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1. Introduction

Let G be a group acting by isometries on a Riemannian manifold (M, g) and f a real valued function on 
M . If f is invariant under G, then the Hessian of f is also invariant. In this paper we are interested in rigidity 
phenomena that occur when we conversely assume that the Hessian is invariant but the function is not. 
We focus on the case where G acts transitively so that any invariant function is constant. The prototypical 
example of a function which has invariant Hessian but is not invariant is a linear function on Rn whose 
Hessian, being zero, is invariant under the full isometry group. Another prominent example is the restriction 
of coordinate functions xi in Rn+1 to the sphere Sn, whose Hessian on the sphere satisfies Hessxi = −xig. 
In this case, while Hessxi is not invariant under the full isometry group, its trace-free part is and it also 
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satisfies an equation of the form Hessxi = xiq where q = −g is invariant under the isometry group. Note 
that the coordinate functions in Rn,1 restricted to hyperbolic space satisfy a similar equation Hessxi = xig.

More complicated examples come from gradient solitons to curvature flows. These satisfy Hessf = λg−q, 
where q is an expression involving the curvatures of the metric. Equations involving the Hessian of a function 
and the curvature also come up naturally in the study of warped products and conformal changes of metrics.

Motivated by these examples we consider the following general classes of equations involving q, a sym-
metric two tensor on a Riemannian manifold,

Hessf = q, (1.1)

Hessw = wq, (1.2)

where f, w are smooth functions. Given a Riemannian manifold (M, g) and a fixed tensor q we denote by 
F (M, g, q) and W (M, g, q) the space of all solutions to equation (1.1) and (1.2) respectively. We will often 
simply write F (q) and W (q).

When q is fixed, equations (1.1) and (1.2) are overdetermined in f or w respectively, as there is only one 
unknown function but n(n+1)

2 equations. Thus the solution spaces F and W are small except in exceptional 
circumstances. On the other hand, if q is invariant under G, a group of isometries, then G acts on F and 
W . Thus if G is a large group we have a large group acting on a small space and this also leads to rigidity. 
Roughly speaking, this is the approach we use to prove general structure theorems for any G-homogeneous 
Riemannian metric that supports non-constant solutions to (1.1) and (1.2) for a G-invariant q.

Our results build on previous work of the authors in two cases involving the Ricci curvature. Namely, 
functions in F (λg − Ric) corresponding to gradient Ricci solitons and functions in W ( 1

m (Ric − λg)), m ∈ N

corresponding to warped product Einstein metrics [15,6]. These equations on homogeneous manifolds were 
studied by the authors in [20] and by the authors along with He in [14] respectively. The main idea of this 
paper is that a general structure extends to the more general equations, with some important variation.

In [20] the authors showed that a homogeneous gradient Ricci soliton is the product of an Einstein metric 
and a Euclidean space. We prove the following generalization of this result.

Theorem 1.1. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor which is 
divergence free. If there is a non-constant function in F (q), then (M, g) is a product metric N × Rk and f
is a function on the Euclidean factor.

Remark 1.2. Note that 2divRic = dscal, so on a homogeneous space the Ricci tensor is divergence free. 
By Proposition 3.7 the divergence free assumption on q can also be replaced with the assumption that 
Ric(∇f, ∇f) ≥ 0 for f ∈ F (q), which is also satisfied for homogeneous gradient Ricci solitons as Ric(∇f) =
0.

Remark 1.3. Griffin applies Theorem 1.1 to study homogeneous gradient solitons for the four-dimensional 
Bach flow in [11].

On the other hand, Theorem 1.1 is not true if we do not assume q is divergence free, see Example 3.2. 
We prove a general structure theorem for F (q) without the divergence free assumption (Theorem 3.6), 
whose precise statement we delay until section 3. The general rigidity we obtain involves spaces we call 
one-dimensional extensions.

Definition 1.4. A G-homogeneous space (M = G/Gx, g) is called a one-dimensional extension if there is a 
closed subgroup, H ⊂ G that contains Gx such that there is a surjective Lie group homomorphism from G
to the additive real numbers whose kernel is H.
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The algebraic condition of being a one-dimensional extension implies a geometric/topological product 
structure such that M is diffeomorphic to R × (H/Gx) and g = dr2 + gr where gr is a one-parameter family 
of homogeneous metrics on H/Gx. Moreover, G acts as a semi-direct product G = H �R on g. Theorem 3.6
roughly says that if F (q) contains a non-constant function then M is either a one-dimensional extension, a 
product of a one-dimensional extension with Euclidean space, or a space as in Theorem 1.1. In particular, 
Theorem 3.6 applies to any homogeneous gradient soliton for an invariant curvature flow. We are not aware 
of any examples of flows where examples of gradient solitons on one-dimensional extensions have arisen.

One-dimensional extensions play a larger role in the study of W (q) as they occur even in the warped 
product Einstein case. In fact, in [17] Lafuente showed that a homogeneous space admits a one-dimensional 
extension which is the base of a warped product Einstein manifold if and only if it is an algebraic Ricci 
soliton. For general q, we obtain the following structure result.

Theorem 1.5. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor. If W (q)
is non-trivial, then (Mn, g) is isometric to one of the following

(1) a space of constant curvature and dim W = n + 1,
(2) the product of a homogeneous space and a space of constant curvature with W consisting of functions 

on the constant curvature factor and 2 ≤ dim W ≤ n,
(3) the quotient of the product of a homogeneous space and R, (H × R)/π1(M), with W = {w : R → R |

w′′ = τw} where τ < 0 is constant, or
(4) a one-dimensional extension and dim W = 1.

If, in addition, q is Codazzi, then (M, g) is isometric to one of the cases (1)-(3).

Remark 1.6. A symmetric 2-tensor is Codazzi if its covariant derivative is symmetric, i.e. (∇Xq)(Y, Z) =
(∇Y q)(X, Z), for all vectors X, Y, Z. In general, divergence free and Codazzi are different conditions. How-
ever, a Codazzi tensor is divergence free if and only if it has constant trace. Thus a Codazzi tensor that 
is invariant under a transitive group of isometries is divergence free. See section 6 for further discussion of 
examples in case (4) where q is divergence free.

We also consider the trace-free versions of these equations,

˚Hessf = q̊, (1.1a)
˚Hessw = wq̊, (1.2a)

where ̊q is the trace-free part of q, ̊q = q− trq
dim(M)g. We write F̊ (q) and W̊ (q) for the solution spaces to (1.1a)

and (1.2a) respectively. Non-trivial functions in F̊ (−Ric) are called Ricci almost solitons in the literature, 
see for example [4]. Non-trivial functions in W̊ ( 1

2−n Ric) are called almost Einstein metrics in the literature. 
In this case, if the function is positive then the metric is conformal to an Einstein metric. See, for example, 
[7,8,10,18,16] and the references there-in.

The study of the solution spaces F̊ and W̊ can in the homogeneous case be reduced to the study of a 
corresponding F or W space. A space of functions F̊ (or W̊ ) is called essential if F̊ (q) �= F (q′) for all q′ (or 
W̊ (q) �= W (q′) for all q′). We have the following rigidity result for essential spaces of solutions.

Theorem 1.7. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor. If F̊ (q) is 
essential then (M, g) is a space of constant curvature. If W̊ (q) is essential, then (M, g) is locally conformally 
flat.
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Note that homogeneous locally conformally flat metrics are classified by Takagi in [21] (see also Theo-
rem 2.6). Theorem 1.7 combined with structure results for F and W as well as Takagi’s classification yields 
the following corollaries.

Corollary 1.8. Let (M, g) be a G-homogeneous manifold and q a G-invariant symmetric two-tensor which 
is divergence free. If there is a non-constant function in F̊ (q), then (M, g) is either a space of constant 
curvature or is a product metric N × Rk with f being a function on the Euclidean factor.

Corollary 1.9. If (M, g) is a G-homogeneous manifold and q is a G-invariant symmetric two-tensor such 
that W̊ is non-trivial, then (M, g) is isometric to either

(1) Sn(κ)/Γ, Rn/Γ, Hn(−κ), (Sk(κ)/Γ) × Hn−k(−κ), (R1/Γ) × Hn−1(−κ), or (Sn−1(κ) × R1)/Γ,
(2) a direct product of a homogeneous space and a space of constant curvature with W̊ consisting of functions 

on the constant curvature factor,
(3) the quotient of the product of a homogeneous space and R, (H × R)/π1(M), with W = {w : R → R |

w′′ = τw} where τ < 0 is constant, or
(4) a one-dimensional extension of a homogeneous space.

Moreover, when (M, g) is not in case (1), W̊ (q) = W (q′), where q′ is a G-invariant tensor of the form 
q′ = q − λg for some λ ∈ R. If, in addition, q is Codazzi, then (M, g) is isometric to one of the cases 
(1)-(3).

In the case of Ricci almost solitons, Corollary 1.8 already follows from [4, Theorem 1.1]. For almost 
Einstein metrics, Corollary 1.9 generalizes Theorem 5.2 in [18] to the non-compact case. In dimension 4, 
homogeneous conformally Einstein spaces were classified in [5] where is it shown that if a space is not 
a symmetric space, then it is one of three families of one-dimensional extensions. In higher dimensions, 
Corollary 1.9 reduces the problem of classifying homogeneous almost Einstein spaces and thus conformally 
Einstein spaces to studying one-dimensional extensions. We discuss this case further in section 7, where we 
also discuss the application of Corollary 1.9 to more general “generalized m-quasi-Einstein metrics.”

As a final application of the theorems above, we consider the case of a compact locally homogeneous 
manifold admitting non-trivial functions in F , F̊ , W , or W̊ for a local isometry invariant q. First note that 
F (q) can never be non-trivial because if f ∈ F (q) then Δf = trq and trq is constant as q is a local isometry 
invariant tensor. A function on a compact manifold with constant Laplacian is constant, so f is constant. 
On the other hand, the sphere supports invariant tensors q such that F̊ , W and W̊ are all non-trivial. In 
this case we get the following rigidity result. The proof follows from inspecting the possibilities for simply 
connected examples in Corollaries 1.8 and 1.9 to admit non-trivial F̊ , W and W̊ that are invariant under 
co-compact actions of deck transformations.

Theorem 1.10. Suppose that (M, g) is a compact locally homogeneous manifold and q a local isometry in-
variant symmetric two tensor.

(1) If F̊ (q) contains a non-constant function, then (M, g) is a spherical space form.
(2) If W̊ (q) is non-trivial, then either (M, g) is isometric to a direct product of a homogeneous space N and 

a spherical space form, isometric to (N × R)/π1(M), or isometric to (Sn−1(κ) × R1)/Γ.

In particular any positive function in F̊ (q) or W̊ (q) must be constant.

Note that in the statement of part (2) we allow N to be a point, so that the space could be isometric to 
a spherical space form.
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The paper is organized as follows. In the next section we discuss preliminaries including the basic algebraic 
structure of the spaces F and W and the rigidity theorems for homogeneous spaces which we use to prove 
the structure theorems. In the next four sections we prove the results for F , F̊ , W , and W̊ . In the final 
section we discuss the application of the results to conformally Einstein and generalized m-Quasi Einstein 
metrics. We also include an appendix with a discussion of these spaces of functions on Kähler manifolds.

2. Preliminaries

In this section we discuss some basic properties about the spaces of functions F (M, g, q), F̊ (M, g, q), 
W (M, g, q), and W̊ (M, g, q) as well as some rigidity results for homogeneous spaces that will be the main 
tools in the proofs of our structure theorems.

2.1. Basic structure

First note that the spaces of functions F and F̊ are affine as f1, f2 ∈ F (resp, F̊ ) implies f1 − f2 ∈ V

(resp, V̊ ), where

V = {v | Hessv = 0}
V̊ = {v | ˚Hessv = 0}.

Both V and V̊ are vector spaces of functions that contain the constant functions. Moreover, it is well known 
that if V or V̊ contain a non-constant function, then the metric must be special. If there is a non-constant 
function v ∈ V , then (M, g) must split as a product with a Euclidean factor, and v is a coordinate function 
in the Euclidean direction (see Proposition 3.4). If there is a non-constant function v ∈ V̊ , then (M, g) must 
split as a warped product over a 1-dimensional base. This was first proven locally by Brinkmann [3] and 
later globally by Tashiro [22]. The complete study of the full space V̊ is due to Osgood-Stowe [19].

The spaces W and W̊ are vector spaces of functions. In fact, note that V and V̊ are special cases of W
and W̊ where q = 0. Rigidity for metrics which admit linearly independent solutions in W was studied in 
[12] (also see Theorem 5.2 below). It gives a weaker warped product splitting than for V or V̊ .

A tensor q is invariant under a subgroup, G, of isometries of (M, g), if γ∗q = q for all γ ∈ G. If q is 
invariant under G, then G acts on the spaces F , F̊ , W , and W̊ via f 	→ γ∗f , γ ∈ G. Conversely, we also 
have that if F or W is invariant under the action of G then so is q.

Proposition 2.1. If F (M, g, q) or W (M, g, q) are non-trivial and invariant under the action of G ⊂
Isom(M, g), then q is also invariant under G.

Proof. We consider the case where W is invariant. The case for F is similar. Fix a non-trivial w ∈ W and 
γ ∈ G. We have:

(w ◦ γ)q = Hess(w ◦ γ) = γ∗Hessw = γ∗(wq) = (w ◦ γ)(γ∗q).

This shows that γ∗q = q wherever w ◦ γ �= 0. Since this is a set of full measure unless w ≡ 0 (see [12, 
Proposition 1.1]) we conclude that q is γ invariant. �
2.2. Some rigidity results on homogeneous spaces

In this section we discuss some rigidity results for certain functions and vector fields on homogeneous 
spaces. We first recall the algebraic formulation of the rigidity we require from the introduction.
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Definition 2.2. A G-homogeneous space (M = G/Gx, g) is called a one-dimensional extension if there is a 
closed subgroup, H ⊂ G that contains Gx such that there is a surjective Lie group homomorphism from G
to the additive real numbers whose kernel is H.

This algebraic property has the following geometric consequences.

Proposition 2.3. If a G-homogeneous space (M = G/Gx, g) is a one-dimensional extension of H, then

(1) G acts on M as a semi-direct product group G = H �R,
(2) M is diffeomorphic to (H/Gx) × R,
(3) g = gr + dr2 where gr is a one-parameter family of homogeneous metrics on H/Gx.

Proof. Let φ : G → R be a surjective Lie group homomorphism with kernel H. Since Gx ⊂ H it follows 
that M/H = (G/Gx)/H = G/H = R. Therefore, the action of H on M has cohomogeneity one. Let 
r : M → M/H. By re-parametrizing the range, M/H, we can assume that r is a distance function. H acts 
transitively on the level sets of r, which gives the diffeomorphic splitting (2) as well as the metric of the 
form (3).

To see (1), let γt be a one-parameter family of isometries in G. It follows that t 	→ φ(γt) is an additive group 
homomorphism from R to R and thus either trivial or an isomorphism. Since φ is assumed to be surjective, 
we can find a γt such that this map is an isomorphism. Let γ ∈ G. There is t such that φ(γ−t) = φ(γ), 
which implies that γt ◦ γ ∈ H. This shows that G is a semi-direct product group G = H �R. �

Now we are ready to prove the main Lemma which we use to show that spaces are one-dimensional 
extensions. It roughly says that when there is function which is “almost” invariant by a transitive group in 
the sense that it changes only by an additive or multiplicative constant, then we obtain a one-dimensional 
extension.

Lemma 2.4. Let M be a G-homogeneous space, assume that either

(1) there is a non-constant function f such that for all γ ∈ G there is Cγ ∈ R so that

γ∗f = f + Cγ , or

(2) there is a non-constant function w such that for all γ ∈ G there is Cγ ∈ R so that

γ∗w = Cγw.

In either case (M, g) becomes a one-dimensional extension of H, the subgroup of G that fixes the function 
f or w. Moreover, in case (1) f = ar + b and in case (2) w = bear for some a, b ∈ R.

Proof. First consider case (1). The assumption γ∗f = f + Cγ , gives a homomorphism γ 	→ Cγ into the 
additive real numbers with kernel H = {γ ∈ G | γ∗f = f}. To see that Gx ⊂ H note that if γ(x) = x, 
then γ∗f(x) = f(x) implying that Cγ = 0. Observe that the image of γ 	→ Cγ is either trivial or R and in 
case it is trivial f is forced to be constant. Therefore, we have a one-dimensional extension of H and the 
diffeomorphic splitting M = H/Gx × R with metric g = gr + dr2. As f is invariant under H we must have 
f = f(r), ∇f = f ′(r)∇r. Since the group G preserves ∇f this implies that f ′(r) is constant, so f = ar + b

for constants a, b ∈ R. This completes case (1).
Case (2) is similar. Since γ∗w = Cγw, the action of G preserves both the zeros and the critical points of 

w. Since G is transitive and w is non-constant we must have that w has no zeros nor critical points so, by 
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possibly switching to −w, we can assume that w is positive. The map γ 	→ Cγ is a group homomorphism 
into the multiplicative group of positive real numbers. But then ln(Cγ) gives a homomorphism into the 
additive reals whose kernel consists of the isometries that preserve w. We then obtain M = H/Gx ×R with 
metric g = gr + dr2 and w = w(r).

To see that w = bear consider that any isometry γ preserves the vector field ∇w
w as

dγ

(
∇w

w
(γ−1x)

)
= dγ(∇w(γ−1x))

w(γ−1x) = Cγ∇w(x)
Cγw(x) = ∇w

w
(x).

So |∇w|/w = |w′(r)|/w(r) is constant and so w = bear for some a, b ∈ R. �
Finally in this section we prove a fact about conformal fields on homogeneous spaces. Recall that a 

vector field X is a conformal field if ˚LXg = 0 which is equivalent to the 1-parameter family of (local) 
diffeomorphisms generated by X being conformal diffeomorphisms of g. We have the following rigidity for 
conformal fields on homogeneous spaces. This result was established and used in [4, Proof of Theorem 1.1], 
but the resulting formula there does not appear to be entirely correct.

Proposition 2.5. Let (M, g) be a homogeneous space and X a conformal field, then either (M, g) is locally 
conformally flat, or X is a Killing field.

Proof. All two-dimensional spaces are locally conformally flat, so there is nothing to prove in this case. In 
dimensions larger than 2 there is always a conformally invariant (1, 3) tensor, C, on (M, g) such that C = 0
if and only if (M, g) is locally conformally flat. In dimension 3 it is the Cotton tensor, in higher dimensions 
the Weyl tensor.

The conformal invariance of C implies that LXC = 0 as X is a conformal field. We claim that DX |C|2 =
−2tr(LXg)|C|2. To see this consider a point p ∈ M where V (p) �= 0 and select coordinates x1, . . . , xn such 
that V = ∂1. The Lie derivative of any tensor can now be calculated by computing the directional derivatives 
of the components of the tensor in these coordinates. With this in mind it follows that the components of 
the metric tensor satisfy: DXgij = tr(LXg)gij and its inverse: DXgij = −tr(LXg)gij , while DXCl

ijk = 0. 
We can now calculate

DX |C|2 = DX(gisgjtgkuglvCl
ijkCv

stu)

= (−3tr(LXg) + tr(LXg))(gisgjtgkuglvCl
ijkCv

stu)

= −2tr(LXg))(gisgjtgkuglvCl
ijkCv

stu).

Finally, the formula trivially holds on any open set where X vanishes. (In fact, a non-trivial conformal 
field cannot vanish on an open set as its zero set has components that are either points or totally umbilic 
hypersurfaces.) So the formula DX |C|2 = −2tr(LXg)|C|2 must hold globally.

Since the space is homogeneous, |C|2 is constant, so either tr(LXg) = 0 everywhere, and the field is 
Killing, or there is a point where |C|2 = 0. However, again by homogeneity, if C = 0 at a point then C = 0
everywhere and then the space is locally conformally flat. �

Finally in this section we point out that locally conformally flat homogeneous spaces have a rigid classi-
fication due to Takagi.

Theorem 2.6. [21, Theorem B] Let (Mn, g) be a homogeneous space which is locally conformally flat, then 
(M, g) is isometric to either Sn(κ)/Γ, Rn/Γ, Hn(−κ), (Sk(κ)/Γ) × Hn−k(−κ), (R1/Γ) × Hn−1(−κ), or 
(Sn−1(κ) × R1)/Γ.
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3. F

Now we begin the study of the space of solutions to (1.1), F (M, g, q). We start by offering two examples 
of spaces that typify situations where q is invariant under a group of isometries but not all the functions in 
F (q) are.

Example 3.1. Let f : Rn → R such that f(x) = A
2 |x|2 + L(x) + C where A, C are constants and L : Rn → R

is a linear function. Then Hessf = Ag0 where g0 denotes the Euclidean dot product. Clearly Hessf is 
invariant under the full isometry group, but f is not.

Example 3.2. Let g = dr2+e2krg0, where g0 is the Euclidean metric on Rn−1. Then g is the Euclidean metric 
if k = 0 and is the hyperbolic space if k �= 0. Consider f = cr and G = {φ | φ(r, x) = (r + a, e−kaτ(x)), 
where a ∈ R and τ ∈ Isom(Rn−1)}. In this case G is a group of isometries of g that acts transitively and 
Hessf = cke2krg0 which is invariant under the group G.

Our results come from considering the cases when the dimension of V is one and larger than one separately. 
When the dimension is one we have an almost trivial action of a transitive group of isometries while, when 
the dimension is larger than one, we have a rigidity result for the metric. Example 3.2 is in the case where 
V is one dimensional and Example 3.1 is in the case where V is higher dimensional.

Let us now be more precise. First in the case where dim(V ) = 1, we can apply Lemma 2.4.

Proposition 3.3. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant symmetric two tensor. 
If dim(V ) = 1 and f ∈ F (q) is non-constant, then (M, g) is a one-dimensional extension and f = kr.

Proof. Recall that γ∗f = f ◦ γ−1. Since q is invariant under γ we have γ∗f ∈ F . Therefore, γ∗f − f ∈ V

and this is a real number since V consists only of constants. This shows that γ∗f = f + Cγ for a constant 
C, so we can apply Lemma 2.4. �

The rigidity statement for complete spaces which have non-constant functions in V is the following.

Proposition 3.4. Suppose (M, g) is a complete Riemannian manifold and suppose that dim(V ) = k + 1 for 
some k ≥ 1, then M splits isometrically as Rk ×N for some space N and Isom(M) = Isom(Rk) × Isom(N). 
Moreover, dim(V (N)) = 1 and V (M) consists of the space of affine functions Rk → R.

Proof. The metric splitting follows from the fact that all elements in V have parallel gradient. Moreover, 
Rk must be the Euclidean de Rham factor as otherwise dim V > k + 1. This shows that the isometry group 
splits. Finally if dim(V (N)) > 1, then also dim V > k + 1. �

The previous two propositions show that if f ∈ F (q) is a non-constant function and q is invariant under 
a transitive group of isometries, then the metric is either a one-dimensional extension or splits as a product. 
In the case of a product splitting, we do not assume that the tensor q necessarily splits, however a further 
application of Lemma 2.4 allows us to determine the function f when the metric splits.

Proposition 3.5. Let M = B ×F be a direct product and let G = G1 ×G2 where G1, G2 are transitive groups 
of isometries on B and F respectively. Suppose that there is a function f on B × F such that

(γ∗f)(x, y) − f(x, y) = φγ(y)

for all γ ∈ G, where φ is a function of F that depends on γ. Either
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(1) f = ψ(y), or
(2) B is a one-dimensional extension, gB = dr2 + gr, and f = ar + ψ(y)

where ψ is a function of F .

Proof. Fix a point y0 ∈ F , and let f0 : B × {y0} → R be defined as f0(x) = f(x, y0). Let γ1 ∈ G1, by 
assumption we have

((γ1 × id)∗f)(x, y0) − f(x, y0) = φ1(y0),

((γ1)∗f0)(x) − f0(x) = φ1(y0).

So, applying Lemma 2.4 we get that either f0 is constant in x or B × {y0} is a one-dimensional extension 
and f0 = a(0)r + b(0).

If f0(x) = d for a constant d, then let γ2 ∈ G2 and consider

((id × γ2)∗f)(x, y0) − f(x, y0) = φ2(y0),

f(x, γ2(y0)) − d = φ2(y0).

Since G2 acts transitively, this implies that f is constant in the x direction everywhere.
On the other hand, if f0 is non-constant and B × {y0} is a one-dimensional extension, then B × {y} is 

a one-dimensional extension for all y since M is assumed to be a product metric. Applying Lemma 2.4 to 
each fy(x) = f(x, y) we obtain that f(x, y) = a(y)r + b(y) where a, b could a priori be functions of y. But 
then a must be constant as

(id × γ2)∗(f)(x, y0) − f(x, y0) = ((γ∗
2a)(y0) − a(y0))r + (γ∗

2b)(y0) − b(y0).

Since the right hand side is assumed to only be a function of y it follows that (γ∗
2a)(y0) = a(y0) for all 

γ2 ∈ G2 and a is constant. �
This gives us the following theorem.

Theorem 3.6. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant symmetric two tensor. 
Suppose that f ∈ F (q) is a non-constant function then either

(1) (M, g) is isometric to a product, N × Rk where f is constant on N ,
(2) (M, g) is a one-dimensional extension, g = dr2 + gr, and f(x, y) = ar + b, or
(3) (M, g) is isometric to a product, N ×Rk where N is a one-dimensional extension and f(x, y) = ar(x) +

v(y) where v is a function on Rn and r is a distance function on N .

Proof. We have already seen that the theorem is true when dim(V ) = 1. So suppose dim(V ) > 1 and note 
that the metric splits as a direct product, N ×Rk. Moreover, G = G1 × G2 because unit tangent vectors to 
the Rk factor are characterized as gradients to functions in V . We also have that γ∗f − f is a function of 
the Rk factor for any γ. So we may apply Proposition 3.5 to obtain the result. �

The natural question coming from Theorem 3.6 is what conditions imply that a one-dimensional extension 
is a product, the next proposition gives two such conditions.

Proposition 3.7. Let (M, g) be a one-dimensional extension. The following properties hold:
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(1) Δr is constant,
(2) Ric(∇r, ∇r) ≤ 0,
(3) If Ric(∇r, ∇r) = 0, then g = g0 + dr2 is a product,
(4) If div(∇∇r) = 0, then g = g0 + dr2 is a product.

Proof. The transitive group G preserves ∇r and ∇∇r is invariant by G so Δr = tr(∇∇r) is constant.
To see (2) and (3) consider the Bochner formula applied to r:

1
2Δ|∇r|2 = Ric(∇r, ∇r) + |Hessr|2 + g(∇Δr, ∇r).

Since |∇r| and Δr are constant, we obtain

Ric(∇r, ∇r) = −|Hessr|2.

So if Ric(∇r, ∇r) = 0 then |Hessr|2 = 0, which implies that M splits isometrically as N × R.
Finally, for (4) note that

div(∇∇r) = ∇Δr + Ric(∇r).

So, as Δr is constant, the condition div(∇∇r) = 0 implies that Ric(∇r) = 0 and we have a product 
splitting. �

This allows us to prove Theorem 1.1

Proof of Theorem 1.1. We have that Hessf = q for a tensor q that is invariant under a transitive group of 
isometries. Assume that f is non-constant, then since q is invariant under isometries Theorem 3.6 implies 
that either M is a one-dimensional extension or M splits as a product metric M = N × Rk, g = g1 + g2. 
Assume also that this splitting is maximal in the sense that M does not split off more than k Euclidean 
factors.

If div(q) = 0 then div(∇∇r) = 0, so by Proposition 3.7 the one-dimensional extension in the splitting is 
itself a product R × N , where r is the coordinate in the R direction. But, this contradicts the maximality 
of the splitting.

Therefore, we have M = N × Rk, by Theorem 3.6 we also have a splitting of the function f of the 
form f = f1 × f2 where f1 is a function on N and f2 is a function on Rk. In particular, q = Hessf =
Hess(f1) + Hess(f2) so q splits as q1 + q2 where q1 is a tensor on N and q2 is a tensor on Rk. In particular, 
divq = div(q1) + div(q2), so div(q1) = 0. If f1 is non-constant then, by Theorem 3.6, (N, g1) is a one-
dimensional extension with Hessf1 = q1 and divq1 = 0. So we also obtain that the one-dimensional extension 
in this case is a product, again contradicting the maximality of the splitting. Therefore, for the maximal 
splitting, we must have that f1 is constant on the N factor. �
4. Traceless F

Now we consider spaces of functions F̊ (M, g, q) of solutions to (1.1a). Given our established results about 
the corresponding space F (M, g, q), we consider the question of when F̊ (M, g, q) �= F (M, g, q). There is 
a trivial way to produce such examples by adding a factor of g to q. Namely, if f ∈ F (M, g, q − φg) for 
φ ∈ C∞(M), φ �= 0, then f /∈ F (M, g, q), but f ∈ F̊ (M, g, q). This motivates the following definition.

Definition 4.1. Let (M, g) be a Riemannian manifold and q a symmetric two-tensor, then F̊ (M, g, q) is 
inessential if F̊ (M, g, q) = F (M, g, q′) for some quadratic form q′. F̊ (M, g, q) is essential if it is not inessential.
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The next proposition shows that essential spaces are easily characterized in terms of the spaces V̊ and 
V . It also shows that the property of F̊ being essential is a property of the space (M, g) but not the choice 
of q.

Proposition 4.2. Let (M, g) be a Riemannian manifold and q a symmetric two-tensor, then the following are 
equivalent:

(1) F̊ (M, g, q) is essential,
(2) F̊ (M, g, q) �= F (M, g, q − φg) for all φ ∈ C∞(M),
(3) The map Δ : F̊ (M, g, q) → C∞(M) is non-constant, and
(4) V̊ �= V .

Moreover, if F̊ (M, g, q) = F (M, g, q′) is inessential and q is invariant under G ⊂ Isom(M, g) then q′ is also 
invariant under G.

Proof. (1) ⇒ (2) is obvious. To see (2) ⇒ (1) consider that if (1) is not true then F̊ (M, g, q) = F (M, g, q′). 
So Hessf = q′ and

q̊ = ˚Hessf = q′ − tr(q′)
n

g.

So q′ = q + tr(q′)−tr(q)
n g which would contradict (2).

(1) and (3) are equivalent because if two quadratic forms have the same trace-free part, then they are 
the same if and only if they have the same trace.

To see that (3) and (4) are equivalent note that w ∈ V̊ is an element of V if and only if Δw = 0. If 
f, f ′ ∈ F̊ (M, g, q) then f − f ′ ∈ V̊ , so Δ being non-constant on F̊ (M, g, q) is equivalent to there being a 
function in V̊ with non-zero Laplacian.

The final statement follows from Proposition 2.1. �
The next example shows that for simply connected spaces of constant curvature, F̊ is essential.

Example 4.3. Let (Mn, g) be a simply connected space of constant curvature. Then dim(V̊ ) = n + 2 and 
F̊ (M, g, q) is essential. If (Mn, g) is Euclidean space then V is the n +1 dimensional space of affine functions 
and V̊ is spanned by V along with the function |x|2. If Mn is a sphere or hyperbolic space then V just 
contains constant functions. For the sphere V̊ also contains the restriction of the coordinate functions in 
Rn+1 while for hyperbolic space V̊ contains the restriction of the coordinate functions in R1,n. See [12] for 
more details.

On the other hand F̊ is inessential for product spaces.

Proposition 4.4. If (M, g) = (Mn1
1 × Mn2

2 , g1 + g2), then V̊ = V , so F̊ is inessential.

Proof. Consider f(x1, x2) ∈ V̊ . Then Hessf(X, U) = 0 for X ∈ TM1 and U ∈ TM2 so by [20, Lemma 2.1]
f(x1, x2) = f1(x1) + f2(x2). Thus

Hessg(f) = Hessg1 f1 + Hessg2 f2 = Δg1f1 + Δg2f2

n
g.

If we restrict this equation to M1 and M2 this tells us that ˚Hessg1 f1 = 0 and ˚Hessg2 f2 = 0. Thus
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Δg1f1 + Δg2f2

n
= Δg1f1

n1
= Δg2f2

n2
,

which shows that Δg1f1 = 0 and Δg2f2 = 0. Consequently, V̊ = V . �
This gives us the following characterization of essential F̊ in the homogeneous case.

Theorem 4.5. Suppose that (M, g) is a homogeneous Riemannian manifold. If F̊ (M, g, q) is essential, then 
(M, g) is a space of constant curvature.

Proof. Suppose that F̊ is essential. Let w ∈ V̊ �= V , then ∇w is a conformal field which is not Killing. By 
Proposition 2.5, (M, g) is locally conformally flat. By Takagi, the universal cover of M is either a space of 
constant curvature or a product of spaces of constant curvature. Note that if π : M̃ → M is the universal 
cover of M , w ∈ V̊ (M) implies (w ◦ π) ∈ V̊ (M̃) and v ∈ V (M) implies (v ◦ π) ∈ V (M̃). Therefore, if 
V̊ (M) �= V (M) then V̊ (M̃) �= V (M̃), so M essential implies that M̃ is. Then by Proposition 4.4, the 
universal cover does not split as a product and so must be a space of constant curvature. �
Theorem 4.6. Let (M, g) be a G-homogeneous Riemannian manifold and q be a G-invariant symmetric 
two-tensor. If f ∈ F̊ is a non-constant function then either

(1) (M, g) is a space of constant curvature,
(2) (M, g) is isometric to a product, N × Rk where f is constant on N ,
(3) (M, g) is a one-dimensional extension, g = dr2 + gr, and f(x, y) = ar + b, or
(4) (M, g) is isometric to a product, N ×Rk where N is a one-dimensional extension and f(x, y) = ar(x) +

v(y), where v is a function on Rn and r is a distance function on N .

Proof. If F̊ is essential, then by Theorem 4.5 (M, g) is a space of constant curvature. If F is inessential, 
then F̊ (q) = F (q′) where q′ is also invariant by G, then Theorem 3.6 implies the result. �

This allows us to prove Corollary 1.8

Proof of Corollary 1.8. By Theorem 4.5 either (M, g) is constant curvature or F̊ (q) = F (q′) and by (2) of 
Proposition 4.2 q′ = q − φg for a function φ. But then since q and q are both invariant by the transitive 
group G we must have φ constant. In particular, div(q′) = div(q), so q′ is also divergence free and the 
Corollary follows from applying Theorem 1.1 to F (q′). �
5. W

Now we consider the space W (M, g, q) of solutions to equation (1.2). When this is a one-dimensional 
space we have the following statement.

Theorem 5.1. Let (M, g) be a G-homogeneous manifold and let q be a non-zero G-invariant two-tensor. If 
dim(W ) = 1, then (M, g) is a one-dimensional extension and W = {bear | b ∈ R} for some constant a ∈ R.

Proof. Let G be a transitive group of isometries and w be a non-constant function in W . Since W is one-
dimensional and G acts on W , for γ ∈ G, we have w ◦ γ = Cγw for some constant Cγ . The theorem now 
follows from Lemma 2.4. �

When dim(W ) > 1 we have the following result of He-Petersen-Wylie.
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Theorem 5.2. [12, Theorem A and B and Proposition 6.5] Suppose (M, g) is a complete Riemannian manifold 
such that dim(W ) = k + 1, k ≥ 1. If k > 1 or M is simply connected, then M is isometric to a warped 
product B ×u F where F is a space of constant curvature. Moreover,

W = {w(x, y) = u(x)v(y) | v ∈ W (F, −τgF )}.

If k = 1, then M is isometric to (B ×u R)/π1(M), where u > 0 and π1(M) acts by translations on R.

Before applying these theorems, we need some basic results about warped products which are homoge-
neous.

By a warped product, M = B ×u F we mean a metric of the form gM = gB + u2gF where u : B → R. In 
general, it is possible to obtain a smooth metric gM even in case u vanishes on the boundary of B. However, 
in this paper we will be able to conclude that u > 0 and M is diffeomorphic to B × F . Let γ be a map 
of B ×u F , we will say that γ respects the warped product splitting if γ = γ1 × γ2 with γ1 : B → B and 
γ2 : F → F . A group of isometries is said to respect the splitting if all its elements do. We have the following 
simple result about the isometries of a warped product that respect the splitting.

Proposition 5.3. [13, Lemma 5.1] Suppose M = B×u F with u > 0, then a map γ which respects the splitting 
is an isometry of gM if and only if (1) γ1 ∈ Isom(gB), (2) there is a C ∈ R+ such that γ∗

1(u) = Cu, and 
(3) γ2 is a C-homothety of gF .

Let Isom(B)u be the isometries of gB that preserve u. Proposition 5.3 implies that Isom(B)u ×Isom(F ) is 
a group of isometries that respects the splitting. Recall also that a complete Riemannian manifold admits a 
C-homothety with C �= 1 if and only if it is a Euclidean space. Therefore, if F is not a Euclidean space, then 
any subgroup of isometries that preserves the splitting is a subgroup of Isom(B)u × Isom(F ). In general, 
a warped product can have isometries that do not respect the splitting, so we will have to justify this 
assumption when we apply the Proposition below.

Combining Proposition 5.3 with Lemma 2.4 gives us the following characterization of when a warped 
product admits a transitive group of isometries which preserves the splitting.

Lemma 5.4. Let M = B ×u F with u > 0 be a warped product manifold which admits a transitive group of 
isometries, G, that respects the splitting. Then either

(1) M = B × F and u is constant, or
(2) M is a one-dimensional extension such that

gM = dr2 + gr + u2gRk and u = bear.

Proof. Since G splits we have the projection π : G → Isom(B) given by π(γ) = γ1. Since G acts transitively 
on M , the image π(G) acts transitively on B. By Proposition 5.3, for all γ1 ∈ π(G) there is a C such that 
γ∗

1(u) = Cu, so by Lemma 2.4 case (2) either u is constant or B is a one-dimensional extension, gB = dr2+gr

and u = bear. �
Theorem 5.5. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant two-tensor. If W is 
non-trivial, then (Mn, g) is isometric to one of the following

(1) a space of constant curvature with dim W = n + 1,
(2) the product of a homogeneous space and a space of constant curvature with W consisting of functions 

on the constant curvature factor with 2 ≤ dim W ≤ n,
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(3) the quotient of the product of a homogeneous space and R, (H × R)/π1(M), with W = {w : R → R |
w′′ = τw} where τ < 0 is constant, or

(4) a one-dimensional extension with dim W = 1.

Proof. If dim(W ) = 1, then we obtain a one-dimensional extension by Theorem 5.1. Assume M is not a 
space of constant curvature. Then, if dim(W ) > 2 or if M is simply connected and dim(W ) = 2, then from 
Theorem 5.2 we obtain the warped product splitting M = B ×u F and we have that all w are of the form 
w(x, y) = u(x)v(y). First we want to show that u > 0. To see this suppose that u(x0) = 0 for some x0, then 
w(x0, y) = u(x0)v(y) = 0, so there is a singular point where all functions in w vanish. But since G acts on 
W and is transitive this would imply that all functions in W are zero, a contradiction.

Next we observe that G respects the splitting M = B ×u F . In fact, the tangent distributions to the 
leaves {b} × F are given by F = {∇w | w ∈ Wp} where Wp = {w ∈ W | w(p) = 0}. Since G preserves W it 
must also preserve F as well as the orthogonal distribution.

In case M is not simply connected and dim(W ) = 2 we reach the same conclusion for the universal cover 
of M . Here W = {w : R → R | w′′ = τw} becomes a space of functions on R that is invariant under a 
cyclic group of translations. Since our quadratic form is invariant under a homogeneous group the function 
τ must be constant.

We can now apply Lemma 5.4 to see that either M is a one-dimensional extension, a direct product, or 
the universal cover is a direct product with R. Once M or its universal cover is a direct product we have 
that u is constant, so w = u(x)v(y) shows that all the functions in W are only on the constant curvature 
factor, F . �

Now we consider what more we can say in the case that q is assumed to be divergence free or Codazzi. 
Note that in cases (1)-(3) of Theorem 5.5 q is either a constant multiple of the metric or, on the products, 
a constant sum of the metrics on the factors. In particular, q is both divergence free and Codazzi. We show 
that the Codazzi property in fact characterizes these examples, while there are many more examples which 
are divergence free. First we establish some properties of the metrics in case (4) of the previous theorem.

Proposition 5.6. Let w = ear, a > 0, where r : M → R is a distance function. If q = 1
w Hess w, then

q = a2dr2 + a Hess r, (5.1)

(∇XQ) (∇w) = a2wQ (X) − wQ2 (X) (5.2)

where Q dual (1, 1) tensor to q. If q is divergence free we further have:

trq2 = trq, (5.3)

|Hess r|2 = aΔr. (5.4)

In particular, if q is invariant under a transitive group of isometries, then so is Hess r.

Proof. (5.1) follows directly from q = 1
w Hess w as w = ear. To prove (5.2) note that we have that wQ (X) =

∇X∇w so we obtain

(∇XQ) (∇w) = ∇XQ (∇w) − Q (∇X∇w)

= a2∇X∇w − wQ2 (X)

= a2wQ (X) − wQ2 (X) ,

where the formula Q (∇w) = a2∇w follows from (5.1).
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Tracing (5.1) also gives us

trq = a2 + aΔr

and

trq2 = |q|2 = a4 + a2 |Hess|2 .

Thus (5.4) follows from (5.3). To see (5.3), consider the trace of (5.2)

divq (∇w) = w
(
a2trq − trq2)

,

which implies (5.3). �
We now show the characterization in the Codazzi case.

Theorem 5.7. With (M, g) and q as in Theorem 5.5, q is Codazzi if and only if (M, g) is isometric to one 
of the cases (1)-(3).

Proof. The fact that q is Codazzi, (5.2) and ∇w
w = a∇r, implies that

a(∇∇rq)(X, X) = a2q(X, X) − q2(X, X). (5.5)

At a point p, let X be an eigenvector for q perpendicular to ∇r, with eigenvalue λ. Let β be the geodesic 
at p in the ∇r direction and let φt be a smooth curve of isometries in G such that φt(p) = β(t). Define 
Xt = dφt(X). Then Xt is a vector field along β with |Xt| = 1. Since φt preserves ∇r and q is invariant 
under φt we also have that Xt ⊥ ∇r and Xt an eigenvector of q with eigenvalue λ for all t. Using Xt we 
can then calculate,

(∇∇rq)(X, X) = D∇r(λ) − 2q(∇∇rX, X)

= D∇r(λ) − 2λD∇r|Xt|2

= 0.

Plugging this back into (5.5) gives that either λ = 0 or λ = a2 so q has only two possible eigenvalues. By 
invariance of q, the multiplicity of the eigenvalues is constant, so the corresponding eigenspace decomposition 
gives us a pair of orthogonal distributions on M . Moreover, since q is Codazzi, these eigendistributions are 
integrable (see Chapter 16 of [2]). Consequently, we can write the one dimensional extension, M , as

M = R × N1 × N2

g = dr2 + (g1)r + (g2)r

where the tangent space to N1 corresponds to the eigenvectors for q with eigenvalue a2 and the tangent 
space to N2 corresponds to null vectors for q. But then (5.1) implies that

Hessr = a(g1)r

which implies that we have a warped product splitting

g = dr2 + e2ar(g1)0 + g2
0 .



16 P. Petersen, W. Wylie / Differential Geometry and its Applications 84 (2022) 101929
Since the group G preserves the eigenspaces of q it preserves the warped product splitting in the sense of 
Lemma 5.4 and then the Lemma implies that (g1)0 is a flat metric on Euclidean space. Then we have that 
dr2 + e2ar(g1)0 is a hyperbolic metric.

Putting this all together we have three cases, if the only eigenvalue if q is a2 then M is hyperbolic space 
which is contained in (1) of Theorem 5.5, if the only eigenvalue of q is 0 then we have a direct product as 
in case (3) of Theorem 5.5, finally if both eigenvalues occur we have a product of a homogeneous space and 
hyperbolic space as in case (2). �

Now we consider the divergence free case. The only case we need to consider is evidently when dim W = 1
and is spanned by w = ear, a > 0, where r : M → R is a distance function. An interesting special case 
occurs when

Hess w = w

m
(Ric −λg) .

This is the so-called quasi-Einstein or warped product Einstein equation as it is the equation on B that 
makes a warped product B ×w F an Einstein metric when F is an appropriately chosen Einstein metric. 
Interestingly there are many such examples that are 1-dimensional extensions of algebraic solitons (see [14], 
[17]). The quasi-Einstein equation is studied in more detail in section 7.

With these examples in mind we cannot expect the same rigid behavior in the divergence free case. In 
fact, we will produce examples of one-dimensional extensions G = H � R such that H is not an algebraic 
soliton and 1

w Hess w is divergence free, where w = ear.
Before discussing the examples, we identify some situations where we do obtain products and warped 

products.

Corollary 5.8. Let w = ear, a > 0, where r : M → R is a distance function on a homogeneous space (M, g). If 
q = 1

w Hess w is invariant under a transitive group of isometries and divergence free, then Δr ∈ [0, (n − 1) a]. 
When Δr = 0, the metric splits as a product g = dr2 + g0, and when Δr = (n − 1) a �= 0 the metric is 
isometric to Hn

(
−a2)

. Moreover, these are the only possibilities for g to be a warped product of the type 
dr2 + ρ2 (r) gN , where ρ : R → (0, ∞).

Proof. From the last formula in the previous proposition and Cauchy-Schwarz we have

(Δr)2

n − 1 ≤ | Hess r|2 = aΔr.

This establishes the range of possible values for Δr. When Δr = 0, the Hessian vanishes and we obtain 
a product metric. While when Δr is maximal we must have that Hess r = agr, where g = dr2 + gr. This 
shows that L∇rgr = 2agr and consequently that gr = e2arg0. This shows that

q = a2dr2 + a Hess r = a2g.

When a �= 0 this shows that ∇ear is a conformal field that is not a Killing field. As the metric is homogeneous 
we conclude that it must be locally conformally flat. Theorem 2.6 then shows that the space is isometric to 
Hn

(
−a2)

.
Finally if we assume that g = dr2 + ρ2 (r) gN , then Hess r = ρ′

ρ gr. In particular, the Cauchy-Schwarz in-
equality (Δr)2

n−1 ≤ | Hess r|2 must be an equality. This forces us to be in one of the two previous situations. �
The goal for the remainder of the section is to construct examples indicating that there is little hope for 

classifying the general situation where q is divergence free. To that end it is convenient to use the following 
condition.
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Proposition 5.9. Assume that G is a transitive group of isometries on M and that r : M → R is a smooth 
distance function whose Hessian is invariant under G. If the hypersurface N = {x ∈ M | r (x) = 0}, has 
divergence free second fundamental form at one point, then it is possible to find a ∈ R such that q = 1

w Hess w

is divergence free and G invariant, where w = ear.

Proof. First note that as G acts transitively we only need to check that an invariant tensor is divergence 
free at a specific point p.

When w = ear we have that q = 1
w Hess w = a2dr2 + a Hess r. Thus q is also invariant under G. The 

divergence is:

divq = div Hess r + aΔrdr.

By invariance, it follows that div Hess r(∇r) is constant. Thus we can choose a so that divq (∇r) = 0. This 
shows that we obtain divq = 0 when div Hess r(X) = 0 for X ⊥ ∇r. As Hess r is the second fundamental 
form for the level sets for r we need to check that div Hess r(X) = divN II (X). This follows provided 
(∇∇r Hess r) (∇r, X) = 0 and that calculating this divergence intrinsically on N is the same as calculating 
it with the connection on M . We will check this for the type changed (1, 1)-tensor S (X) = ∇X∇r. For the 
intrinsic part use an orthonormal frame Ei for N :

(
∇M

Ei
II

)
(Ei, X) = g

((
∇M

Ei
S

)
(X) , Ei

)
= g(∇Ei

(S(X)) − S(∇Ei
X), Ei)

= g(∇N
Ei

(S(X)) + g(∇Ei
(S(X)), ∇r)∇r − S(∇N

Ei
X) − g(∇Ei

X, ∇r)S(∇r), Ei)

= g
((

∇N
Ei

S
)

(X) , Ei

)
,

since ∇r ⊥ Ei and S (∇r) = 0. Finally, we also have

(∇∇r Hess r) (∇r, X) = g ((∇∇rS) (∇r) , X)

= g (∇∇r (S (∇r)) , X) − g (S (∇∇r∇r) , X)

= 0. �
The general set-up for constructing a 1-dimensional extension is a Lie group H with a derivation D on 

the Lie algebra h. This gives us a Lie algebra g = h �R and corresponding Lie group G. The metric is left 
invariant and preserves orthogonality in the semi-direct splitting TeG = g = h � R. Thus it is determined 
by a left invariant metric on H. Finally, as in [14], the tensor T that corresponds to the second fundamental 
form for H is proportional to the symmetric part of the derivation.

Specifically, fix an n-dimensional Lie group H and a left invariant basis Xi for its Lie algebra h. The 
structure constants are given by

[Xi, Xj ] = ck
ijXk.

The Lie group is said to be unimodular if tr (adX) = 0 for all X. This is equivalent to cj
ij = 0 for all i. We 

fix a derivation D, but in what follows the derivation property is not used, only that it is a linear operator 
on the Lie algebra.

Our calculations will be with respect to a general left invariant metric gij = g (Xi, Xj). The corresponding 
connection is given by

2g (∇Xi
Xj , Xk) = g ([Xi, Xj ] , Xk) − g ([Xi, Xk] , Xj) − g ([Xj , Xk] , Xi)

= gklc
l
ij − gjlc

l
ik − gilc

l
jk.
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The symmetric part of D is given by

S = 1
2D + 1

2D∗,

Si
j = 1

2Di
j + 1

2gil
(
Dt

)k

l
gkj = 1

2Di
j + 1

2gilDl
kgkj .

This can be type changed to two symmetric bilinear forms: Sij and Sij . Note that

Sk
i gkj = Sij = g (S (Xi) , Xj) = Sji = Sk

j gki

and similarly

Si
kgkj = Sij = Sj

kgki.

Proposition 5.10. With these assumptions and notation it follows that:

2g (divS, X) = tr (D ◦ adX) + g (D, adX) − 2tr
(
adS(X)

)
.

Proof. The goal is to calculate divS = gij (∇Xi
S) (Xj). Since it is easier to calculate the corresponding 

1-form we calculate instead:

2gijg ((∇Xi
S) (Xj) , Xk) = 2gijg (∇Xi

S (Xj) , Xk) − 2gijg (∇Xi
Xj , S (Xk))

= 2gijSα
j g (∇Xi

Xα, Xk) − 2gijSα
k g (∇Xi

Xj , Xα)

= gijSα
j

(
gkβcβ

iα − giβcβ
αk − gαβcβ

ik

)
− gijSα

k

(
gαβcβ

ij − giβcβ
jα − gjβcβ

iα

)
= Siαgkβcβ

iα − Sα
j cj

αk − Siαgαβcβ
ik − gijSα

k gαβcβ
ij + Sα

k cj
jα + Sα

k ci
iα

= Siαcβ
iαgkβ − Sα

j cj
αk − Si

βcβ
ik − gijcβ

ijSα
k gαβ + Sα

k cj
jα + Sα

k ci
iα

= 0 − 2Sα
j cj

αk − 0 + 2Sα
k ci

iα

= 2tr (S ◦ adXk
) − 2tr

(
adS(Xk)

)
= tr (D ◦ adXk

) + tr (D∗ ◦ adXk
) − 2tr

(
adS(Xk)

)
= tr (D ◦ adXk

) + g (D, adXk
) − 2tr

(
adS(Xk)

)
.

In other words:

2g (divS, X) = tr (D ◦ adX) + g (D, adX) − 2tr
(
adS(X)

)
. �

With a view toward concrete examples note that: tr (D ◦ adX) does not depend on the metric; while 
tr

(
adS(X)

)
= 0 when the Lie group is unimodular. Keep in mind that g (D, adX) is not linear in gij , in the 

given frame it looks like

gijg (D (Xi) , adX (Xj)) = gijgαβDα
i (adX)β

j .

Example 5.11. The simplest examples are on the 3-dimensional Heisenberg group. This algebra has the 
single relation: [X, Y ] = Z. In this basis the adjoint actions have the matrices

adX =

⎡
⎢⎣ 0 0 0

0 0 0
0 1 0

⎤
⎥⎦ , adY =

⎡
⎢⎣ 0 0 0

0 0 0
−1 0 0

⎤
⎥⎦ , adZ =

⎡
⎢⎣ 0 0 0

0 0 0
0 0 0

⎤
⎥⎦
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We use any derivation of the form:

D =

⎡
⎢⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎥⎦ .

The composition of this derivation with any of the adjoint actions clearly vanishes. So for any metric we 
get the three equations:

g (D, adX) = λ1g31g21 + λ2g32g22 + λ3g33g23 = 0,

g (D, adY ) = −λ1g31g11 − λ2g32g12 − λ3g33g31 = 0,

g (D, adZ) = 0.

These equations are clearly satisfied for any metric of the form⎡
⎢⎣ g11 g12 0

g12 g22 0
0 0 g33

⎤
⎥⎦

as the inverse satisfies g23 = g13 = 0.

Example 5.12. Consider the three dimensional simple (and unimodular) Lie algebra with relations:

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

In this basis we have

adX1 =

⎡
⎢⎣ 0 0 0

0 0 −1
0 1 0

⎤
⎥⎦ , adX2 =

⎡
⎢⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎥⎦ , adX3 =

⎡
⎢⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎥⎦

We will use D = adX1 . This derivation is skew-symmetric with respect to the standard biinvariant metric 
that makes the basis elements have equal length and be orthogonal. To calculate tr (D ◦ adX) we note that:

tr (D ◦ adX1) = −2,

tr (D ◦ adX2) = 0,

tr (D ◦ adX3) = 0.

Next we find g (D, adX) for a general metric:

g (D, adX1) = g33g22 + g22g33 − 2g23g23,

g (D, adX2) = −g33g21 + g31g23 − g21g33 + g23g31,

g (D, adX3) = g32g21 − g13g22 − g22g31 + g21g32.

We then restrict attention a metric of the form⎡
⎢⎣ g11 0 0

0 g22 g23
0 g g

⎤
⎥⎦
23 33
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The inverse is ⎡
⎢⎣

1
g11

0 0
0 g33

g22g33−g2
23

− g23
g22g33−g2

23

0 − g23
g22g33−g2

23

g22
g22g33−g2

23

⎤
⎥⎦

and

g (D, adX1) = 2 g22g33

g22g33 − g2
23

− 2 g2
23

g22g33 − g2
23

= 2,

g (D, adX2) = −g33 · 0 + 0 · g23 − 0 · g33 + g23 · 0 = 0,

g (D, adX3) = g32 · 0 − 0 · g22 − g22 · 0 + 0 · g32 = 0.

This results in a 4-dimensional family of metrics with the property that divS = 0. This family includes the 
Berger spheres.

6. Traceless W

Now we consider the vector space of functions W̊ (M, g, q) satisfying (1.2a). We have the following defi-
nition.

Definition 6.1. Let (M, g) be a Riemannian manifold and q a quadratic form. The space of functions 
W̊ (M, g, q) is essential if W̊ (M, g, q) �= W (M, g, q′) for all quadratic forms q′.

For simply connected spaces of constant curvature, W̊ (M, g, 0) is essential since it is (n + 2)-dimensional 
and W (M, g, q) has maximal dimension n + 1 [12, Proposition 1.1]. We have the following result for essen-
tial/inessential W̊ . The proof is exactly analogous to the proposition in the F case, so we omit it.

Proposition 6.2. Let (M, g) be a Riemannian manifold and q a quadratic form. W̊ (M, g, q) is essential if 
and only if W̊ (M, g, q) �= W (M, g, q − φg) for all φ ∈ C∞(M). Moreover, if W̊ (M, g, q) = W (M, g, q′) is 
inessential and q is invariant under G ⊂ Isom(M, g) then q′ is also invariant under G.

This gives the following characterization of essential W̊ .

Lemma 6.3. Let (M, g) be a G-homogeneous manifold and q be a G-invariant tensor. If W̊ (M, g, q) is es-
sential, then (M, g) is locally conformally flat.

Proof. If dim(W̊ ) = 1, take w ∈ W̊ , then clearly W̊ = W (M, g, q − Δw
n g), so W̊ is inessential. Therefore, 

dim(W̊ ) > 1. Let w1, w2 be linearly independent functions in W̊ and define V = w1∇w2 − w2∇w1 and note 
that

LV g = w1Hessw2 − w2Hessw1 = w1Δw2 − w2Δw1

n
g.

So V is a conformal field. If V is Killing for all w1, w2 ∈ W̊ , then

w1Hessw2 = w2Hessw1. (6.1)

Let p ∈ M and define W̊p = {w ∈ W̊ | w(p) = 0}. If W̊p = W̊ at some point p, then all functions in W̊
vanish at p. Since W̊ is invariant under the transitive group of isometries, this would imply that W̊ is trivial. 
Therefore, W̊p �= W̊ ∀p. In fact, if we define q′ by the formula
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q′
p = Hesspw

w(p)
where w ∈ W \ W̊p, (6.2)

then q′ is well defined on all of M by (6.1). We then have that W̊ (q) = W (q′) which contradicts that W is 
essential.

Therefore, if W̊ is essential, then (M, g) must support a non-Killing conformal field and by Proposition 2.5
the space is locally conformally flat. �

In the F̊ case, we showed that any product space was inessential, the following proposition shows that 
this is not the case for W̊ .

Proposition 6.4. Suppose that (Mn, g) = (Mk
1 × Mn−k

2 , g1 + g2) is a product manifold and q = c1g1 + c2g2
where ci ∈ R and c1 �= c2, then

W̊ (M, g, q) = W (M1, g1, λg1) ⊕ W (M2, g2, −λg2),

where λ = c1 − c2.

Proof. If w ∈ W̊ , then Hessw(X, U) = 0 for X ∈ TM1, U ∈ TM2, so by [20, Proposition 2.1], w = w1 + w2
where wi is a function on Mi. This shows that for X, Y ∈ TM1

˚Hessw(X, Y ) = Hessg1w1(X, Y ) − Δg1w1 + Δg2w2

n
g1(X, Y ).

However, as

q̊ = c1g1 + c2g2 − kc1 + (n − k) c2

n
(g1 + g2) = n − k

n
λg1 − k

n
λg2

we also have

˚Hessw(X, Y ) = wq̊(X, Y ) = n − k

n
λwg1 (X, Y ) .

Setting these equations for ˚Hessw equal shows that Hessg1w1 is conformal to g1. Thus

(
n − k

n
λw + Δg1w1 + Δg2w2

n

)
g1 = Hessg1w1 = Δg1w1

k
g1.

This implies that there is a constant α such that

n − k

nk
Δg1w1 − n − k

n
λw1 = n − k

n
λw2 + 1

n
Δg2w2 = α.

α is constant as the left side of the equation depends on M1 only and the right depends on M2 only.
By assumption λ �= 0, so

Hessg1w1 = Δg1w1

k
g1 =

(
λw1 + α

n

n − k

)
g1 = λ

(
w1 + α

λ

n

n − k

)
g1,

Hessg2w2 = Δg2w2

n − k
g2 =

(
−λw2 + α

n

n − k

)
g2 = −λ

(
w2 − α

λ

n

n − k

)
g2.
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Taking

w′
1 = w1 + α

λ

n

n − k
w′

2 = w2 − α

λ

n

n − k

we then have w = w1 + w2 = w′
1 + w′

2 where

Hessg1w′
1 = λw′

1,

Hessg2w′
2 = −λw′

2. �
This gives us the following partial converse to Lemma 6.3

Proposition 6.5. Let (M, g) be a simply connected homogeneous locally conformally flat manifold. Then 
there is a unique Isom(M, g)-invariant trace-free quadratic form q such that W̊ (q) is an essential (n + 2)-
dimensional space of functions.

Proof. For a simply connected space form, since the isometry group acts isotropically, the only Isom(M, g)-
invariant trace-free quadratic form is the zero tensor and we have already seen that this is an essential 
(n + 2)-dimensional space. For the product cases in Theorem 2.6, since q is assumed to be Isom(M, g)-
invariant and the isometry groups split in these cases and act isotropically on each factor, q = c1gB + c2gF . 
For R1, dim(W (λg)) = 2 for all λ. For Sk(κ), dim(W (−κg)) = k + 1, dim W (0) = 1, and dim(W (λg)) = 0
for λ �= 0, −κ. For Hk(−κ), dim(W (κg)) = k + 1, dim W (0) = 1, and dim(W (λg)) = 0 for λ �= 0, −κ.

Proposition 6.4 shows that if c1 − c2 = −κ then W̊ has dimension n + 2 and is essential. In addition

q̊ = c1gB + c2gF − kc1 + (n − k) c2

n
(gB + gF ) = −n − k

n
κgB + k

n
κgF . �

This now gives us the structure theorem for W̊ .

Theorem 6.6. Let (M, g) be a G-homogeneous manifold and let q be a G-invariant tensor such that there is 
a non-constant function in W̊ (M, g, q), then (M, g) is isometric to either

(1) a locally conformally flat space,
(2) a direct product of a homogeneous space and a space of constant curvature with W̊ consisting of functions 

on the constant curvature factor,
(3) (N × R)/π1(M) with W = {w : R → R | w′′ = τw} where τ < 0 is constant, or
(4) a one-dimensional extension of a homogeneous space.

Moreover, when (M, g) is not conformally flat, W̊ (q) = W (q′), where q′ is a G-invariant tensor of the form 
q′ = q−λg for some λ ∈ R. If, in addition, q is Codazzi, then (M, g) is isometric to one of the cases (1)-(3).

Proof. If W̊ (q) is essential, then (M, g) is locally conformally flat. If W̊ (q) is inessential, then W̊ (q) = W (q′)
and q′ = q−φg. Since q and q′ are both invariant under the transitive group G, φ is constant. Then applying 
Theorem 5.5 to W (q′) gives the result. �

Now we prove Theorem 1.10 from the introduction.

Theorem 6.7. Suppose that (M, g) is a compact locally homogeneous manifold and q a local isometry invariant 
symmetric two tensor.
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(1) If F̊ (q) contains a non-constant function, then (M, g) is a spherical space form.
(2) If W̊ (q) is non-trivial, then (M, g) is a direct product of a homogeneous space N and a spherical space 

form, isometric to (N × R)/π1(M), or isometric to (Sn−1(κ) × R1)/Γ.

In particular any positive function in F̊ (q) or W̊ (q) must be constant.

Proof. Let (M, g) be locally homogeneous and f ∈ F̊ (q), let (M̃, ̃g) be the universal cover with covering 
metric and let q̃ = π∗q be the pullback of q to the universal cover. Then the pullback function f̃ = π∗f is 
in F̊ (M̃, ̃g, ̃q). Then, since q is invariant under local isometries of (M, g), it is invariant under the isometry 
group of (M̃, ̃g). We can then apply Theorem 4.6 to conclude that (M̃, ̃g) is a sphere as f̃ is a bounded 
function and none of the other possibilities given by Theorem 4.6 admit a function in F̊ which is bounded.

The cases of W and W̊ are similar in that we can apply Theorems 5.5 and 6.6 respectively to the universal 
covers and the only possibilities for a having a bounded function are the ones given.

We note that none of these spaces in the conclusion of the theorem admit a positive function because all 
of the solutions on the sphere have zeroes. �
7. Quasi-Einstein and conformally Einstein metrics

In this section, we apply the structure theorems from the previous sections for W and W̊ to the tensor 
q = 1

mRic for a constant m. The corresponding equations

Hess w = w

m
(Ric − λg)

˚Hess w = w

m
R̊ic

are often called the m-quasi Einstein and generalized m-quasi-Einstein equations respectively. In the liter-
ature, the equations are often considered in the case where w is a positive function and then the equations 
can be re-written in terms of f when w = ef , but our results do not require w to be positive. When 
m > 1 is an integer, solutions to the m-quasi Einstein equation correspond to warped product Einstein 
metrics. Theorem 7.1 is a generalization of structure results obtained by the authors with He in [14]. When 
m > 1, Lafuente in [17] further showed that if M is a homogeneous m-quasi Einstein metric that is a 
one-dimensional extension of a homogeneous space, N , then N is an algebraic Ricci soliton.

Thus, directly combining this work with Theorem 6.6, we obtain a result for homogeneous generalized 
m-quasi Einstein metrics when m > 1.

Theorem 7.1. Suppose (M, g) is homogeneous Riemannian manifold that admits a non-constant function w
which solves the generalized m-quasi Einstein equation for some m > 1. Either M is a locally conformally 
flat space, a product of an Einstein metric and a space of constant curvature, the quotient of the product of 
a homogeneous space and R, (H × R)/π1(M), or a one-dimensional extension of an algebraic Ricci soliton 
metric.

The construction in [14] also shows that any algebraic Ricci soliton metric can be extended to a warped 
product Einstein metric and that the derivation used to extend the soliton is a multiple of the soliton 
derivation.

When m < 0 the m-quasi Einstein equation does not seem to have been studied in depth. In fact, we 
will see below that the question of which spaces have one-dimensional extensions that are quasi-Einstein is 
more complicated in this case. As a simple example of the difference between the m > 0 and m < 0 cases 
consider the m-quasi Einstein structures on Sn and Hn.
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Example 7.2. Consider Sn(κ) or Hn(−κ), the spaces of constant curvature ±κ. Clearly Ric = ±κ(n − 1)g, 
but there are non-constant functions satisfying Hessw = ∓κwg. So

Ric − m

w
Hessw = ±κ(n + m − 1)g.

In particular, when m < −(n − 1), then Hn(−κ) has λ > 0 and Sn(−κ) has λ < 0. Note that hyperbolic 
space is a one-dimensional extension of Euclidean space, so it is possible to have λ > 0 for a one-dimensional 
extension, at least when m < −(n − 1).

Of special interest is the case m = 2 − n, n ≥ 3, where the equation

˚Hessw = w

2 − n
R̊ic

is the almost Einstein equation. If there is a positive solution to this equation we call the space conformally 
Einstein. Theorem 6.6 shows that the only interesting homogeneous almost Einstein metrics are conformally 
Einstein.

In dimension 4, homogeneous conformally Einstein spaces are classified in [5] by studying the Bach tensor 
of homogeneous 4-manifolds. In the classification, any non-symmetric space example is homothetic to one 
of three families of one-dimensional extensions of 3-dimensional Lie algebras. One of the examples (case (ii) 
of [5, Theorem 1.1]) is a one-dimensional extension of the Ricci soliton on the 3-dimensional Heisenberg 
group, the other two families are extensions of the abelian Lie algebra and the extension derivations are not 
soliton derivations. In particular, these non-soliton families have λ = 0. Another difference when m < 0 is 
that not all algebraic solitons can be extended to m-quasi Einstein metrics when m < 0 as, for example, 
the solvable 3-dimensional soliton cannot be extended to a conformally Einstein metric.

Inspired by these examples we give two constructions of m-quasi Einstein metrics for any dimension n
and parameter m. First we consider when we can extend an algebraic Ricci soliton to an m-quasi Einstein 
metric for general m.

Proposition 7.3. Let (Hn−1, h) be an algebraic Ricci soliton metric

Ric = λI + D.

There is a non-Einstein homogeneous m-quasi Einstein metric with Lie algebra Rξ � h, where adξ = αD

for some constant α, if and only if trD > mλ.

Remark 7.4. For an algebraic Ricci soliton, trD > 0 and λ < 0, so the condition is trivially satisfied when 
m > 0. Also note that tracing the soliton equation gives tr(D) = scal−(n −1)λ, so the condition is equivalent 
to scal > (n + m − 1)λ. For the conformal Einstein case, m = 2 − n the condition is scal > λ.

Remark 7.5. For the soliton on the three-dimensional Heisenberg group scal = λ/3 while for the soliton on 
the three-dimensional Lie group Sol scal = λ. In particular, the three dimensional Heisenberg group can be 
extended to a conformally Einstein metric, but Sol can only be extended to a m-quasi Einstein metric when 
m > −2.

Proof. By [14, Lemma 2.9] the Ricci tensor of such a one-dimensional extension is

Ric (ξ, ξ) = −α2tr(S2),

Ric (X, ξ) = −αdiv(S), (7.1)

Ric (X, X) = RicH(X, X) −
(
α2trS

)
h (S(X), X) − α2h([S, A](X), X),
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where S = D+Dt

2 and A = D−Dt

2 . For an algebraic Ricci soliton, D is symmetric so S = D, A = 0, 
div(D) = div(Ric) = 0, and tr(D2) = −λtr(D), so we have

Ric (ξ, ξ) = λα2trD,

Ric (X, ξ) = 0,

Ric (X, X) = λg +
(
1 − α2trD

)
h (D(X), X) .

When we write w = ear, then Hessw = wa2dr ⊗ dr − waαh(S(·), ·) (see the proof of [14, Theorem 3.3]) and

(
Ric − m

w
Hessw

)
(ξ, ξ) = λα2trD − ma2,(

Ric − m

w
Hessw

)
(X, X) = λh(X, X) + (1 − α2trD + maα)h (S(X), X) .

So, if we want to obtain Ric − m
w Hessw = λg, then we have to solve the equations

λ = λα2trD − ma2,

1 = α2trD − maα

for the unknown constants α and a. Multiplying the second equation by λ and subtracting the two equations 
gives that either a = 0 or a = αλ. The a = 0 case is the Einstein case, so we take a = αλ. Plugging this 
back into the system gives

1 = α2(trD − mλ)

so there exists such an α if and only if trD > mλ. �
Proposition 7.6. Let h be an abelian Lie algebra and D a normal derivation of h such that

tr(S2) = − tr(S)2

m
,

where S = D+Dt

2 , then there is a homogeneous m-quasi Einstein metric with Lie algebra Rξ � h where 
adξ = D and λ = 0.

Remark 7.7. Taking n = 4, m = −2, we obtain the condition that 2tr(S2) = tr(S)2. The examples in [5]
have these properties.

Proof. We again use the equations (7.1). Since h is abelian, RicH = 0, and div(S) = 0 for any D, it follows 
that

(
Ric − m

w
Hessw

)
(ξ, ξ) = −tr(S2) − ma2,(

Ric − m

w
Hessw

)
(X, ξ) = 0,(

Ric (X, X) − m

w
Hessw

)
(X, X) = − (trS − ma) h (S(X), X) .

When a = trS the condition tr(S2) = − tr(S)2
shows that both equations vanish. �
m m
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Conversely, we have the following necessary conditions for any m-quasi Einstein metric and, if the deriva-
tion is normal, the following partial converse.

Proposition 7.8. Suppose that there is a homogeneous m-quasi Einstein metric with Lie algebra Rξ�h where 
adξ = D and w = ear. It follows that div(S) = 0 and tr(S2) = −atr(S). Moreover, if D is normal, then 

either (Hn−1, h) is a Ricci soliton or (H, h) is a flat space and tr(S2) = − (tr(S))2

m .

Proof. Consider again the equations (7.1). First note that 
(
Ric − m

w Hessw
)

(X, ξ) = 0 implies that div(S) =
0 is necessary.

We also have q = Hessw
w , for q with divq = 0. In terms of r, this gives

divHessr = −aΔrdr.

By the Bochner identity,

divHessr = ∇Δr + Ric(ξ) = Ric(ξ).

So using the equation Ric(ξ, ξ) = −tr(S2) from (7.1) we have

−tr(S2) = Ric(ξ, ξ) = divHessr(ξ, ξ) = −aΔr = atr(S).

Now, if D is normal we obtain [A, S] = 0 so the equations become
(

Ric − m

w
Hessw

)
(ξ, ξ) = −tr(S2) − ma2,(

Ric (X, X) − m

w
Hessw

)
(X, X) = RicH(X, X) − (trS − ma) h (S(X), X) .

Let β = trS − ma. When β �= 0 we have RicH = λ + βS, so H is a Ricci soliton.
Otherwise, for β = 0 it follows that RicH = λg, trS = am, and λ = −tr(S2) −ma2. But then the equation 

tr(S2) = −atr(S) implies that λ = 0 and consequently H is flat since homogeneous Ricci flat metrics are 
flat [1]. �

We finish with a final characterization of spaces that are conformally Einstein that comes from a different 
approach.

Lemma 7.9. Assume (Mn, g) has a one-dimensional space of solutions to the conformal Einstein equation:

˚Hessw = w

2 − n
R̊ic,

i.e., g̃ = w−2g is an Einstein metric. If G is a transitive group of isometries and H ⊂ G is the co-dimension 
one normal subgroup that fixes w, then H acts isometrically on the conformally changed Einstein metric g̃
and G acts conformally. Moreover, either

(1) w is constant and g is Einstein,
(2) w = ear and (M, g) is isometric to Hn

(
−a2)

, or
(3) w = ear and all conformal fields from the action of G have constant divergence with respect to g̃.

Proof. Note that G clearly acts conformally with respect to g̃. If G acts isometrically, then w is forced to 
be constant and vice versa. Thus we can assume that w = ear, a > 0. Since H fixes w it follows that it 
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acts isometrically on g̃. This shows that the Riemannian submersion r : (M, g) → R can be altered to a 
Riemannian submersion 1

aw : (M, g̃) → (0, ∞). We let h ⊂ g denote the Lie algebras of vector fields on M
that correspond to H ⊂ G. On (M, g̃) all of the fields in g are conformal and the fields in h are Killing. 
Consider Z ∈ g − h so that LZ (g̃) = 2

n (divg̃Z) g̃. A well-known formula by Yano shows that if u = divg̃Z
n , 

then

LZR̃ic = − (n − 2) Hessg̃ u − Δug̃.

As R̃ic is Einstein this implies that u ∈ V̊ (M, g̃). If some nonzero u is constant, then all fields in g have 
constant divergence with respect to g̃ as in case (3). Otherwise, we have a non-constant u ∈ V̊ (M, g̃). This 
gives a local warped product structure for g̃. We claim that it is global by showing that u = u (r). Since 
h ⊂ g is an ideal we have that [X, Z] ∈ h for all X ∈ h. Thus

0 = L[X,Z]g̃ = LXLZ g̃ − LZLX g̃ = LX (2ug̃) = 2 (DXu) g̃.

This shows that u is invariant under H and hence that u = u (r). Thus

g̃ = w−2g = dt2 + ϕ2 (t) gN ,

g = w2 (
dt2 + ρ2gN

)
= dr2 + ρ2gN .

When the metric is inessential we can use Corollary 5.8 to conclude that we are in case (2). In case it is 
essential we can instead use Takagi’s classification (see Theorem 2.6) to see that only hyperbolic space can 
admit solutions of the from w = ear, a �= 0, to the conformal Einstein equation. �
Appendix A. Kähler manifolds

In this appendix we include a discussion of some of the spaces of functions discussed above on Kähler 
manifolds. No isometric symmetry is assumed in this section, but we will assume that the tensor q is 
Hermitian.

Recall that a Kähler manifold is a complex manifold, M , equipped with a Riemannian metric, g, such 
that the complex structure J is skew-adjoint and parallel with respect to g. A symmetric 2-tensor, q, is 
called Hermitian if q(Jv, w) = −q(v, Jw). If q is Hermitian, then χ(v, w) = q(Jv, w) defines a 2-form. Note 
that the Ricci tensor and metric of a Kähler manifold are Hermitian with closed 2-form. Thus, for Kähler 
gradient Ricci solitons, quasi Einstein metrics, and conformally Einstein metrics the tensor q is Hermitian 
and the corresponding 2-form is closed.

In fact, the problem of when a Kähler manifold admits a non-trivial function with Hermitian Hessian has 
been investigated extensively by Derdzinski and Maschler where they obtain interesting results for Kähler 
conformally Einstein manfiolds [7–9]. Note that functions with Hermitian Hessian are also called Killing 
potentials because Derdzinski and Maschler show that a function has Hermitian Hessian if and only if J
applied to the gradient is a Killing field. Case, Shu, and Wei also obtain a rigidity result for Kähler quasi-
Einstein metrics which says that they must be a quotient of a product of a surface and an Einstein metric 
[6, Theorem 1.3]. In this appendix we verify that this result holds in general for functions in a solution space 
of the form W (q) when q is Hermitian and the corresponding 2-form is closed.

Proposition A.1. Let (M, g) be a simply connected Kähler manifold and q a Hermitian symmetric two-
tensor such that the corresponding 2-form is closed. If W (q) is non-trivial, then (M, g) is an isometric 
product N2

1 × Nn−2
2 and W consists of functions on the N1 factor only.
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Proof. Let w be a non-constant function such that Hessw = wq. The proof proceeds as in [6] as the only 
properties used in the proof come from the general properties of q. We include an outline of the proof for 
completeness.

Let χ(v, w) = q(Jv, w), ω = g(Jv, w) and φ = Hessw(Jv, w) = 1
2L∇wω. Then φ is closed as the Lie 

derivative of a closed form ω. By assumption φ
w is also closed as it is equal to χ. Therefore, dw ∧ φ = 0.

Then

(dw ∧ φ)(X, Y, Z) = (DXw)φ(Y, Z) + (DY w)φ(Z, X) + (DZw)φ(X, Y )

= (DXw)g(∇JY ∇w, Z) + (DY w)g(∇JZ∇w, X) + (DZw)g(∇JX∇w, Y )

Taking X, Y ⊥ ∇w, Z = ∇w then gives

0 = |∇w|2g(∇JX∇w, Y ) = −|∇w|2g(∇X∇w, JY ).

So that ∇X∇w ⊥ JY whenever ∇w �= 0. On the other hand, taking X = ∇w, Y = J∇w and Z ⊥ ∇w we 
also obtain

0 = |∇w|2φ(JX, Z) = −|∇w|2g(∇∇w∇w, Z).

Which implies that ∇∇w∇w is parallel to ∇w when ∇w �= 0.
Putting this together shows that ∇·∇w ∈ span{∇w, J∇w}. The fact that Hessw is Hermitian also implies 

that ∇·J∇w = J(∇·∇w). So we also have that ∇·J∇w ∈ span{∇w, J∇w}.
This implies that span{∇w, J∇w} is a parallel distribution on the set where ∇w �= 0 and thus gives 

an isometric splitting on this set. Since ∇·∇w = wq and q is assumed to be smooth, we also have that 
this distribution is locally uniformly continuous, so that the isometric splitting extends to the closure of 
{∇w �= 0}. However, since w is a Killing potential, by remark 5.4 in [7], ∇w �= 0 almost everywhere, so we 
have the isometric splitting on all of M . �

In contrast to this result for W (q) note that there are many interesting examples of Kähler Ricci solitons 
and Kähler conformally Einstein spaces, so no such strong rigidity is possible for the spaces of function F (q), 
F̊ (q) or W̊ (q) when q is assumed to be Hermitian. See [7–9] for further results on Kähler Killing potentials.
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