of these networks are similar to G1—G4 except
that the node number is not equal to its score. Nodes 14
have score equal to 1, nodes 5-8 have score equal to 2, nodes
9-12 have score equal to 4 and nodes 13-16 have score equal
to 8. If we compare graphs Gs and G, we see that although
the number of inter- versus intra-class connections in Gs and
Gg are the same, high-score class nodes are segregated from
the rest of the network in Gg (there is no connection
between high-score nodes and the rest of the network), while
in Gs, high-score nodes have access to each other. Thus, we
expect the stratification of G¢ to be higher than Gs. We see
that StA(Gs) <StA(Gg) as expected. However, if we compare
the DAC of graphs Gs and Ge, DAC(Gs) = DAC(Gg). This hap-
pens because DAC does not take mutual segregation into
account and is based on the overall inter- versus intra-class con-
nections (property 3.4). Note that we set scores in these
networks in a way that inter- and intra-class connections in
both networks have the same weight because we wanted to
consider class impact and did not want other factors to interfere
in the comparison process.
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3.3.1. Identifying class boundaries

Depending on the application under study, the social class
hierarchy may or may not be available to the researcher. In
many real applications, these classes are known ahead of time.
For example, it is conventional in economic analysis of Western
societies to define a lower, middle and upper class [38]. How-
ever, in other networks, such as interactions in meetings or
conferences [3], it is possible that neither the class boundaries
nor even the number of classes is known ahead of time.

If classes are not given, one must first detect their bound-
aries. Here, we are interested in social classes that result in the
greatest StA. For instance, in a society that is actually divided
into lower, middle and upper class, there might be many
ways of partitioning the network into non-stratified classes,
but the existence of a stratified partition is of great importance.

To find these classes, we use the MaxStrat algorithm.
MaxStrat is a dynamic programming-based heuristic that is
based on maximizing the non-normalized version of the StA
(StA' = Sqrat(G) — E(Sstrat(G)) ). We explain the full details of
MaxStrat in electronic supplementary material, appendix.

4, Social stratification in collaboration networks

Here, we study the social stratification over time in four
co-authorship networks from the fields of Computational Lin-
guistics, Natural Language Processing (NLP), Computational
Biology and Biomedical Engineering. These fields have been
active for approximately 50 years and were chosen because
they are young enough that full data is available (in contrast
to very old fields like general physics, where much of the
early co-authorship information may not be accessible) but
old enough for meaningful evolution to have occurred. This
50-year period covers the bulk of the active period for these
fields: before 1966, there were very few papers in these fields,
and the dataset is incomplete for papers published after 2015.

4.1. Datasets
4.1.1. Graph data

To generate these networks, we extracted papers published in
these four fields from the Microsoft Academic Graph (MAG)
[39] over the time period from 1966 to 2015. Each node rep-
resents a researcher (author on a paper), and a link between
two nodes indicates that they have published a paper
together at least once. We treat these networks as undirected
and unweighted.’

4.1.2. Snapshots

For each field, we generated 5-year rolling network snapshots
spanning 19662015 (each snapshot begins 1 year later than
the previous). Each field contains at least 11k authors.
Table 2 shows dataset statistics and the size of the snapshots
is provided in figure 4.

4.1.3. Node scores
Node scores are defined by author h-indices, computed using
citation data within the field up to that year.

4.2. Results

In this section, we study stratification in these different fields
and explore how stratification changes over time. To perform
this analysis, we use the StA metric, which we earlier demon-
strated on toy examples.

175k
Comp. Ling.
150k 1 = NLP
Comp. Bio.
125k 1 — Bio. Eng.
100k
Q
N
@ 75k A
50k -
25k -
0.

1970 1980 1990 2000 2010
year

Figure 4. Size of networks (number of nodes).

Table 2. Dataset statistics.

no. no.
no. connections connections
networks authors (distinct) (E1)]
computational 11k 22k 23k
linguistics
Wcomputationévl ........ o el
biology
Cvomeg e o
engineering

4.2.1. StA of different fields

Here, we examine the StA of different fields. Our results
show that as the network ages, people display a higher ten-
dency to collaborate with members of their same class or
nearby classes. In particular, as the field evolves, high-score
nodes have a very strong tendency to collaborate with other
high-score nodes.

First, we use the MaxStrat algorithm (defined in elec-
tronic supplementary material, appendix) to identify class
boundaries for two to five classes. Figure 5 shows the StaA
of the 5-year snapshots from all four fields. The results
demonstrate that all networks have a fairly high level of stra-
tification (above 0.45); and with the exception of the case
when we divide into only two classes, StA increases over time.

The highest values of StA are obtained with only two
classes. To understand why this is so, we examined the h-indi-
ces that fall into each class. We observed that in almost all
snapshots, over half of the nodes have an h-index of 0, and
only a tiny minority have an h-index greater than two
(0-13% for Comp. Ling., 1-13% for NLF, 07 % for Comp. Bio.
and 1-8% for Bio. Eng.); however, because the h-indices are inte-
ger valued, finer granularity is impossible. The most natural class
division, thus, is to put every node with a low k-index (0 or 1) into
one class, and every other node into a second class. Further
stratification within that upper class is outweighted by the
stratification between the upper class and lower class.

Figure 6 shows optimal boundaries and class sizes for
two and five classes for the NLP dataset (we observed similar
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results in other datasets). In both cases, MaxStrat identifies
nodes with score equal to zero as the lowest class for all
datasets throughout all years, and the size of this class
shrinks over time. Further exploration reveals that nodes
with h-index O are largely segregated from the rest of the
networks and primarily collaborate with one another.

This explains why the highest values of StA are obtained
with only two classes: because the lowest class (h-index = 0)
is so strongly segregated from the rest of the network, the
clearest division is between that class and everything else.
With a larger number of classes, stratification also appears
among nodes with h-index>0 and increases over time.
When the field is young, high h-index nodes collaborate
with both medium and low h-index nodes, but such collabor-
ation diversity wanes as the network gets older. One possible
reason for this is that there are few high h-index researchers
when the network is young, so high h-index must collaborate
with lower h-index researchers. As more high h-index
researchers become available, they prefer to work together
and network gets more stratified.

To better understand the stratification of these fields over
time, we break down collaborations across pairs of classes.
For simplicity, we use fixed class boundaries: in general, we
find that it works well to partition nodes into four fixed
classes of low-score nodes (h-index =0), medium-low-score
nodes (h-index € {1, 2}), medium-high-score nodes (h-index €

{3, 4, 5, 6}) and high-score nodes (h-index > 6): this gives high

stratification across time periods, while allowing for more
granularity than only having two classes (analysis with
three classes is very similar). The results for fixed classes
are very close to the results of MaxStrat. We used fixed
classes rather than the variable optimal classes for consist-
ency of analysis across years (see figures 5c and 8a).

Figure 7 shows a heatmap describing results in the NLP
field (results for other fields are provided in electronic sup-
plementary material, appendix). This plot shows the
frequency of collaborations between classes of authors.
Here, each cell (c;, ¢;) is the number of connections from
class ¢; to class ¢, (1(c;, ¢;)1), normalized by the number of
connections of the two classes (cell(c;, ¢;)=1(c;, ¢j)1/1¢;l -
l¢jl, where Ic;l is the number of connections where at
least one side is in class c;). The x-axis and y-axis show the
class of h-indices (like before, we divided the h-index scores
into four classes). The results show that as network gets
older, high-score nodes tend to collaborate with high-score
nodes more.

4.2.2. StA versus other assortativity metrics

Figure 8 compares StA with DAC and SAC using 5-year
snapshots. For DAC and St2, we used the four fixed classes
described in the previous section (for consistency of analysis:
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Figure 8. Metric comparison. (a) StA, (b) DAC and (c) SAC.

these boundaries are similar to those found by MaxStrat,
but the optimal boundaries vary slightly from year to year);
scalar assortativity was computed using the h-index scores
directly. Unlike StA, DAC and SAC increase over time, and
we examine each of these cases in turn below.

The primary driver behind the different behaviours of
DAC and StA is that DAC is based on overall inter- versus
intra-class connections, and so the sizes of classes (in terms
of number of edges) weight the overall score, while StA is
based on the average score of the classes and thus considers
the impact of each class separately.

As an extreme case, consider a network in which there is
only one class, and so all connections are intra-class connec-
tions. In this case, DAC is maximized (DAC =1). However,
this network is not highly stratified because there are no
medium- or high-score nodes in the network (StA =0.25).

We see a slightly less-extreme version of this phenom-
enon in the co-authorship networks. When the fields are
young, the upper classes are very small compared with the
lower classes. Most of the edges are thus between nodes in
the lower classes. The classes are not segregated from one
another; but the sheer size difference between the classes
ensures that most edges are between nodes in the same
(lower) class. Thus, DAC is high (because most edges are
intra-class edges), but stratification is low, because the classes
are not actually segregated from one another.

As the fields age, the upper classes fill out, and segre-
gation increases. Because of this, StA increases. DAC,
however, decreases, because as the class sizes become more
balanced, the relative fraction of intra-class edges decreases
more rapidly than the segregation between the classes
increases.

Turning our attention to SAC, the differences between
StA and SAC when fields are young is primarily due to
class size. At this point, most researchers have very low h-
indices and a large fraction of edges are between nodes
with similar scores, so SAC is high. However, because the
upper classes and lower classes are not segregated from one
another, StA is low.

As the fields age, SAC decreases because the distribution
and range of h-indices becomes wider, and so individuals
may develop more diverse connections; for example, a node
with an h-index of 30 might connect to a node with an k-
index of 20. However, because these nodes are in the upper
class, and so are considered similar by StA. Thus, while the
absolute difference between scores of neighbours increases
(on the whole), and so SAC decreases, the class difference

between scores of neighbours decreases (on the whole), and
SO StA increases.

4.2.3. StA and social mobility

A significant potential consequence of social stratification is a
reduction of social mobility. We find that as networks age,
the entrance point of new nodes has a larger effect on their
trajectories through the field. For instance, figure 9 shows
the relationship between entrance collaboration scores and
h-index of researchers after 10 years in the Biomedical Engin-
eering field (results in other fields are provided in electronic
supplementary material, appendix).* Cell (c;, c;) is the nor-
malized number of authors with starting collaboration
score from class ¢; and h-index of class c; after 10 years, (cell(c;,
cj)=1(ci c)1 /1cil - I¢jl, where ;| is the number of authors
in class c;). The x-axis shows the class of collaboration scores
and the y-axis the class of h-indices (as before, each is divided
into four tiers).

We observe that as the network ages, entrance point
increasingly matters; and those who start their career by colla-
borating with high-score nodes become much more likely to
achieve a high h-index themselves. A relationship between
entry point and trajectory has been observed before [41]; but
we demonstrate that this tendency tends to increase over time.

More analysis of StA on different numbers of classes/
tiers is provided in electronic supplementary material,
appendix.

4.3, Discussion

There are several major takeaways from our analysis:

(i) Stratification in scientific fields tends to increase over
time. From figure 7, we see that this is due primarily
to the increasing tendency of high h-index nodes to
collaborate with other high h-index nodes.

(ii) Even as stratification increases, other assortativity
metrics decrease: this occurs because even as nodes
connect more within their own class, the diversity of
their intra-class connections increases. This is true par-
ticularly for high h-index nodes.

(iii) As social stratification increases, social mobility
decreases. This is a key observation, and has major
implications for the career trajectory of new research-
ers. Simply put: when a field is new, a researcher’s
trajectory is not strongly determined by their first
few collaborators; but as the field ages, these early
connections become increasingly important.
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4.3.1. Explaining stratification

We hypothesize that a major cause of stratification is related
to access to collaborators. It is known that network proximity
is important to researchers when forming new collaborations
(e.g. through triadic closure [42]). When a field is young, and
the collaboration network is less structured, a new researcher
can find strong collaborators near them in the network:
these collaborators can then help that new researcher boost
her skills and profile. However, as the field ages, researchers
with high h-index begin to find one another; and as they con-
gregate, new researchers in other areas in the network have a
much greater network distance from these older, successful
researchers. This, in turn, makes it more difficult for those
new researchers to join established projects, obtain mentoring
from successful senior researchers, and so on. In contrast,
researchers who happen to join the network in proximity to
these high h-index researchers (e.g. the PhD students of
such researchers) get a substantial head start.

The social science literature describes this phenomenon as
social distance, which has long been understood as a cause of
stratification [43]. In an extreme case, a stratified network
might be divided into separate connected components corre-
sponding to the various score intervals (tiers). This, naturally,
has consequences for social mobility.

Outside of co-authorship networks, social distance is
defined very broadly and can encompass characteristics like
ethnicity, socioeconomic status, occupation, etc. A high social
distance between classes suggests that individuals lack
access—both directly and indirectly—to those in other classes.
In a network setting, the simplest way to determine “access’ is
by the existence of paths: if there is no path between two nodes,
then by standard network evolution processes (e.g. triadic
closure and the like), it is virtually impossible for them to
connect in the future (this is not to say that they cannot connect;
but if they do, it is probably because of processes external to the
network topology).

To further investigate this hypothesis, we examined the
properties of connected components in the co-authorship net-
work. If connected components exhibit very different score-
related characteristics, this is indicative of social distance
driving the increase in stratification.

For each node u in the network, we compute a collaboration
score, defined as the average h-index of the four highest-scoring
collaborators of u (we only consider the top neighbours
because access to higher-class individuals is more important
than access to lower-class individuals for upwards social mobi-
lity). Note, importantly, that we are not simply using the scores
of the nodes themselves: we are examining whether nodes in
the various components have access to high h-index nodes.

Next, for each connected component, we compute the
average of the collaboration scores of all nodes in that com-
ponent. We refer to this as the component score. A higher
value indicates that on average, nodes in the connected

component have collaborations with high scoring nodes,
while a lower average indicates that on average, nodes in
the component lack connections to high scoring nodes.
Note that a component with many low h-index nodes can
still have a high component score, as long as those low h-
index nodes have collaborations with high h-index nodes.

If social distance is indeed a driver of stratification, we expect
these component scores to vary significantly across components:
in some areas of the networks, nodes have access to high Z-index
nodes (high component scores), and in other areas, nodes do not
(low component scores). Accordingly, we compute the standard
deviation across the set of component scores. A low standard
deviation indicates that nodes have similar collaboration pat-
terns across different components of the network, and a high
standard deviation indicates that the network has some com-
ponents in which nodes tend to have higher collaboration
scores and some components in which nodes tend to have
lower collaboration scores. The former means that there are no
major differences in social distance, suggesting that the network
is not stratified; while the latter implies the converse. Note that
we are not measuring stratification directly: rather, we are
exploring whether there is a major difference in access to high
h-index nodes in different regions of the network.

Figure 10 shows these results. In all cases, as the network
gets older, the number of components increases and the stan-
dard deviation across components increases. In other words,
over time, the components show increasingly different beha-
viours from one another: in some, nodes have access to high
scoring nodes, and in others, nodes do not. This matches the
earlier stratification results exactly.

This analysis suggests a mechanism by which stratifica-
tion in co-authorship networks could occur: if researchers
have a preference for connecting to high h-index researchers,
and there is a practical limitation on the number of research-
ers that one can collaborate with, then those researchers with
a high h-index will tend to congregate with one another, leav-
ing regions of the network devoid of such researchers. This
then affects new researchers who enter the network in these
areas, leading to decreased mobility.

Moreover, our study shows that the position of researchers in
the network has a key role in their eventual success. In addition
to our hypothesis, this can be due to different reasons such as
privilege or discrimination. To explain this, we draw an analogy
to results from Stratification Economics, a sub-field of economics
that explains inter-group inequalities as caused, in part, by
‘uneven intergenerational transmission of resources and advan-
tage’ [44-46]. Stratification economics examines differences
between social classes, nations and regions, racial and ethnic
groups, etc.,, in a competitive, cooperative or collaborative
environment [44]. Studies in this area consider both the relative
position of individuals within a social group as well as the absol-
ute position of social groups, because both factors affect the lives,
rewards and satisfaction of individuals [44].
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Like the societies studied in stratification economics, scientific
collaboration takes place in a cooperative and collaborative
environment, and inequalities in access to resources and prestige
can be ‘inherited” through one’s collaborators. The citations that
we use in this study are not directly inherited, but resources, pres-
tige and status related to citations are unevenly transmitted
across generations. Such factors can play a key role in facilitating
the stratification process of collaboration networks, contributing
to the development of hegemonical epistemologies that further
reinforce stratification and, consequently, may lead to discrimi-
nation. For instance, certain research groups or universities
have access to modern equipment, facilities and resources that
gives their scholars an initial research advantage. These scholars
may come to set the global research agenda, such that the work of
researchers who lie beyond this network stratum becomes
increasingly marginalized. For instance, Obeng-Odoom reviews
research highlighting how the editorial boards of leading
journals in economics are dominated by a small groups of (pri-
marily white, Eurocentric) editors from mainstream economic
departments [47]. As a result, mainstream journals tend to
exclude research contributions that focus on topics that are of
interest of African scholars. Although our study did not explore
racial discrimination, it is clear from this example how discrimi-
natory social consequences can arise from a network-based
stratification process.

4.3.2. Application and limitations of measuring stratification

in other domains

While our analysis here has focused on co-authorship networks,
the StA metric can be used to measure stratification in any
system that has a network describing social or other relevant
interactions, in which nodes are annotated with an appropriate
score (the meaning of this score can vary by domain). It would
be of particular interest to use it to study socioeconomic stratifi-
cation: in particular, to gain another perspective on the extent to
which personal and professional networks may affect class
mobility, and to compare across different societies.

There are some important limitations in applying the StAa
metric. First, while the mathematics can be adapted to directed
graphs, one should be careful in interpreting such results. On
Twitter, for instance, there are many low-status individuals fol-
lowing a high-status individual, but this has very little
relevance toward stratification as a whole, as it is very easy to
follow someone, and reciprocity/consent are not required.
Additionally, for similar reasons, it is important to consider
the meaning of edge information. When studying online
social media data, for instance, many platforms allow an

effectively unlimited number of friends, and so high-status indi-
viduals may be willing to connect to low-status individuals; but
such connections may not be meaningful. In such cases, the
existence of communication or meaningful interaction may be
more relevant than the existence of a ‘friendship’.

5. Conclusion and future work

In this paper, we proposed St2, a novel algorithm that
measures network social stratification by evaluating the ten-
dency of the network to be divided into ordered classes.
Then, we performed a case study on several co-authorship
networks and examined the evolution of these networks
over time and showed that networks evolved into highly stra-
tified states. In future work, we plan to study social
stratification in other types of social networks, explore
reasons behind stratification in different network types, and
see how stratification can be prevented.

Data accessibility. The Microsoft Academic Graph (MAG) and underlying
APIs were retired on December 2021 and the MAG dataset cannot be
accessed any more per Microsoft’s policy. The datasets used in this
paper are samples from MAG dataset. These samples contain co-
authorship networks of researchers in four fields over 50 years. The
whole co-authorship networks used in this paper are released and
can be accessed in: https://github.com/SaraJalali/Stratification
Assortativity/tree/main/Dataset. Please contact Zeinab S. Jalali (zsa-
ghati@syr.edu) for further questions regarding the dataset. The data
are provided in the electronic supplementary material [48].
Authors” contributions. Z.S.J.: conceptualization, data curation, formal
analysis, funding acquisition, investigation, methodology, resources,
software, validation, visualization, writing—original draft; J.I.: con-
ceptualization, data curation, formal analysis, investigation,
methodology, project administration, resources, supervision, vali-
dation, writing—review and editing; S.S.: conceptualization, data
curation, formal analysis, funding acquisition, investigation, method-
ology, project administration, resources, supervision, validation,
writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.
Funding. S.S. was supported in part by NSF awards grant no. 1908048
and grant no. 2047224.

Acknowledgements. We thank Lizhen Liang for assistance with the
dataset.

Endnotes

'The maximum number k such that the author has at least & papers
with at least  citations each.

>We used MAG because it outperforms Google Scholar in terms of
structure, functionality and richness of data [40].
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