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Abstract 
 
Laboratory automation and data science are valuable new skills for all chemists, but most pedagogical 

activities involving automation to date have focused on upper-level coursework. Herein, we describe a 

combined computational and experimental laboratory suitable for a first-year undergraduate general 

chemistry course, in which these topics are introduced in the context of determination of the solubility 

equilibrium constant of lead iodide. Students analyze their data using a logistic regression analysis, 

which has a physical interpretation in terms of the solubility equilibrium expression and its 

stoichiometric coefficients. In addition to laboratory automation, data visualization, and data fitting 

skills, students also practice core laboratory skills such as the preparation of stock solutions using a 

volumetric flask and use of micropipettes. To keep the lab affordable, we demonstrate the use of a low-

cost 3d-printed liquid dispensing robot to perform the automated experiment, in addition to a 

commercial liquid-handling robot.  Example pre- and post-lab computational notebooks are provided in 

both Mathematica and Python programming languages. 
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Introduction 
 

Data science and laboratory automation are rapidly becoming essential tools in modern 

experimental chemistry.1,2 As such, it is important that we teach these skills throughout the chemistry 

curriculum, but  efforts to date have primarily been in upper-level courses. Recent articles in this 

Journal have discussed training machine learning for spectroscopy-related problems in physical and 

analytical chemistry.3–6 High-throughput experimentation has been discussed in the context of second-

year organic chemistry and upper-level biochemistry courses.7–10  The closely related idea of 

autonomous experimentation1—colloquially known as “self-driving labs”— has been discussed in the 

context instrumental analysis or advanced elective courses.11–17  

How could data science and automation be incorporated in the first-year undergraduate 

laboratory experience? Aspects of experiment planning algorithms may be taught as instructions for 

humans,18 but in general, some amount of computer programming is needed.  High-level programming 

environments, such as Mathematica, enables first-year undergraduates to perform non-trivial tasks 

related to  scientific computing and chemistry19 and training neural networks to identify chemical 

glassware identification.20 Our goal is to incorporate data analysis into the experimental laboratory 

experience. Additionally, we want to change student mindsets away from thinking about results 

comprised of a single experiment to thinking about dozens or even hundreds of parallel experiments. 

Automation is merely a means to that end, so this first student experience emphasizes using automation 

to solve a problem rather than the technical aspects of building devices. 

In this paper, we describe a combined computational and experimental laboratory experience for 

first-year undergraduate students that introduces ideas of high-throughput experimentation and data 

analysis in the context of determining a solubility equilibrium constant. Equilibrium and equilibrium 

constants are foundational parts of introductory chemistry curriculum, so this synchronizes with existing 



 3 

coursework. Solubility and solubility product equilibrium determination experiments are a common part 

of both introductory and advanced undergraduate pedagogical laboratory experiences. (The subtle 

distinction between these two ideas has been discussed previously;21 our focus shall be on the latter.) 

Past articles in this Journal have discussed pedagogical experiments for the determination of the 

solubility product,22,23 and its dependence upon ionic strength.24 A variety of methods are used, 

including gravimetric measurements,22,25,26  complexometric titration,27 colorimetry,28 potentiometry,29 

gamma-emission from 65Zn,30 and benchtop NMR.31 In general, these labs have students perform a small 

number of experiments, and perform relatively simple numerical calculations to analyze their data. A 

notable exception is the upper-level quantitative analysis or physical chemistry lab described by 

McGarvey, in which students pool data and perform a nonlinear least squares regression to determine 

parameters in a Debye-Hückel model of the ionic strength effect.27  

Our experiment takes a very different approach to determining the solubility equilibrium 

constant. Instead of slow, quantitative analyses of each reaction, a student need only quickly and 

qualitatively determine if a precipitation occurred or not. The experimental steps require manipulations 

commonly taught in first year laboratory programs (use of volumetric glassware, preparation of 

solutions with specific concentrations) plus the use of automatic pipettors. Automated experimentation 

allows each pair of students to generate a statistically large sample (as many as 96 experiments), 

enabling the use of a logistic regression model to infer the solubility product constant. In addition to 

emphasizing the underlying topic of equilibria, it engages students in thinking about experimental 

precision and sources of error. The experiment can be performed with a range of equipment from 

manual pipetting to a $800 home-made liquid dispenser to a commercial liquid handler, and thus can be 

adapted to the resources available at any institution. The experiment introduces elementary ideas of 
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computer programming and data analysis, without the need for prior student experience in these topics.  

This experiment is designed to follow a classroom discussion of equilibrium. 

 
Theory 

 

 
FIGURE 1: Illustration of concentration space, convex hull, random experiment, and equilibrium 
concepts.  The stock solutions—denoted (a), (b), (c)—correspond to points in the concentration space 
plane.  Mixtures between any pair of stock solutions define a solid line.  The convex hull defined by 
the stock solutions—in this case, the triangle with vertices (a), (b), (c)—define the possible 
compositions that can be achieved by mixing the stock solutions.  Random experiments are illustrated 
by the points.  Experiments whose composition is above the dashed equilibrium line (d) are 
supersaturated and result in crystal formation (red); points below the equilibrium line are 
undersaturated and will not result in crystal formation (black).  The equilibrium line (d) best separates 
the two types of observations.   

 
This experiment is best described in terms of the concentration space formalism.32,33 Figure 1 

shows a schematic illustration of this approach. Each stock solution is represented as a vector, whose 

components denote the concentration of a species of interest. For the precipitation of PbI2 from aqueous 

Pb2+ and I- salts, we ignore the counter ions, so the relevant dimensions are [Pb2+] and [I-] 

concentrations. Pure solvent (in this case water) has a concentration of {0,0} corresponding to the 

origin. The mixture, !, of any two stock solutions, "!and "", is defined in terms of the volume fraction 
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of each of the solutions, #! and #", which must satisfy 0 ≤ #! ≤ 1 and 0 ≤ #" ≤ 1 and #! + #" = 1. 

For a binary mixture this simplifies to #" = 1 − #!. The composition of the mixture is on a line between 

the two stock solutions, ! = #!"! + #""#. These conditions means that the mixture is a convex 

combination of the stock solutions.34 More generally, the set of all possible mixtures that can be made 

from the set of stock solutions is comprised of all of the possible convex combinations of the available 

solutions, ! = #!"! + #""# +⋯#$"$, where the volume fractions each obey 0 ≤ #% ≤ 1 and 

collectively obey ∑ #%% = 1. The possible mixtures are contained within the convex hull of the stock 

solution points; one way to visualize this is as region whose boundary is defined by stretching an elastic 

material over the stock solution points. This corresponds to the triangle (a-b-c) in Figure 1. Sampling 

possible compositions corresponds to generating random points within the convex hull. 

Equilibrium expressions, such as Ksp=[Pb2+][I-]2, can also be expressed concentration space;32,33 

this is especially easy to visualize in a two- or three-dimensional problem like the one considered here. 

Rearranging this into an expression for [I-] lets us plot an equilibrium curve in concentration space 

(dashed line in Figure 1). Points above the equilibrium curve correspond to mixtures whose reaction 

quotient, Q, is greater than the equilibrium constant, and thus result in precipitation. Determining the 

equilibrium curve (and its underlying determinative parameter, the equilibrium constant) corresponds to 

finding a function that separates compositions observed to precipitate or not. This is the standard 

machine learning problem of supervised classification. 

The  equilibrium expression lends itself to treatment as classification problem using a logistic 

regression.35 Starting with  ,&' = [.]([0]), take the logarithm of both sides and subtract to yield 0 =

1	 ln[.] + 5 ln[0] − ln,&'. The terms on the right-hand side define the function to fit, f([A], [B]). The 

unknown parameters correspond to the stoichiometric constants, a and b, and the equilibrium constant, 

ln Ksp If the stoichiometric constants (a = 1, b = 2) are known, they need not be included as fitting 
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parameters. (Bishop described the use of a logarithmic transform to obtain graphical estimates of the 

stoichiometric coefficients in solubility product experiments.36) Reaction outcomes are described by an 

indicator variable, y, which takes a value of 1 if precipitation occurs and 0 if no precipitation occurs. 

One fits the logistic function 6 = 1/(1 + 9*+([.],[1])) to match the outcomes by varying a, b, and ln 

Ksp.to best separate the outcome classes. Standard libraries for performing logistic regression and 

obtaining these parameters exist for many programming languages.37,38 As the parameters can all be 

multiplied by a constant value and obtain the same fit, it is necessary to normalize the values relative to 

one of the parameters—in this case, setting the stoichiometric coefficient of Pb2+ as the unit is a natural 

choice.  

 

Learning Objectives 

• Apply knowledge of solution mixing and equilibria in an experimental setting. 

• Introduce laboratory automation (for synthesis and characterization) and learn where this is an 

appropriate strategy. 

• Introduce ideas about error and precision in laboratory experimentation. 

• Develop and practice basic computer and data handling skills. 

 

Materials  

Lead(II) nitrate (Pb(NO3)2, 99+ %) and potassium iodide (KI, 99 %) were purchased from 

Sigma-Aldrich and used without further purification, (approximately 0.330 g of Pb(NO3)2 and 0.166 g of 

KI are needed per group). Deionized water was used in these reactions. Equipment needs consist of two 

100 mL volumetric flasks, two ~20 mL vials, three SBS microplates, and one or two 100 uL 

micropipettes per group. Two different robot systems were used for testing the experiment. The Sidekick 
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is an open-source, low-cost liquid dispenser;39 the device used in the experiment was built by the two 

undergraduate coauthors (KH and GJ). A Hamilton NIMBUS 4 enclosed 4-channel liquid handler was 

also used. Alternative hardware options are discussed below. Student exercises were performed using 

Mathematica 13.2;40 a free version of this software is available for non-commercial use on the Raspberry 

Pi computer.41 New users of Mathematica at academic institutions are encouraged to consult their 

information and technology department as licensing is controlled at an institutional level. We have also 

provided versions of these student exercises as Python 3 Jupyter notebooks; this requires some 

additional installation of modules for interactivity described in the Instructor Guide. 

 

Hazards and Disposal 

Caution: Lead compounds are poisonous; wear gloves and wash your hands thoroughly after use. Lead 

is a well-known toxic substance whose primary toxicity mode is by ingestion.42 Follow usual laboratory 

best-practices of safety eyewear, lab coats, gloves, and handwashing after lab to minimize lead 

exposure. Lead-containing waste should be properly disposed of in a dedicated waste container. 

 
Caution: Use caution with automated liquid handlers by keeping hands away from the moving parts 

during operation. Larger liquid handlers, like the NIMBUS, are often inside a safety interlock cabinet to 

prevent the user from reaching inside during operation; this should be used, if applicable. This is less of 

a concern with the Sidekick, whose motors provide too little torque to cause pinch hazards. 

 

Description of the Laboratory 

The laboratory experience consists of a pre-lab computational exercise, an experimental 

laboratory period, and a post-lab data analysis period, depicted schematically in Figure 2.  



 8 

The target student population are first-year undergraduate general chemistry students, without any 

specific pre-requisites in computer programming or mathematics. About half of the students had 

previous exposure to Mathematica through undergraduate calculus courses, with the others having no 

prior experience. Mathematica and Python notebooks, laboratory protocols, and scripts facilitating the 

automation are provided in the electronic Supporting Information. The pre-lab experience provides a 

theoretical discussion of concentration space, reaction design, and some basic programming activities. 

The in-lab exercises provide opportunities to introduce micro pipettors, volumetric solution preparation 

and the use of automated experiment platforms. The post-lab activities focus on observation, reaction 

evaluation, data entry and data analysis.   

 
 

 
 
FIGURE 2: Schematic of experimental workflow.  

 
Pre-lab computational activity. An interactive Mathematica 13.2 notebook is provided to the 

students for a pre-lab activity introducing the key concepts. This exercise covers the following topics: (i) 

Introduction to Mathematica (variables, functions, plotting); (ii) Concentration space representation of 

mixtures and equilibria; (iii) Generation of randomized reactions; (iv) Plotting and fitting of hypothetical 

data. (We also developed a Python 3 version of these exercises, which covers similar material, but the 

interactivity is less polished.) 
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A brief prelude introduces computer programming concepts of variables and functions, links to 

Mathematica tutorial videos, , and supplementary reading resources. The emphasis is on students 

learning how to read program code and to make small modifications to the code; they are not required to 

write large sections of code. In places, the text provides additional optional explanations or calculation 

methods that involve ideas from linear algebra to engage students with more advanced mathematics 

experience. 

 
FIGURE 3: Interactive activities contained in the pre-lab assignment: (a) solution mixing; (b) 
equilibrium curve; (c) equilibrium curve after taking the logarithm of the concentrations.  

 

The first part of the notebook contains interactive visualizations which do not require the 

students to enter any program code, but instead to explore how the system responds by manipulating 

slider bars. See Figure 3. The first activity introduces the idea of solution mixing and convex hulls (Fig 

3a). Students are instructed to see how selecting different volume fractions results in different final 

mixtures. An interactive animation of the equilibrium curve in terms of the linear concentration (Fig 3b) 

and logarithm of concentration (Fig 3c) is used to build student intuition about data-fitting. The slider 

changes the fitting parameters, allowing students to adjust the equilibrium curve (red line) to best divide 

the two sets of outcomes in an example dataset. Finally, students perform a numerical logistic regression 

fit on an example data set and plot the results.  
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The second part of the notebook guides students through generating their own experimental plan. 

Students construct a convex hull for three stock solution concentrations (a lead source, and iodide 

source, and water), sample random concentrations within this space, and convert those concentrations to 

stock solution volumes. Students each generate 96 random experiments to perform, exporting them as a 

comma-separated-value (CSV) file, for use in both the both the manual- and automated-experiments. 

Each row specifies an experiment, described in terms of three columns indicating the volumes of the 

three liquids (water, Pb2+ (aq), I- (aq)).  TAs perform file conversions into robot specific formats using 

file conversion scripts provided in the Supporting Information.  

 

In-lab exercises. This experiment is designed to be viable for a range of experimental 

configurations involving 96-well microtiter plates. A detailed, step-by-step lab procedure is provided in 

the Supporting Information. The laboratory begins with a demonstration of the proper use of a 

micropipette, as many students have little to no experience with this equipment and it is a useful 

laboratory skill for subsequent molecular biology and biochemistry courses. The instruction includes the 

proper way to pick up and drop a tip, setting the volume of the micropipette, and accurately dispensing 

the desired volume.  The instruction is most effective when each student has a micropipette in hand. 

Commercial micropipettes are commonly available, but 3d-printed micropipettes are sufficiently 

accurate.43 Each student performed 12 or 24 manual experiments, depending on time, from their 

randomly generated 96-reaction dataset generated in the pre-lab exercise.   

A low-cost approach to automation used the Sidekick liquid dispenser robot, which can be built 

for under $800 USD in about 4 hours.39 The Sidekick uses digital dispensing pumps which are pre-

calibrated to dispense 10 uL per cycle, minimizing the need for extensive volumetric or gravimetric 

calibration. A higher-cost approach is to use a general liquid handler robot, which is essentially a 
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computer-controlled micropipette on a Cartesian axis gantry capable of both aspirating samples and 

dispensing them. However, for this laboratory requires only liquid dispensing. We used a Hamilton 

NIMBUS 4 with disposable 300-uL tips, which retails for approximately $70,000. Many other liquid 

handlers are capable of the experiments described here, including the OpenTrons OT-2 (which can be 

purchased for approximately $10,000 USD44) and pipette-based liquid handlers constructed from 

Lego™ 45,13  or laser-cut parts.46  

Students are divided into pairs, with each student prepared one 100 mL of 0.010 M stock 

solution (either Pb2+ or I-) using Pb(NO3)2 or KI and deionized water. Students calculate the mass of 

either Pb(NO3)2 or KI required for their respective stock solution. Stock solution volumes of 100 mL 

suffice for 144 experiments, comprising both manual- and automated experiments. In order to be 

efficient in lab, hand pipetting, automated NIMBUS and Sidekick experiments are conducted 

concurrently. Completing 96 automated-experiments required approximately 20 – 30 minutes. As such, 

the first two groups to prepare their stock solutions started with the automated experiments, under the 

supervision of the TA or instructor.  Each group performed one complete set of 96 automated 

experiments according to the plan they generated, on one of the two robots described above.  The 

remaining groups began with hand-pipetting experiments. As automated experiment runs completed, 

additional groups shifted from hand-pipetting to automated experiments. Each student performed at least 

12 hand-pipetting reactions, based upon their 96 random reaction dataset, with additional experiments 

performed if time permitted. Seven of the fourteen students completed 12 hand-pipetting experiments, 

while the remaining seven completed 24 reactions. At the conclusion of the experiment, students cover 

and label their SBS plates. Lead-containing and non-lead-containing (KI solution) aqueous waste were 

collected separately in waste containers.  
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Precipitation can be slow, especially if the reaction composition is near the equilibrium curve 

(i.e., only slightly supersaturated). This means observations taken at the end of the laboratory period are 

likely to result in significant false negative results. To avoid this, digital photographs were taken of each 

reaction plate after 24 hours using a cell phone camera, and shared with students via Google drive, 

before disposing of the plates. Reaction plates were stored at room temperature in the laboratory.  No 

additional temperature control was employed.   

Our emphasis was on giving students hands-on experience with solution preparation, manual 

micropipettes, and laboratory automation. However, the experiments could be conducted using a 

teleoperated laboratory, such as the Carnegie Mellon University Cloud Lab.47 Xie et al. discuss nuances 

of teaching remote-operated wet labs.48 

 

Post-lab data analysis. Students score the outcomes by examining the photograph, noting the 

presence or absence of any quantity of yellow precipitate. An example is shown in Figure 4. Reaction 

scoring criteria were discussed prior to each student evaluating their own reaction results. The instructor 

described the main characteristics of crystal formation (color, habit, and yield), using examples from a 

projected image of a reaction plate. The distinction between crystals and bubbles was intentionally 

addressed, with a focus on round versus angular (for distinguishing bubbles from crystals) and colorless 

versus yellow (for distinguishing the presence of lead iodide). Example differences can be observed in 

wells A8 (bubble) vs A9 (small crystallites) in Figure 4. Reaction yield was discussed in the context of 

both distance between the point in concentration space and the equilibrium curve, and different in the 

reaction quotient, Q, and equilibrium constant, K. We considered automated scoring (e.g., computer 

vision, plate readers) but preferred having the students score outcomes by eye, both for operational 

simplicity and because it enabled student discussions about error sources. 
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Figure 4.  Photograph of 96 reactions. 
 
 

To facilitate student scoring and comparisons, we developed a worksheet that students can use to 

categorize their results before entering them into a spreadsheet. Students used a figure of a blank 96-well 

plate, coloring in reactions with precipitates (provided in the SI). In pairs, scores (1 or precipitation, 0 

for no precipitation) were added as a fourth column to their datasets.  All reactions were scored.  

Students then imported and analyzed their data. We developed a series of instructor slides that 

guide students through the process (using a sample dataset) as they follow along with each step. Each 

student then performed steps to separate the different reaction outcomes, plot results, fit the data, extract 

Ksp values, and analyze ‘misfit’ reactions. Students reported calculated Ksp values and the number of 

misclassified experiments for each batch of experiments (hand pipetting vs automated experiments). 

Finally, students submitted Mathematica notebooks and CSV data files after completing their analyses.  
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Results and Discussion  

Chemical system selection. We considered three commonly used systems—lead iodide, barium 

sulfate, and silver sulfate. The desired properties are that the stock solutions should not be too dilute (to 

minimize possible sources of error in the stock solution), that observational information be accurate 

(facilitated by colored products), and that the reactions be relatively fast (to enable reactions to reach 

equilibrium before solvent evaporation affects outcomes). The stock solution concentrations are selected 

such that approximately half of random reactions sampled within the convex hull result in precipitation. 

We eliminated barium sulfate because of the challenge in making the dilute stock solution needed 

(which would increase error). A colored product facilitates accurate determination of the presence or 

absence of precipitates; Lead iodide is yellow, while silver sulfate is white, making lead iodide the 

superior choice. Although avoiding hazardous materials is desirable, there is ample precedent for using 

lead iodide in pedagogical experiments.23 The use of microscale chemistry minimizes waste generation, 

but developing greener alternatives could be an area for future development. 

 

Reliability and sources of error. Typical first-year laboratory experiments involve performing a 

single—or at most triplicate—experiment, and students expect perfect results. Laboratory experiments 

are generally designed to ‘work’ on a single trial, meaning the absence of a product indicates the student 

failed to correctly perform the appropriate sequence of steps. In contrast, automation lets students take a 

statistical approach to the problem, allowing small variations to be averaged out across many trials. 

Automation lets students quickly generate a large dataset to see statistically meaningful trends, without 

the tedium of repetitive manipulations. Additionally, students can directly observe how the initial 

distance from equilibrium is manifested in the time until an observable outcome, the quantity of product, 

and the likelihood of misclassification.  



 15 

Pre-lab discussions focused on: (i) differences in ‘control’ between traditional and high-

throughput experiments; (ii) sources, qualitative estimation and propagation effects of noise and errors; 

and, (iii) variations in fitted results given a finite data sample. Intuitions gained by the interactive fitting 

activities depicted in Figure 3 helped illustrate how many possible solutions exist. Post-lab discussions 

focused on errors associated with observations (the same 96 reactions being scored and entered by two 

different students) and differences in control and error of the various experimental methods (hand-

pipetting vs automated experiments using different liquid handlers). Discussions were focused around 

calculated Ksp values, as each student performed the data analyses for their hand-pipetted and automated 

experiments during the post lab meeting. The instructor asked for the lowest and highest calculated Ksp 

values for each experiment type. Qualitative differences between experiment type were quickly 

identified. Hand-pipetting resulted in the largest range of values, whereas NIMBUS experiments 

resulted in the smallest range. See Figure 5. These qualitative results were discussed in the context of 

expected precision for each experiment type. Differences were also observed between partners 

evaluating the same 96 experiments. The use of the printed 96-well plate scoring template enabled 

students to quickly determine if their observations differed or if the discrepancy resulted from data entry 

errors. 
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FIGURE 5: Student measurements of Ksp by different processes. Shaded boxes indicate the 
limits of top and bottom quartiles, whiskers indicate the total range of data, black horizontal 
lines indicate the mean, and the shaded diamond indicates the 95% confidence interval limits. 

 
Accuracy of the Determined Equilibrium Constant. Fifteen students performed hand-

pipetting experiments, 9 used the Sidekick, and 7 used the Nimbus (one student performed automated 

experiments on both machines). The determined solubility constants are shown in Figure 5. Hand-

pipetting experiments show a wide range of results and outlier points. Mean and standard error of the 

measured Ksp values from three methods were (2.29 ± 0.31) × 10-8, (2.7 ± 0.4) × 10-8,	and	(2.60 ±

0.19) × 10-8, respectively. All methods agree with the mean prediction, but unsurprisingly the variances 

are greater for the hand-pipetting reactions. This is comparable to the value of 3.1 × 10*3 determined by 

titration of a 0.01 M Pb(NO3)2 solution by Goodman and Petrucci23 and values in the range of 

2.68 × 10*3 − 5.90 × 10*3 (depending on variations in the ionic strength) determined 

spectroscopically by Green et al.49   
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FIGURE 6: Pre-lab student survey responses from the student participants. 

 
 

 
Student Feedback. We surveyed students before and after the lab to assess their preparation and 

perception of the experience. The pre-lab survey comprised 8 yes/no questions about prior preparation; 

the results are depicted in Figure 6. Most students reported no prior classroom or extracurricular 

experience in robotics, data fitting, or machine learning.  While most students had heard about 

automation before, they did not know that it was applicable to chemistry. Approximately half of the 

students had prior experience in computer programming and in Mathematica specifically from previous 

mathematics coursework. We did not characterize the extent of these prior experiences, but the even 

distribution in experience levels suggests that dividing the students into pairs would allow for peer-

instruction.  

The post-lab survey comprised 10 questions scored on a 5-point Likert scale (with 5 is “Very 

strongly agree, 4 is “Agree”, etc.); the results are summarized in Table 1. Students had a positive 

response about their perceived learning of the underlying course content (solution mixing and 

equilibria), perceived acquisition of technical skills (micropipetting, data analysis, programming), and 

desires to learn more about the topics. Students had a stronger perception of improved ability to read 
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program code than they did of writing code. Overall, the experience created a strong desire by the 

students to learn more about laboratory automation and data science, and they enjoyed the experience. 

Having students perform both “traditional” and automated experimentation, stimulated them to think 

and discuss about the relative advantages and disadvantages of different methods, so that they can think 

critically about where this might be applicable in their future work. A more advanced class might follow 

up on this discussion by reading relevant papers, such as Ref. 50, which discuss these issues in the 

context of organic chemistry.  

 
 
TABLE 1. Post-lab student perception survey.  a Mean and standard deviation, scored on a 5-point 
Likert Scale, with 5 as “Very strongly agree”. 
 

Post-lab student perception Outcomea 
Understand solution mixing better 4.3 ± 0.6 
Understand equilibria better. 3.9 ± 0.7 
Understand the tradeoffs between 
manual and automated 
experimentation better. 

4.1 ± 0.8 
 

Learned some skills that will be 
useful for my future studies. 

4.6 ± 0.5 
 

Learned about new ways to fit 
experimental data to solve 
problems. 

4.2 ± 0.7 
 

More able to read Mathematica 
code. 

 4.2 ± 0.7 
 

More able to write Mathematica 
code. 

3.7 ± 1.0 
 

Interested in learning more about 
laboratory automation. 

4.3 ± 0.7 
 

Interested in learning more about 
data science. 

4.3 ± 0.7 

Enjoyed this lab 4.7 ± 0.6 
 

 

Instructor observations. First, the familiarity with Mathematica varied widely across the 

student participants. This made live coding prohibitively slow. Debugging code became an impediment 
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to understanding and to progress. Instead, we shifted to an alternative approach in which students are 

asked to modify provided code. This enabled them to gain an understanding of the code and personalize 

their efforts while avoiding needlessly long steps. Alternatively, students could be provided with the 

code and an asynchronous video explanation, which they could follow at their own pace. The pre-lab 

meeting could then be used for debugging purposes. Second, most student participants had no 

experience with manual pipettors. We found that it was critically important to have a ‘training step’ in 

which each student held a pipettor while an instructor demonstrated how it works. A few minutes 

practicing pipetting water as a group helps avoid many errors in the actual experiments. Third, the 

student participants appreciated engaging with as many aspects of the automated experiments as 

possible. For example, each group recalibrated the Sidekick robot, even though it was not absolutely 

necessary. The inclusion of such steps, if practical or reasonable, provides a more active experience for 

the students.   

 

Conclusion 

In this paper, we describe a combined experimental and computational laboratory experience for 

first-year undergraduate students that introduces micropipetting skills, laboratory automation, and data 

analysis in the context of solubility equilibria determination. Students with little or no prior experience 

in these advanced techniques were able to successfully use and apply them in a lab course and reported a 

positive learning experience. This is a first step towards training a chemistry workforce that is aware of 

automation and data-science methods, and can think critically about sources of error and limitations of 

these approaches. Students reported a desire to learn more about these emerging aspects of chemical 

research practice. They also acquired discrete skills (use of volumetric flasks, solution preparation, 
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pipetting, use of robotic liquid handlers, data import/export, data visualization and fitting), which  are 

useful for future coursework and research. 

While we focused on first-year undergraduate students, this experience could be adapted for 

other student populations.  For example, if more time was spent scaffolding the programming and data 

analysis aspects, this could also be used in a high-school chemistry course. Physical or analytical 

chemistry courses could incorporate the nonideality of the ionic system,27,51 adapting the PbI2 solubility 

lab of Green et al.49 Analytical chemistry students could engage more extensively with the equipment by 

building and calibrating the Sidekick robot dispensing system39 before applying it to this problem. An 

instrumental/quantitative analysis or computer-programming-for-chemists course might incorporate 

basic image analysis, such as counting the number of yellow precipitate pixels in each cell and relating 

this to the distance of each point from the equilibrium curve. (Zhang et al. recently described teaching 

these methods in the context of a senior undergraduate or beginning graduate bioanalytical chemistry 

course,52 which could serve as a model.) 
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