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Abstract

Aqueous, two-phase systems (ATPSs) may form upon mixing two solutions of indepen-
dently water-soluble compounds. Many separation, purification, and extraction processes
rely on ATPSs. Predicting the miscibility of solutions can accelerate and reduce the cost
of the discovery of new ATPSs for these applications. Whereas previous machine learning
approaches to ATPS prediction used physicochemical properties of each solute as a de-
scriptor, in this work, we show how to impute missing miscibility outcomes directly from
an incomplete collection of pairwise miscibility experiments. We use graph-regularized
logistic matrix factorization (GR-LMF) to learn a latent vector of each solution from (i)
the observed entries in the pairwise miscibility matrix and (ii) a graph (nodes: solutes,
edges: shared relationships) indicating the general category of the solute (i.e., polymer,
surfactant, salt, protein). For an experimental dataset of the pairwise miscibility of 68
solutions from Peacock et al. [ACS Appl. Mater. Interfaces 2021, 13, 11449-11460], we
find that GR-LMF more accurately predicts missing (im)miscibility outcomes of pairs of
solutions than ordinary logistic matrix factorization and random forest classifiers that use
physicochemical features of the solutes. GR-LMF obviates the need for features of the
solutions/solutes to impute missing miscibility outcomes, but it cannot predict the mis-
cibility of a new solution without some observations of its miscibility with other solutions

in the training data set.
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Introduction

Aqueous, two-phase systems (ATPS)

Aqueous, two-phase systems (ATPS)3—also known as aqueous biphasic systems (ABS)—
may form upon mixing the solutions of two independently water-soluble compounds (e.g.,
polymer, surfactants, or salts), resulting in a phase separation owing to incompatibility of
the compounds.# (Fig. S1 shows an example ATPS?® for readers who are unfamiliar with this
phenomenon.) Beijerinck observed the first ATPS, an incompatible mixture of aqueous starch
and gelatin solutions, in 1896.° Today, ATPSs are widely used for separation, purification, and

910 and environmental

extraction of biomolecules’ for biotechnology applications,® metals,
contaminants.!! In general, ATPSs can be used as a green alternative to organic-aqueous
solvent extraction.!2

Although ATPS-based separations are sufficiently simple to perform in an undergraduate
teaching laboratory, ** predicting whether two solutions will form an ATPS is challenging.
The fundamental thermodynamics of ATPS are reasonably-described by Flory-Huggins the-
ory.#15 However, accurately obtaining/predicting the solute-solute and solute-solvent in-
teraction parameters is challenging for both experiment and atomistic simulation.®1” Direct
molecular dynamics simulations of liquid mixtures to predict ATPS formation are computa-
tionally expensive, predicated on an accurate force field, and require an order parameter to
detect the separation.!® Alternatively, machine learning can be used to predict miscibility from
experimental data. One approach is to machine-learn the Flory-Huggins parameters,*° but
this assumes that Flory-Huggins theory captures all of the relevant thermodynamics for misci-
bility. Instead, one could predict miscibility directly, i.e., whether two solutions give rise to an
ATPS. Peacock et al. recently published a dataset of ATPS outcomes for 2278 pairwise mix-
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tures of 68 water-soluble compounds,?° using a microscopy-based high-throughput assay.?!

They used this data to train a random forest to predict the (im)miscibility of pairs of solutions



from physicochemical features of the solutes, drawn from PubChem.??> The random forest
achieved a ~74% accuracy. (Some closely related, but distinct problems in machine learning
for aqueous phase thermodynamics include predicting partition coefficient of biomolecules in
the two different phases of an ATPS?372° and predicting the phase behavior of one surfactant

in water as a function of temperature and surfactant concentration.2°)

Matrix Factorization

The pairwise structure of ATPSs suggests the possibility of imputing missing or unobserved
mixture miscibilities using matrix factorization. A classic example of matrix factorization for
data imputation is in recommending movies to users based on a limited set of movie ratings
by users.?”?® The collection of ratings are organized into a matrix, whose rows and columns
pertain to the users and movies, respectively. This matrix is only sparsely populated, and the
missing entries are the ratings we wish to predict for making movie recommendations. By
assuming that the movies and users can be represent by low-dimensional latent vectors that
can be learned from the observed ratings, one can factorize the ratings matrix. Conceptually,
the underlying latent vectors representing the movies could include dimensions indicating
seriousness vs. escapist, historical vs. futuristic, romantic vs. unromantic, etc., and the latent
vectors of the users represent their affinities towards those types of movies.?”?® To learn the
low-rank latent representation of the movies and users, MF needs a few example ratings; this
requirement for a new movie or user is known as the “cold-start problem”.?’

Matrix factorization approaches have been applied to a variety of chemical systems, e.g., to
predict gas adsorption in nanoporous materials, 230 diffusion coefficients3! and activity coeffi-

cients32735

of binary liquids, Henry's Law coefficients, 3° the synthesis of metal oxides3"38 and
halide perovskites,3° gas permeabilities in polymers,*° and antiviral activities of molecules.**
In these examples, the rows and columns represent different entities (e.g., gases and sorbents,

elements and reaction conditions) like the movie setting.



Our contribution

In this paper, we demonstrate matrix factorization for ATPS predictions: imputing unobserved
outcomes in a solution miscibility matrix via logistic matrix factorization (LMF).274243 An
n x n incomplete miscibility matrix organizes pairwise miscibility outcomes of n distinct aque-
ous solutions; row /i and column / pertain to solution / (at some concentration), and entry
(i,J) contains the miscibility of solution i and j (0: forms ATPS, 1. miscible, missing: not
observed). In contrast to the movie rating matrix, the (square) miscibility matrix is sym-
metric; its rows and columns pertain to the same entities (solutions). The objective is to
leverage the observed values in the miscibility matrix to predict the unobserved (missing)
ones. Rather than engineering a set of features of each solution (e.g., physicochemical fea-
tures of its solute molecule), then training a machine learning model to use those features
to predict the miscibility of the two solutions, LMF instead learns a low-dimensional latent
vector representation of each solution from the observed miscibility outcomes during the
process of training. Then, LMF uses the learned latent representations of the solutions to
make predictions (miscible or immiscible (ATPS)) for the unobserved entries. The underlying

4 owing

assumption is that the compound miscibility matrix exhibits a low-rank structure,*
to underlying chemical/thermodynamic principles governing miscibility of the solutions and
chemical similarities (e.g., functional groups in common) between the compounds.

For the miscibility matrix, the rows and columns both pertain to solutions, but the dif-
ferent types of solutes involved—polymer, proteins, surfactants, and salts—might admit
a chemically-meaningful grouping. This suggests a modification to LMF to exploit this
type of limited information about the categories of solutes by using graph-regularized ma-

' 4647 or “neighborhood-

trix factorization (GR-LMF)**—also known as “manifold-regularized’
regularized” *® MF. In this graph, the nodes represent solutes and edges joining pairs of nodes
represent pairwise relationships (e.g., “both of these solutes are polymers”). The basic idea

behind the graph regularization is to incorporate prior knowledge into LMF learning—that



similar categories of solutes tend to exhibit similar miscibility behavior—by promoting vec-
tor representations of solutions of similar solutes to be near each other in the latent space.
(GR-MF has been applied to single-cell RNA-seq clustering®® and predicting drug-drug, drug-

48.50-53 and side effects of drugs.>*) Starting from

target, and metabolite-disease interactions
only (1) incomplete experimental observations of (im)miscibility of pairs of 68 solutions of
distinct compounds from Peacock et al.?° (2) and the rough grouping of the compounds into
the categories of polymer, protein, surfactant, or salt, we show that GR-LMF learns latent
representations of the solutions that give ATPS predictions on missing entries outperforming
(i) ordinary LMF and (ii) a standard supervised machine learning approach using a random
forest classifiers taking as input physicochemical features of the compounds in the solutions.

Like all MF methods, GR-LMF requires a few initial miscibility observations of a new solution

to learn an appropriate representation before a prediction can be made.

Theory: Graph-regularized matrix factorization for imputing

solution miscibility

The general problem and our computational strategy are illustrated in Fig. 1.

Problem setup: imputing missing entries in a solution miscibility matrix

We are interested in the pairwise miscibility of a set of n aqueous solutions at some constant
temperature. Each solution consists of a distinct (water-soluble) compound dissolved in
water at some compound-specific concentration. (This simplification precludes our model
from needing to capture the concentration-dependence of the miscibility.) Each compound

belongs to a category (e.g., polymer, salt, etc.), defined based on chemical intuition.
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Figure 1: lllustration of our approach. (upper left) Pairwise miscibility observations are orga-
nized as a miscibility matrix, M, where the rows and the columns indicate solutions, and the
entries correspond to miscible, immiscible, or missing observations. (upper right) The GR-
LMF method obtains a logistic-transformed low-rank factorization of M, by minimizing a loss
function (which includes both the reconstruction loss of the training data and regularization
loss from category-based solute similarities; lower left). (lower right) The resulting approx-
Imation matrix can be binarized by some threshold to make imputations about unobserved
mixing experiments.



The miscibility matrix. Let m;; € {0,1} (0: immiscible and ATPS-forming; 1: miscible)
be the miscibility of solution / and j. The n x n miscibility matrix M contains all solution
miscibilities. Entry (/,j) of M is m;;. Row/column / pertains to the solution of compound /.

The matrix M is symmetric because m;; = mj;.

The data. Suppose we have conducted experiments where we have mixed a set of unique
unordered pairs of solutions Qps € {{/,J} : i, € {1,....n} Ai # j} = Qg and observed
their miscibilities {mj; : {i,j} € Qobs}. Importantly, many of the pairwise solution miscibilities
have not been observed, i.e., the miscibility matrix M is incomplete; the entries Qa1 \ Qobs
are missing. Let 6 := 1 — |Qops|/|S2a1| be the fraction of entries that are missing. Further,
suppose the solute of each solution belongs to a known category (e.g., polymer, salt, etc.).
We represent this information as a simple graph G = (V,€). The nodes V = {vy, ..., v,,} in
the graph represent the solutions. The presence of an edge {v;, v;} € £ joining nodes v; and
v; indicates that the solutes of these two solutions belong to the same category; the absence
of an edge indicates the two solutes do not belong to the same category. In other words,
the edges in the solution graph G express the relationships between the solutions in terms of

their types of solutes.

Objective. Our objective is to impute the missing entries of the miscibility matrix M—i.e.,
to predict the values of the unobserved solution miscibilities {m;; : {/,j} € Qai\ Qops}. To do
so, we take a data-driven approach and leverage (i) the observed solution miscibilities {mj; :
{i,j} € Qobs} and (ii) the graph G indicating the categories to which the compounds belong.
Specifically, we will seek a logistic-transformed low-rank factorization of the miscibility matrix

M regularized by the solution graph G that specifies relationships between its rows/columns.



The solution miscibility model

We propose a probabilistic model for the miscibility of any pair of solutions. The model
assumes that each solution / may be represented as a low-dimensional latent vector ¢; €
R%. Conceptually, the vector ¢; encodes the chemical features of solute / relevant to its
compatibility with the other compounds, and it contains information about the concentration
of the compound in the specific solution under consideration. (In principle, solutions of the
same compound with different concentrations would occupy different rows and columns of
M and correspond to different ¢; vectors, although one would expect them to point in the
same direction. In the Peacock et al. dataset, each compound is present only at a single
concentration, and so in the present analysis there is a bijection between solution vectors and
compounds.)

Given the latent solution vectors {cy, ..., ¢,} and a bias b € R, our model for the probability

that solution 7 and solution j are miscible is a conditional probability:

m(Mjj=1]|ci,....ch,b) =0(c - ¢;+ b). (1)

The monotonic sigmoid function o(x) = (1 + e™)~! squashes its input x to its range (0, 1)
for interpretation as a probability.

The model in eqn. 1 admits a geometric interpretation. Note, ¢ - ¢; = |||/l || cos 8y,
where 6;; is the angle between solution vectors ¢; and ¢; in the latent space. Consequently,
pairs of solutions whose vectors ¢; and ¢; point in roughly the same (opposite) direction tend
to be miscible (immiscible), i.e., the location of the solution vectors {c¢;}"_; in latent space
relative to each other dictate our predictions about their pairwise miscibilities. Changing the
magnitude, but not the direction, of a vector ¢; increases the model’s confidence that the
(im)miscibility of solution / with the other solutions j differs from the average outcome, as this

does not change the sign of ¢;- ¢; but increases the magnitude of it; a very large-magnitude ¢;
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pushes the output of o(x) to be closer to zero or one. A positive (negative) bias b shifts the
predictions towards miscible (immiscible); o(b) roughly corresponds to the fraction of pairs

of solutions in the training set that are miscible.

The matrix perspective. The model in eqn. 1 approximates the miscibility matrix as:

— g —] T | b ... b
M=o. : a ... c| o (2)
_ C;l; I | ’ b e b

where 0.(x) denotes element-wise operation of the sigmoid function. That is, we approximate
the miscibility matrix as a sigmoid-transformed low-rank (rank < k) matrix factorized as CTC,
where the k x n matrix C contains the latent solution vector / in its column /, plus a constant
bias matrix [b]. Thus, our miscibility model falls in the “matrix factorization” /“low-rank

27,42

matrix model” category of machine learning algorithms, more specifically, logistic matrix

factorization.*3

Training vs. imputation stages. In the training stage, we learn the latent vectors of the
solutions {c¢;}7_; and the bias b from the observed miscibilities {m;; : {i,j} € Q2ops} and the
solution graph G. The dimension k of the latent solution vector space is a hyperparameter
specified before training.

In the imputation stage, we use the learned {¢;}7_; and b and the model in eqn. 1 to predict
the unobserved solution miscibilities {m;; : {i,j} € Qa1 \ Qobs}. We employ a threshold t
(a hyperparameter) for the classification rule, i.e., the model prediction for the miscibility of

compound solutions / and J is:

m/jZ:I(U(C/'Cj+b)>t) (3)

with Z : R — {0, 1} the indicator function.

11



Training

To train the model in eqn. 1, we tune the latent vectors {¢;}"_; and bias b to minimize a loss
function posed over the observed entries of the miscibility matrix, {m;; : {i,j} € Qobs}, and

the solution graph G:

Ut o b)=— > [mylog(o(c- ¢+ b))+ (1—my)log(l—o(c-c+ b))
{iJ}EQ0bs

+ 2 P+ > lla-glP &)
=1

{igy{vivyee
The loss function comprises three terms:

° This term incentivizes the model predictions via eqn. 1 to match
the observed miscibility outcomes in the training data {mj; : {i,j} € Qobs}. If a pair
of solutions / and j are observed to be miscible, i.e. m;; = 1, (immiscible, i.e. m;; = 0)
then this term penalizes output of the model in eqn. 1 straying far below 1.0 (above
0.0). From a probabilistic perspective, the cross-entropy loss follows from minimizing
the negative log-likelihood of the outcomes in the training data under the probabilistic

(likelihood) model in egn. 1.

° To prevent overfitting, this term penalizes latent compound
solution vectors with a large magnitude. The hyperparameter A > 0 modulates the

strength of the 2-norm regularization.

e graph-based regularization. To promote latent solution vectors whose solutes belong
to the same category to lie closeby in latent space, this term penalizes pairs of solution
vectors that belong to the same category (hence, an edge exists in the solution graph G)
from being distal in latent space. This term is a means of building our prior knowledge

“solutions whose solutes belong to the same category tend to have similar miscibility

12



behavior” into the model. The hyperparameter v > 0 modulates the strength of the

graph-based regularization.

Note, the loss function does not concern the miscibility outcome of a solution with itself (a
solution is always miscible with itself, so m;; = 1).

The loss function £ in eqn. 4 can be minimized by gradient descent. One epoch of gradient
descent comprises using the gradients to update b and {c;}"_; in shuffled order. The relevant

gradients are, similar to those in logistic regression:®®

Vb= Y lo(c-g+b)—myjg+2xc+2y > (¢—g) (5)
J{iJ}EQops Jj{viv}ee

Vil = Y (o(c-¢+b)—my) (6)
{irj}GQobs

The model in eqgn. 1 trained with the loss function in eqn. 4 comprise graph-regularized
matrix factorization (GR-LMF). Note, the solution graph G is only used in the training stage,

not the imputation stage. See Ref.*® for more details on GR-LMF.

Hyperparameters

Our GR-LMF model contains four hyperparameters: (1) k: the dimension of the latent solu-
tion space, (2) A\: the 2-norm regularization parameter, (3) «y: the graph-based regularization
parameter, and (4) t: the classification threshold that balances false positives and false neg-
atives. We optimize k, X\, and <y via a random search paired with 3-folds class-stratified
cross-validation of the observed entries {mj; : {i,j} € Qops} and select the values that give
the largest mean balanced accuracy for imputing the validation entries. We optimize t via

grid search based on balanced accuracy over the training entries.
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Imputation performance metric: balanced accuracy

As a primary metric of the imputation performance of a GR-LMF model appropriate for
balanced classes, we employ the balanced accuracy: the average of (i) the recall of immiscible
solution pairs: among those pairs of solutions that are truly immiscible, the fraction that the
model correctly predicts to be immiscible and (ii) the recall of miscible solution pairs: among
those pairs of solutions that are truly miscible, the fraction that the model correctly predicts

to be miscible.

Computational Methods

Data. To test our approach, we used the experimental data from Peacock et al.?° This
data set provides (i) the complete miscibility matrix Mcompiete CONtaining all pairwise mixing
outcomes of n = 68 aqueous solutions of distinct compounds at compound-specific concen-
trations (1559 miscible and 719 immiscible pairs) near room temperature and (ii) for the
solution graph G, the category to which each compound belongs: 46 polymers, 11 surfac-
tants, 8 proteins, and 3 salts. See Fig. S2 for the complete miscibility matrix Mcompiete for all
n(n— 1) = 2278 pairs of solutions. For the purpose of demonstrating missing value imputa-
tion, we generate, from Mcomplete, @ Simulated incomplete miscibility matrix M®): decoration

with 8 indicates the fraction of missing entries in the matrix.

Simulating incomplete experiments to construct an incomplete miscibility matrix. To
simulate hypothetical incomplete experimentation, we construct an n x n, symmetric incom-
plete miscibility matrix M® where 6 is the fraction of missing entries in the matrix, as
follows. First, we randomly partition the complete set of n(n — 1) pairs of miscibility obser-
vations {({/,/j}, my) : {i,J} € Qa} of Peacock et al.?° into an observed set {({i, j}, m;) :

{i,J} € Qops} (fraction: 1 — @) and unobserved set {({i,j}, mjj;) : {i,j} € Qan \ Qops} (frac-

14



tion: 0). We stratify the split according to the miscibility outcome to preserve the class
distribution. We then construct the incomplete miscibility matrix M® by placing the misci-
bility outcomes belonging to the observed set in the appropriate entries; the remaining entries
are set as missing. The unobserved set serves as hold-out test data—not used for training
the GR-LMF model, nor for tuning its hyperparameters. Philosophically, this train/test par-
tition of the miscibility outcomes mimics the situation where we (1) possess an incomplete
miscibility matrix, train a GR-LMF model, and make predictions on the missing miscibility
outcomes, then (2) go into the lab to conduct the miscibility experiments needed to com-
plete the miscibility matrix and compare these observations to the predictions to assess the
performance of the GR-LMF model.

Note, the solution graph G is static. Regardless of 8 and which entries of the miscibility
matrix M® are missing, G contains n nodes, one for each solution, and any two solutions are
joined by an edge iff their solute belongs to the same category (polymer, surfactant, protein,

or salt).

GR-LMF training and hyperparameter tuning. \We examined both ordinary gradient de-
scent and Adam®® to minimize the loss function. Preliminary investigations showed that
ordinary gradient descent was sensitive to the learning rate, resulted in oscillations in the
loss for large learning rates, and required ~350 epochs to converge. In contrast, Adam
was insensitive to the choice of learning rate and required many fewer than 250 epochs for
convergence, and therefore was a superior choice. (See Fig. S4).

We determined optimal GR-LMF hyperparameters k, v, and A through random search
over 25 hyperparameter sets independently drawn from a uniform distribution over {2, 3},
[0,0.1] and [0, 1], respectively. (Our choice to limit the number of latent vector dimensions
to two or three was motivated by: (i) the ability to visualize the vectors and (ii) precedent

7

from Hansen solubility theory,®” which describes solute-solvent interactions in terms of a

3-dimensional representation.) We make a 3-fold split of the observed entries in M@ for
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cross-validation. Then, we select the hyperparameter set among the 25 that, when a GR-
LMF model with these hyperparameters is trained on two of the folds of the observed entries,
it yields the largest (mean over three models) balanced accuracy for imputing miscibilities in
the remaining fold serving as the validation set. The classification threshold t is tuned based
on grid search, using balanced accuracy over the train set.

*

Finally, once the optimal hyperparameters k*, v*, and \* are found, we train a new GR-
LMF model—the deployment model—based on hyperparameters k*, v*, and A* on all of the

observed entries in the miscibility matrix M©).

Baseline models.

Compound-category-informed guessing. For each pair of compound categories {x, x’}
with x, x’ € {protein, polymer, surfactant, salt}, we find all observed entries in the training
miscibility matrix that constitute an x-x" mixture and compute the fraction of these that
are miscible, Omiscibie ({X, X'}). Now, suppose we are given a new pair of solutions whose

solutes belong to categories X,ew and x/, and whose (im)miscibility label is missing. For

ew

this baseline, we assign a miscible label with probability Omiscible ({Xnew, Xle }) and immiscible

label with probability 1 — Bmiscible ({Xnew: Xhew }) -

Ordinary matrix factorization (MF). To develop an ordinary LMF deployment model,
we employ the same procedure as for GR-LMF but with «v := 0 to turn off the graph-

regularization term in the loss function in eqn. 4.

Random forest (RF). Conceptually, the input to the random forest (RF) classifier is a
vector representing a pair of solutions of compounds, and the output is a prediction of either
miscible (1) or immiscible (0). As a vector representation of a given solution of a compound,

we use (i) the physicochemical features compiled from PubChem?? by Peacock et al.:?°
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monomer and polymer molecular weight, the log of the predicted octanol-water partition co-
efficient, hydrogen bond donor and acceptor counts, and complexity, (ii) the concentration of
the compound in the solution, and (iii) a one-hot encoding of the category (polymer, protein,
surfactant, salt) of its solute. Note, since the compounds could not be fully annotated with
group (i) features, we used the imputed features based on an 8-nearest-neighbors algorithm
from Peacock et al.?% This gives a length-11 feature vector for each solution. To represent
a pair of solutions, we concatenate the vector representations of the two compounds, giving
a 22-dimensional input to the RF. We encourage the predictions of the RF to be invariant
to the order in which the pair of solutions are presented through data augmentation: each
solution pair in the training data set gives two training data points, corresponding with the
two permutations of the solution vectors concatenated to form the input. For a fair com-
parison with GR-LMF, we tune the classification threshold t for the RF (used to map the
set of binary votes by the trees to a single binary output) to maximize balanced accuracy on
the observed miscibilities. We used the RF implementation in scikit-learn version 1.2.2
with default settings (100 trees grown to the maximum depth, Gini impurity for splits, five

randomly-selected features as candidates for each split).%®

Code and data. All Julia®® code to reproduce our plots in Makie.j1% is available at
github.com/SimonEnsemble/miscibility_matrix_factorization Note to reviewers: we
will also archive this to Zenodo after the paper is accepted. The raw miscibility data is also
on our Github repo in comma-separated-value (. csv) format, which we reformatted from the
supplementary information of Peacock et al.?° The required calculations are modest for this
scale of data; on a 2020 Macbook Pro M1 laptop, training a single GR-LMF model requires
less than one second of runtime, and our entire hyperparameter sweep requires less than one

minute.
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Results and Discussion

A GR-LMF case study: 6 = 0.4

For a demonstration and to gather insights, we present a case study where we train, test,
and analyze a GR-LMF model on one instance of an incomplete miscibility matrix M© with
40% missing values (6 = 0.4).

The incomplete miscibility matrix M(©4) is shown in Fig. 2a. The rows and columns are
labeled by the compounds they represent and sorted by compound category (polymer, protein,
salt, surfactant). Each entry is colored according to the miscibility outcome of that pair of
compound solutions: immiscible (0), miscible (1), or missing. Note, the matrix is symmetric,
and miscibility is more common than immiscibility.

The solution graph G is shown in Fig. 2b. Each node is labeled by the solute in the solution
it represents. Each pair of nodes, representing a pair of solutions, shares a color and is joined
by an edge iff the corresponding solutes belong to the same category (polymer, protein, salt,
surfactant). The induced subgraph containing a subset of nodes whose solutes belong to
a certain category is complete. The edges in the solution graph G indicate relationships

between the solutions and thus between the rows/columns in the miscibility matrix M(©).

18



61

_immiscible Emiscible [ Imissing

polymer protein salt surfactant

Plys
o FBS
o
= Muc 23 PAsp
3 CHAPS SDS BSA
< cA60 o 0 o Col-l
DChol et 8 ig® Tween Pep
= DDAO ®® PQuat
CO-630 %5 Na,HPO,
'9 ® Triton X-100 KHPO,
4+ Citrate
3 surfactants o
(@] o Alg
br s O
PEGDA 0
o PSSA PAIAm /] AP
PEI O {
. 7N 2
R ) PNIPAM
o
©
3 PAA chit
= Py « e
@, PE(
5 3
| (o= e Lambda-C
Q lota-Car HEC{ e omodaLE
p o S
- SSPAMPS :
c ol “ye Guar
3,
fo¥)
[=3
o 17
3 o
—~ Kappa-Car 2 Ficoll
7 PMVMAYS
o f
FoRDIIAG e olymers
¢ NV i e Trag
PVSA e pvP Yo PO
Dex \V
® PvA
(a) (b)

Figure 2: Data for the miscibility matrix completion problem. (a) An incomplete miscibility matrix M® with a fraction
6 = 0.4 missing entries. Entry (/,) indicates the miscibility of a pair of solutions of compounds i and j. (b) The solution graph
G indicating relationships (edges) between the solutions (nodes) based on the category of their solutes.



We trained and tuned the hyperparameters of a GR-LMF on the observed entries in the
incomplete miscibility matrix M4 and solution graph G. The optimal hyperparameters were
k* =3, v* =0.007, and \* = 0.09. Fig. S5 shows the assessed hyperparameter sets.

We evaluated the imputation performance of the deployment GR-LMF model by com-
paring the true miscibility outcomes, which were held out as missing during training and
hyperparameter tuning, to the imputed values by the deployment GR-LMF model via eqn. 1.
Fig. S6 shows the imputed miscibility matrix. The model does not perfectly discriminate
between the two outcomes (Fig. S7), so the choice of threshold will depend on the evalua-
tion metric. The choice of balanced accuracy is a compromise between the recall of the two
classes, which is appropriate because of the class imbalance in this dataset. The confusion
matrix over the missing entries is shown in Fig. 3a. The GR-LMF achieved a balanced
accuracy of 75%.

The relative location of the learned vectors in latent space is indicative of the predicted
miscibility of the solutions they represent, so visualizing them can help us interpret the GR-
LMF model. Fig. 3b shows the first two principal components of the latent solution space,
where each point represents a compound. (Alternatively, Fig. S9 shows the latent vectors in
3D.) The shapes/colors of the points indicate the categories to which each solute belongs.
The latent vectors are clustered by solute category, in part due to the graph-regularization
(v > 0). Without the graph-regularization term (y := 0), the latent vectors of the solutions
still display some clustering according to category (see Fig. S10), but it is weaker than if the
prior information about solute categories is included through G. The relative orientation of
the latent vectors also describes general trends in miscibility. For example, in Fig. 3b, the
latent vectors of the salts (pink crosses) tend to point in the opposite direction of those of
the surfactants (green diamonds). Correspondingly, surfactant-salt mixtures in the data set
are the most likely to be immiscible compared to other pairs of distinct compound categories

(see Fig. S3). Similarly, most protein vectors (yellow squares) point in a similar direction, and
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thus tend to be miscible with each other, at least within this dataset. These trends are also

illustrated in the visualization of the matrix C (egn. 2) whose columns contain the ¢; vectors

(see Fig. S8).
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Figure 3: GR-LMF results for M=% (a) Confusion matrix for imputation of unobserved
test entries of the miscibility matrix. (b) The first two principal components of the learned
latent solution vectors, {c¢;}. This GR-LMF model was trained on the observed data in Fig. 2
with optimized hyperparameters k*, \*, vy*.

Imputation performance comparisons

We investigate how the performance of GR-LMF for miscibility matrix completion com-
pares against the baseline LMF and RF methods, as a function of experimental incomplete-
ness, 6. Fig. 4 displays the distribution of balanced accuracy of GR-LMF, LMF, RF, and
compound-category-informed guessing for imputing missing miscibilities over 10 realizations
of incomplete miscibility matrices M®)'s for different missing fractions of miscibility experi-
ments 6 € {0.2,0.5,0.8}.

How does performance vary over the random process of incomplete experimentation,
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l.e., over different missing value patterns in the incomplete miscibility matrix M@ We
conducted 10 simulations of incomplete experimentation to generate 10 realizations of in-
complete miscibility matrices M then trained and hyperparameter-tuned the models on
each M® (and G, which is static). The box plots in Fig. 4 show the distribution of balanced
accuracy of each model over these 10 realizations. For each 8, the standard deviation of the
balanced accuracy of the GR-LMF is less than 3.1%.

How does performance depend on experimental incompleteness, i.e., on the fraction 6
of entries missing in the miscibility matrix M®? We trained and hyperparameter-tuned
the models for three different levels of matrix incompleteness, 6 € {0.2,0.5,0.8} (10 runs
each). Intuitively, the imputation accuracy for each model diminishes as the missing fraction
6 increases. GR-LMF improves upon LMF (v := 0) dramatically when the matrix is very
incomplete (6 = 0.8). This shows that the information provided by the solution graph G is
beneficial for the imputation task.

How does GR-LMF compare to the traditional supervised learning approach of predicting
miscibility of a pair of solutions from hand-engineered features of the compounds? GR-
LMF outperforms the random forest classifier across all 6 investigated; the gap in balanced
accuracy is more prominent at the largest fraction of missing entries 8 = 0.8. This seems
unexpected, because one would think that the input features to the RF encode meaningful
physicochemical aspects of the solutes pertinent to miscibility, and especially relevant when
data is scarce. The RF has 22 input features, but even in the case of 6 = 0.8, has access to
900 examples, so its poor performance is not likely to be due to overfitting. This implies that
GR-LMF learns latent representations of the compound solutions that better describe the
pairwise miscibility than the physicochemical features provided to the RF. That even ordinary
LMF outperforms RF when the matrix is more complete underscores this.

What features of the solutions are most important for the predictions of the RF model?

Fig. S11 shows the permutation-based importance of each feature of the solutions input
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to the RF. The balanced accuracy on the test set decreased the most when shuffling the
feature indicating the concentration of the solute in the solution. The number of H-bond
donor/acceptor sites was the second-most important feature.

How do the different models perform for miscibility imputation according to different
metrics? Using the hyperparameters determined by cross-validation on balanced accuracy,
we assessed each model type on accuracy, precision, recall, and F1 score (harmonic mean
of precision and recall). (See Fig. S12.) Generally, GR-LMF performs comparably or better
than the other methods according to the metrics examined, with the exceptions of recall
scores at all completions, and F1 scores at & = 0.8. This is unsurprising, as the GR-LMF
hyperparameters were not tuned for these metrics. This illustrates the general quality of

GR-LMF across other performance metrics, despite not explicitly tuning for those metrics.

Strengths and Weaknesses of GR-LMF

Beneficially, GR-LMF does not require any feature engineering of the solutes, except for
assigning them to general categories. This is advantageous because feature engineering of
the solutes is difficult: it requires prior physical insight about solute features that are related
to miscibility and the measurement or computation of those features for a diverse set of
solutes. As we show above, the latent vector representation of the solution learned by GR-
LMF directly from incomplete experimental miscibility observations is superior at capturing
the underlying physicochemical features of the solutes that determine pairwise miscibility,
even when most of the pairs of mixtures have not been observed.

However, learning as opposed to engineering features of the solutes is also a weakness
of MF methods, known as the “cold start” problem. Because the latent solution vector is
learned from miscibility experiments, the model cannot make predictions on a new solution
without some initial miscibility experiments involving that solution. However, as we showed in

the previous section, GR-LMF can perform well at large 8, so not many examples are needed.
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Figure 4: Performance of graph-regularized matrix factorization (GR-LMF), ordinary
matrix factorization (LMF), random forest (RF) classifier, and compound-category-
informed guessing. Box plots show the distribution of balanced accuracy for missing mis-
cibility imputation (the hold-out test set) over 10 realizations of the incomplete miscibility
matrix (i.e., different missing value patterns). The three panels correspond to different
fractions of missing values, 8, in the miscibility matrix.

Another weakness of our GR-LMF model is that it does not trivially generalize to capture
the temperature- or concentration-dependence of miscibility. (In contrast, with RF one would
simply add an additional concentration or temperature feature to the input and retrain the
model.) In principle, GR-LMF can be modified to capture temperature- and concentration-
dependence of miscibility by (1) endowing solutions of the same solute at different con-
centration and temperature with distinct solution vectors and (2) using a concentration-
and temperature-dependent kernel function to construct edge-weights in the solution graph.
Alternatively, matrix-factorization could be used to determine parameters in a physically-

motivated equation that captures the concentration and temperature dependence, similar to
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Damay et al.’s approach for predicting temperature-dependent activity coefficients. 33

Conclusions

In this work, we described and demonstrated a data-driven method, graph-regularized matrix
factorization (GR-LMF), to impute missing entries in a pairwise miscibility matrix (rows/columns
= solutions of a compound, entries = miscibility). As opposed to hand-engineering feature
vectors of the solutions (which may be difficult), GR-LMF learns latent vector representations
of each solution from the observed entries in the miscibility matrix and a solution graph indi-
cating the categories to which each solute belongs. These latent vectors then may be used to
Impute the missing entries in the incomplete miscibility matrix, which in principle eliminates
the need for a chemist to perform all of the pairwise experiments during an initial screening.
GR-LMF outperforms both ordinary LMF and a random forest classifier that predicts misci-
bility based on physicochemical features of the compounds in the solutions. Unsurprisingly,
the performance of GR-LMF diminishes with the fraction of missing entries in the miscibility
matrix, but even when 80% of the data is missing it outperforms the competing imputation
methods.

Our machine learning study was enabled by the open miscibility data set of Peacock et
al.?% To both improve and expand the capabilities of data-driven models for ATPS prediction,
we encourage the generation and curation of large, FAIR (findable, accessible, interoperable,
and reusable®) miscibility data sets. Though subject to error, natural language processing
could also be used to mine existing miscibility data from the scientific literature®® (to our
knowledge, only one other sizeable miscibility data set of 34 polymers and surfactants has
been generated®®). On the other hand, the advantage of using a single dataset is that it
avoids inter-lab variations, such as variations in purity or protocol, that might make the data

less useful for machine learning.®* The relatively simple nature of the experimental process
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(mixing aqueous solutions) and characterization (via microscopic image analysis?!) lends itself
to laboratory automation for generating a large dataset.

Our ideas for extensions and future directions for miscibility matrix completion are: (1)
Extend our model in egn. 1 to include the dependence of miscibility on temperature and
concentration of the solute; this effort is predicated on the availability of miscibility data
at different temperatures and containing solutions of each compound at different concen-
trations. (2) Leverage Bayesian probabilistic matrix factorization3%% to develop a GR-LMF
model that quantifies uncertainty in its predictions. (3) Use uncertainty quantification to
guide the selection of miscibility experiments that provide the most information for improving
imputation.® (4) Impose graph-regularization through a graph with weighted edges, whose
weights are determined by a kernel that continuously quantifies the similarity between the
compounds. (5) Extend to ternary and higher-component mixtures—also predicated upon
the availability of higher-component miscibility data; this corresponds to a known problem of
tensor decomposition.®” (6) Investigate the effect that experimental selection bias®®% may

have on the performance of miscibility matrix factorization.
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