
A Further Study of Linux Kernel Hugepages on A64FX with
FLASH, an Astrophysical Simulation Code

Catherine Feldman
catherine.feldman@stonybrook.edu
Institute for Advanced Computational

Science
Stony Brook, New York, USA

Smeet Chheda
smeetdinesh.chheda@stonybrook.edu
Institute for Advanced Computational

Science
Stony Brook, New York, USA

Alan C. Calder
alan.calder@stonybrook.edu

Institute for Advanced Computational
Science

Stony Brook, New York, USA

Eva Siegmann
eva.siegmann@stonybrook.edu

Institute for Advanced Computational
Science

Stony Brook, New York, USA

John Dey
john.dey@stonybrook.edu

Institute for Advanced Computational
Science

Stony Brook, New York, USA

Tony Curtis
anthony.curtis@stonybrook.edu

Institute for Advanced Computational
Science

Stony Brook, New York, USA

Robert J. Harrison
robert.harrison@stonybrook.edu

Institute for Advanced Computational
Science

Stony Brook, New York, USA

ABSTRACT

We present an expanded study of the performance of FLASH when

using Linux Kernel Hugepages on Ookami, an HPE Apollo 80

A64FX platform. FLASH is a multi-scale, multi-physics simulation

code written principally in modern Fortran and makes use of the

PARAMESH library to manage a block-structured adaptive mesh.

Our initial study used only the Fujitsu compiler to utilize standard

hugepages (hp), but further investigation allowed us to utilize hp

for multiple compilers by linking to the Fujitsu library libmpg and

transparent hugepages (thp) by enabling it at the node level. By

comparing the results of hardware counters and in-code timers, we

found that hp and thp do not significantly impact the runtime per-

formance of FLASH. Interestingly, there is a significant reduction in

the TLB misses, differences in cache and memory access counters,

and strange behavior is observed when using thp.

CCS CONCEPTS

· Computer systems organization → Parallel architectures; ·

Computing methodologies→Modeling and simulation;Mas-

sively parallel and high-performance simulations; · Applied

computing → Physics; Astronomy.

KEYWORDS

high performance computing, A64FX architecture, astrophysics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PEARC ’23, July 23ś27, 2023, Portland, OR, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9985-2/23/07.
https://doi.org/10.1145/3569951.3597583

ACM Reference Format:

Catherine Feldman, Smeet Chheda, Alan C. Calder, Eva Siegmann, John

Dey, Tony Curtis, and Robert J. Harrison. 2023. A Further Study of Linux

Kernel Hugepages on A64FX with FLASH, an Astrophysical Simulation

Code. In Practice and Experience in Advanced Research Computing (PEARC

’23), July 23ś27, 2023, Portland, OR, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3569951.3597583

1 INTRODUCTION

1.1 Ookami and A64FX

The A64FX processor expects to provide high performance and

reliability for memory-intensive applications while maintaining a

good performance to power ratio. The appeal of A64FX, currently

the backbone of the Fugaku supercomputer, is that it eliminates

the need to port to accelerators such as GPUs to improve perfor-

mance. Ookami is an open-access resource featuring Fujitsu A64FX

processors provided under the US NSF’s ACCESS program and

managed jointly by Stony Brook University and the University at

Buffalo. Ookami is an HPE/Cray Apollo80 system with 176 A64FX

Fujitsu compute nodes, each with 32GB high-bandwidth memory

(HBM) and a 512GB SSD. Ookami’s FX700 series A64FX processors

consist of four core memory groups each with 12 cores, resulting

in a total of 48 cores, 64KB L1 cache per core, and 8MB L2 cache

shared between the cores and runs at 1.8 GHz. The nodes have 32

GB of high-bandwidth memory, where 5 GB are reserved for the OS,

leaving 27 GB for the user. These processors use the ARMv8.2śA

Scalable Vector Extension (SVE) SIMD instruction set with a 512 bit

vector implementation, allowing for vector lengths anywhere from

128ś2048 bits and enabling vector length agnostic programming

[5].

186



PEARC ’23, July 23ś27, 2023, Portland, OR, USA Feldman, et al.

1.2 Thermonuclear Supernovae with FLASH

Our application is a bright stellar explosion known as a thermonu-

clear (Type Ia) supernova (SN Ia), which we model using FLASH,

a software instrument for addressing multi-scale, multi-physics

applications [9]. FLASH is written in modern Fortran, parallelized

through MPI, and implements AMR (Adaptive Mesh Refinement)

using the PARAMESH library. Full-star hydrodynamics simulations

such as these are memory and computationally intensive, making

our application a good candidate to try on A64FX. Early study of the

performance of FLASH on Ookami may be found in [8], and similar

experiences are reported in [4, 7]. The unoptimized performance

on A64FX did not compare well to that found on traditional X86

architectures [5].

Profiling indicated that FLASH spent about half of its time in

the hydrodynamics routines, and within those 20% of the time was

spent in routine for the material equation of state (EOS) [8]. We

therefore settled on two test problems for further exploration: a

2-d SN Ia problem (that exercises the material EOS) and, looking

ahead to our science goal of 3-d SN Ia simulations, a 3-d hydro-

dynamics simulation, the Sedov explosion problem. We dubbed

these two tests łEOSž and ł3-d Hydrož, and details of both the EOS

and hydrodynamics modules may be found in the original FLASH

paper [9].

Our motivation for investigating huge memory pages was both

the observed bountiful DTLB misses, and FLASH’s memory stride.

PARAMESH manages a block-structured adaptive mesh, where

each block is separated into smaller cells that each store requisite

variables, such as density and temperature, consecutively in an

array. Thus there is a stride in memory when gathering the same

variable (i.e. density) from different cells, and a larger stride between

blocks.

1.3 Previous Work with Hugepages

Here, we explore both standard and transparent hugepages. Modern

processors manage memory in blocks known as pages. Hugepage

support was integrated into the Linux kernel in version 2.6. These

pages are larger in size than regular pages, which in theory means

there are fewer pages for the OS to manage as there is a finite

amount of memory. Depending on the OS, hugepages come in dif-

ferent sizes. Managing these pages can be challenging and at times

require changes to application code. To that extent, Transparent

HugePages were implemented in the Linux kernel where the the

"transparent" hugepages are an abstraction layer managed by the

kernel, where the kernel is responsible for their creation, manage-

ment and use [1]. Transparent hugepages are by default disabled

on Ookami.

Other studies that have tested the performance effects of using

hugepages on A64FX include [7], [11], and [3], and suggest certain

environment variable settings for best results. [11] explicitly shows

that the greatest speedup gain from enabling hugepages is seen

for a latency-bound section of their simulation, but is only a 1.11

× speedup. [3] found that an increase in L2 TLB misses caused

performance degradation when using normal 64 KiB pages, but

didn’t affect the performance when using 2 MiB hugepages.

This work extends our initial study of using hugepages with just

the Fujitsu compiler, which demonstrated that hugepages did not

provide a significant speedup [6]. Our speculation was that TLB

misses might not make much of a difference because the A64FX

has hardware to ameliorate the cost of TLB misses by avoiding OS

calls, or because the FLASH data access patterns do not trigger a

performance penalty.

2 TESTING USE OF HUGEPAGES

We ran the łEOSž and ł3-d Hydrož test problems, as described above.

The EOS test ran a ∼ 1 GB 2-d SN Ia simulation for 50 time steps

and the 3-d Hydro test ran a ∼ 9 GB Sedov explosion simulation

for 2 time steps. Both tests were run on 1 and 12 cores. We used

the round robin distribution of processors for the runs on 12 cores

because FLASH Morton orders the blocks to be spatially located to-

gether. Filling one core memory group first will put blocks together

but round robin spreads them as much as possible. We ran each

test 7 times, removed the highest and lowest run times, and aver-

aged the results from the remaining 5. To investigate the effects of

hugepages, we used the Fujitsu hardware counters [10] of the Per-

formance Application Programming Interface (PAPI) [2] to monitor

cycles, TLB misses, and memory access, and used FLASH’s internal

timers to obtain runtimes. Tests consisted of running the PAPI-

instrumented code without hugepages (no hp), with 2MB standard

hugepages (hp), and with 2MB transparent hugepages (thp). To use

(t)hp, we linked the GCC and ARM compilers to Fujitsu’s libmpg

library, and used compiler flags for the Fujitsu compiler. A detailed

description of the runtime environment, including library versions,

compiler flags, linking to PAPI and Fujitsu’s libmpg library, and

how to enable/disable (t)hp can be found in Appendix A.

3 RESULTS

First, we saw how the runtime, main memory bandwidth (MMB),

and DTLBmiss rate changedwith huge page use. To do this, we used

the following PAPI counters by setting PAPI_EVENTS to PERF_-

COUNT_HW_CPU_CYCLES,PERF_COUNT_HW_CACHE_MISSES,DTLB-L-

OAD-MISSES. The results from the 1 processor runs are shown for

the EOS test in Figure 1a, and for the 3-d hydro in Figure 1b ś the 12

core runs exhibited similar patterns and are therefore not shown.

The figures show the ratios of runs with and without (t)hp, e.g.

values around 1 indicate no changes, values < 1 indicate a reduction

by using (t)hp, and values > 1 an increase. It is important to note

that only a portion of our code is instrumented with PAPI, namely

the EOS calls for the EOS test, and the hydrodynamics calls for the

3-d hydro test. Therefore, these counters represent the behavior in

that specific module, rather than the software as a whole, while the

timers show the full runtime. As expected and seen in our last study

[6], in both cases the hardware cycles, MMB, and overall runtime

are about the same when using hp, thp, or no hp. However, using

hp drastically decreases the DTLB miss rate, while using thp does

not have as much of an effect.

Using thp proved to be an interesting struggle. Thp would not

enable in our 1 core runs with the Fujitsu compiler for the EOS test,

and is therefore not shown in Figure 1a. We finally saw thp usage

by mapping the process to NUMA node 1 instead of NUMA node 0.

When running the 3-d hydro application compiled with GCC on 12

cores, the node would reset in the middle of execution when thp

187



A Further Study of Linux Kernel Hugepages on A64FX with FLASH, an Astrophysical Simulation Code PEARC ’23, July 23ś27, 2023, Portland, OR, USA

(a) EOS test (b) 3-d hydro test

Figure 1: Ratios of runs with and without hugepages for each compiler for the (a) EOS test and (b) 3-d hydro test on 1 core

Table 1: Counters and derived rates for single core runs, for each test problem and two compilers. Values shown are ratios with :

without standard hugepages enabled. Counter descriptions and rate calculations can be found in [10].

EOS 3-d Hydro

Description GCC Fujitsu GCC Fujitsu

DTLB-LOAD-MISSES 0.03 0.06 0.11 0.31

L1D_TLB_REFILL 0.03 0.05 0.11 0.31

L2D_TLB_REFILL 0.0002 0.01 0.03 0.03

L1I_TLB_REFILL 0.71 1.01 0.04 0.65

L2I_TLB_REFILL 1.00 0.99 0.59 0.16

L1D_CACHE_REFILL 0.96 0.99 1.00 1.00

L2D_CACHE_REFILL 1.08 1.06 0.96 1.03

LD_COMP_WAIT 0.71 0.78 1.17 0.99

LD_COMP_WAIT_L1_MISS 0.82 0.78 0.94 1.00

LD_COMP_WAIT_L2_MISS 0.90 0.96 0.97 0.98

Average latency of L1D cache miss processing 1.03 1.03 1.00 1.00

Average latency of L2 cache miss processing 2.53 1.00 1.03 0.96

Bidirectional effective bandwidth between L1D cache and L2 cache 1.01 1.07 0.91 1.00

Bidirectional effective bandwidth between L2 cache and memory 1.10 1.11 0.87 1.04

was enabled. These difficulties using thp will be investigated in the

future.

We also observed the change in selected hardware counters and

their derived rates when enabling hp. We found that most of these

counters varied by only around 1%, so we report ratios of counters

from a single run rather than an average as before. A64FX has 6

hardware counters, so these results were collected across multiple

runs. For ease of interpretation, we ran these exploratory tests on 1

core only. The ratios of hp : no hp for the most relevant values are

shown in Table 1, and full tables showing all measured counters

and rates can be found in Appendix B. As before, values < 1 indicate

a reduction by using hp, and values > 1 an increase.

As expected, the TLB-related counters showed the biggest change.

Although the L2-DTLB showed the greatest improvement when hp

was enabled, 99% of the total DTLB misses resulted in an L1-DTLB

miss, and only < 1% resulted in a L2-DTLB miss. The instruction

TLBs were less affected. GCC typically exhibited a greater decrease

in TLB refills than Fujitsu. The runtime, number of L1D and L2D

cache misses, and the bandwidth were relatively unaffected by

hp use. For the EOS test, the number of cycles spent waiting for

memory access completion (LD_COMP_WAIT) is smaller when hp is

enabled, but for the GCC compiler, the latency of L2 cache miss

processing is higher. For the 3-d Hydro test with GCC, enabling

hp slightly increased the total number of cpu cycles as well as

(LD_COMP_WAIT). Overall, enabling hp has the overwhelming effect

of reducing TLB misses, but not much else. The Fujitsu compiler

seems to have less prominent changes in its counters than GCC.

We also compared the single core results between compilers,

namely to the Fujitsu compiler, which by far produced the fastest

runtime. Figure 2 shows the ratio between the Fujitsu and other

compilers (purple for GCC, pink for ARM) for each test problem

(darker colors for EOS) and type of hugepage (solid for no hp, dotted

for hp, and striped for thp), using the same dataset as that from

Figures 1a and 1b. Here, values < 1 indicate a reduction due to use of

the Fujitsu compiler, and values > 1 indicate an increase. Regardless

of hugepage use, the Fujitsu compiler was nearly twice as fast as the

others, and nearly four times as fast as ARM for the EOS test. The

Fujitsu compiler also executes about half of the hardware cycles.

For the EOS test, the Fujitsu compiler has a 2.5-3× greater MMB

than the others; this is about 1.5-2× for 3-d Hydro. This is true

188



PEARC ’23, July 23ś27, 2023, Portland, OR, USA Feldman, et al.

Figure 2: Ratios between the Fujitsu and other compilers (GCC and ARM), for each application and type of huge page.

Table 2: Counters and derived rates for single core runs, for each test problem with either standard hp or no hp enabled. Values

shown are ratios for Fujitsu : GCC compiler. Counter descriptions and rate calculations can be found in [10].

EOS 3-d Hydro

Description Hp No hp Hp No hp

DTLB-LOAD-MISSES 0.66 0.39 2.20 0.82

L1D_TLB_REFILL 0.55 0.39 2.52 0.86

L2D_TLB_REFILL 0.77 0.02 0.93 1.02

L1I_TLB_REFILL 0.70 0.49 0.63 0.04

L2I_TLB_REFILL 1.00 1.01 0.64 2.33

L1D_CACHE_REFILL 0.94 0.90 0.91 0.92

L2D_CACHE_REFILL 1.04 1.06 1.08 1.00

LD_COMP_WAIT 0.50 0.46 0.66 0.78

LD_COMP_WAIT_L1_MISS 0.56 0.58 2.58 2.43

LD_COMP_WAIT_L2_MISS 0.82 0.77 2.11 2.09

Average latency of L1D cache miss processing 0.90 0.90 1.04 1.03

Average latency of L2 cache miss processing 0.25 0.64 0.89 0.94

Bidirectional effective bandwidth between L1D cache and L2 cache 2.76 2.59 1.63 1.49

Bidirectional effective bandwidth between L2 cache and memory 2.88 2.85 1.91 1.61

even though the Fujitsu compiler exhibits a higher DTLB miss rate,

which interestingly increases with huge page use. This rate increase

says nothing about the relative TLB misses between the compilers,

however, so for a better comparison we look at the ratios between

the raw counter values and derived rates.

Table 2 shows the ratio between the Fujitsu and GCC compilers

of a subset of counters, for each test problem with hp and no hp

enabled. We chose to compare only these two compilers since the

ARM compiler is too slow to be a viable choice for production

runs, and we only look at no hp and hp runs because thp did not

even achieve the goal of reducing TLB misses. Again, values < 1

indicate a reduction due to use of the Fujitsu compiler, and values

> 1 indicate an increase. The data used is the same as that used to

create Table 1, and full tables showing all measured counters and

rates can be found in Appendix B.

Although the Fujitsu compiler has a much higher TLB miss

rate than the GCC compiler in most cases, it has lower total TLB

misses. The Fujitsu compiler also has a higher (1.6-2.9 ×) memory

bandwidth and lower latency. It has the same number of cache

misses, but spends less total cycles waiting for memory access than

the GCC compiler.

189



A Further Study of Linux Kernel Hugepages on A64FX with FLASH, an Astrophysical Simulation Code PEARC ’23, July 23ś27, 2023, Portland, OR, USA

4 SUMMARY AND CONCLUSIONS

We found that for all compilers and both test problems, the use

of both standard and transparent huge pages did not significantly

affect the performance of FLASH, despite a drastic decrease in TLB

misses. This suggests that TLB misses indeed do not have an impact

on the performance. This may be due to the A64FX’s translation

table cache (TTC), which decreases the latency of virtual to physical

address translation [10]. Higher cache miss rates when using the

Fujitsu compiler are offset by higher memory bandwidth and lower

latency, which results in a shorter runtime.

The Fujitsu compiler demonstrates 2-4 times better performance

than the GCC and ARM compilers. Although the Fujitsu compiler

uses only half the total cycles of the GCC compiler, both compilers

have the same number of cache misses. Since the bandwidth is ∼ 2

× larger for Fujitsu, this means that less time is spent waiting for

memory access completion (ie in LD_COMP_WAIT), thereby shorten-

ing the runtime. However, only ∼ 20 % - 40 % of the total cycles are

spent in LD_COMP_WAIT, so a higher bandwidth can’t completely

account for the faster runtime. A contributing factor could be that

Fujitsu may have better optimizations that take advantage of the

A64FX hardware. This includes the use of SVE ś the Fujitsu exe-

cutable uses the SVE registers 21 ×more than GCC. The reason why

Fujitsu produces the fastest executable, and what the performance

bottlenecks are, will be explored in detail in future work.

ACKNOWLEDGMENTS

Ookami is supported by the US NSF grant #1927880, and this re-

search was supported in part by the US DOE under grant DE-FG02-

87ER40317. FLASH was developed in part by the US DOE NSA-ASC

and OSC-ASCR-supported Flash Center for Computational Science

at the University of Chicago. The authors gratefully acknowledge

the generous support of the Ookami community. The authors also

thank Jens Domke at RIKEN for very helpful suggestions.

REFERENCES
[1] 2022. 5.2. Huge Pages and Transparent Huge Pages. https://access.redhat.com/

documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_
guide/s-memory-transhuge

[2] 2022. Performance Application Programming Interface. http://icl.cs.utk.edu/papi/
[3] Christie Alappat, Nils Meyer, Jan Laukemann, Thomas Gruber, Georg Hager,

Gerhard Wellein, and Tilo Wettig. 2022. Execution-Cache-Memory model-
ing and performance tuning of sparse matrix-vector multiplication and Lat-
tice quantum chromodynamics on A64FX. Concurrency and Computation:
Practice and Experience 34, 20 (2022), e6512. https://doi.org/10.1002/cpe.6512
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6512

[4] Md Abdullah Shahneous Bari, Barbara Chapman, Anthony Curtis, Robert J.
Harrison, Eva Siegmann, Nikolay A. Simakov, andMatthewD. Jones. 2021. A64FX
performance: experience on Ookami. In 2021 IEEE International Conference on
Cluster Computing (CLUSTER). 711ś718. https://doi.org/10.1109/Cluster48925.
2021.00106

[5] A. Burford, A. Calder, D. Carlson, B. Chapman, F. Coskun, T. Curtis, C. Feldman,
R. Harrison, Y. Kang, B. Michalowicz, E. Raut, E. Siegmann, D. Wood, R. DeLeon,
M. Jones, N. Simakov, J. White, and D. Oryspayev. 2021. Ookami: Deployment and
Initial Experiences. In Practice and Experience in Advanced Research Computing
(Boston, MA, USA) (PEARC ’21). Association for Computing Machinery, New
York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/3437359.3465578

[6] A. C. Calder, C. Feldman, E. Siegmann, J. Dey, A. Curtis, S. Chheda, and R. J.
Harrison. 2022. On Using Linux Kernel Huge Pages with FLASH, an Astrophysical
Simulation Code. In 2022 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE Computer Society, Los Alamitos, CA, USA, 539ś544. https:
//doi.org/10.1109/CLUSTER51413.2022.00070

[7] Jens Domke. 2021. A64FX ś Your Compiler You Must Decide!. In 2021 IEEE
International Conference on Cluster Computing (CLUSTER). 736ś740. https://doi.
org/10.1109/Cluster48925.2021.00109

[8] C. Feldman, B. Michalowicz, E. Siegmann, T. Curtis, A. Calder, and R. Harrison.
2022. Experiences with Porting the FLASH Code to Ookami, an HPE Apollo 80
A64FX Platform. In International Conference on High Performance Computing in
Asia-Pacific Region Workshops (Virtual Event, Japan) (HPCAsia 2022 Workshop).
Association for Computing Machinery, New York, NY, USA, 72ś77. https://doi.
org/10.1145/3503470.3503478

[9] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, J. W. Truran, and H. Tufo. 2000. FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series 131 (2000), 273ś334.

[10] Fujitsu. 2023. A64FX Microarchitecture Manual. https://github.com/fujitsu/
A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.3.pdf

[11] R. Langarita, A. Armejach, P. Ibáñez, J. Alastruey-Benedé, and M. Moretó.
2023. Porting and Optimizing BWA-MEM2 Using the Fujitsu A64FX Proces-
sor. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2023),
1ś14. https://doi.org/10.1109/TCBB.2023.3264514

[12] RIKEN. 2020. Fugaku Codesign Report. https://www.r-ccs.riken.jp/wp/wp-
content/uploads/2022/03/fs2020-report-e.pdf

A ENVIRONMENT

A.1 Libraries and compiler flags

We performed this study using FLASH version 4.6.2, including ad-

ditional modules for our SN Ia application. To enable thp, we were

conferred a dedicated node of Ookami running Rocky Linux 8.4

with kernel 4.18.0-305.25.1.el8_4.aarch64. To provide a more equal

comparison, all runs used serial hdf5/1.10.1 and the same PAPI

library. For this study, we were unable to get the Cray compiler

to use the same HDF5 library (necessary) as the other compilers,

and therefore it is not used here, although our earlier study demon-

strates that the Cray and GCC compilers give similar performance

for FLASH. The performance of three compilers - GCC, Fujitsu, and

ARM - were compared, and the compiler options for each are listed

in Table 3.

We linked to PAPI at compile-timewith -L /opt/cray/pe/papi-

/6.0.0.4/lib -lpapi and then at run-time linked the executable

to the proper library like so: export LD_LIBRARY_PATH=/opt/-

cray/pe/papi/6.0.0.4/lib:${LD_LIBRARY_PATH} .

A.2 Enabling huge pages

Paging policy for the static data area, stack/thread stack area, and

reserved dynamic memory areas is defined by XOS_MMM_L_PAG-

ING_POLICY. We set the paging policy to demand for all three areas

(export XOS_MMM_L_PAGING_POLICY=demand:demand:demand) to

ensure that memory used is within the NUMA memory region as

much as possible.

To use (t)hp, we linked the GCC and ARM compilers to Fujitsu’s

libmpg library by adding -Wl,-T/opt/FJSVxos/mmm/util/bss-

2mb.lds -L/opt/FJSVxos/mmm/lib64 -lmpg to the compile and

link flags. For the Fujitsu compiler, we added -Klargepage and

-Knolargepage to turn (t)hp on and off, respectively.

Switching between different pages is controlled by the XOS_-

MMM_L_HPAGE_TYPE environment variable, when using Fujitsu’s

libmpg. While the documentation mentions that acceptable values

are none or hugetlbfs, [12] mentions another possible value, thp

for the variable on Fugaku (A64FX FX1000). This is viable on the

FX700 system as well. Therefore there are three values for this

environment variable ś none (No hp), hugetlbfs (default, enables

hp), and thp (enables thp).

190



PEARC ’23, July 23ś27, 2023, Portland, OR, USA Feldman, et al.

Table 3: Compiler flags and MPI implementations used for this study

Compiler Compiler Flags Linker Flags MPI Implementation

GCC 12.2.0 -O3 -mcpu=a64fx -mtune=a64fx MVAPICH 2.3.7

-fdefault-real-8 -fdefault-double-8

-Wuninitialized -fallow-argument-mismatch

ARM 21.0 -c -O3 -armpl -mcpu=a64fx -mtune=a64fx -r8 -lamath MVAPICH 2.3.7

Fujitsu 4.5 -KSVE,A64FX,ARMV8_3_A -Az -Kfast Fujitsu built-in 1.0.21.01

-CcdII4 -CcdRR8 (based on OpenMPI)

The kernel should invoke thp on its own when it processes a file

greater than 2 Gb. Thp can be enabled or disabled by selecting [al-

ways] or [never], respectively, in /sys/kernel/mm/tranparent_-

hugepage/enabled. We monitored the use of hugepages by the

machine by looking at specific system variables in /proc/meminfo:

HugePages_Total should be nonzero when hp is in use; Anon-

HugePages should be nonzerowhen thp is in use; and both variables

should be zero when using no hp.

B COUNTER DATA

For completeness, the tables below report the raw counter values

and derived rates for both the Fujitsu and GCC compilers, with

standard hp and without hp, for both test problems (łEOSž and ł3-d

Hydrož) on 1p. This data was used to create Tables 1 and 2. Table

4 shows the raw counter values for the EOS test; Table 5 shows

the derived rates for the EOS test; Table 6 shows the raw counter

values for the 3-d Hydro test; and Table 7 shows the derived rates

for the 3-d Hydro test. Counter descriptions and rate calculations

can be found in the Fujitsu Microarchitecture Manual [10].

191



A
F
u
rth

er
S
tu
d
y
o
f
L
in
u
x
K
ern

el
H
u
g
ep
a
g
es

o
n
A
64F

X
w
ith

F
L
A
S
H
,a
n
A
stro

p
h
y
sica

l
S
im

u
la
tio

n
C
o
d
e

P
E
A
R
C
’23,Ju

ly
23ś

27,2023,P
o
rtla

n
d
,O

R
,U

S
A

Table 4: Raw counter values and their ratios for the EOS test on 1 core. The first 3 columns show the raw counter values for the GCC compiler with and

without hp, followed by the counter ratio. The next three columns show the same, but for the Fujitsu compiler. The last 2 columns show the ratio of counter

values between Fujitsu : GCC compiler.

Counter GCC GCC GCC Fujitsu Fujitsu Fujitsu Fuj : GCC Fuj : GCC

hp no hp hp : no hp hp no hp hp : no hp hp no hp

CPU_CYCLES 341210316099 354894128279 0.96 118393395910 126126802860 0.94 0.35 0.36

DTLB-LOAD-MISSES 136916841 4200311763 0.03 89784864 1624074206 0.06 0.66 0.39

L1D_TLB_REFILL 135140728 4186687491 0.03 74337421 1628705951 0.05 0.55 0.39

L2D_TLB_REFILL 212 966342 0.0002 163 21269 0.01 0.77 0.02

L1I_TLB_REFILL 74981652 105364002 0.71 52578326 52073237 1.01 0.70 0.49

L2I_TLB_REFILL 6206064 6207292 1.00 6203536 6259401 0.99 1.00 1.01

L1_MISS_WAIT 41995961928 42462092793 0.99 35374847991 34746226643 1.02 0.84 0.82

L1D_CACHE_REFILL 1211001903 1261895471 0.96 1132822066 1141540325 0.99 0.94 0.90

L1D_CACHE_REFILL_HWPRF 19441488 16435557 1.18 107749070 103581864 1.04 5.54 6.30

L1D_CACHE_REFILL_PRF 21247269 16573641 1.28 107955640 103723552 1.04 5.08 6.26

L1D_CACHE_REFILL_DM 1173058042 1194338101 0.98 1012021771 1008685191 1.00 0.86 0.84

L1D_CACHE_WB 568115212 570331006 1.00 570460305 548102563 1.04 1.00 0.96

L2_MISS_WAIT 14156941 5198312 2.72 3749562 3539840 1.06 0.26 0.68

L2D_CACHE_REFILL 1649116 1533521 1.08 1721394 1629720 1.06 1.04 1.06

L2D_CACHE_REFILL_HWPRF 702309 646787 1.09 897424 805954 1.11 1.28 1.25

L2D_CACHE_REFILL_PRF 702309 646787 1.09 900301 808715 1.11 1.28 1.25

L2D_CACHE_REFILL_DM 946807 886734 1.07 821093 821005 1.00 0.87 0.93

L2D_CACHE_WB 910868 883074 1.03 836069 814766 1.03 0.92 0.92

LD_COMP_WAIT 43456361267 61463918085 0.71 21856142950 28021892897 0.78 0.50 0.46

LD_COMP_WAIT_EX 14295343427 12725601925 1.12 4395919156 4817739974 0.91 0.31 0.38

LD_COMP_WAIT_PFP_BUSY 0 0 N/A 49 0 N/A N/A N/A

LD_COMP_WAIT_L1_MISS 14764291144 18042715909 0.82 8197400785 10457746706 0.78 0.56 0.58

LD_COMP_WAIT_L2_MISS 85681191 94715479 0.90 70471471 73306995 0.96 0.82 0.77

EU_COMP_WAIT 192299195248 189702560873 1.01 62110089168 63986117005 0.97 0.32 0.34

BR_COMP_WAIT 912951041 795494616 1.15 306967691 298776080 1.03 0.34 0.38

BR_MIS_PRED 163423745 167518949 0.98 40681971 42617939 0.95 0.25 0.25

EFFECTIVE_INST_SPEC 247030572236 241626826143 1.02 81247006439 81247004885 1.00 0.33 0.34

LD_SPEC 55921382684 54938703722 1.02 20359738305 20359737979 1.00 0.36 0.37

BASE_LD_REG_SPEC 15673422673 14690743711 1.07 2004533696 2004533370 1.00 0.13 0.14

1
9
2



P
E
A
R
C
’23,Ju

ly
23ś

27,2023,P
o
rtla

n
d
,O

R
,U

S
A

F
eld

m
a
n
,et

a
l.

Table 5: Derived rates and their ratios for the EOS test on 1 core. The first 3 columns show the rates for the GCC compiler with and without hp, followed by

the rate ratio. The next three columns show the same, but for the Fujitsu compiler. The last 2 columns show the ratio of rates between Fujitsu : GCC compiler.

Rate GCC GCC GCC Fujitsu Fujitsu Fujitsu Fuj : GCC Fuj : GCC

hp no hp hp : no hp hp no hp hp : no hp hp no hp

Cycles per instruction (CPI) 1.38 1.47 0.94 1.46 1.55 0.94 1.05 1.06

Branch misprediction rate 0.0007 0.0007 0.95 0.001 0.001 0.95 0.76 0.76

L1-ITLB miss rate 0.0003 0.0004 0.70 0.0006 0.0006 1.01 2.13 1.47

L1-DTLB miss rate 0.0005 0.02 0.03 0.0009 0.02 0.05 1.67 1.16

L2-ITLB miss rate 2.51E-05 2.57E-05 0.98 7.64E-05 7.70E-05 0.99 3.04 3.00

L2-DTLB miss rate 8.58E-10 4.00E-06 0.0002 2.01E-09 2.62E-07 0.01 2.34 0.07

L1D cache miss rate 0.005 0.005 0.94 0.01 0.01 0.99 2.84 2.69

... attributable to demand access 0.005 0.005 0.96 0.01 0.01 1.00 2.62 2.51

... attributable to prefetch access 8.60E-05 6.86E-05 1.25 0.001 0.001 1.04 15.45 18.61

... attributable to software prefetch access 7.31E-06 5.71E-07 12.79 2.54E-06 1.74E-06 1.46 0.35 3.05

L2 cache miss rate 6.68E-06 6.35E-06 1.05 2.12E-05 2.01E-05 1.06 3.17 3.16

... attributable to demand access 3.83E-06 3.67E-06 1.04 1.01E-05 1.01E-05 1.00 2.64 2.75

... attributable to prefetch access 2.84E-06 2.68E-06 1.06 1.11E-05 9.95E-06 1.11 3.90 3.72

... attributable to software prefetch access 0.00 0.00 N/A 3.54E-08 3.40E-08 1.04 N/A N/A

Average latency of

... L1D cache miss processing 34.68 33.65 1.03 31.23 30.44 1.03 0.90 0.90

... L2 cache miss processing 8.58 3.39 2.53 2.18 2.17 1.00 0.25 0.64

Average number of outstanding misses

... in L1D cache miss processing 0.12 0.12 1.03 0.30 0.28 1.08 2.43 2.30

... in L2 cache miss processing 4.15E-05 1.46E-05 2.83 3.17E-05 2.81E-05 1.13 0.76 1.92

Bidirectional effective BW (GB/s)

... between L1D cache and L2 cache 2.40 2.38 1.01 6.63 6.17 1.07 2.76 2.59

... between L2 cache and memory 0.003 0.003 1.10 0.010 0.009 1.11 2.88 2.85

LD_COMP_WAIT/CPU_CYCLES 0.13 0.17 0.74 0.18 0.22 0.83 1.45 1.28

LD_COMP_WAIT_L1_MISS/CPU_CYCLES 0.04 0.05 0.85 0.07 0.08 0.84 1.60 1.63

LD_COMP_WAIT_L2_MISS/CPU_CYCLES 0.0003 0.0003 0.94 0.0006 0.0006 1.02 2.37 2.18

LD_COMP_WAIT_EX/CPU_CYCLES 0.04 0.04 1.17 0.04 0.04 0.97 0.89 1.07

LD_COMP_WAIT_PFP_BUSY/CPU_CYCLES 0.0 0.0 N/A 4.14E-10 0.00 N/A N/A N/A

1
9
3



A
F
u
rth

er
S
tu
d
y
o
f
L
in
u
x
K
ern

el
H
u
g
ep
a
g
es

o
n
A
64F

X
w
ith

F
L
A
S
H
,a
n
A
stro

p
h
y
sica

l
S
im

u
la
tio

n
C
o
d
e

P
E
A
R
C
’23,Ju

ly
23ś

27,2023,P
o
rtla

n
d
,O

R
,U

S
A

Table 6: Raw counter values and their ratios for the 3-d Hydro test on 1 core. The first 3 columns show the raw counter values for the GCC compiler with and

without hp, followed by the counter ratio. The next three columns show the same, but for the Fujitsu compiler. The last 2 columns show the ratio of counter

values between Fujitsu : GCC compiler.

Counter GCC GCC GCC Fujitsu Fujitsu Fujitsu Fuj : GCC Fuj : GCC

hp no hp hp : no hp hp no hp hp : no hp hp no hp

CPU_CYCLES 2143932684764 1954934065987 1.10 1196335386888 1200402908968 1.00 0.56 0.61

DTLB-LOAD-MISSES 226322429 1979316404 0.11 498078094 1615854112 0.31 2.20 0.82

L1D_TLB_REFILL 200617382 1889017976 0.11 505910868 1623370615 0.31 2.52 0.86

L2D_TLB_REFILL 222571 6424782 0.03 207882 6556994 0.03 0.93 1.02

L1I_TLB_REFILL 5949138 141791086 0.04 3751271 5787082 0.65 0.63 0.04

L2I_TLB_REFILL 84205 141619 0.59 53741 330456 0.16 0.64 2.33

L1_MISS_WAIT 1174125092814 1175696041980 1.00 1112295369914 1114808777704 1.00 0.95 0.95

L1D_CACHE_REFILL 28765078635 28695255519 1.00 26312621913 26442346625 1.00 0.91 0.92

L1D_CACHE_REFILL_HWPRF 7220868699 7128347854 1.01 4454501262 4526188824 0.98 0.62 0.63

L1D_CACHE_REFILL_PRF 7746287019 7653780229 1.01 4590540067 4673132966 0.98 0.59 0.61

L1D_CACHE_REFILL_DM 19022344796 19035542257 1.00 20327097179 20468323515 0.99 1.07 1.08

L1D_CACHE_WB 20130483048 20092819898 1.00 18212432757 18287841025 1.00 0.90 0.91

L2_MISS_WAIT 2310792458 2343447319 0.99 2211054362 2224081481 0.99 0.96 0.95

L2D_CACHE_REFILL 1827787623 1900351203 0.96 1975065788 1909551917 1.03 1.08 1.00

L2D_CACHE_REFILL_HWPRF 1017222150 1024578925 0.99 963692147 897152822 1.07 0.95 0.88

L2D_CACHE_REFILL_PRF 1017222150 1024578925 0.99 964186753 897632586 1.07 0.95 0.88

L2D_CACHE_REFILL_DM 810565473 875772278 0.93 1010879035 1011919331 1.00 1.25 1.16

L2D_CACHE_WB 474436183 510418295 0.93 481165262 469429725 1.02 1.01 0.92

LD_COMP_WAIT 783957843900 670383891683 1.17 515460270334 521930831503 0.99 0.66 0.78

LD_COMP_WAIT_EX 429528457728 323839573426 1.33 38884573461 37007309796 1.05 0.09 0.11

LD_COMP_WAIT_PFP_BUSY 29585337 14584447 2.03 101373 182984 0.55 0.003 0.01

LD_COMP_WAIT_L1_MISS 106374292021 113150011609 0.94 274005118311 274611290445 1.00 2.58 2.43

LD_COMP_WAIT_L2_MISS 19383905950 19975680958 0.97 40911779437 41839552962 0.98 2.11 2.09

EU_COMP_WAIT 625493183646 630338181042 0.99 340261838023 341315363810 1.00 0.54 0.54

BR_COMP_WAIT 23654302037 21426208561 1.10 1701837812 1781324275 0.96 0.07 0.08

BR_MIS_PRED 1941165909 3941304832 0.49 624100572 624524801 1.00 0.32 0.16

EFFECTIVE_INST_SPEC 1641901478240 1346724114727 1.22 835329678475 830699232211 1.01 0.51 0.62

LD_SPEC 326350027305 269139241392 1.21 195567194613 194711154297 1.00 0.60 0.72

BASE_LD_REG_SPEC 215301026770 158090240857 1.36 68445331297 67589290981 1.01 0.32 0.43

1
9
4



P
E
A
R
C
’23,Ju

ly
23ś

27,2023,P
o
rtla

n
d
,O

R
,U

S
A

F
eld

m
a
n
,et

a
l.

Table 7: Derived rates and their ratios for the 3-d Hydro test on 1 core. The first 3 columns show the rates for the GCC compiler with and without hp, followed

by the rate ratio. The next three columns show the same, but for the Fujitsu compiler. The last 2 columns show the ratio of rates between Fujitsu : GCC

compiler.

Rate GCC GCC GCC Fujitsu Fujitsu Fujitsu Fuj : GCC Fuj : GCC

hp no hp hp : no hp hp no hp hp : no hp hp no hp

Cycles per instruction (CPI) 1.31 1.45 0.90 1.43 1.45 0.99 1.10 1.00

Branch misprediction rate 0.001 0.003 0.40 0.0007 0.0008 0.99 0.63 0.26

L1-ITLB miss rate 3.62E-06 0.0001 0.03 4.49E-06 6.97E-06 0.64 1.24 0.07

L1-DTLB miss rate 0.0001 0.001 0.09 0.0006 0.002 0.31 4.96 1.39

L2-ITLB miss rate 5.13E-08 1.05E-07 0.49 6.43E-08 3.98E-07 0.16 1.25 3.78

L2-DTLB miss rate 1.36E-07 4.77E-06 0.03 2.49E-07 7.89E-06 0.03 1.84 1.65

L1D cache miss rate 0.02 0.02 0.82 0.03 0.03 0.99 1.80 1.49

... attributable to demand access 0.01 0.01 0.82 0.02 0.02 0.99 2.10 1.74

... attributable to prefetch access 0.005 0.006 0.83 0.005 0.006 0.98 1.16 0.99

... attributable to software prefetch access 0.0003 0.0004 0.82 0.0002 0.0002 0.92 0.51 0.45

L2 cache miss rate 0.001 0.001 0.79 0.002 0.002 1.03 2.12 1.63

... attributable to demand access 0.0005 0.0007 0.76 0.001 0.001 0.99 2.45 1.87

... attributable to prefetch access 0.0006 0.0008 0.81 0.001 0.001 1.07 1.86 1.42

... attributable to software prefetch access 0.0 0.0 N/A 5.92E-07 5.78E-07 1.03 N/A N/A

Average latency of

... L1D cache miss processing 40.82 40.97 1.00 42.27 42.16 1.00 1.04 1.03

... L2 cache miss processing 1.26 1.23 1.03 1.12 1.16 0.96 0.89 0.94

Average number of outstanding misses

... in L1D cache miss processing 0.55 0.60 0.91 0.93 0.93 1.00 1.70 1.54

... in L2 cache miss processing 0.001 0.001 0.90 0.002 0.002 1.00 1.71 1.55

Bidirectional effective BW between (GB/s)

... L1D cache and L2 cache 10.51 11.50 0.91 17.15 17.17 1.00 1.63 1.49

... L2 cache and memory 0.49 0.57 0.87 0.95 0.91 1.04 1.91 1.61

LD_COMP_WAIT/CPU_CYCLES 0.37 0.34 1.07 0.43 0.43 0.99 1.18 1.27

LD_COMP_WAIT_L1_MISS/CPU_CYCLES 0.05 0.06 0.86 0.23 0.23 1.00 4.62 3.95

LD_COMP_WAIT_L2_MISS/CPU_CYCLES 0.01 0.01 0.88 0.03 0.03 0.98 3.78 3.41

LD_COMP_WAIT_EX/CPU_CYCLES 0.20 0.17 1.21 0.03 0.03 1.05 0.16 0.19

LD_COMP_WAIT_PFP_BUSY/CPU_CYCLES 1.38E-05 7.46E-06 1.85 8.47E-08 1.52E-07 0.56 0.006 0.02

1
9
5


	Abstract
	1 Introduction
	1.1 Ookami and A64FX
	1.2 Thermonuclear Supernovae with FLASH
	1.3 Previous Work with Hugepages

	2 Testing Use of Hugepages
	3 Results
	4 Summary and Conclusions
	Acknowledgments
	References
	A Environment
	A.1 Libraries and compiler flags
	A.2 Enabling huge pages

	B Counter Data

