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Fairness of Information Flow in Social Networks
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Social networks form a major parts of people’s lives, and individuals often make important life decisions
based on information that spreads through these networks. For this reason, it is important to know whether
individuals from di!erent protected groups have equal access to information "owing through a network. In
this article, we de#ne the Information Unfairness (IUF) metric, which quanti#es inequality in access to
information across protected groups. We then introduce MinIUF, an algorithm for reducing inequalities in
information "ow by adding edges to the network. Finally, we provide an in-depth analysis of information
"ow with respect to an attribute of interest, such as gender, across di!erent types of networks to evaluate
whether the structure of these networks allows groups to equally access information "owing in the network.
Moreover, we investigate the causes of unfairness in such networks and how it can be improved.
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1 INTRODUCTION
In professional and other social settings, networks play an important role in people’s lives, and com-
munication between individuals can have a signi#cant e!ect on individuals’ decision making [7].
Through such communications, individuals learn about employment, promotion, and award oppor-
tunities, as well as make valuable connections to mentors or sponsors, all of which can in"uence
the trajectories of their lives. Moreover, through such networks, individuals learn of new profes-
sional ideas, events and, other useful information that can a!ect their professional success. As such,
it is of interest to understand whether information is "owing fairly to nodes in social networks.
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In particular, depending on the structure of a social network, it is possible that individuals from
certain protected groups (i.e., those based on so-called protected attributes like race or gender)
are deprived of equal access to information spreading in the network. For instance, consider a
company’s professional network (describing interactions between employees) where White men
occupy the majority of central positions, and women and minorities are on the fringes of the
network [20]. If such network structure results in greater information "ow to members of the
advantaged group, then that allows the group to further consolidate power, worsening inequality.
Such consequences have been observed in reality: for example, students from poor backgrounds
are often unaware of opportunities for attending college and might not become aware of them
through their connections, thus perpetuating the cycle of poverty [5].

It is thus important to quantify the extent to which individuals from di!erent attribute groups
have equal access to information spreading in the network (as discussed above, we are interested
in groups based on sensitive protected attributes like gender or race). Once such unfairness has
been detected, e!orts can be made to remedy unfairness in information spread.

In this work, we de#ne the Information Unfairness (IUF) metric, which quanti#es inequal-
ity in access to information across protected groups. We then introduce MinIUF, an algorithm for
reducing information unfairness by adding edges to the network. Finally, we provide an in-depth
analysis of information "ow with respect to an attribute of interest, such as gender, across di!erent
types of networks.

The work in this article is based on the earlier work in [19] which was focused on introduc-
ing a simpler version of Information Unfairness applied to undirected, unweighted networks with
two protected groups. In brief, information unfairness was computed using distances between the
means of three distributions: (1) internal "ow within group one, (2) "ow between groups one and
two, and (3) internal "ow within group two. These three "ow distributions are computed using
the accessibility matrix A(k ) , where each element ai, j describes the expected amount of informa-
tion that node ui receives from node uj , measured using the number of walks of length up to
k between the two nodes. In this article, we show how to generalize the basic Information Un-
fairness from [19] in the following ways: (1) Unlike the earlier version, which was designed to
handle undirected, unweighted networks, the modi#ed IUF can apply to any kind of network. (2)
The earlier version was designed to handle networks of two non-overlapping groups. In contrast,
the new IUF can be used on networks with more than two potentially overlapping groups. (3) In
the updated version of IUF, the information "ow between node pairs is computed more realisti-
cally, using either non-backtracking walks or a probability-based model of "ow, in contrast to the
earlier version that was based on backtracking walks.

We introduce MinIUF, an algorithm to reduce information unfairness by adding edges. MinIUF
is based on MaxFair, which we presented in [19]. In brief, MaxFair uses a power iteration-like
process to compute a score for each pair of unconnected nodes, where the score represents the
decrease in information unfairness that would be obtained by connecting those nodes. MinIUF is
an improved version of MaxFair. While MaxFair estimates the e!ect of adding an edge on overall
"ow to each group, MinIUF, makes this estimate more accurate by considering the e!ect of adding
an edge on "ows of di!erent length. Finally, we perform a comprehensive analysis of the informa-
tion unfairness of di!erent complex networks including co-authorship networks, social networks,
an email network, and a blog network, and show how to reduce their unfairness.

Our contributions are as follows:
— We propose IUF, a generalized version of the Information Unfairness [19] metric, that mea-

sures the extent to which individuals from di!erent groups have equal access to the informa-
tion spreading in the network. IUF can be computed using either non-backtracking walks
or probability based methods to measure information "ow between pairs of nodes.
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— We introduce MinIUF, a novel algorithm for reducing IUF by adding a set of edges to a
network.

— We perform a detailed experimental analysis of IUF on di!erent networks. We explore the
structural properties of these networks that lead to high or low IUF.

The remainder of this article is organized as follows: In Section 2, we discuss relevant related
work. In Section 3, we de#ne IUF and show how it can be computed. In Section 4, we propose
the MinIUF algorithm for reducing IUF. In Section 5, we perform an extensive analysis on the
unfairness of di!erent complex networks. Finally, Section 6 concludes the article.

2 RELATED WORK
This work is broadly situated within the realm of “algorithmic fairness”, which has attracted a
great deal of attention from the algorithmic community in recent years [5]. At a very high level,
one primary motivation behind such works is that algorithms should treat individuals from dif-
ferent protected groups equally, where protected groups are those de#ned based on protected
attributes like race or religion (The term protected group can encompass both underprivileged and
privileged groups). Most of the existing work on algorithmic fairness has been on machine learn-
ing algorithms, including for applications like credit scoring, criminal sentencing, and others [5].
In contrast to most of the work on algorithmic fairness, our primary goal is not to analyze the
fairness of an algorithm’s output, or design algorithms that are “fair”, but rather to understand the
e!ect of a network’s structure itself on fair outcomes.

There are some recent works on algorithmic fairness on machine learning approaches related
to network data. For instance, Masrour et al., studies algorithmic fairness in node classi#cation
and network sampling using machine learning techniques [36], Stocia et al., studies the impact
of social recommendations on network fairness by showing the existence of algorithmic glass
ceiling in social network [39] and Beilinson et al., introduces clustering, based on fair access to
information [6]. In contrast to our work, these works propose methods for fair network analysis,
as opposed to studying the fairness of the network structure itself.

Closely related to our work, are works on fairness in in"uence maximization: Fish et al., and
Tsang et al.’s goal is to select seeds in a way that information spread is maximized, while di!erent
groups have equal access to the information that is spreading in the network [12, 43] and Wang
et al., studies the equality of information access in di!erent dynamic network models and shows
the trade-o! between e$ciency of information access and equality [44]. In contrast, our goal
is to measure fair "ow of information regardless of the start point, not to select seeds for fair
information "ow.

Two related concepts to fairness in social networks are echo chambers and homophily in net-
works. Echo chambers occur when beliefs of members in a group are ampli#ed by other members
of that group [4]. Most works on echo chambers are focused on political opinions [13]. Homophily,
a measure of segregation of networks, is the tendency of individuals to associate with like minded
others. In network science, homophily is often measured by the assortativity coe$cient [29]. Such
segregation has been observed in professional networks [18], and in societal networks, can lead
to educational inequality [31], reduced health outcomes [24], and reduced exposure to advertis-
ing [38]. Halberstam and Knight show that members of a majority group can receive more pieces
of information than members of a minority group [16] and Karimi, et al., show that as homophily
increases, majority nodes have harder time accessing information coming from minority nodes
and vice versa [21]. However, we will show later, homophily does not capture the same nuance of
information "ow as our proposed IUF metric.

In our experiments section, we study unfairness in citation networks with respect to gender,
Nettasingh et al.’s work, study fairness and inequalities in the structure of citation networks [28].
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Fig. 1. Three networks with the same number of nodes and edges from each group but di!erent information
flow (only selected flows shown).

The #nal part of our article proposes a method for decreasing unfairness by adding edges. There
is some existing work on increasing "ow in a network by adding edges [10, 42], but this work has
not considered the problem from a fairness perspective.

3 INFORMATION UNFAIRNESS (IUF)
In this section, we de#ne the novel IUF (Information UnFairness) metric, which measures the
extent to which information "ows fairly between protected groups. At a high level, the intuition
behind IUF is that we wish to determine whether the structure of the network, including how
individuals are positioned in the network, allows groups to bene#t equally in terms of their access
to information. As an example, Figure 1 shows three networks with the same number of nodes and
edges, where half of the nodes are members of the red group and the other half are members of
the blue group. In the left-hand network, red nodes have di$culty accessing information starting
at other red nodes: in other words, they are isolated from one another. In the right network, red
and blue nodes can easily access information starting from their group-mates but have di$culty
accessing the information that are from the other group: in other words, they are segregated. In
the middle network, both red and blue nodes can easily access the information that starts from
anywhere in the network: this network is fair.

3.1 Computation
IUF measures whether individuals from di!erent protected groups have di!erent levels of access
to the information "owing in the network. Although we do not expect all individuals to spread
and receive information equally, we consider a network unfair when a protected group is dispro-
portionately deprived of the ability to access or spread information.

The symbols used in our computation are showed in Table 1. The input to IUF are:
— Network G = (V ,E): a network with n vertices V = {v1, . . . ,vn } and m edges E with adja-

cency matrix Mn×n , 0 < mi j ≤ 1 if there is an edge between nodes vi and vj and mi j = 0
otherwise (G can be directed or undirected, simple or weighted.1)mi j denotes the probability
that node vi transmits information directly to node vj .

— A set of l protected groups P = {p1, . . . ,pl } and protected group membership matrix PMn×l ,
where pmi j shows the strength of node vi ’s membership in group pj . For each node vi ,
Σj ∈ {1, ...,l }pmi j = 1. These protected groups represent the groups of interest based on at-
tributes like race or gender.

1Weighted edges can correspond to strengths of connections. For instance, if the input graph has attributes other than the
sensitive attribute under study, and one can infer something about the probability of propagation along an edge from these
attributes, this information can be encoding into edge weights.
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Table 1. Notation

Symbol De!nition
G (V , E ) Weighted/simple, undirected/directed attributed graph

V = {vi , . . . , vn } Nodes in G
n, m Number of nodes and edges in G
Mn×n Adjacency matrix of G , mi j : probability of vj receives information from vi
P = {p1, . . . ,l } Set of protected groups
PMn×l Protected group membership matrix: pmi j : probability that node vi is a member of protected group pj

k Maximum length cascade considered
Sn×n Normalization matrix
Mk Backtracking expected probability matrix: mk

i j : probability of information passing through a walk of length k from vi to vj

Bk Non-backtracking expected probability matrix: b′ki j : probability of information passing through a non-backtracking walk of
length k from vi to vj

A(k ), A′ (k ) Accessibility & normalized accessibility matrix
Dpi pj Joint attribute accessibility distribution of protected groups pi and pj
FMl×l Flow Mean matrix, f mi j : mean of "ow from protected group pi to protected group pj

— k ∈ N : the maximum information cascade length. Because most important information has
an “expiration date” (e.g., deadline to apply for a job), we do not consider arbitrarily long
cascades.

— Normalization matrix Sm×m (optional) (details are provided in Section 3.2).
— A distance functionDist (D1,D2) for computing the distance between two distributions. This

distance function could be, e.g., Earth Mover’s Distance.
Given this input, IUF is computed as follows (details of the various steps are discussed further

below). A fair network will have IU F value close to 0, and higher values indicate greater unfairness.
(1) Accessibility matrix construction: Construct the accessibility matrix A(k ) , where ai j

shows the amount of information that is expected to "ow from node vi to node vj using
adjacency matrix M and maximum cascade length k .

(2) Normalization: If a normalization matrix S is provided, we de#ne the normalized accessi-
bility matrix A′(k ) = A(k ) & S. As we discuss later, the normalization matrix can be de#ned
based on density, degree or any other desired properties.

(3) Characterizing "ow between protected groups: Compute a list of joint attribute acces-
sibility distributions LD : {Df д : f ,д ∈ {1, . . . , l }} from A(k) or A′(k) that characterize "ow
between each pair of protected groups pf and pд , where {pi ,pj } ∈ {p1, . . . ,pl }.

(4) Computing the Information Unfairness (IUF): Using the given distance function, #nd
the distance between each pair of joint attribute accessibility distributions and return the
maximum such distance: IU F =max ({Dist (Dh ,Dz ) : Dh ,Dz ∈ LD}).

3.1.1 Accessibility Matrix Construction. Matrix A(k ) describes the "ow of information between
each pair of nodes. More formally, ai j is the expected amount of information that node vj will
receive from nodevi , and can be computed in accordance with whatever model of information "ow
one desires. Here, we consider two di!erent ways to construct this matrix. The #rst method, based
on non-backtracking walks, allows one to compute the expected amount of information "owing
between each pair of nodes. The second method, which uses the SI contagion model, allows one
to compute the probability that information is shared between a pair of nodes. There are various
bene#ts and drawbacks to these methods: The #rst method is faster to compute and is deterministic,
but the second may give results that are of greater interest.
(1) Non-backtracking Walks: First, we use the number of walks between two nodes to measure
the expected amount of information "owing between those nodes. In a simple network with binary
adjacency matrix M, Mk describes the number of walks of length-k (each element (i, j ) in this
matrix is the number of length k walks between nodes vi and vj ). In a weighted network, where
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elements of M show the probability of information "ow along an edge, each elementmk
i j of Mk is

the expected number of times that node vj hears about a piece of information starting from node
vj that passes along walks of length k .

Using this idea, our earlier work in [19] computed the accessibility matrix A(k ) as A(k ) = M +
M2 + · · · + Mk . In this way, ai j shows the expected number of times that node vj will receive a
piece of information starting from nodevi by using walks of length at most k [3]. If M is invertible,
then A(k ) = (I −M)−1 (̇I −Mk+1) − I . (Note that if M is not invertible, adding a small amount of
error ϵ to the diagonal elements will make it invertible without signi#cantly a!ecting the results.)

Note that Mk contains the number of walks between two nodes of length-k with backtrack-
ing. However, for purposes of measuring information "ow, backtracking walks are less relevant
than non-backtracking walks. In the information unfairness computation, we are interested to see
whether nodes from di!erent groups will learn about a piece of information that is spreading in
the network. If a piece of information starts from node u and reaches its neighbor v , it is not of
interest to see whether node u will hear about that same piece of information immediately from
node v . By only considering non-backtracking walks, we eliminate such routes while computing
the path. Such a restriction has recently been used in many graph applications [2]. In this work, we
use the method introduced in [2] for computing non-backtracking walks of length k , and compute
accessibility matrix as A(k ) = B1 + B2 + · · · + Bk . Here, bk

i j shows the expected number of times
that node vj will receive a piece of information starting from node vi through non-backtracking
walks of length at most k . Bk =

Bk
r +Bk

l
2 and Bk

r and Bk
l are computed as follows (note that if G is

undirected, Bk
r = Bk

l ). Let

B1
l = M,B1

r = MT ,B2
l = M ·MT − D1,B2

r = MT ·M − D2,D1 = diaд(M ·MT ),D2 = diaд(MT ·M).

For k > 2, if k is even:
Bk

l = Bk−1
l ·MT + Bk−2

l · (I − D1),Bk
r = Bk−1

r ·M + Bk−2
r (̇I − D2);

and if k is odd:
Bk

l = Bk−1
l ·M + Bk−2

l (̇I − D2),Bk
r = Bk−1

r ·MT + Bk−2
r (̇I − D1).

Finally, after constructing A(k ) , we set elements on the diagonal to 0, because the information
about whether a node transmitted information to itself is not relevant. Note that because a node
may receive multiple cascades from another node, each ai j might be greater than 1. Depending on
the application, one may wish to truncate these values at 1 (indicating that a node is expected to
receive at least a piece of information at least once).
(2) SI Contagion-Based Method: Although the above method is tractable and deterministic,
there are more sophisticated models for information "ow. Many of these models are based on
the Susceptible-Infected (SI) model of disease spread [27]. One can use such a model to measure
information "ow between each pair of nodes; however, it is computationally di$cult to compute
the nodes that will be in"uenced by a set of seeds, and so extensive simulations are required [45].
This approach is thus best suited for small networks.

The SI model is a classic epidemic model, and is commonly used to simulate information spread.
It was originally designed to describe how disease spreads through a population [27]. In this
model, every node has two states: susceptible and infected. In each iteration, every infected node
will infect its susceptible adjacent nodes with a certain probability. The SI model is an application
of the Independent cascade (IC) model [14], which assumes that the information spreading
process begins from an initial active nodes set S . At time t , let St denote the set of activated
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nodes. Every node in the set St will independently attempt to infect its susceptible neighbors,
and will succeed with a speci#ed probability. This process repeats in the next iteration, making
the IC model stochastic and progressive [9]. We apply a Monte Carlo (MC) simulation [23] to
estimate the information spreading results. MC methods are typically used in models where the
probability of outcomes cannot be determined due to random variable intervention. The core idea
of MC simulations is to constantly repeat random sampling to approximate the desired results.
The MC simulation in our experiment repeats the information di!usion process for t iterations
independently. Using this method, A(k ) is computed as follows:

At each iteration, we compute the spreading probability accessibility matrix SA as follow: for
each nodevi , we setvi as the only activate node in the initial set S0. Across k iterations, nodes in Sk
will activate their neighbors with probabilitymi j , and activated nodes will be added to Sk +1 (each
active node can activate its neighbor only once). For each node uj that is activated during the k
steps where S0 = ui , sai j = 1 and for all non-activated nodes uj , sai j = 0. Finally, we compute A(k )

by taking the average over all computed matrices SA1 to SAk . This represents the probability that
a node receives a piece of information starting at another node, where transmission probabilities
are given by M.

3.1.2 Characterizing Flow Between Protected Groups. Elements in A show the "ow between
each pair of nodes. However, we are ultimately interested in understanding the "ow between the
pairs of protected groups. Thus, we de#ne joint attribute accessibility distributions Df д for protected
groups pf and pд where {pf ,pд } ∈ P = {p1, . . . ,pl }. Df д = {ai j · pmi f · pmjд : i, j ∈ {1, . . . ,n}}. We
compute a list of all such distributions as LD : {Df д : f ,д ∈ {1, . . . , l }} from A.

3.1.3 Computing IUF. After computing all the joint accessibility distributions, the Information
Unfairness of the network is given by: IU F = max ({Dist (Dh ,Dz ) : Dh ,Dz ∈ LD}). Here, Dist is a
function for computing the distance between two distributions.

Informally, the IUF of a network measures the di!erences between the joint accessibility distri-
butions. For instance, if there are two protected groups- a minority and a majority- in the network,
we want to determine whether information "ows equally within the minority group, within the
majority group, and between the two groups.
Choice of Distance Function. There are a multitude of distance measures for computing
the di!erence between two distributions. Examples include K–L Divergence (KLD), Earth
Mover’s Distance (EMD), distance between weighted means (WM), distance between trun-
cated weighted means (TWM), distance between weighted medians (WME), and so on. Se-
lection of the best distance function depends on the distributions under study. In this work, we
consider the distance function as the weighted distance between their means. Note that,by summa-
rizing a distribution into its means, we might lose important information. For comparison, we also
experimented with other distance measures, including EMD, WM, TWM, and WME, and saw simi-
lar results on the datasets used in this work. (For this work, KLD is not a good choice as it does not
consider the distance of the values into account: e.g., using KLD, Dist ([1, 1, . . . , 1], [2, 2, . . . , 2]) =
Dist ([1, 1, . . . , 1], [3, 3, . . . , 3]).)
Matrix-based Computation of IUF. If distance between WM is used as the distance function,
IUF can be computed directly from matrices A and PM using matrix multiplications as follows:

— Compute the "ow sum matrix FSl×l = PMT ·A(k ) · PM, where f sf д is sum of the "ows from
all nodes from protected group pf to all nodes from protected group pд .

— Compute weight matrix Wl×l = PMT · (M−Diaд(M) · PM), wherewf д is the weight matrix
used for computing weighted mean of distributions.
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Fig. 2. Overview of information unfairness computation process.

— Compute "ow Mean matrix FMl×l = FS &W.
— IU F =max (FM) −min(FM)

An overview of the IUF computation process is given in Figure 2.
3.1.4 Complexity Analysis and Scalability. The time complexity of computing the IUF of net-

workG with n nodes depends on how accessibility matrix A is computed and how distance metrics
are de#ned. If A is computed using the SI model simulation, the result is not deterministic, and
so many simulations may be required for stability. Thus, for our complexity analysis, we focus on
analyzing the walk-based models. Moreover, as we used distance between weighted means (WM),
we provide analysis for the WM distance metric.

First, for the accessibility matrix computation using non-backtracking walks, A(k ) is computed
as A(k ) = B1 +B2 + · · ·+Bk . For computing Bk from Bk−1, at most 4 matrix-matrix multiplications
and 4 matrix additions and subtractions are needed. This takes O (n3) time, and so the overall
computation of Bk and A(k ) takes O (kn3) (B1 to +Bk−1 will be computed as part of the process).
Note that the time complexity of computing A(k ) for the backtracking version is also O (kn3), as
computing matrix Mk requires k matrix matrix computation. Thus, the time complexity for either
of these methods isO (kn3). After computing matrix A(k ) , as distance metric WM is used, we use the
matrix based computation (explained in the previous section) for measuring distance. Computing
each of the matrices FSl×l and Wl×l requires two matrix-matrix multiplications, takingO (ln2) time.
Computing FMl×l and #nding the minimum and maximum elements of this matrix each takeO (l2).
Thus, the overall time complexity of computing IUF using walk-based methods is O (kn3).

As explained, the process of computing IUF using the walk-based computation needs a set of
matrix-matrix multiplications. Matrix-matrix multiplications is one of the most vital operations
in many applications from computational science, machine-learning, network science and model-
ing [26], and thus there have been great advances on matrix operations for large matrices in the
past few years. From di!erent matrix libraries like LAPACK [34] to hardware accelarators includ-
ing GPUs [26]. With the use of these techniques, IUF can be quickly computed for large networks.

3.2 Normalization Matrix Computation
The accessibility matrix describes the amount of "ow between each pair of nodes; however, it may
also be of interest to know how this "ow compares to what one would expect in a random graph
ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 79. Publication date: February 2023.



Fairness of Information Flow in Social Networks 79:9

with some of the same properties as the actual graph. To compare the "ow of information in the
network to the "ow in random networks with the same desired topological properties (i.e., with
the same density or degree distribution), the user may provide a normalization matrix S. The goal
of such normalization is to obtain the speci#c topological properties that lead to unfairness in
information "ow because nodes in the network have di!erent structural properties that may have
in"uence on their accessibility score. This is comparable to identifying the causal e!ect, where
di!erent characteristics of treatment groups have in"uence on the scores used in computing causal
e!ect and propensity score normalization is used to overcome this bias [33]. In Section 3.2, we
discuss how to compute S based on degree, and density. The purpose of normalization is to compare
the information "ow in the original network to the expected information in a random network
with speci#c topological properties. To do so, we do element-wise division of accessibility matrix
of original network A by expected accessibility matrix of random network S. In order to compute
S, one can generate t random networks with the particular properties of interest and compute
accessibility matrix for each random network. Then, matrix S is the average over all accessibility
matrices of t random networks. If t is large enough, si j is an approximation of the expected "ow
that starts from node vi and reaches node vj .

However, generating t networks and computing accessibility matrix for each one, is computa-
tionally expensive. In this work, we use two ways of normalization based on (1) density, (2) degree
and discuss ways to quickly and e!ectively estimate S using walk based methods (these estima-
tions were #rst introduced in [19]). In Section 5, we measure the accuracy of our estimations
by comparing the estimated values to those generated by generating a large number of random
networks.

3.2.1 Density-Based Normalization. A drawback in using the unnormalized matrix A is that
nodes naturally receive more information in a dense graph compared to a sparse graph, so di!er-
ences between groups are magni#ed. The IUF of a dense graph may thus be higher than IUF of a
sparse graph, but this does not necessarily indicate that the dense graph is less fair than the sparse
graph. To compare the IUF of graphs of di!erent densities, it is necessary to normalize A(k ) by
density (Sden ). Sden can be computed by taking the average over accessibility matrices of t ran-
dom networks with the same density as network G. As computing Sden using this process is slow,
we estimate Sden as described in [19] by #rst de#ning matrix Mden so that all elements are equal
to the density of the graph. This value is given by 2m/n2, wherem and n represent the number of
edges and the number of nodes in the network respectively. Mden is an estimation over the aver-
age of adjacency matrices of t random graphs with the same number of edges and nodes produces
without generating these graphs. After generating Mden , Sden can be generated the same way that
A(k ) was generated from M.

3.2.2 Degree-Based Normalization. To see the impact of the number of connections (degrees)
of nodes in each protected group on the information unfairness of a network, one can use degree
based normalization. For instance, in a collaboration network of STEMM (Science, Technology,
Engineering, Math, and Medicine) scientists, it is possible that highest degree nodes are more
likely to be senior researchers and thus disproportionately male, as women have only entered the
#eld in large numbers in the past few decades [17]. It is useful to know whether unfairness is due to
di!erences in degree (though such an explanation would not necessarily excuse unfairness). Thus,
to explore the impact on degree distributions of nodes on unfairness, it is necessary to normalize
A(k ) by degree (Sdeд). As mentioned before, Sdeд can be computed by taking the average over
accessibility matrices of t random networks with the same degree distributions as network G. As
computing Sdeд using this process is slow, we estimate S as introduced in [19] as follows:
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We #rst de#ne matrix Mdeд so thatmi j = dvidvj /2m wherem is the number of edges and dvx is
degree of node vx . Note that this is the same as the normalization used in the modularity metric
for characterizing and detecting communities in the network [30]. Mdeд is an estimation over the
average of adjacency matrices of t random graphs with the same degree distributions without
generating these graphs. After generating Mdeд , Sdeд can be generated the same way that A was
generated from M.

3.3 Example
Figure 1 depicts three graphs with the same density (20 nodes and 19 edges) and di!erent values
of information fairness. For propagation probability of pp = 0.5 for all edges in the network and
k = 4, for each graph, we computed A(k ) using both walk-based and SI-based methods. For the
SI-based method, we computed A(k ) by running 1000 simulations and taking the average accessibil-
ity matrix over all trials. After computing accessibility matrices, we identi#ed three distributions
to characterize "ow between di!erent group pairs (red-red, red-blue, and blue-blue node pairs). As
all three networks have the same number of nodes and edges, we compare them directly without
density normalization.

Using accessibility matrices computed by the walk-based method, for the networks a, b, and
c, respectively, the red-red distribution has a mean of (0.04, 0.12, 0.17), the blue-blue distribution
has a mean of (0.18, 0.11, 0.20), and the red-blue distribution has a mean of (0.12, 0.12, 0.08). In
all networks, there is good "ow within the set of blue nodes. The middle graph also has good
"ow within the set of red nodes and between red and blue nodes. However, the right network
has minimal "ow between red and blue nodes (but good "ow within the set of red nodes), and
the left network has minimal "ow within the set of red nodes (and good "ow between red and
blue nodes). IU F is computed by computing the distance between maximum means and minimum
means, giving us 0.18− 0.04 = 0.14 for the left network, 0.12− 0.11 = 0.01 for the middle network
and 0.20 − 0.08 = 0.12 for the left network.

Using accessibility matrices computed by the SI-based method, for the left, middle, and right
networks, respectively, the red-red distribution has a mean of (0.05, 0.14, 0.21), the blue-blue distri-
bution has a mean of (0.23, 0.13, 0.25), and the red-blue distribution has a mean of (0.13, 0.15, 0.10).
On these networks, the results are close to the results of the walk-based method. The IU F values
are then 0.23 − 0.05 = 0.18 for the left network, 0.15 − 0.13 = 0.02 for the middle network, and
0.25 − 0.10 = 0.15 for the right network.

It is clear that the middle network should have much lower information unfairness than the
ones on both sides. Both left and right networks are unfair, but for di!erent reasons. The left net-
work su!ers from isolation of red nodes (low red-red "ow) and the right network su!ers from
segregation of groups (low red-blue "ow). In real contexts, these problems would require di!er-
ent remedies: for instance, in the left network, one should attempt to build connections between
members of the red group (e.g., peer group-type connections), while in the right network, more
integration between groups is required.

3.4 Interpretation
Interpreting IUF values is easier after normalization with respect to a null model (e.g., degree- or
density-based normalization, as described earlier). Through such normalization, IUF value is not
a!ected by di!erent group sizes. Each joint attribute accessibility distribution tells us how informa-
tion "ows from members of one attribute group to members of another attribute group. IUF deals
with the two most di!erent pairs of attribute groups, and computes the distance between their
"ow distributions. For instance, in the right network in Figure 1, which is a segregated network,
we see good "ow between blue nodes (blue group to blue group), good "ow between red nodes
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Fig. 3. Graphs with same assortativity coe!icient values, but di!erent information unfairness scores [19].

(red group to red group), and weak "ow between red and blue nodes (red group to blue group).
The greatest distance happens in comparing either (blue-blue to red-blue) or (red-red to red-blue).
In the normalization process based on a null model like degree or density we divide each value of
the accessibility matrix by the expected value in the random network. Thus, each element ai j after
normalization corresponds to the actual amount of "ow betweenvi andvj , divided by the expected
amount of "ow between vi and vj in a random graph with the same topological properties.

Note that in a fair network, we do not necessarily expect to see the same "ow between nodesvi
andvj as we see in the random network. However, the reason behind doing this normalization is to
see whether nodes from each group as a whole have been harmed or bene#ted from the structure
equally. For instance, if we see the "ow between two groups (red-blue) is 50% higher in original
network compared to the random network, then in order for the network to be fair, we need to see
the "ow between two groups (red-red) or (blue-blue) is also 50% higher in the original network
compared to the random network. Thus, the distance between two distributions is then relative to
the null model.

3.5 IUF vs. Assortativity
As a concept, IUF is related to assortativity, which is a measure of homophily. However, because
assortativity is a dyadic measure, there are important di!erences. Figure 3 shows three graphs
with the same assortativity coe$cient value (0.67) but di!erent values of IUF: graph(a), graph(b),
and graph(c) have walk-based IUF values equal to 0.64, 0.15, and 0.57, respectively and SI-based
IUF equal to 0.40, 0.12, and 0.35, respectively. The graph(c) has a signi#cantly higher IUF than the
graph(b) and slightly lower IUF than the graph(a). It is easy to see that in all graphs, information
"ows easily between nodes in the same group (red-red and blue-blue); however, information "ows
much more easily from a blue node to a red node in the graph(b). Assortativity does not capture
these di!erences.

4 MINIUF: AN ALGORITHM FOR REDUCING INFORMATION UNFAIRNESS
In certain application domains, it might be possible to reduce the IUF of a network by adding
edges. For instance, if a company detects high values of IUF for its professional network, then it
can reduce it by adding key employees to a mailing list (increasing "ow between employees on
that list), planning meetings where speci#c individuals are present, organizing social groups, and
so on. In our earlier work, we formulated the problem and introduced MaxFair, an algorithm for
adding edges to a network to reduce its Information Unfairness [19]. Here, we describe MinIUF, a
new algorithm that improves on MaxFair at the task of adding edges to minimize the IUF of the
resulting network.

Both MinIUF and MaxFair identify a set of candidate edges to add to the network by scoring can-
didate edges in each iteration. A candidate edge’s score describes the amount by which its addition
is estimated to decrease IUF. The algorithms then select the highest-scoring edge(s). MaxFair uses
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Fig. 4. Adding single edge increases IUF while adding multiple edges decreases IUF.

a power iteration-like process and computes attribute centrality of nodes using accessibility ma-
trix. Each candidate edge (pair of unconnected nodes) is scored using computed attribute centrality.
However, MaxFair’s process uses only walks of a speci#c length k . In contrast, MinIUF considers
those walks of length up to k that are a!ected by addition of an edge.

Note that in some cases, it may be possible to reduce unfairness by removing edges. However,
in real networks, removing edges is often much less practical than adding edges. For example,
while professional networks may bene#t from adding edges as discussed or social networks can
use MinIUF in a friendship recommendation systems, it is practically di$cult to recommend or ask
people to remove established connections.

4.1 Problem Statement
Assume that we are given a network G with adjacency matrix M, cascade length k , protected
group membership matrix PM, and budget b. The goal is to recommend a set of b edges that are
not already present in G such that adding those edges to G will minimize the IUF of the resulting
network.

4.2 Challenges
There are several challenges associated with this problem. First, the problem of minimizing IUF
is not submodular. For example, Figure 4 shows a toy example where adding a single edge will
not decrease IUF, but adding multiple edges will. Second, it is not easy to estimate the changes
in "ow after adding a set of edges. Although there are works on characterizing "ow in a network
using its spectral decomposition properties [8], and works on adding edges to the network such
that overall "ow in the network is maximized [42], these methods cannot be directly used for
our problem because (1) they seek to increase the overall "ow, whereas we seek to increase "ow
between speci#c attribute groups and (2) spectral decomposition considers "ow where k goes to
in#nity, whereas we are primarily interested in "ow for small values of k (because as mentioned
before, high values of k are not practical for information "ow in real settings, because information
often “expires”).

4.3 MinIUF Computation
In this section, we introduce MinIUF, an algorithm for reducing walk-based IUF. The main idea
behind this algorithm is that when an edge (vi ,vj ) is added, it can in"uence cascades of lengths up
to k between any pairs of protected groups in the network. Thus, when we want to add an edge,
we need to consider its e!ect on cascades of di!erent length.

The heart of MinIUF is a method for scoring candidate edges according to their expected e!ect
on IUF. Because this e!ect can change as edges are added, one would ideally recompute scores after
each edge is added; however, because of the associated computational costs, we instead allow for
multiple edges to be added before recomputing scores. On our networks, this did not signi#cantly
alter outcomes, but if one is beginning with a network that already has a very low IUF (and so
there is little room for improvement), it may be more important to re-score frequently.
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MinIUF consists of x iterations, where each iteration adds a total of b/x edges to the network. In
each iteration, MinIUF computes the score for all edges that are not present in G and then selects
the b/x highest scoring edges to add to G. Scores are computed as follows:

(1) Initialize counter = 0:
(2) Let A(k ) be the accessibility matrix corresponding to walks/cascades of up to length k . Let

Bk be the matrix of the expected number of times each node receives information from each
other node using non-backtracking walks (see Section 3.1.1). Let PM be the protected group
membership matrix. De#ne matrices ACk

n×l = A(k) · PM and BCk
n×l = Bk · PM. Let ppi j be

the propagation probability between nodes ui and uj .
(3) Compute the mean "ow matrix FMl×l from A(k ) and PM as described in Section 3.1.3.
(4) Set IU Fbef or e =max (FM) −min(FM)
(5) For each pair of nodes vi , vj :

— Initialize FM′l×l to a zero matrix.
— f m′f д = f mf д+pi j Σk ′ ∈ {1, ...,k−1}ack ′[i, f ]·bck−k ′−1[j,д]+ack ′[j, f ]·bck−k ′−1[i,д]+ack ′[i,д]·
bck−k ′−1[j, f ] + ack ′[j,д] · bck−k ′−1[i, f ]

— IU Faf ter =max (FM′) −min(FM′).
— score (ui ,uj ) = IU Faf ter − IU Fbef or e .

(6) Select top b/x edges with highest score and add them to G.
(7) Increment Counter , If counter < x go to 2, terminate otherwise.
MinIUF is based on computation of IUF using the "ow mean matrix FM described in Section 3.1.3.

Because IU F = max (FM) −min(FM), by estimating the changes in matrix FM after connecting
each pair of nodes, we can select the best edges to add. To compute the changes in matrix FM
we estimate the changes in "ow of information that is caused by new non-backtracking walks of
di!erent length at step 4.

The major contributors to MinIUF’s running time are recalculation of matrices FM and AM.
Choosing lower values for x increases running time but might a!ect the performance.

Note that in some cases, certain edges may be impossible to add. In such cases, it is trivial to
simply exclude those edges from the process.

Note that when an edge (u,v ) is added to the network, it can have an impact on "ows of di!erent
lengths between many group-pairs. Edge (u,v ) might be in the middle of a "ow or on either end
of a "ow. Suppose FM is the "ow matrix of the initial network and FM’ is the "ow matrix after
adding edge (u,v ). Then FM’ can be computed from FM, where each element fm’дm is equal to
fmдm plus all the additional "ows that will start from any node from group pд and reaches any
node from group pm passing through edge (u,v ), and vice versa. (Step 5 in the algorithm captures
this.)

Thus, if the goal is to #nd just one pair of nodes at each step and connect them in the network,
MinIUF will #nd the optimal solution at each step. However, when adding multiple edges at once
(as may be required for e$ciency reasons), the e!ect of adding an edge to a graph that has already
been modi#ed by the addition of some edges may not be the same as the e!ect of adding that edge
to the original graph, and so this process acts as a heuristic.

4.3.1 Complexity Analysis. Here, we discuss the time complexity of MinIUF, corresponding to
the steps described above. Step 1:O (1). Step 2: As we showed in Section 3.1.4, computing matrices
B1 to Bk takes O (kn3) time, where n is the number of nodes in the network.

After computing B1 to Bk , A1 to Ak is computed using Aj = B1 + · · · + Bj , which takes O (n2)
time, and then AC1 to ACk and BC1 to BCk are computing using 2k matrix-matrix multiplications,
taking O (kn3) time.
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Thus, Step 2 takes O (kn3) time. Steps 3 and 4: as we showed in Section 3.1.4, computing FM
and #nding the minimum and maximum elements, and thus the whole process for these two steps,
takesO (ln2) time, where l is the number of classes. Step 5: for all n (n−1)

2 pairs of nodes, the pairwise
"ow score is computed. Updating each l2 elements (uf д) in matrix U takes O (1) time, and #nding
the minimum and maximum elements in U takes O (l2) time. Thus, the overall time complexity of
Step 5 is O (l2n2). And the overall process from Step 2 to Step 6 takes O (l2n2 + kn3). As the whole
process takes x time. Thus, the overall time complexity of MinIUF is O (x (l2n2 + kn3)).

Note that although this time complexity might seem high for large networks, as the algorithm
is based on matrix operations, in its implementation, we can bene#t from advances in hardware
and software technologies and run much faster. For example, parallelism techniques using a GPU
or clustering can make the process very fast. For instance, in big data analysis, one of the common
ways for fast matrix operations is deploying it in parallel on cloud (i.e., Apache Spark on Hadoop)
which make data analysis much faster [32].

5 EXPERIMENTAL ANALYSIS
Here, we perform a comprehensive experimental analysis on di!erent networks of di!erent types,
and show that none of these networks are fair with respect to information "ow. Then, we analyze
the performance of MinIUF in comparison to baseline methods and show that unfairness can be
decreased dramatically even with slight changes in the network. We #rst describe the datasets of
our study, then discuss our experimental setup, and end with a discussion of results.

5.1 Datasets
In our analysis, we use several di!erent types of networks. First, we analyze the DBLP co-
authorship networks of articles published in 2015–2019 with respect to gender. Five computer
science sub#eld networks from the DBLP co-authorship dataset [41]: Parallel, Graphics, Security,
Database, and Datamining).2 To extract these datasets, for each sub-#eld, we extract the papers
published in the top tier conferences3 published in 2015 to 2019 and selected the largest connected
component.

Second, we analyze regions from the Pokec dataset, which represents anonymized social media
connections in Slovakia [40]. We sample two regions of this network, one containing all users
from the Zilinsky kraj region and the second containing users from the Presovsky kraj region. We
separately study these networks with respect to two attributes of interests: “gender” and “lan-
guage”. For the “language” attribute, we divided people into two group: those who can speak
English or German and those who can not.

Third, we study the Enron email network [37]. This dataset represents email communications
between employees of the Enron Corporation. Finally, we study Polblog, a dataset representing
links between political blogs [1]. Nodes are labeled with the “political view” attribute (liberal or
conservative).

Statistics of these datasets are provided in Table 2.
Inferring Gender: We infer gender of the authors in co-authorship networks and email network
using Gender API4 which has shown to perform the best among di!erent competing libraries for
inferring gender [35]. (Our earlier work in [19] used the Genderize library, which has signi#cantly
greater uncertainty associated with many names, particularly those of non-Western origin [35].)

2Available at https://www.aminer.cn/citation/v11.
3https://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html.
4https://gender-api.com/en/.
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Table 2. Dataset Statistics

Name Description #nodes #edges Assort Attributes Mean Degree
Group1, Group2 Group1, Group2

Parallel Co-authorship Network 1,251 4,356 0.06 Men (82%), Women (18%) Men (7.12), Women (6.25)
Graphics Co-authorship Network 3,525 10,399 0.06 Men (71%), Women (29%) Men (6.08), Women (6.26)
Security Co-authorship Network 1,962 5,976 0.07 Men (80%), Women (20%) Men (5.90), Women (5.67)
Databases Co-authorship Network 3,185 9,386 0.10 Men (68%), Women (32%) Men (5.91), Women (5.84)
Data Mining Co-authorship Network 2,272 7,643 0.08 Men (66%), Women (34%) Men (6.70), Women (6.69)
Pokec-pl Social Network 3,312 22,707 0.07 Speak (84%), Don’t Speak (16%) Speak (14.0), Don’t Speak (12.1)
Pokec-pg Social Network 3,312 22,707 0.09 Men (50%), Women (50%) Men (13.8), Women (13.7)
Pokec-zl Social Network 3,018 23,470 0.03 Speak (85%), Don’t Speak ((15%) Speak ((16.0), Don’t Speak ((13.0)
Pokec-zg Social Network 3,018 23,470 0.03 Men (51%), Women (49%) Men (15.8), Women (15.3)
Enron Email network 144 1,344 0.03 Men (76%), Women (24%) Men (18.6), Women (19.0)
Polblog Blog Directories network 1,224 16,715 0.81 Liberal (48%), Conservative (52%) Liberal (27.5), Conservative (27.1)

For each name, Gender API provides a gender and corresponding probability (for most names,
Gender API predicted a greater than 90% accuracy). The Gender API database contains 6,084,389
validated names from 189 countries and 191 languages [35]. This database is created from publicly
reachable government and social media sources, allowing for high accuracy in predicting gender.
(In contrast, genderize.io, which we used in our previous work [19], only supports 79 countries and
89 languages). In our datasets, we observed that gender-API had much greater ability to associate
genders to Asian and South African names than did genderize.io. A detailed comparison of the
usage of various gender identi#cation API’s is presented in [35].

5.2 Results
In this section, we provide four sets of experiments. In this set of experiments, we consider various
Propagation Probabilities pp and generate adjacency matrix M based on pp.mi j = pp if there is an
edge between vertices vi and vj and mi j = 0 otherwise (we assume that each node has the same
pp value).
The IUF of di#erent Networks

In the #rst experiment, we compare the IUF of di!erent networks normalizing with respect to
degree and density. We compare the #ve co-authorship networks to one another in one plot, and
present results on other networks separately.

For co-authorship networks, we assign each node to the gender considered most likely by the
Gender API library (later, in Section 5.2, we account for the probability that a node belongs to each
gender).

We consider k ∈ {2, 4, 6, 10} and pp ∈ {0.1, 0.3, 0.5, 0.9} (we assume that each node has the
same pp value). We considered a maximum cascade length of 10, because cascades longer than
this are not common in practice [25]. We compute both the walk-based and SI-based values of
IUF. Note that these two values aim to measure two di!erent things: in the walk-based method,
one is measuring the amount of information "owing between two nodes, while in the SI-based
method, one is measuring whether information is expected to "ow between two nodes. The choice
of method thus depends on which of these two objectives is most important.

Figures 5 and 6 show results for k ∈ {2, 6} and pp ∈ {0.1, 0.3, 0.5, 0.9} for the SI-based, non-
backtracking (NBT) walk-based methods, and backtracking (BT) walk-based methods (our ear-
lier version, presented in [19]). Results for k ∈ {4, 10} are not shown, but were similar.

First, consider the results shown in the #rst two columns of these #gures, which show results
when normalizing by density, allowing us to compare networks of di!erent sizes. In the walk-
based method, as pp—the propagation probability—increases (for su$ciently large k), unfairness
generally increases. This is because IUF is computed using the powers of pp and of the adjacency
matrix, so as pp gets larger, di!erences between pairwise group "ows are magni#ed. In contrast,
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Fig. 5. Information unfairness results for DBLP subfields.

in the SI-based method, as pp increases, unfairness decreases, because information spreads farther
from its source, thus reducing any unfairness caused by segregation.

As k increases, unfairness increases for both SI- and walk-based methods. This is because of the
combinatorial explosion in the amount of "ow between nodes that are near each other: because
of this, as k increases, the amount of "ow between nodes that are near each other dramatically
increases, and if nodes have any preference for connecting to others in their group, IUF will also
rapidly increase. Next, using degree normalization allows us to investigate the extent to which
unfairness is due to di!erences in degree. By examining the y-axes in the #gures of the last two
columns, we see that the values are generally lower than the y-axes in the #gures of the #rst
two columns indicating that much of the unfairness is due to di!erences in group degrees. Of
the considered networks, when using the walk-based method in the co-authorship networks, the
Parallel Processing network is by far the least fair. When investigating the reason for this behavior,
we discovered that this network contains a very large clique, which has 38 men and only 1 woman.
(There are several large cliques; this is the largest.) Due to the combinatorial explosion of walks
discussed above this clique will be responsible for a huge amount of "ow between men. When we
removed the clique from the network the unnormalized IUF value decreased from 1, 409 to 33 (for
k = 6,pp = 0.4, with similar results at other parameter values).

The results for non-backtracking and backtracking walk-based methods are very close with
slight di!erences. Thus, for the rest of the experiments, we include only the results for NBT
walk-based methods.
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Fig. 6. Information unfairness results for di!erent networks.

Statistical Signi!cance Testing
To investigate whether the results obtained so far are statistically signi#cant, we perform hy-

pothesis testing, which quanti#es whether a result is likely due to random chance or to some factor
of interest by computing a p value in order to support or reject the null hypothesis. The smaller the
p value, the stronger the evidence that one should reject the null hypothesis. To perform these tests,
we generate 1,000 random graphs that preserve some aspect of the original graph, and compare
the IUF in these random graphs to the IUF in the observed graph. The p value is then the fraction
of random graphs that generated an IUF greater than the actual IUF. If the p value is greater than
0.05, then the IUF of the original graph can be considered to not be statistically signi#cant (i.e.,
may be explained by that particular aspect).

For the density-based signi#cance test, we generate random graphs with the same number of
nodes and edges as the original graph, using a slightly modi#ed Erdös–Renyi model that returns
a graph with exactly the desired number of edges [11]. For the degree-based signi#cance test,
the random networks have the same degree distribution as the original network. In addition
to density and degree-based signi#cance test, we computed attribute-based signi#cance test in
which we compare the IUF of the original network with IUF of networks with the same topology
and protected group sizes, but in which the protected attributes are assigned to nodes at random.
Our analysis is based on the idea that in network settings, small sets of nodes may have a very
large e!ect on overall unfairness: for example, cliques and hub nodes can dramatically a!ect
information "ow. If there are few such structures, it is possible that even when attributes are
assigned at random, there is a non-negligible probability that members of the same protected
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Table 3. Percentage of Graphs that have Information Unfairness Higher than the Original Graph

Dataset Density Normalization Degree Normalization Attribute Normalization
Parallel 0.0% 0.0% 11.2%
Security 0.0% 0.1% 28.4%
Graphics 0.0% 0.2% 43.3%
Database 0.0% 0.1% 53.6%
Data Mining 0.0% 0.1% 18.3%
Pokec-pl 0.0% 0.0% 1.0%
Pokec-pg 0.0% 0.0% 0.1%
Pokec-zl 0.0% 0.0% 0.1%
Pokec-zg 0.0% 0.0% 3.8%
Enron 0.0% 0.0% 36.3%
Polblog 0.0% 0.0% 0.0%

group are—purely by coincidence—are assigned to a disproportionate number of such “important’
nodes. For the attribute-based signi#cance test, the topology of the random networks is the same
as the original network (the same nodes and edges) but attributes in the graph are shu%ed.

Table 3 shows the fraction of random networks with IUF is greater than the IUF of original
network for the walk-based method using k = 4 and pp = 0.5. (This procedure is too slow for the
SI-based model, so we used the faster, more tractable non-backtracking walk-based method).

From Table 3, we can observe that the results are statistically signi#cant when accounting for
density and degree (p values are 0 or close to 0 for density and degree, respectively). This shows
that IUF cannot be explained entirely by the density and degree of the graph.

However, in many cases, we observe a large fraction of graphs having higher IUF than the
original when we randomly assign attributes to nodes. This result is very interesting, because it
shows even when shu%ing the attributes randomly, there is a very good chance that the IUF could
be at least as high as that in the observed graph! This indicates that there is something inherent in
the graph’s topology, not considering attribute distribution, that makes unfairness very likely to
occur. As discussed before, this may be due to cliques (as in the Parallel network) or a very skewed
degree distribution.
Analysis of Joint Attribute Accessibility Distributions

In order to further drill down into why unfairness occurs in di!erent networks, we compare
the mean value for di!erent joint attribute accessibility distributions (Group1-Group1, Group1-
Group2, and Group2-Group2: because the network is undirected, the Group2-Group1 distribution
is the same as Group1-Group2 distribution) using both the walk- and SI-based methods. Table 4
shows these results for k = 4 and pp = 0.5 (the pattern for other values were similar) and density
based normalization (allowing us to compare networks of di!erent sizes).

Interestingly, in studying fairness with respect to gender, in co-authorship networks, only in Par-
allel Processing network is the Group1-Group1 (Men–Men) "ow higher than the Group2-Group2
(Women–Women) "ow! For the Parallel Processing co-authorship network, as discussed before,
this is largely due to the presence of a large, almost entirely male clique in the Parallel Processing
network and because, as shown in Table 2, men in this network have a substantially higher mean
degree than women. In contrast, for the other networks, Women–Women "ow is slightly greater
than Men-Men "ow. In other networks, however, the Group1-Group1 (Men–Men) "ow is always
higher than the Group2-Group2 (Women–Women) "ow.

As the mean values for joint distributions in many cases were close to each other, to determine
whether the di!erences between means are meaningful, we perform the t-test for the means of
each pair of joint attribute distributions. We use the ttest − ind function from the Python SciPy
library, which performs a two-sided test for the null hypothesis that two independent samples have

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 79. Publication date: February 2023.



Fairness of Information Flow in Social Networks 79:19

Table 4. Mean Value for Di!erent Joint A"ribute Accessibility Distribution: Group1-Group1,
Group1-Group2, Group2-Group2

Walk SI
Dataset Group1-Group1 Group1-Group2 Group2-Group2 Group1-Group1 Group1-Group2 Group2-Group2
Parallel 26.6 6.63 4.05 0.21 0.20 0.21
Security 2.26 2.45 2.71 0.40 0.42 0.48
Graphics 2.64 2.69 3.18 0.66 0.67 0.73
Database 3.07 3.23 3.52 0.47 0.48 0.52
Data Mining 4.39 4.71 5.04 0.80 0.82 0.85
Pokec-pl 7.94 6.19 5.45 0.58 0.48 0.41
Pokec-pg 8.98 7.19 6.17 0.59 0.54 0.51
Pokec-zl 7.55 5.69 4.28 0.44 0.40 0.36
Pokec-zg 7.80 6.89 6.34 0.44 0.43 0.42
Enron 2.28 2.01 1.77 0.02 0.02 0.02
Polblog 33.07 9.43 21.25 0.03 0.03 0.03

Table 5. T-test Results for Di!erent Pairs of Joint A"ribute Accessibility Distribution: Group1-Group1 to
Group1-Group2 (g1-g1 to g1-g2), Group1-Group1 to Group2-Group2 (g1-g1 to g2-g2), and Group1-Group2

to Group2-Group2 (g1-g2 to g2-g2)

Walk SI
Dataset g1-g1 to g1-g2 g1-g1 to g2-g2 g1-g2 to g2-g2 g1-g1 to g1-g2 g1-g1 to g2-g2 g1-g2 to g2-g2
Parallel 0.00 0.00 0.26 0.13 0.09 0.03
Security 0.00 0.00 0.08 0.00 0.00 0.00
Graphics 0.14 0.00 0.00 0.00 0.00 0.00
Database 0.06 0.02 0.16 0.20 0.00 0.00
Data Mining 0.00 0.00 0.05 0.00 0.00 0.06
Pokec-pl 0.00 0.00 0.00 0.00 0.00 0.00
Pokec-pg 0.00 0.00 0.00 0.00 0.00 0.00
Pokec-zl 0.00 0.00 0.00 0.00 0.00 0.00
Pokec-zg 0.00 0.00 0.00 0.00 0.00 0.00
Enron 0.00 0.00 0.01 0.13 0.01 0.07
Polblog 0.00 0.00 0.00 0.00 0.00 0.00

identical average values. Table 5 shows the p value for this test between each pair of joint attribute
distributions using density-based normalization. The results show that in all cases the p-value for
comparing Men–Men and Women–Women "ow is below 0.05, indicating statistical signi#cance.
Accounting for Error Associated with Inferring Gender

Recall that in our co-authorship datasets, we inferred gender using the Gender API library. This
library associates a probability or con#dence with each inference. In order to explore the account
for these probabilities, we compute a version of IUF in which the group membership matrix is
non-binary, allowing an individual to partially belong to both groups (weights sum to one). We
compare the resulting IUF to the IUF values computed before, using a binary group membership
matrix.

Figure 7 shows the results for k = 2 and k = 6 for walk-based method, with solid lines showing
the original IUF values, and dashed lines showing the recomputed IUF values. In most cases IUF
does not change dramatically (and certainly, patterns stay the same). In the recomputed version
of IUF, unfairness generally decreases. This is because, in some sense, group memberships are
‘"attened out’, reducing disparities between pairwise group "ows. For example, in the Parallel
Processing dataset (which has the greatest decrease), the large clique that was responsible for
high Men–Men "ow now has some Women–Women "ow associated with that clique.
Validating Normalization

One important aspect of our IUF computation is the normalization step. Recall that in this step,
to compare the "ow between each pair of nodes in the actual network to the "ow between the
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Fig. 7. Information unfairness results for DBLP subfields. Dashed lines show information unfairness value
for weighted version.

same nodes expected in a random graph sharing some properties with the original network (e.g.,
density or degree distribution), we perform element-wise division of accessibility matrix of original
network A by the expected accessibility matrix of random network S.

However, properly computing matrix S as the average of all possible accessibility matrices is
computationally infeasible (except in certain very limited cases), as one would need to generate
every graph with the desired properties, and then compute its accessibility matrix. Instead, we
computed a single accessibility matrix corresponding to the average of the adjacency matrices for
all possible graphs. The distinction here is subtle but important, and so it is useful to understand
the extent to which our simpli#cation changes the outcome.

In this section, we compare IUF results computed using our approximation to the results ob-
tained by normalizing using the average accessibility matrix of 1,000 random graphs. Table 6 shows
results for for k = 4 and pp = 0.5 (“Estimated IU” represents the original results and “Actual IU”
shows the recomputed values), and while there are some di!erences, values are generally similar.

5.3 Discussion
Observation 1 (All networks exhibit some degree of unfairness). All networks exhibit

non-zero IUF, regardless of normalization. However, this unfairness occurs due to di"erent reasons.

When studying fairness with respect to gender attribute, in most of the co-authorship networks
(except for Parallel Processing network), Women–Women "ow is the highest. Exploring the socio-
logical causes for such behavior is outside the scope of this paper; one possibility is that e!orts to
build mentorship and other networks among women have been successful. In the Parallel Process-
ing network and in other datasets (Pokec and Enron) on the other hand, women are disadvantaged:
they receive less information than men both from men and from other women.

Observation 2 (As pp increases, walk-based IUF tends to increase, and SI-based IUF
tends to decrease). This occurs because these two di"erent ways of measuring information !ow are
measuring di"erent things. When the accessibility matrix is computed using walks, we are measuring
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Table 6. Comparison Results of Actual vs. Estimated Normalization

Dataset Density Degree
Estimated IU Actual IU Estimated IU Actual IU

Parallel 22.60 22.16 0.10 0.12
Security 0.46 0.47 0.11 0.14
Graphics 0.54 0.43 0.15 0.17
Database 0.45 0.38 0.08 0.10
Data Mining 0.65 0.61 0.04 0.04
Pokec-pl 2.49 2.51 0.08 0.09
Pokec-pg 2.80 2.83 0.18 0.20
Pokec-zl 3.27 3.28 0.16 0.18
Pokec-zg 1.46 1.48 0.04 0.04
Enron 0.51 0.49 0.10 0.10
Polblog 23.64 23.76 0.85 0.89

the amount of information !owing between pairs of nodes, while when computed using an SI-type
contagion, we are measuring whether information is expected to !ow between each pair of nodes. In
the former method, we observe a combinatorial explosion, where as pp increases, the amount of !ow
between nodes that are near one another increases dramatically. If nodes tend to connect with others
with the same attribute, then this further increases unfairness. In contrast, with the SI-based method,
as pp increases, information travels farther from its source, decreasing unfairness.

Note that there are some exceptions to this: for example, in the degree-normalized version, for
low k values, IUF decreases as pp increases. For large k , cascades are able to travel farther from
the originating node, and the local e!ects of homophily are diminished. Note, though, that this
can only happen for large pp (because at small pp, even if k allows for long cascades, in practice
very little information will travel far from the source). However, even for large pp, this e!ect is
countered by the combinatorial explosion of cascades (walks) that stay in the local neighborhood
of the originating node. For each network, we observe some “balance point” between k and pp
where cascades can grow long enough to overcome the local e!ects of homophily, but are not so
long as to encounter such combinatorial explosion. With such cascades, information unfairness
decreases as pp increases.

Observation 3 (Degree account for a large part of the networks’ information unfair-
ness). The density-normalized IUF values, which account only for the size of the graph, are much
higher than IUF values computed when normalizing with respect to degree. respectively.

5.3.1 Performance of MinIUF. In this section, we #rst compare the performance of MinIUF at
decreasing IUF compared to baseline methods, and then we show the trade-o! between accuracy
and running time for MinIUF.
Comparison Results

In this section, we evaluate the performance of MinIUF against six baseline methods: MaxFair
(our earlier method for the same problem), AttributeCentrality, GlobalDegree, InternalDegree, Cen-
trality, and Random.

All of the baseline methods use the same approach as MinIUF in the sense that they score can-
didate edges and, in each iteration, at the highest-scoring edge(s):

(1) MaxFair computes scores using the attribute-based centrality vector from the accessibility
matrix, as described in [19]. Attribute centrality matrix AMn×l = PM+A(k ) ·PM. Here, PM is
the protected group membership matrix and A is accessibility matrix. Then, score (ui ,uj ) =
Σf дSf д · (ami f · amjд + amiд · amj f ), where Sf д =mean(FM− FMf д ) and FM is "ow matrix
and f ,д ∈ {1, . . . , l }.
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Fig. 8. Percentage improvement on unfainess reduction on co-authorship datasets.

(2) EigenCentrality uses the same approach as MaxFair, except that it uses attribute-based eigen
centrality matrix (EM) instead of attribute-based centrality. EMn×l = SM · PM. Here, SM
is Sum Matrix, an estimation of sum over walks of di!erent length k based on Katz-style
centrality [22] which is the basis of eigen-vector centrality. SM = M+M2+. . . = (I−αM)−1−I ,
where 0 ≤ α ≤ ρ (M)−1 − I and ρ (M) is the spectral radius of M. By multiplying M by α we
ensure that the geometric series generated by M converges [15].

(3) InternalDegree uses the same approach as MaxFair, except that it uses the degree of each
node with respect to each group Cf instead of attribute centrality.

(4) GlobalDegree and Random #rst identify the joint attribute accessibility distribution Df д that
has the lowest mean. GlobalDegree selects two nodes from protected groups Pf and Pд that
are not connected and have the highest degree product. Random selects two nodes from pro-
tected groups Pf and Pд that are not connected at random.

(5) Finally, Centrality selects the node pairs with the highest eigenvector centrality product.
Note that the latter 4 methods were used as baselines in [19].
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Fig. 9. Percentage improvement on unfairness reduction for di!erent networks.

For all networks, we set b = 0.01× |E | where E is the set of edges in the network and set x = 10.
Figures 8 and 9 shows results for k ∈ {2, 6} and pp ∈ {0.2, 0.5, 0.8} normalized by density, allowing
us to evaluate the performance of MinIUF across di!erent parameters. The results show that in
almost all cases, MinIUF outperforms baseline methods. Moreover, adding only a few edges (1% of
the existing edges in the network) can decrease unfairness dramatically: for k = 2 the unfairness
increases by almost 40% and for or k = 6 the unfairness increases by 80%–90% in most cases.
Running Time

The main contributors to MinIUF’s running time is the score computation and re-computation.
In the above experiments, we set x (the number of re-computations) to be 10. Now, we consider
x ∈ {4, 8, 16, 32}, and show the percentage improvement on IUF and the corresponding running
time in seconds. Table 7 shows the results for k = 4 and pp = 0.5 (Experiments run on a 2020
MacBook Pro with Apple M1 processor). On these networks, setting x ≥ 8 appears to be su$cient,
with no major improvements in performance for larger values of x .

Next, we compare the running time of MinIUF with MaxFair. As the results in Figures 8 and 9
show, in most cases, MinIUF outperforms MaxFair with respect to reducing information unfairness.
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Table 7. Percentage Improvement (PI) over IU F and its Corresponding
Running Time in Seconds for Di!erent x Values

Dataset x = 4 x = 8 x = 16 x = 32
Parallel Percentage Improvement 24% 26% 25% 25%

Running Time 147 326 1,015 2,034
Graphics Percentage Improvement 0% 93% 96% 96%

Running Time 2,585 4,059 8,484 15,510
Security Percentage Improvement 55% 93% 93% 93%

Running Time 557 1,097 2,318 6,878
Data Mining Percentage Improvement 57% 97% 98% 98%

Running Time 960 1,548 3306 6,287
Database Percentage Improvement 14% 85% 94% 94%

Running Time 2,173 3,434 6801 15,586
Pokec-pl Percentage Improvement 67% 75% 80 % 83%

Running Time 1995 3,592 6252 11,847
Pokec-pg Percentage Improvement 76% 86% 87% 86%

Running Time 2,284 3,979 6363 12,184
Pokec-zl Percentage Improvement 93% 95% 96% 96%

Running Time 1,832 2992 5266 9,740
Pokec-zg Percentage Improvement 53% 91% 92% 93%

Running Time 1,826 2,877 5105 7,867
Enron Percentage Improvement 64% 60% 60% 60%

Running Time 2.5 7.2 7.1 7.0
Polblog Percentage Improvement 16% 16% 16% 16%

Running Time 135 266 731 1,410

Fig. 10. Running time versus accuracy of MinIUF for di!erent x values.

Asymptotically, the big-O time complexity for MaxFair is the same as MinIUF, because constructing
the attribute centrality matrix takes O (kn3) and computing scores for each pairs of nodes takes
O (l2n2), resulting in an overall time complexity isO (x (kn3+l2n2)). However, the absolute number
of operations needed for MinIUF is more than MaxFair, and so it is slower in practice. MaxFair
performs well, though not as well as MinIUF, and so may be a reasonable choice if running time is
an issue. Figure 10 shows the trade-o! between running time and percentage reduction in IUF for
di!erent datasets (k = 4, pp = 0.5, x = 8 and normalized by density). As the results show, while
MaxFair is faster, MinIUF performs better.

6 CONCLUSION AND FUTURE WORK
In this work, we introduced IUF, a generalized version of the Information Unfairness from [19],
which measures the extent to which information "ows to individuals from di!erent protected
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groups equally. Next, we showed how to reduce unfairness of these networks by adding a speci#ed
number of edges using the new MinIUF algorithm. We performed an in depth analysis of di!er-
ent networks, and analyzed the causes of unfairness in these networks. We showed that MinIUF
is capable of reducing IU F dramatically, and that it outperforms baseline methods under varied
conditions. In future work, we would like to extend our work to study fair distribution of correct
information with the presence of misinformation and disinformation in the network.
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