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1. Introduction

Let G be a group acting by isometries on a Riemannian manifold (M, g) and f a real valued function on
M. If f is invariant under G, then the Hessian of f is also invariant. In this paper we are interested in rigidity

phenomena that occur when we conversely assume that the Hessian is invariant but the function is not.

We focus on the case where G acts transitively so that any invariant function is constant. The prototypical

example of a function which has invariant Hessian but is not invariant is a linear function on R™ whose

Hessian, being zero, is invariant under the full isometry group. Another prominent example is the restriction

of coordinate functions x’ in R”*! to the sphere S™, whose Hessian on the sphere satisfies Hessz! = —z'g.

In this case, while Hessz’ is not invariant under the full isometry group, its trace-free part is and it also
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satisfies an equation of the form Hessz? = 2’q where ¢ = —g is invariant under the isometry group. Note
that the coordinate functions in R™! restricted to hyperbolic space satisfy a similar equation Hessz? = z'g.
More complicated examples come from gradient solitons to curvature flows. These satisfy Hessf = A\g—q,
where ¢ is an expression involving the curvatures of the metric. Equations involving the Hessian of a function
and the curvature also come up naturally in the study of warped products and conformal changes of metrics.
Motivated by these examples we consider the following general classes of equations involving g, a sym-
metric two tensor on a Riemannian manifold,

Hessf = q, (1.1)
Hessw = wq, (1.2)

where f,w are smooth functions. Given a Riemannian manifold (M, g) and a fixed tensor ¢ we denote by
F(M,g,q) and W(M, g, q) the space of all solutions to equation (1.1) and (1.2) respectively. We will often
simply write F'(¢) and W (q).

When ¢ is fixed, equations (1.1) and (1.2) are overdetermined in f or w respectively, as there is only one
unknown function but @ equations. Thus the solution spaces F' and W are small except in exceptional
circumstances. On the other hand, if ¢ is invariant under G, a group of isometries, then G acts on F' and
W. Thus if G is a large group we have a large group acting on a small space and this also leads to rigidity.
Roughly speaking, this is the approach we use to prove general structure theorems for any G-homogeneous
Riemannian metric that supports non-constant solutions to (1.1) and (1.2) for a G-invariant q.

Our results build on previous work of the authors in two cases involving the Ricci curvature. Namely,
functions in F(Ag — Ric) corresponding to gradient Ricci solitons and functions in W (L (Ric — Ag)), m € N
corresponding to warped product Einstein metrics [15,6]. These equations on homogeneous manifolds were
studied by the authors in [20] and by the authors along with He in [14] respectively. The main idea of this
paper is that a general structure extends to the more general equations, with some important variation.

In [20] the authors showed that a homogeneous gradient Ricci soliton is the product of an Einstein metric

and a Euclidean space. We prove the following generalization of this result.

Theorem 1.1. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor which is
divergence free. If there is a non-constant function in F(q), then (M, g) is a product metric N x R* and f
is a function on the Euclidean factor.

Remark 1.2. Note that 2divRic = dscal, so on a homogeneous space the Ricci tensor is divergence free.
By Proposition 3.7 the divergence free assumption on ¢ can also be replaced with the assumption that
Ric(Vf,Vf) > 0 for f € F(q), which is also satisfied for homogeneous gradient Ricci solitons as Ric(V f) =
0.

Remark 1.3. Griffin applies Theorem 1.1 to study homogeneous gradient solitons for the four-dimensional
Bach flow in [11].

On the other hand, Theorem 1.1 is not true if we do not assume ¢ is divergence free, see Example 3.2.
We prove a general structure theorem for F'(q) without the divergence free assumption (Theorem 3.6),
whose precise statement we delay until section 3. The general rigidity we obtain involves spaces we call
one-dimensional extensions.

Definition 1.4. A G-homogeneous space (M = G/G,, g) is called a one-dimensional extension if there is a
closed subgroup, H C G that contains GG, such that there is a surjective Lie group homomorphism from G
to the additive real numbers whose kernel is H.
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The algebraic condition of being a one-dimensional extension implies a geometric/topological product
structure such that M is diffeomorphic to R x (H/G,) and g = dr? + g, where g, is a one-parameter family
of homogeneous metrics on H/G,. Moreover, G acts as a semi-direct product G = H X R on g. Theorem 3.6
roughly says that if F'(¢) contains a non-constant function then M is either a one-dimensional extension, a
product of a one-dimensional extension with Euclidean space, or a space as in Theorem 1.1. In particular,
Theorem 3.6 applies to any homogeneous gradient soliton for an invariant curvature flow. We are not aware
of any examples of flows where examples of gradient solitons on one-dimensional extensions have arisen.

One-dimensional extensions play a larger role in the study of W(q) as they occur even in the warped
product Einstein case. In fact, in [17] Lafuente showed that a homogeneous space admits a one-dimensional
extension which is the base of a warped product Einstein manifold if and only if it is an algebraic Ricci
soliton. For general ¢, we obtain the following structure result.

Theorem 1.5. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor. If W(q)
is non-trivial, then (M™,g) is isometric to one of the following

(1) a space of constant curvature and dimW =n+ 1,

(2) the product of a homogeneous space and a space of constant curvature with W consisting of functions
on the constant curvature factor and 2 < dimW < n,

(3) the quotient of the product of a homogeneous space and R, (H x R)/m (M), with W ={w : R - R |
w'’ = Tw} where 7 < 0 is constant, or

(4) a one-dimensional extension and dim W = 1.
If, in addition, q is Codazzi, then (M, g) is isometric to one of the cases (1)-(3).

Remark 1.6. A symmetric 2-tensor is Codazzi if its covariant derivative is symmetric, i.e. (Vxq)(Y,Z) =
(Vyq)(X, Z), for all vectors X,Y, Z. In general, divergence free and Codazzi are different conditions. How-
ever, a Codazzi tensor is divergence free if and only if it has constant trace. Thus a Codazzi tensor that
is invariant under a transitive group of isometries is divergence free. See section 6 for further discussion of
examples in case (4) where ¢ is divergence free.

We also consider the trace-free versions of these equations,

Hessf = §, (1.1a)

Hessw = wd, (1.2a)

where ¢ is the trace-free part of ¢, § = g — ﬁfmg. We write F'(q) and W (q) for the solution spaces to (1.1a)

and (1.2a) respectively. Non-trivial functions in F'(—Ric) are called Ricci almost solitons in the literature,
see for example [4]. Non-trivial functions in W(Q%nRic) are called almost Einstein metrics in the literature.
In this case, if the function is positive then the metric is conformal to an Einstein metric. See, for example,
[7,8,10,18,16] and the references there-in.

The study of the solution spaces F and W can in the homogeneous case be reduced to the study of a
corresponding F or W space. A space of functions I (or W) is called essential if F'(q) # F(q') for all ¢’ (or

W(q) # W (q') for all ¢'). We have the following rigidity result for essential spaces of solutions.

Theorem 1.7. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor. If F'(q) is
essential then (M, g) is a space of constant curvature. If W(q) is essential, then (M, g) is locally conformally

flat.
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Note that homogeneous locally conformally flat metrics are classified by Takagi in [21] (see also Theo-
rem 2.6). Theorem 1.7 combined with structure results for F' and W as well as Takagi’s classification yields
the following corollaries.

Corollary 1.8. Let (M, g) be a G-homogeneous manifold and q¢ a G-invariant symmetric two-tensor which
is divergence free. If there is a non-constant function in F(q), then (M,g) is either a space of constant
curvature or is a product metric N x RF with f being a function on the Euclidean factor.

Corollary 1.9. If (M, g) is a G-homogeneous manifold and q is a G-invariant symmetric two-tensor such
that W is non-trivial, then (M, g) is isometric to either

(1) S™(x)/T, R*/T, H"(—k), (S¥(k)/T) x H" *(—k), (R/T) x H""(—k), or (S"~(x) x RY)/T,

(2) a direct product of a homogeneous space and a space of constant curvature with W consisting of functions
on the constant curvature factor,

(3) the quotient of the product of a homogeneous space and R, (H x R)/m (M), with W = {w : R - R |
w'’ = Tw} where T < 0 is constant, or

(4) a one-dimensional extension of a homogeneous space.

Moreover, when (M, g) is not in case (1), W(q) = W(¢'), where ¢’ is a G-invariant tensor of the form
qd = q— A\g for some A € R. If, in addition, q is Codazzi, then (M,g) is isometric to one of the cases

(1)-(3).

In the case of Ricci almost solitons, Corollary 1.8 already follows from [4, Theorem 1.1]. For almost
Einstein metrics, Corollary 1.9 generalizes Theorem 5.2 in [18] to the non-compact case. In dimension 4,
homogeneous conformally Einstein spaces were classified in [5] where is it shown that if a space is not
a symmetric space, then it is one of three families of one-dimensional extensions. In higher dimensions,
Corollary 1.9 reduces the problem of classifying homogeneous almost Einstein spaces and thus conformally
Einstein spaces to studying one-dimensional extensions. We discuss this case further in section 7, where we
also discuss the application of Corollary 1.9 to more general “generalized m-quasi-Einstein metrics.”

As a final application of the theorems above, we consider the case of a compact locally homogeneous
manifold admitting non-trivial functions in F', F , W, or W for a local isometry invariant q. First note that
F(q) can never be non-trivial because if f € F(q) then Af = trq and trq is constant as ¢ is a local isometry
invariant tensor. A function on a compact manifold with constant Laplacian is constant, so f is constant.
On the other hand, the sphere supports invariant tensors ¢ such that F , W and W are all non-trivial. In
this case we get the following rigidity result. The proof follows from inspecting the possibilities for simply
connected examples in Corollaries 1.8 and 1.9 to admit non-trivial F , W and W that are invariant under
co-compact actions of deck transformations.

Theorem 1.10. Suppose that (M, g) is a compact locally homogeneous manifold and q a local isometry in-
variant symmetric two tensor.

(1) If F(q) contains a non-constant function, then (M, g) is a spherical space form.
(2) If W(q) is non-trivial, then either (M, g) is isometric to a direct product of a homogeneous space N and
a spherical space form, isometric to (N x R)/my (M), or isometric to (S"~1(k) x RY)/T.

In particular any positive function in F(q) or W(q) must be constant.

Note that in the statement of part (2) we allow N to be a point, so that the space could be isometric to
a spherical space form.
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The paper is organized as follows. In the next section we discuss preliminaries including the basic algebraic
structure of the spaces F' and W and the rigidity theorems for homogeneous spaces which we use to prove
the structure theorems. In the next four sections we prove the results for F, F, W, and W. In the final
section we discuss the application of the results to conformally Einstein and generalized m-Quasi Einstein
metrics. We also include an appendix with a discussion of these spaces of functions on Kéhler manifolds.

2. Preliminaries

In this section we discuss some basic properties about the spaces of functions F(M,g,q), F(M,g,q),
W(M,g,q), and W(M,g,q) as well as some rigidity results for homogeneous spaces that will be the main
tools in the proofs of our structure theorems.

2.1. Basic structure

First note that the spaces of functions F' and F are affine as f1, fa € F (resp, a ) implies f1 — fo € V

o

(resp, V'), where

V = {v | Hessv = 0}
V = {v | Hessv = 0}.

Both V and V are vector spaces of functions that contain the constant functions. Moreover, it is well known
that if V or V contain a non-constant function, then the metric must be special. If there is a non-constant
function v € V', then (M, g) must split as a product with a Euclidean factor, and v is a coordinate function
in the Euclidean direction (see Proposition 3.4). If there is a non-constant function v € V, then (M, g) must
split as a warped product over a 1-dimensional base. This was first proven locally by Brinkmann [3] and
later globally by Tashiro [22]. The complete study of the full space V' is due to Osgood-Stowe [19].

The spaces W and W are vector spaces of functions. In fact, note that V' and V are special cases of W
and W where q = 0. Rigidity for metrics which admit linearly independent solutions in W was studied in
[12] (also see Theorem 5.2 below). It gives a weaker warped product splitting than for V or V.

A tensor ¢ is invariant under a subgroup, G, of isometries of (M, g), if v*¢ = ¢ for all v € G. If ¢ is
invariant under G, then G acts on the spaces F, F, W, and W via f = 7"f, v € G. Conversely, we also
have that if F' or W is invariant under the action of G then so is gq.

Proposition 2.1. If F(M,g,q) or W(M,g,q) are non-trivial and invariant under the action of G C
Isom(M, g), then q is also invariant under G.

Proof. We consider the case where W is invariant. The case for I is similar. Fix a non-trivial w € W and
v € G. We have:

(wovy)g = Hess(w o) =~"Hessw = v*(wq) = (woy)(v"q)-

This shows that y*q = ¢ wherever w oy # 0. Since this is a set of full measure unless w = 0 (see [12,
Proposition 1.1]) we conclude that ¢ is v invariant. O

2.2. Some rigidity results on homogeneous spaces

In this section we discuss some rigidity results for certain functions and vector fields on homogeneous
spaces. We first recall the algebraic formulation of the rigidity we require from the introduction.
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Definition 2.2. A G-homogeneous space (M = G/G,,g) is called a one-dimensional extension if there is a
closed subgroup, H C G that contains G, such that there is a surjective Lie group homomorphism from G
to the additive real numbers whose kernel is H.

This algebraic property has the following geometric consequences.
Proposition 2.3. If a G-homogeneous space (M = G/G,,g) is a one-dimensional extension of H, then

(1) G acts on M as a semi-direct product group G = H x R,
(2) M is diffeomorphic to (H/G,) x R,
(3) g = g, + dr? where g, is a one-parameter family of homogeneous metrics on H/G,.

Proof. Let ¢ : G — R be a surjective Lie group homomorphism with kernel H. Since G, C H it follows
that M/H = (G/G.)/H = G/H = R. Therefore, the action of H on M has cohomogeneity one. Let
r: M — M/H. By re-parametrizing the range, M/H, we can assume that r is a distance function. H acts
transitively on the level sets of r, which gives the diffeomorphic splitting (2) as well as the metric of the
form (3).

To see (1), let v+ be a one-parameter family of isometries in G. It follows that ¢t — ¢(;) is an additive group
homomorphism from R to R and thus either trivial or an isomorphism. Since ¢ is assumed to be surjective,
we can find a 7 such that this map is an isomorphism. Let v € G. There is ¢ such that ¢(v_¢) = ¢(7),
which implies that v o v € H. This shows that G is a semi-direct product group G = H x R. O

Now we are ready to prove the main Lemma which we use to show that spaces are one-dimensional
extensions. It roughly says that when there is function which is “almost” invariant by a transitive group in
the sense that it changes only by an additive or multiplicative constant, then we obtain a one-dimensional
extension.

Lemma 2.4. Let M be a G-homogeneous space, assume that either
(1) there is a non-constant function f such that for all v € G there is Cy € R so that
VI =1+Cy0r
(2) there is a non-constant function w such that for all v € G there is C, € R so that
v'w = Cw.

In either case (M, g) becomes a one-dimensional extension of H, the subgroup of G that fizes the function
f or w. Moreover, in case (1) f = ar+b and in case (2) w = be® for some a,b € R.

Proof. First consider case (1). The assumption v*f = f + C,, gives a homomorphism ~ — C., into the
additive real numbers with kernel H = {y € G | v*f = f}. To see that G, C H note that if y(z) = =,
then ~v* f(z) = f(z) implying that C, = 0. Observe that the image of v — C, is either trivial or R and in
case it is trivial f is forced to be constant. Therefore, we have a one-dimensional extension of H and the
diffeomorphic splitting M = H/G, x R with metric g = g, + dr?. As f is invariant under H we must have
f=7f0), Vf=f(r)Vr. Since the group G preserves V f this implies that f'(r) is constant, so f = ar +b
for constants a,b € R. This completes case (1).

Case (2) is similar. Since v*w = C,w, the action of G preserves both the zeros and the critical points of
w. Since G is transitive and w is non-constant we must have that w has no zeros nor critical points so, by
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possibly switching to —w, we can assume that w is positive. The map v — C, is a group homomorphism
into the multiplicative group of positive real numbers. But then In(C,) gives a homomorphism into the
additive reals whose kernel consists of the isometries that preserve w. We then obtain M = H/G, x R with

metric g = g, + dr? and w = w(r).
YVw

To see that w = be®” consider that any isometry v preserves the vector field =

as

wihy~tz)  Cow(r) w
So |Vw|/w = |w'(r)|/w(r) is constant and so w = be®” for some a,b € R. O

Finally in this section we prove a fact about conformal fields on homogeneous spaces. Recall that a
vector field X is a conformal field if Lx g = 0 which is equivalent to the 1-parameter family of (local)
diffeomorphisms generated by X being conformal diffeomorphisms of g. We have the following rigidity for
conformal fields on homogeneous spaces. This result was established and used in [4, Proof of Theorem 1.1],
but the resulting formula there does not appear to be entirely correct.

Proposition 2.5. Let (M, g) be a homogeneous space and X a conformal field, then either (M, g) is locally
conformally flat, or X is a Killing field.

Proof. All two-dimensional spaces are locally conformally flat, so there is nothing to prove in this case. In
dimensions larger than 2 there is always a conformally invariant (1, 3) tensor, C, on (M, g) such that C =0
if and only if (M, g) is locally conformally flat. In dimension 3 it is the Cotton tensor, in higher dimensions
the Weyl tensor.

The conformal invariance of C' implies that LxC = 0 as X is a conformal field. We claim that Dx|C|? =
—2tr(Lxg)|C|?. To see this consider a point p € M where V(p) # 0 and select coordinates x!,... 2" such
that V' = 0y. The Lie derivative of any tensor can now be calculated by computing the directional derivatives
of the components of the tensor in these coordinates. With this in mind it follows that the components of
the metric tensor satisfy: Dxg;; = tr(Lxg)g;; and its inverse: Dx g = —tr(Lxg)g*, while DXijk =0.
We can now calculate

DX|C|2 = Dx (gisgjtgkuglvcz;jkcgtu)
= (=3tr(Lxg) + tr(Lx9)) (9" ¢"" ¢" 91 C};1.Clr)
= —2tr(Lx9))(9"° 9" 9" 910C};1,Clr)-

Finally, the formula trivially holds on any open set where X vanishes. (In fact, a non-trivial conformal
field cannot vanish on an open set as its zero set has components that are either points or totally umbilic
hypersurfaces.) So the formula Dx|C|? = —2tr(Lxg)|C|? must hold globally.

Since the space is homogeneous, |C|? is constant, so either tr(Lxg) = 0 everywhere, and the field is
Killing, or there is a point where |C|? = 0. However, again by homogeneity, if C' = 0 at a point then C' = 0
everywhere and then the space is locally conformally flat. O

Finally in this section we point out that locally conformally flat homogeneous spaces have a rigid classi-
fication due to Takagi.

Theorem 2.6. [21, Theorem B] Let (M™,g) be a homogeneous space which is locally conformally flat, then
(M, g) is isometric to either S"(x)/T, R"/T', H"(—k), (S*(k)/T) x H" *(—k), (R/T) x H* 1 (—k), or
(S" (k) x RY)/T.
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3. F

Now we begin the study of the space of solutions to (1.1), F(M, g, q). We start by offering two examples
of spaces that typify situations where ¢ is invariant under a group of isometries but not all the functions in
F (q) are.

Example 3.1. Let f : R™ — R such that f(z) = 4|z|?+ L(z) + C where A, C are constants and L : R" — R
is a linear function. Then Hessf = Agy where gy denotes the Fuclidean dot product. Clearly Hessf is

invariant under the full isometry group, but f is not.

Example 3.2. Let g = dr?+e%*" gy, where gy is the Euclidean metric on R*~!. Then g is the Euclidean metric
if k = 0 and is the hyperbolic space if k& # 0. Consider f = ¢r and G = {¢ | ¢(r,x) = (r + a,e" 7 (2)),
where a € R and 7 € Isom(R™1)}. In this case G is a group of isometries of g that acts transitively and
Hessf = cke?*" gy which is invariant under the group G.

Our results come from considering the cases when the dimension of V' is one and larger than one separately.
When the dimension is one we have an almost trivial action of a transitive group of isometries while, when
the dimension is larger than one, we have a rigidity result for the metric. Example 3.2 is in the case where
V' is one dimensional and Example 3.1 is in the case where V is higher dimensional.

Let us now be more precise. First in the case where dim(V) = 1, we can apply Lemma 2.4.

Proposition 3.3. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant symmetric two tensor.
If dim(V) =1 and f € F(q) is non-constant, then (M, g) is a one-dimensional extension and f = kr.

Proof. Recall that v*f = f oy~!. Since ¢ is invariant under v we have v*f € F. Therefore, v*f — f € V
and this is a real number since V' consists only of constants. This shows that v*f = f + C., for a constant
C, so we can apply Lemma 2.4. 0O

The rigidity statement for complete spaces which have non-constant functions in V' is the following.

Proposition 3.4. Suppose (M, g) is a complete Riemannian manifold and suppose that dim(V) =k + 1 for
some k > 1, then M splits isometrically as R¥ x N for some space N and Isom(M) = Isom(R¥) x Isom(N).
Moreover, dim(V (N)) = 1 and V(M) consists of the space of affine functions R¥ — R.

Proof. The metric splitting follows from the fact that all elements in V have parallel gradient. Moreover,
R* must be the Euclidean de Rham factor as otherwise dim V' > k + 1. This shows that the isometry group
splits. Finally if dim(V (N)) > 1, then also dimV >k +1. O

The previous two propositions show that if f € F(q) is a non-constant function and ¢ is invariant under
a transitive group of isometries, then the metric is either a one-dimensional extension or splits as a product.
In the case of a product splitting, we do not assume that the tensor ¢ necessarily splits, however a further
application of Lemma 2.4 allows us to determine the function f when the metric splits.

Proposition 3.5. Let M = B X F be a direct product and let G = G1 X Gy where G1, Gy are transitive groups
of isometries on B and F respectively. Suppose that there is a function f on B X F such that

(Y ), y) = f2,y) = o4 (y)

for all v € G, where ¢ is a function of F' that depends on ~y. Fither
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(1) f=1(y), or

(2) B is a one-dimensional extension, gg = dr® + g, and f = ar + ¥ (y)
where ¥ is a function of F.

Proof. Fix a point yg € F, and let fo : B x {yo} — R be defined as fo(z) = f(x,yo). Let 11 € Gy, by
assumption we have

(1 xid)* f)(z,90) — f(2,90) = é1(%0),
((v1)" fo)(x) — fo(z) = ¢1(y0)-

So, applying Lemma 2.4 we get that either fy is constant in z or B x {yo} is a one-dimensional extension
and fo = a(0)r + b(0).
If fo(x) = d for a constant d, then let v, € G5 and consider

((id x 72)" f) (=, 90) — f(x,90) = H2(%0),
f(z,72(y0)) — d = d2(yo)-

Since G5 acts transitively, this implies that f is constant in the x direction everywhere.

On the other hand, if fy is non-constant and B x {yo} is a one-dimensional extension, then B x {y} is
a one-dimensional extension for all y since M is assumed to be a product metric. Applying Lemma 2.4 to
each f,(z) = f(x,y) we obtain that f(z,y) = a(y)r + b(y) where a,b could a priori be functions of y. But
then a must be constant as

(id > 32)" (f)(, 90) = f(x,90) = ((v20)(y0) — alyo))r + (120)(yo) — blyo)-

Since the right hand side is assumed to only be a function of y it follows that (via)(yo) = a(yo) for all
Y2 € G5 and a is constant. O

This gives us the following theorem.

Theorem 3.6. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant symmetric two tensor.
Suppose that f € F(q) is a non-constant function then either

(M, g) is isometric to a product, N x R¥ where f is constant on N,
(2) (M, g) is a one-dimensional extension, g = dr* + g,, and f(x,y) = ar +b, or

(M, g) is isometric to a product, N x R¥ where N is a one-dimensional extension and f(z,y) = ar(z)+
v(y) where v is a function on R™ and r is a distance function on N.

Proof. We have already seen that the theorem is true when dim(V') = 1. So suppose dim(V') > 1 and note
that the metric splits as a direct product, N x R¥. Moreover, G = G x G5 because unit tangent vectors to
the R* factor are characterized as gradients to functions in V. We also have that v*f — f is a function of
the R* factor for any . So we may apply Proposition 3.5 to obtain the result. O

The natural question coming from Theorem 3.6 is what conditions imply that a one-dimensional extension
is a product, the next proposition gives two such conditions.

Proposition 3.7. Let (M, g) be a one-dimensional extension. The following properties hold:
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(1) Ar is constant,

(2) Ric(Vr,Vr) <0,

(3) If Ric(Vr,Vr) =0, then g = go + dr? is a product,
(4) If div(VVr) = 0, then g = go + dr? is a product.

Proof. The transitive group G preserves Vr and VVr is invariant by G so Ar = tr(VVr) is constant.
To see (2) and (3) consider the Bochner formula applied to r:

1
§A|V7’|2 = Ric(Vr, Vr) + |Hessr|> + g(VAr, V7).
Since |Vr| and Ar are constant, we obtain
Ric(Vr, Vr) = —|Hessr|?.

So if Ric(Vr, Vr) = 0 then |Hessr|> = 0, which implies that M splits isometrically as N x R.
Finally, for (4) note that

div(VVr) = VAr + Ric(Vr).

So, as Ar is constant, the condition div(VVr) = 0 implies that Ric(Vr) = 0 and we have a product
splitting. O

This allows us to prove Theorem 1.1

Proof of Theorem 1.1. We have that Hessf = ¢ for a tensor ¢ that is invariant under a transitive group of
isometries. Assume that f is non-constant, then since ¢ is invariant under isometries Theorem 3.6 implies
that either M is a one-dimensional extension or M splits as a product metric M = N x R¥, g = g1 + go.
Assume also that this splitting is maximal in the sense that M does not split off more than k£ Euclidean
factors.

If div(g) = 0 then div(VVr) = 0, so by Proposition 3.7 the one-dimensional extension in the splitting is
itself a product R x N, where r is the coordinate in the R direction. But, this contradicts the maximality
of the splitting.

Therefore, we have M = N x R*, by Theorem 3.6 we also have a splitting of the function f of the
form f = fi x fo where f; is a function on N and f» is a function on R¥. In particular, ¢ = Hessf =
Hess(f1) + Hess(f2) so ¢ splits as q; + g2 where ¢; is a tensor on N and ¢y is a tensor on R¥. In particular,
divg = div(q1) + div(g2), so div(qr) = 0. If f; is non-constant then, by Theorem 3.6, (N, g1) is a one-
dimensional extension with Hessf; = ¢; and divg; = 0. So we also obtain that the one-dimensional extension
in this case is a product, again contradicting the maximality of the splitting. Therefore, for the maximal
splitting, we must have that f; is constant on the N factor. O

4. Traceless F'

Now we consider spaces of functions a (M, g, q) of solutions to (1.1a). Given our established results about
the corresponding space F(M,g,q), we consider the question of when F(M,g,q) #+ F(M,g,q). There is
a trivial way to produce such examples by adding a factor of g to q. Namely, if f € F(M,g,q — ¢g) for
¢ € C=(M), ¢ #0, then f ¢ F(M,g,q), but f € F(M,g,q). This motivates the following definition.

Definition 4.1. Let (M, g) be a Riemannian manifold and ¢ a symmetric two-tensor, then a (M,g,q) is
inessential if (M, g,q) = F(M, g, ¢’) for some quadratic form ¢'. F'(M, g, q) is essential if it is not inessential.
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The next proposition shows that essential spaces are easily characterized in terms of the spaces V and
V. It also shows that the property of F being essential is a property of the space (M, ¢g) but not the choice
of q.

Proposition 4.2. Let (M, g) be a Riemannian manifold and q a symmetric two-tensor, then the following are
equivalent:

(1) F'(M,g,q) is essential,

(2) F(M797Q) 7& IT(Mvgaq - ¢g) fOT’ all ¢ € COO(M);

(3) The map A : F(M,g,q) — C>®(M) is non-constant, and
(4) V£V.

Moreover, if F(M, 9,9) = F(M,g,q") is inessential and q is invariant under G C Isom(M, g) then ¢’ is also
invariant under G.

Proof. (1) = (2) is obvious. To see (2) = (1) consider that if (1) is not true then F(M,g,q) = F(M,g,q).
So Hessf = ¢’ and

o tr(qg’
G=Hessf =q¢ — _r(q)g.

Soq¢ =q+ tr(q/)n;tr(q)g which would contradict (2).

(1) and (3) are equivalent because if two quadratic forms have the same trace-free part, then they are
the same if and only if they have the same trace.

To see that (3) and (4) are equivalent note that w € V is an element of V if and only if Aw = 0. If
fife F(M,g,q) then f — f' € V, so A being non-constant on F(M,g,q) is equivalent to there being a
function in V with non-zero Laplacian.

The final statement follows from Proposition 2.1. O

The next example shows that for simply connected spaces of constant curvature, F' is essential.

o

Example 4.3. Let (M™, g) be a simply connected space of constant curvature. Then dim(V) = n + 2 and
F(M,g,q) is essential. If (M™, g) is Euclidean space then V is the n+ 1 dimensional space of affine functions
and V is spanned by V along with the function |z|%. If M™ is a sphere or hyperbolic space then V just
contains constant functions. For the sphere V also contains the restriction of the coordinate functions in
R™*+! while for hyperbolic space V contains the restriction of the coordinate functions in R, See [12] for

more details.
On the other hand F is inessential for product spaces.
Proposition 4.4. If (M, g) = (M]"* x M3?, g1 + g2), then V =V, so F is inessential.

Proof. Consider f(z1,23) € V. Then Hessf(X,U) =0 for X € TM; and U € TM, so by [20, Lemma 2.1]
f(z1,22) = fi(x1) + fa(wz). Thus

Aglfl +Ang29

Hessy(f) = Hessg, f1 + Hessg, fo = -

If we restrict this equation to M7 and Ms this tells us that Hessog1 f1=0and Hessog2 f2 =0. Thus
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Ag1f1 +Ang2 _ Ag1fl _ Ang2
n ni neg

which shows that Ag, fi =0 and Ay, fo = 0. Consequently, V=V. O
This gives us the following characterization of essential F in the homogeneous case.

Theorem 4.5. Suppose that (M, g) is a homogeneous Riemannian manifold. If ﬁ’(M,g, q) is essential, then
(M, g) is a space of constant curvature.

Proof. Suppose that F' is essential. Let w € V # V, then Vw is a conformal field which is not Killing. By
Proposition 2.5, (M, g) is locally conformally flat. By Takagi, the universal cover of M is either a space of
constant curvature or a product of spaces of constant curvature. Note that if 7 : M — M is the universal
cover of M, w € V(M) implies (w o) € V(M) and v € V(M) implies (vom) € V(Z\/Z) Therefore, if
V(M) # V(M) then V(M) # V(M), so M essential implies that M is. Then by Proposition 4.4, the
universal cover does not split as a product and so must be a space of constant curvature. 0O

Theorem 4.6. Let (M, g) be a G-homogeneous Riemannian manifold and q be a G-invariant symmetric
two-tensor. If f € F' is a non-constant function then either

(1) (M, g) is a space of constant curvature,

(2) (M, g) is isometric to a product, N x R¥ where f is constant on N,

(3) (M, g) is a one-dimensional extension, g = dr® + g,, and f(x,y) = ar +b, or

(4) (M, g) is isometric to a product, N x R* where N is a one-dimensional extension and f(x,y) = ar(z)+

)
v(y), where v is a function on R™ and r is a distance function on N.

Proof. If F is essential, then by Theorem 4.5 (M, g) is a space of constant curvature. If F' is inessential,
then F(q) = F(q') where ¢’ is also invariant by G, then Theorem 3.6 implies the result. 0O

This allows us to prove Corollary 1.8

Proof of Corollary 1.8. By Theorem 4.5 either (M, g) is constant curvature or F(q) = F(¢') and by (2) of
Proposition 4.2 ¢' = q — ¢g for a function ¢. But then since ¢ and ¢ are both invariant by the transitive
group G we must have ¢ constant. In particular, div(q’) = div(q), so ¢’ is also divergence free and the
Corollary follows from applying Theorem 1.1 to F(¢’). O

5 W

Now we consider the space W (M, g,q) of solutions to equation (1.2). When this is a one-dimensional
space we have the following statement.

Theorem 5.1. Let (M, g) be a G-homogeneous manifold and let q be a non-zero G-invariant two-tensor. If
dim(W) =1, then (M, g) is a one-dimensional extension and W = {be®" | b € R} for some constant a € R.

Proof. Let G be a transitive group of isometries and w be a non-constant function in W. Since W is one-
dimensional and G acts on W, for v € G, we have w o v = Cyw for some constant C,. The theorem now

follows from Lemma 2.4. 0O

When dim(W) > 1 we have the following result of He-Petersen-Wylie.
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Theorem 5.2. [12, Theorem A and B and Proposition 6.5] Suppose (M, g) is a complete Riemannian manifold
such that dm(W) = k+ 1, k > 1. If k > 1 or M s simply connected, then M is isometric to a warped
product B x,, F where F is a space of constant curvature. Moreover,

W =A{w(z,y) = u(z)v(y) | v e W(F, —7gr)}.
If k =1, then M is isometric to (B X, R) /71 (M), where u > 0 and 71(M) acts by translations on R.

Before applying these theorems, we need some basic results about warped products which are homoge-
neous.

By a warped product, M = B x, F we mean a metric of the form gy = gp +u%gr where u : B — R. In
general, it is possible to obtain a smooth metric gs even in case u vanishes on the boundary of B. However,
in this paper we will be able to conclude that v > 0 and M is diffeomorphic to B x F. Let v be a map
of B x,, F, we will say that v respects the warped product splitting if v = v1 X vo with 3 : B — B and
vo : ' — F. A group of isometries is said to respect the splitting if all its elements do. We have the following
simple result about the isometries of a warped product that respect the splitting.

Proposition 5.3. [13, Lemma 5.1] Suppose M = B X, F with u > 0, then a map ~ which respects the splitting
is an isometry of gns if and only if (1) v1 € Isom(ggp), (2) there is a C € RY such that v;(u) = Cu, and
(8) v2 is a C-homothety of gp.

Let Isom(B), be the isometries of gp that preserve u. Proposition 5.3 implies that Isom(B),, x Isom(F) is
a group of isometries that respects the splitting. Recall also that a complete Riemannian manifold admits a
C-homothety with C # 1 if and only if it is a Euclidean space. Therefore, if F' is not a Euclidean space, then
any subgroup of isometries that preserves the splitting is a subgroup of Isom(B), X Isom(F). In general,
a warped product can have isometries that do not respect the splitting, so we will have to justify this
assumption when we apply the Proposition below.

Combining Proposition 5.3 with Lemma 2.4 gives us the following characterization of when a warped
product admits a transitive group of isometries which preserves the splitting.

Lemma 5.4. Let M = B x, F with u > 0 be a warped product manifold which admits a transitive group of
isometries, G, that respects the splitting. Then either

(1) M =B x F and u is constant, or
(2) M is a one-dimensional extension such that

gy = dr? + g, +ugrr  and u = be .

Proof. Since G splits we have the projection 7 : G — Isom(B) given by 7 () = 1. Since G acts transitively
on M, the image 7(G) acts transitively on B. By Proposition 5.3, for all v; € 7(G) there is a C' such that
vi(u) = Cu, so by Lemma 2.4 case (2) either u is constant or B is a one-dimensional extension, gg = dr?+g,
and u =be". O

Theorem 5.5. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant two-tensor. If W is
non-trivial, then (M™, g) is isometric to one of the following

(1) a space of constant curvature with dim W =n + 1,
(2) the product of a homogeneous space and a space of constant curvature with W consisting of functions
on the constant curvature factor with 2 < dim W < n,
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(3) the quotient of the product of a homogeneous space and R, (H x R)/m (M), with W = {w : R - R |
w'” = Tw} where T < 0 is constant, or
(4) a one-dimensional extension with dim W = 1.

Proof. If dim(WW) = 1, then we obtain a one-dimensional extension by Theorem 5.1. Assume M is not a
space of constant curvature. Then, if dim(W) > 2 or if M is simply connected and dim(W) = 2, then from
Theorem 5.2 we obtain the warped product splitting M = B x,, F' and we have that all w are of the form
w(z,y) = u(z)v(y). First we want to show that u > 0. To see this suppose that u(z¢) = 0 for some xg, then
w(xo,y) = u(xo)v(y) = 0, so there is a singular point where all functions in w vanish. But since G acts on
W and is transitive this would imply that all functions in W are zero, a contradiction.

Next we observe that G respects the splitting M = B X, F. In fact, the tangent distributions to the
leaves {b} x F are given by F = {Vw | w € W,} where W, = {w € W | w(p) = 0}. Since G preserves W it
must also preserve F as well as the orthogonal distribution.

In case M is not simply connected and dim(W) = 2 we reach the same conclusion for the universal cover
of M. Here W = {w : R = R | w” = 7w} becomes a space of functions on R that is invariant under a
cyclic group of translations. Since our quadratic form is invariant under a homogeneous group the function
7 must be constant.

We can now apply Lemma 5.4 to see that either M is a one-dimensional extension, a direct product, or
the universal cover is a direct product with R. Once M or its universal cover is a direct product we have
that u is constant, so w = u(x)v(y) shows that all the functions in W are only on the constant curvature
factor, F. O

Now we consider what more we can say in the case that ¢ is assumed to be divergence free or Codazzi.
Note that in cases (1)-(3) of Theorem 5.5 ¢ is either a constant multiple of the metric or, on the products,
a constant sum of the metrics on the factors. In particular, ¢ is both divergence free and Codazzi. We show
that the Codazzi property in fact characterizes these examples, while there are many more examples which
are divergence free. First we establish some properties of the metrics in case (4) of the previous theorem.

Proposition 5.6. Let w = e, a > 0, where r : M — R is a distance function. If ¢ = % Hessw, then

q = a’dr® + aHessr, (5.1)
(VxQ) (Vw) = a*wQ (X) — wQ?* (X) (5:2)

where @ dual (1,1) tensor to q. If q is divergence free we further have:

trq® = trq, (5.3)
[Hessr|* = aAr. (5.4)

In particular, if q is invariant under a transitive group of isometries, then so is Hessr.

Proof. (5.1) follows directly from ¢ = 1 Hessw as w = e*". To prove (5.2) note that we have that w@ (X) =
V xVw so we obtain

(VxQ) (Vw) = VxQ (Vw) — Q (VxVw)
=a’VxVuw — w@Q?*(X)
= d’wQ (X) —wQ* (X),

where the formula Q (Vw) = a*Vw follows from (5.1).
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Tracing (5.1) also gives us
trg = a® + aAr
and
trg? = |q* = a* + o® [Hess|* .
Thus (5.4) follows from (5.3). To see (5.3), consider the trace of (5.2)
divg (Vw) = w (aQtrq - tqu) ,
which implies (5.3). O
We now show the characterization in the Codazzi case.

Theorem 5.7. With (M, g) and q as in Theorem 5.5, q is Codazzi if and only if (M, g) is isometric to one
of the cases (1)-(3).

Proof. The fact that ¢ is Codazzi, (5.2) and ¥ = aVr, implies that
a(Vvrq) (X, X) = a®¢(X, X) — ¢*(X, X). (5.5)

At a point p, let X be an eigenvector for ¢ perpendicular to Vr, with eigenvalue A. Let 5 be the geodesic
at p in the Vr direction and let ¢; be a smooth curve of isometries in G such that ¢.(p) = 5(t). Define
X; = d¢(X). Then X; is a vector field along § with |X;| = 1. Since ¢; preserves Vr and ¢ is invariant
under ¢; we also have that X; | Vr and X; an eigenvector of ¢ with eigenvalue A for all ¢. Using X; we
can then calculate,

(VVT’Q) (X7 X) = DV’!‘()\) - ZQ(VVTX7 X)
= Dy, (\) — 2ADy,| X4)?
= 0.

Plugging this back into (5.5) gives that either A = 0 or A = a? so ¢ has only two possible eigenvalues. By
invariance of ¢, the multiplicity of the eigenvalues is constant, so the corresponding eigenspace decomposition
gives us a pair of orthogonal distributions on M. Moreover, since q is Codazzi, these eigendistributions are
integrable (see Chapter 16 of [2]). Consequently, we can write the one dimensional extension, M, as

M =R x N1 XN2
9= dr2+(91)r+(92)r

where the tangent space to N7 corresponds to the eigenvectors for g with eigenvalue a? and the tangent
space to Ny corresponds to null vectors for ¢. But then (5.1) implies that

Hessr = a(g'),
which implies that we have a warped product splitting

g=dr’+¢e**(g")0 + g



16 P. Petersen, W. Wylie / Differential Geometry and its Applications 84 (2022) 101929

Since the group G preserves the eigenspaces of ¢ it preserves the warped product splitting in the sense of
Lemma 5.4 and then the Lemma implies that (g')g is a flat metric on Euclidean space. Then we have that
dr? + €297 (g1)o is a hyperbolic metric.

Putting this all together we have three cases, if the only eigenvalue if ¢ is a? then M is hyperbolic space
which is contained in (1) of Theorem 5.5, if the only eigenvalue of ¢ is 0 then we have a direct product as
in case (3) of Theorem 5.5, finally if both eigenvalues occur we have a product of a homogeneous space and
hyperbolic space as in case (2). O

Now we consider the divergence free case. The only case we need to consider is evidently when dim W =1
and is spanned by w = €%, a > 0, where r : M — R is a distance function. An interesting special case
occurs when

Hessw = — (Ric —Ag) .
m

This is the so-called quasi-Einstein or warped product Einstein equation as it is the equation on B that
makes a warped product B X,, F' an Einstein metric when F is an appropriately chosen Einstein metric.
Interestingly there are many such examples that are 1-dimensional extensions of algebraic solitons (see [14],
[17]). The quasi-Einstein equation is studied in more detail in section 7.

With these examples in mind we cannot expect the same rigid behavior in the divergence free case. In
fact, we will produce examples of one-dimensional extensions G = H x R such that H is not an algebraic
soliton and % Hess w is divergence free, where w = e®".

Before discussing the examples, we identify some situations where we do obtain products and warped
products.

Corollary 5.8. Let w = e, a > 0, where r : M — R is a distance function on a homogeneous space (M, g). If
q= i Hessw is invariant under a transitive group of isometries and divergence free, then Ar € [0, (n — 1) a].
When Ar = 0, the metric splits as a product g = dr® + go, and when Ar = (n —1)a # 0 the metric is
isometric to H™ (—a2). Moreover, these are the only possibilities for g to be a warped product of the type
dr? + p* (r) gn, where p: R — (0, 00).

Proof. From the last formula in the previous proposition and Cauchy-Schwarz we have

—~

Ar)?
) < |Hessr|* = aAr.
n—1

This establishes the range of possible values for Ar. When Ar = 0, the Hessian vanishes and we obtain
a product metric. While when Ar is maximal we must have that Hessr = ag,, where ¢ = dr? + g,. This
shows that Lyv,g, = 2ag, and consequently that g, = e?*"gy. This shows that

q = a’dr® + aHessr = a?yg.

When a # 0 this shows that Ve is a conformal field that is not a Killing field. As the metric is homogeneous
we conclude that it must be locally conformally flat. Theorem 2.6 then shows that the space is isometric to
H" (~d?).
Finally if we assume that g = dr? + p? (r) g, then Hessr = % gr. In particular, the Cauchy-Schwarz in-
2
equality % < | Hess |2 must be an equality. This forces us to be in one of the two previous situations. O
The goal for the remainder of the section is to construct examples indicating that there is little hope for
classifying the general situation where q is divergence free. To that end it is convenient to use the following

condition.
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Proposition 5.9. Assume that G is a transitive group of isometries on M and that r : M — R is a smooth
distance function whose Hessian is invariant under G. If the hypersurface N = {x € M | r (x) = 0}, has
divergence free second fundamental form at one point, then it is possible to find a € R such that ¢ = % Hessw
is divergence free and G invariant, where w = e®".

Proof. First note that as G acts transitively we only need to check that an invariant tensor is divergence
free at a specific point p.

When w = e*” we have that ¢ = % Hessw = a’dr? + aHessr. Thus ¢ is also invariant under G. The
divergence is:

divg = div Hessr + aArdr.

By invariance, it follows that div Hessr(Vr) is constant. Thus we can choose a so that divg (Vr) = 0. This
shows that we obtain divg = 0 when divHessr(X) = 0 for X 1 Vr. As Hessr is the second fundamental
form for the level sets for r we need to check that divHessr(X) = divyII(X). This follows provided
(VyrHessr) (Vr,X) = 0 and that calculating this divergence intrinsically on N is the same as calculating
it with the connection on M. We will check this for the type changed (1,1)-tensor S (X) = VxVr. For the
intrinsic part use an orthonormal frame E; for N:

since Vr L E; and S (Vr) = 0. Finally, we also have

(VvrHessr) (Vr, X) =g ((Vv..S) (Vr), X)
=g (VVT (S (V’I")) ’ X) ) (S (vV'rvr) ) X)
=0. O

The general set-up for constructing a 1-dimensional extension is a Lie group H with a derivation D on
the Lie algebra f. This gives us a Lie algebra g = h x R and corresponding Lie group G. The metric is left
invariant and preserves orthogonality in the semi-direct splitting T.G = g = h x R. Thus it is determined
by a left invariant metric on H. Finally, as in [14], the tensor T that corresponds to the second fundamental
form for H is proportional to the symmetric part of the derivation.

Specifically, fix an n-dimensional Lie group H and a left invariant basis X; for its Lie algebra h. The
structure constants are given by

[Xi, X;] = Xk

The Lie group is said to be unimodular if tr (adx) = 0 for all X. This is equivalent to czj =0 for all i. We
fix a derivation D, but in what follows the derivation property is not used, only that it is a linear operator
on the Lie algebra.

Our calculations will be with respect to a general left invariant metric g;; = g (X;, X;). The corresponding
connection is given by

29 (Vx, Xj, Xx) = g (X3, X5, Xi) — g ([Xs, X, X;) — g ([X;, Xl , Xi)

! l !
= 9kiCij — 951Ci, — GilCig-
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The symmetric part of D is given by

1 1

S=-D+ -D*

2 Jr2 ’
T R R Lo 1y
sziDj+§g (D )l gkj:§Dj+§g Digi;-

This can be type changed to two symmetric bilinear forms: S% and S,;. Note that
Star; = Sij = g (S (Xi), X;) = Sji = Sy gns
and similarly
Sigtl = S = 8] gk
Proposition 5.10. With these assumptions and notation it follows that:
2g (divS, X) = tr (D oadx) + g (D,adx) — 2tr (adg(x)) -

Proof. The goal is to calculate divS = ¢ (Vx,S) (X;). Since it is easier to calculate the corresponding
1-form we calculate instead:

2979 ((Vx.9) (X;), Xi) = 2979 (Vx, S (X;), Xx) — 2979 (Vx, X;, 5 (X))
= 29579 (Vx,Xa: Xi) — 297579 (Vx, X;, Xa)
=978} (chiﬁa — gipCoy — gagcfk) - 9VSE (gaﬁcm 9ifCa ~ gjﬁc?a)
= SmgkﬁC?a — S, =S gaﬁczk 9" S gapcly + Sicla + S
= Sl grs — S5k — Shehy — 97 ¢l S gas + SE e + Sl
—0—29%, — 0+ 25¢¢]
= 2tr (S oadx, ) — 2tr (adg(x,))
=tr(Doadx,) +tr (D" oadx,) — 2tr (adS(xk))

=tr(Doadx,) +g(D,adx,) — 2tr (ads(x,)) -
In other words:
2g (divS, X) = tr (Doadx) + g (D,adx) — 2tr (ads(xy)) . O

With a view toward concrete examples note that: tr (D oadx) does not depend on the metric; while
tr (ads(x)) = 0 when the Lie group is unimodular. Keep in mind that g (D, adx) is not linear in g;;, in the
given frame it looks like

99 (D (X,),adx (X)) = g gas DS (adx)’ .

Example 5.11. The simplest examples are on the 3-dimensional Heisenberg group. This algebra has the
single relation: [X,Y] = Z. In this basis the adjoint actions have the matrices

0 0 0 0 0 0 0 0 0
ady =0 0 Of,ady=| 0 0 O|,adz=[0 0 O
010 -1 0 0 0 0 0
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We use any derivation of the form:

A0 0
D=0 X 0
0 0 s

The composition of this derivation with any of the adjoint actions clearly vanishes. So for any metric we
get the three equations:

g(D,adx) = )\1931921 + )\2932922 + /\3933923 =0,
g (D,ady) = —>\1931911 - /\2932912 — )\3g33931 = [)7
g (D, adZ) =0.

These equations are clearly satisfied for any metric of the form

g1 g12 O
g1z g22 0
0 0 g3

as the inverse satisfies ¢%* = g3 = 0.
Example 5.12. Consider the three dimensional simple (and unimodular) Lie algebra with relations:
[X1, Xo] = X3, [Xo, X3] = X1, [X5, X1] = Xo.

In this basis we have

00 0 0 0 1 10
ady,=|0 0 —1|,adx,=| 0 0 0|,adx,=|1 0 0
01 0 -1 0 0 0 0

We will use D = adx,. This derivation is skew-symmetric with respect to the standard biinvariant metric
that makes the basis elements have equal length and be orthogonal. To calculate tr (D o adx) we note that:

tr (Doady,) = —2,
tr (Doady,) =0,
tr (Doady,) =0.

Next we find g (D,adx) for a general metric:

g(D,adx,) = g339°* + g229°> — 2g239°°,
g(D,adx,) = —g339°" + g319% — 9216°° + ga3g”",
g(D, ang,) = 932921 - 913922 - 922931 + 921932-

‘We then restrict attention a metric of the form

gin 0 0
0 g22 923
0 g23 933
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The inverse is

1 0 0
g11
933 _ 923
922933*953 922933*9%3
_ g23 g22
922933*9%3 922933*953
and
922933 92
g(D,adx,) =2 - —2 2B =2,
922933 — 933 922933 — 933

g(D,adx,) = —g33-0+0-¢* —0-¢* +go3-0=0,
g(D,ady,) =gs2-0—0-¢%2 —gsp-0+0-g* = 0.

This results in a 4-dimensional family of metrics with the property that div.S = 0. This family includes the
Berger spheres.

6. Traceless W

Now we consider the vector space of functions W(M ,g,q) satisfying (1.2a). We have the following defi-
nition.

Definition 6.1. Let (M, g) be a Riemannian manifold and ¢ a quadratic form. The space of functions
VV(ZW7 g,q) is essential if W(M,g, q) # W (M, g,q") for all quadratic forms ¢'.

For simply connected spaces of constant curvature, W (M, g, 0) is essential since it is (n + 2)-dimensional
and W (M, g, q) has maximal dimension n + 1 [12, Proposition 1.1]. We have the following result for essen-
tial/inessential W. The proof is exactly analogous to the proposition in the F case, so we omit it.

Proposition 6.2. Let (M, g) be a Riemannian manifold and q a quadratic form. W(M,g,q) s essential if
and only if W(M, g,q) # W(M,g,q — ¢g) for all € C>°(M). Moreover, if W(M,g,q) = W(M,g,q') is
inessential and q is invariant under G C Isom(M, g) then ¢’ is also invariant under G.

This gives the following characterization of essential W,

Lemma 6.3. Let (M, g) be a G-homogeneous manifold and q be a G-invariant tensor. If W(M,g,q) is es-
sential, then (M, g) is locally conformally flat.

Proof. If dim(W) = 1, take w € W, then clearly W = W(M,g,q— %g), so W is inessential. Therefore,
dim(W) > 1. Let wy, we be linearly independent functions in W and define V' = w; Vwy — w2 Vw; and note
that

w1 Awg — UJQA’LUl

Ly g = wiHesswy — woHessw, = -

So V is a conformal field. If V' is Killing for all wy,ws € VoV, then
w1 Hesswy = woHessw; . (6.1)

Let p € M and define W, = {w € W | w(p) = 0}. If W, = W at some point p, then all functions in W
vanish at p. Since W is invariant under the transitive group of isometries, this would imply that W is trivial.
Therefore, W, # W Vp. In fact, if we define ¢’ by the formula
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,  Hessyw

p w0 ) where w e W\ W, (6.2)

then ¢ is well defined on all of M by (6.1). We then have that W (q) = W(¢') which contradicts that W is
essential.

Therefore, if W is essential, then (M, g) must support a non-Killing conformal field and by Proposition 2.5
the space is locally conformally flat. O

In the £ case, we showed that any product space was inessential, the following proposition shows that
this is not the case for W.

Proposition 6.4. Suppose that (M",g) = (M} x M;ik,éh + g2) is a product manifold and ¢ = c1g1 + 292
where ¢; € R and ¢ # cg, then

o

W(M797Q) = W(Mlagla Agl) S W(M2392a _>\92)7
where A\ = ¢1 — ¢o.

Proof. If w € W, then Hessw(X,U) =0 for X € TM;, U € TM>, so by [20, Proposition 2.1], w = wy + wo
where w; is a function on M;. This shows that for X,Y € TM;

Agl wy + A92 w2

Hessw(X,Y) = Hessg, w1 (X,Y) —
n

g1 (X, Y)
However, as

kci + (n—k)ca
n

. n—=k k
q=c191 + caga — (91 +92) = T)\Ql - H/\g2

we also have

Helsw(X,Y) = wi(X,V) = " xwgy (X, V).
n

Setting these equations for Hessw equal shows that Hessg, wy is conformal to g;. Thus

Aglwl

A\w 2

n n

—k A A
<n + 9 W1 T ngQ) g1 = Hessg, wy =

This implies that there is a constant « such that

n—=k n—~k n—=k
WAglwl_ Aw1:

Awy + —Ag2w2 = Q.
n

« is constant as the left side of the equation depends on M7 only and the right depends on My only.

n n
g1 = | \wy + g =X|w+ g1,
n—k n—=k
a n

A, wo n
Hess g, wy = ﬁgQ = (—Awg +am> g2 = —A (wg b v k) go.

By assumption A # 0, so

H _ Ag1 w1
€SSy, W1 =

>R
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Taking

we then have w = wy + we = w) + wh, where

N
Hessg, w) = Awy,

Hessg,wh = —Awh. O
This gives us the following partial converse to Lemma 6.3

Proposition 6.5. Let (M,g) be a simply connected homogeneous locally conformally flat manifold. Then
there is a unique Isom(M, g)-invariant trace-free quadratic form q such that W(q) is an essential (n + 2)-
dimensional space of functions.

Proof. For a simply connected space form, since the isometry group acts isotropically, the only Isom(M, g)-
invariant trace-free quadratic form is the zero tensor and we have already seen that this is an essential
(n + 2)-dimensional space. For the product cases in Theorem 2.6, since ¢ is assumed to be Isom(M, g)-
invariant and the isometry groups split in these cases and act isotropically on each factor, ¢ = c1gp + cogp.
For R, dim(W(\g)) = 2 for all X. For S¥(k), dim(W(—kg)) =k + 1, dim W(0) = 1, and dim(W ()\g)) = 0
for A # 0, —k. For H*(—k), dim(W (kg)) = k + 1, dim W (0) = 1, and dim(W (\g)) = 0 for A # 0, —k.
Proposition 6.4 shows that if ¢; — co = —k then W has dimension n + 2 and is essential. In addition

ke + (n—k)co (gB—FgF):—nik

. k
q = C1gB + Cagr — /@gB—FE/-igF. O

n

This now gives us the structure theorem for w.

Theorem 6.6. Let (M, g) be a G-homogeneous manifold and let g be a G-invariant tensor such that there is
a non-constant function in W(M, g, q), then (M, g) is isometric to either

(1) a locally conformally flat space,

(2) a direct product of a homogeneous space and a space of constant curvature with W consisting of functions
on the constant curvature factor,

(3) (NxR)/m (M) with W ={w:R — R |w’ = 7w} where 7 <0 is constant, or

(4) a one-dimensional extension of a homogeneous space.

Moreover, when (M, g) is not conformally flat, W(q) =W(q"), where ¢’ is a G-invariant tensor of the form
q = q—Ag for some A € R. If, in addition, q is Codazzi, then (M, g) is isometric to one of the cases (1)-(3).

Proof. If W(q) is essential, then (M, g) is locally conformally flat. If W (q) is inessential, then W (q) = W (¢')
and ¢ = ¢—¢g. Since ¢ and ¢’ are both invariant under the transitive group G, ¢ is constant. Then applying
Theorem 5.5 to W(q') gives the result. O

Now we prove Theorem 1.10 from the introduction.

Theorem 6.7. Suppose that (M, g) is a compact locally homogeneous manifold and q a local isometry invariant
symmetric two tensor.
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(1) If F(q) contains a non-constant function, then (M, g) is a spherical space form.
(2) If W(q) is non-trivial, then (M, g) is a direct product of a homogeneous space N and a spherical space
form, isometric to (N x R)/m (M), or isometric to (S"~1(k) x RY)/T.

In particular any positive function in F(q) or W(q) must be constant.

Proof. Let (M, g) be locally homogeneous and f € F(q), let (M ,g) be the universal cover with covering
metric and let ¢ = 7*¢ be the pullback of ¢ to the universal cover. Then the pullback function fz m* f is
in I (]Téf ,J,q). Then, since ¢ is invariant under local isometries of (M, g), it is invariant under the isometry
group of (]\7 ,g). We can then apply Theorem 4.6 to conclude that (M ,g) is a sphere as f is a bounded
function and none of the other possibilities given by Theorem 4.6 admit a function in F which is bounded.

The cases of W and W are similar in that we can apply Theorems 5.5 and 6.6 respectively to the universal
covers and the only possibilities for a having a bounded function are the ones given.

We note that none of these spaces in the conclusion of the theorem admit a positive function because all
of the solutions on the sphere have zeroes. O

7. Quasi-Einstein and conformally Einstein metrics

In this section, we apply the structure theorems from the previous sections for W and W to the tensor

q = LRic for a constant m. The corresponding equations
m

Hessw = — (Ric — Ag)

w
m
° W o
Hessw = —Ric
m

are often called the m-quasi Einstein and generalized m-quasi-Einstein equations respectively. In the liter-
ature, the equations are often considered in the case where w is a positive function and then the equations
can be re-written in terms of f when w = ef, but our results do not require w to be positive. When
m > 1 is an integer, solutions to the m-quasi Einstein equation correspond to warped product Einstein
metrics. Theorem 7.1 is a generalization of structure results obtained by the authors with He in [14]. When
m > 1, Lafuente in [17] further showed that if M is a homogeneous m-quasi Einstein metric that is a
one-dimensional extension of a homogeneous space, IV, then N is an algebraic Ricci soliton.

Thus, directly combining this work with Theorem 6.6, we obtain a result for homogeneous generalized
m-quasi Einstein metrics when m > 1.

Theorem 7.1. Suppose (M, g) is homogeneous Riemannian manifold that admits a non-constant function w
which solves the generalized m-quasi Einstein equation for some m > 1. Fither M is a locally conformally
flat space, a product of an Einstein metric and a space of constant curvature, the quotient of the product of
a homogeneous space and R, (H x R) /7 (M), or a one-dimensional extension of an algebraic Ricci soliton
metric.

The construction in [14] also shows that any algebraic Ricci soliton metric can be extended to a warped
product Einstein metric and that the derivation used to extend the soliton is a multiple of the soliton
derivation.

When m < 0 the m-quasi Einstein equation does not seem to have been studied in depth. In fact, we
will see below that the question of which spaces have one-dimensional extensions that are quasi-Einstein is
more complicated in this case. As a simple example of the difference between the m > 0 and m < 0 cases
consider the m-quasi Einstein structures on S™ and H".
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Example 7.2. Consider S" (k) or H"(—k), the spaces of constant curvature +x. Clearly Ric = £x(n — 1)g,
but there are non-constant functions satisfying Hessw = Frwg. So

Ric — “Hessw = +r(n+m —1)g.
w

In particular, when m < —(n — 1), then H"(—x) has A > 0 and S™(—«) has A < 0. Note that hyperbolic
space is a one-dimensional extension of Euclidean space, so it is possible to have A > 0 for a one-dimensional
extension, at least when m < —(n — 1).

Of special interest is the case m = 2 —n, n > 3, where the equation

o w o
Hessw = 2—R1c

is the almost Einstein equation. If there is a positive solution to this equation we call the space conformally
Einstein. Theorem 6.6 shows that the only interesting homogeneous almost Einstein metrics are conformally
Einstein.

In dimension 4, homogeneous conformally Einstein spaces are classified in [5] by studying the Bach tensor
of homogeneous 4-manifolds. In the classification, any non-symmetric space example is homothetic to one
of three families of one-dimensional extensions of 3-dimensional Lie algebras. One of the examples (case (ii)
of [5, Theorem 1.1]) is a one-dimensional extension of the Ricci soliton on the 3-dimensional Heisenberg
group, the other two families are extensions of the abelian Lie algebra and the extension derivations are not
soliton derivations. In particular, these non-soliton families have A = 0. Another difference when m < 0 is
that not all algebraic solitons can be extended to m-quasi Einstein metrics when m < 0 as, for example,
the solvable 3-dimensional soliton cannot be extended to a conformally Einstein metric.

Inspired by these examples we give two constructions of m-quasi Einstein metrics for any dimension n
and parameter m. First we consider when we can extend an algebraic Ricci soliton to an m-quasi Einstein
metric for general m.

Proposition 7.3. Let (H"~, h) be an algebraic Ricci soliton metric
Ric= A+ D.

There is a non-Einstein homogeneous m-quasi Finstein metric with Lie algebra R x b, where ade = oD
for some constant «, if and only if trD > mA.

Remark 7.4. For an algebraic Ricci soliton, trD > 0 and A < 0, so the condition is trivially satisfied when
m > 0. Also note that tracing the soliton equation gives tr(D) = scal—(n—1) A, so the condition is equivalent
to scal > (n 4+ m — 1)A. For the conformal Einstein case, m = 2 — n the condition is scal > .

Remark 7.5. For the soliton on the three-dimensional Heisenberg group scal = A/3 while for the soliton on
the three-dimensional Lie group Sol scal = A. In particular, the three dimensional Heisenberg group can be
extended to a conformally Einstein metric, but Sol can only be extended to a m-quasi Einstein metric when
m > —2.

Proof. By [14, Lemma 2.9] the Ricci tensor of such a one-dimensional extension is

Ric (€, &) = —a?tr(5?),
Ric (X, &) = —adiv(9), (7.1)
Ric (X, X) = Ric” (X, X) — (®trS) h (S(X), X) — o?h([S, A](X), X),
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where S = D+TDZ and A = £ ;D ‘. For an algebraic Ricci soliton, D is symmetric so S = D, A = 0,

div(D) = div(Ric) = 0, and tr(D?) = —Atr(D), so we have

Ric (&,€) = \a?trD,
RiC (Xv g) = Oa
Ric (X, X) = Ag+ (1 — o*trD) h (D(X), X).

When we write w = %", then Hessw = wa?dr ® dr — waah(S(+),-) (see the proof of [14, Theorem 3.3]) and
(Ric — gHessw) (€,6) = Aa*trD — ma?,
(Ric — gHessw> (X, X) = A(X, X) + (1 — a®trD + maa)h (S(X), X) .
So, if we want to obtain Ric — 2*Hessw = Ag, then we have to solve the equations

A = Aa?trD — ma?,

1 = o?trD — maa
for the unknown constants « and a. Multiplying the second equation by A and subtracting the two equations
gives that either a = 0 or a = aA. The a = 0 case is the Einstein case, so we take a = aA. Plugging this
back into the system gives

1=a?(trD —m\)

so there exists such an « if and only if trD > mA. O

Proposition 7.6. Let h be an abelian Lie algebra and D a normal derivation of b such that

tr(S)?
tr(5?) = — 5L
m
where S = D';Dt, then there is a homogeneous m-quasi Finstein metric with Lie algebra RE x b where

ad¢ = D and A = 0.

Remark 7.7. Taking n = 4, m = —2, we obtain the condition that 2tr(S?) = tr(S)?. The examples in [5]
have these properties.

Proof. We again use the equations (7.1). Since b is abelian, Ric =0, and div(S) = 0 for any D, it follows
that

(Ric - gHessw) (€,6) = —tr(S?) — ma?,
(Ric — gHessw) (X,6) =0,

(Ric (X, X) - %Hessw) (X, X) = — (trS — ma) h (S(X), X) .

2
When a = 22 the condition tr(S?) = —% shows that both equations vanish. O
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Conversely, we have the following necessary conditions for any m-quasi Einstein metric and, if the deriva-
tion is normal, the following partial converse.

Proposition 7.8. Suppose that there is a homogeneous m-quasi Finstein metric with Lie algebra RE x b where
ade = D and w = €. It follows that div(S) = 0 and tr(S?) = —atr(S). Moreover, if D is normal, then

either (H" =1, h) is a Ricci soliton or (H,h) is a flat space and tr(S?) = — (u(8)*

m

Proof. Consider again the equations (7.1). First note that (Ric — ZHessw) (X,£) = 0 implies that div(S) =
0 is necessary.
We also have g = He%, for ¢ with divg = 0. In terms of r, this gives

divHessr = —aArdr.
By the Bochner identity,
divHessr = VAr 4 Ric(§) = Ric(&).
So using the equation Ric(¢, &) = —tr(S?) from (7.1) we have
—tr(S%) = Ric(¢, €) = divHessr (&, €) = —aAr = atr(S).
Now, if D is normal we obtain [4, S] = 0 so the equations become
(Ric - gHessw) (€,6) = —tr(S?) — ma?,

(Ric (X, X) - gHessw> (X, X) = Ric” (X, X) — (trS — ma) h (S(X), X).

Let 8 = trS — ma. When 8 # 0 we have Ric? = X\ + S, so H is a Ricci soliton.

Otherwise, for 8 = 0 it follows that Ric? = Mg, trS = am, and A\ = —tr(S?) —ma?. But then the equation
tr(S8?) = —atr(S) implies that A = 0 and consequently H is flat since homogeneous Ricci flat metrics are
flat [1]. O

We finish with a final characterization of spaces that are conformally Einstein that comes from a different
approach.

Lemma 7.9. Assume (M™, g) has a one-dimensional space of solutions to the conformal Einstein equation:

o w o
Hessw = —Ric,
2—n
i.e., § = w™2g is an Einstein metric. If G is a transitive group of isometries and H C G is the co-dimension
one normal subgroup that fizes w, then H acts isometrically on the conformally changed FEinstein metric g
and G acts conformally. Moreover, either

(1) w is constant and g is Finstein,
(2) w=e"" and (M, g) is isometric to H" (—a?), or

(3) w = e and all conformal fields from the action of G have constant divergence with respect to §.

Proof. Note that G clearly acts conformally with respect to §. If G acts isometrically, then w is forced to
be constant and vice versa. Thus we can assume that w = e®", a > 0. Since H fixes w it follows that it
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acts isometrically on §. This shows that the Riemannian submersion r : (M, g) — R can be altered to a
Riemannian submersion - : (M, §) — (0,00). We let h C g denote the Lie algebras of vector fields on M

aw

that correspond to H C G. On (M, g) all of the fields in g are conformal and the fields in h are Killing.
Consider Z € g — b so that Ly (§) = % (divgZ) g. A well-known formula by Yano shows that if u = %,

then
LyzRic = — (n — 2) Hessy u — Aug.

As Ric is Einstein this implies that u € 1% (M, g). If some nonzero u is constant, then all fields in g have
constant divergence with respect to j as in case (3). Otherwise, we have a non-constant u € V (M, ). This
gives a local warped product structure for §. We claim that it is global by showing that u = w (r). Since
h C g is an ideal we have that [X, Z] € b for all X € h. Thus

0= L[X,Z]g = Lxng - LzLXg = LX (2u§) =2 (Dxu) g
This shows that w is invariant under H and hence that u = u (). Thus

g=wg=dt’ +¢* (t) gn,
g =w? (dt* + pgn) = dr® + pgn.

When the metric is inessential we can use Corollary 5.8 to conclude that we are in case (2). In case it is
essential we can instead use Takagi’s classification (see Theorem 2.6) to see that only hyperbolic space can
admit solutions of the from w = e, a # 0, to the conformal Einstein equation. 0O

Appendix A. Kahler manifolds

In this appendix we include a discussion of some of the spaces of functions discussed above on Kéahler
manifolds. No isometric symmetry is assumed in this section, but we will assume that the tensor ¢ is
Hermitian.

Recall that a Kéhler manifold is a complex manifold, M, equipped with a Riemannian metric, g, such
that the complex structure J is skew-adjoint and parallel with respect to g. A symmetric 2-tensor, ¢, is
called Hermitian if ¢(Jv, w) = —q(v, Jw). If ¢ is Hermitian, then x(v, w) = ¢(Jv, w) defines a 2-form. Note
that the Ricci tensor and metric of a Kédhler manifold are Hermitian with closed 2-form. Thus, for Kahler
gradient Ricci solitons, quasi Einstein metrics, and conformally Einstein metrics the tensor ¢ is Hermitian
and the corresponding 2-form is closed.

In fact, the problem of when a Kéhler manifold admits a non-trivial function with Hermitian Hessian has
been investigated extensively by Derdzinski and Maschler where they obtain interesting results for Kéhler
conformally Einstein manfiolds [7-9]. Note that functions with Hermitian Hessian are also called Killing
potentials because Derdzinski and Maschler show that a function has Hermitian Hessian if and only if J
applied to the gradient is a Killing field. Case, Shu, and Wei also obtain a rigidity result for Kahler quasi-
Einstein metrics which says that they must be a quotient of a product of a surface and an Einstein metric
[6, Theorem 1.3]. In this appendix we verify that this result holds in general for functions in a solution space
of the form W (q) when ¢ is Hermitian and the corresponding 2-form is closed.

Proposition A.1. Let (M,g) be a simply connected Kihler manifold and q a Hermitian symmetric two-
tensor such that the corresponding 2-form is closed. If W(q) is non-trivial, then (M,g) is an isometric
product N3 x N2"_2 and W consists of functions on the Ny factor only.
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Proof. Let w be a non-constant function such that Hessw = wgq. The proof proceeds as in [6] as the only
properties used in the proof come from the general properties of g. We include an outline of the proof for
completeness.
Let x(v,w) = ¢q(Jv,w), w = g(Jv,w) and ¢ = Hessw(Jv,w) = 1Ly,w. Then ¢ is closed as the Lie
derivative of a closed form w. By assumption % is also closed as it is equal to x. Therefore, dw A ¢ = 0.
Then

(dw A @) (X,Y, Z) = (Dxw)p(Y, Z) + (Dyw)$(Z, X) + (Dzw)p(X,Y)
(Dxw)g(V sy Vw, Z) + (Dyw)g(V 1zVw, X) + (Dzw)g(VxVw,Y)

Taking XY 1 Vw, Z = Vw then gives
0= |Vw|*¢(VsxVw,Y) = —|Vuw|*9(VxVw, JY).

So that VxVw L JY whenever Vw # 0. On the other hand, taking X = Vw, Y = JVw and Z 1 Vw we
also obtain

0= |Vul*¢(JX, Z) = —|Vw|*9(Vve,Vw, Z).

Which implies that V., Vw is parallel to Vw when Vw # 0.

Putting this together shows that V.Vw € span{Vw, JVw}. The fact that Hessw is Hermitian also implies
that V.JVw = J(V.Vw). So we also have that V.JVw € span{Vw, JVw}.

This implies that span{Vw, JVw} is a parallel distribution on the set where Vw # 0 and thus gives
an isometric splitting on this set. Since V.Vw = wq and ¢ is assumed to be smooth, we also have that
this distribution is locally uniformly continuous, so that the isometric splitting extends to the closure of
{Vw # 0}. However, since w is a Killing potential, by remark 5.4 in [7], Vw # 0 almost everywhere, so we
have the isometric splitting on all of M. O

In contrast to this result for W(q) note that there are many interesting examples of Kéhler Ricci solitons
and Kéhler conformally Einstein spaces, so no such strong rigidity is possible for the spaces of function F(q),

o

F(q) or W(g) when g is assumed to be Hermitian. See [7-9] for further results on Kéhler Killing potentials.
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