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Abstract

Laboratory automation and data science are valuable new skills for all chemists, but most pedagogical
activities involving automation to date have focused on upper-level coursework. Herein, we describe a
combined computational and experimental laboratory suitable for a first-year undergraduate general
chemistry course, in which these topics are introduced in the context of determination of the solubility
equilibrium constant of lead iodide. Students analyze their data using a logistic regression analysis,
which has a physical interpretation in terms of the solubility equilibrium expression and its
stoichiometric coefficients. In addition to laboratory automation, data visualization, and data fitting
skills, students also practice core laboratory skills such as the preparation of stock solutions using a
volumetric flask and use of micropipettes. To keep the lab affordable, we demonstrate the use of a low-
cost 3d-printed liquid dispensing robot to perform the automated experiment, in addition to a
commercial liquid-handling robot. Example pre- and post-lab computational notebooks are provided in

both Mathematica and Python programming languages.
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Introduction

Data science and laboratory automation are rapidly becoming essential tools in modern
experimental chemistry.!? As such, it is important that we teach these skills throughout the chemistry
curriculum, but efforts to date have primarily been in upper-level courses. Recent articles in this
Journal have discussed training machine learning for spectroscopy-related problems in physical and
analytical chemistry.’-¢ High-throughput experimentation has been discussed in the context of second-
year organic chemistry and upper-level biochemistry courses.” ! The closely related idea of
autonomous experimentation'—colloquially known as “self-driving labs”— has been discussed in the
context instrumental analysis or advanced elective courses.!!17

How could data science and automation be incorporated in the first-year undergraduate
laboratory experience? Aspects of experiment planning algorithms may be taught as instructions for
humans,'® but in general, some amount of computer programming is needed. High-level programming
environments, such as Mathematica, enables first-year undergraduates to perform non-trivial tasks
related to scientific computing and chemistry!® and training neural networks to identify chemical
glassware identification.?’ Our goal is to incorporate data analysis into the experimental laboratory
experience. Additionally, we want to change student mindsets away from thinking about results
comprised of a single experiment to thinking about dozens or even hundreds of parallel experiments.
Automation is merely a means to that end, so this first student experience emphasizes using automation
to solve a problem rather than the technical aspects of building devices.

In this paper, we describe a combined computational and experimental laboratory experience for
first-year undergraduate students that introduces ideas of high-throughput experimentation and data
analysis in the context of determining a solubility equilibrium constant. Equilibrium and equilibrium

constants are foundational parts of introductory chemistry curriculum, so this synchronizes with existing



coursework. Solubility and solubility product equilibrium determination experiments are a common part
of both introductory and advanced undergraduate pedagogical laboratory experiences. (The subtle
distinction between these two ideas has been discussed previously;?! our focus shall be on the latter.)
Past articles in this Journal have discussed pedagogical experiments for the determination of the
solubility product,??* and its dependence upon ionic strength.?* A variety of methods are used,

22,2526 complexometric titration,?” colorimetry,?® potentiometry,?’

including gravimetric measurements,
gamma-emission from %Zn,*° and benchtop NMR.3! In general, these labs have students perform a small
number of experiments, and perform relatively simple numerical calculations to analyze their data. A
notable exception is the upper-level quantitative analysis or physical chemistry lab described by
McGarvey, in which students pool data and perform a nonlinear least squares regression to determine
parameters in a Debye-Hiickel model of the ionic strength effect.?’

Our experiment takes a very different approach to determining the solubility equilibrium
constant. Instead of slow, quantitative analyses of each reaction, a student need only quickly and
qualitatively determine if a precipitation occurred or not. The experimental steps require manipulations
commonly taught in first year laboratory programs (use of volumetric glassware, preparation of
solutions with specific concentrations) plus the use of automatic pipettors. Automated experimentation
allows each pair of students to generate a statistically large sample (as many as 96 experiments),
enabling the use of a logistic regression model to infer the solubility product constant. In addition to
emphasizing the underlying topic of equilibria, it engages students in thinking about experimental
precision and sources of error. The experiment can be performed with a range of equipment from

manual pipetting to a $800 home-made liquid dispenser to a commercial liquid handler, and thus can be

adapted to the resources available at any institution. The experiment introduces elementary ideas of



computer programming and data analysis, without the need for prior student experience in these topics.

This experiment is designed to follow a classroom discussion of equilibrium.

Theory

[Y]

[X]
FIGURE 1: Illustration of concentration space, convex hull, random experiment, and equilibrium
concepts. The stock solutions—denoted (a), (b), (c)}—correspond to points in the concentration space
plane. Mixtures between any pair of stock solutions define a solid line. The convex hull defined by
the stock solutions—in this case, the triangle with vertices (a), (b), (c)—define the possible
compositions that can be achieved by mixing the stock solutions. Random experiments are illustrated
by the points. Experiments whose composition is above the dashed equilibrium line (d) are
supersaturated and result in crystal formation (red); points below the equilibrium line are
undersaturated and will not result in crystal formation (black). The equilibrium line (d) best separates
the two types of observations.

This experiment is best described in terms of the concentration space formalism.*>3* Figure 1
shows a schematic illustration of this approach. Each stock solution is represented as a vector, whose
components denote the concentration of a species of interest. For the precipitation of Pbl, from aqueous
Pb*" and I salts, we ignore the counter ions, so the relevant dimensions are [Pb*] and [I]
concentrations. Pure solvent (in this case water) has a concentration of {0,0} corresponding to the

origin. The mixture, m, of any two stock solutions, s;and s,, is defined in terms of the volume fraction



of each of the solutions, v; and v,, which must satisfy 0 <v; <land0 <v, < landv, + v, = 1.
For a binary mixture this simplifies to v, = 1 — v;. The composition of the mixture is on a line between
the two stock solutions, m = v;s; + v,5,. These conditions means that the mixture is a convex
combination of the stock solutions.>* More generally, the set of all possible mixtures that can be made
from the set of stock solutions is comprised of all of the possible convex combinations of the available
solutions, m = v, s, + v,8, + - v, 5, where the volume fractions each obey 0 < v; < 1 and
collectively obey );; v; = 1. The possible mixtures are contained within the convex hull of the stock
solution points; one way to visualize this is as region whose boundary is defined by stretching an elastic
material over the stock solution points. This corresponds to the triangle (a-b-c) in Figure 1. Sampling
possible compositions corresponds to generating random points within the convex hull.

Equilibrium expressions, such as Ky,=[Pb**][I']%, can also be expressed concentration space;3>33
this is especially easy to visualize in a two- or three-dimensional problem like the one considered here.
Rearranging this into an expression for [I'] lets us plot an equilibrium curve in concentration space
(dashed line in Figure 1). Points above the equilibrium curve correspond to mixtures whose reaction
quotient, Q, is greater than the equilibrium constant, and thus result in precipitation. Determining the
equilibrium curve (and its underlying determinative parameter, the equilibrium constant) corresponds to
finding a function that separates compositions observed to precipitate or not. This is the standard
machine learning problem of supervised classification.

The equilibrium expression lends itself to treatment as classification problem using a logistic

regression.> Starting with K, = [A]® [B]?, take the logarithm of both sides and subtract to yield 0 =
a In[A] + b In[B] — In K,. The terms on the right-hand side define the function to fit, f(/4/, /B]). The

unknown parameters correspond to the stoichiometric constants, a and b, and the equilibrium constant,

In K, If the stoichiometric constants (a = 1, b = 2) are known, they need not be included as fitting



parameters. (Bishop described the use of a logarithmic transform to obtain graphical estimates of the
stoichiometric coefficients in solubility product experiments.*®) Reaction outcomes are described by an
indicator variable, y, which takes a value of 1 if precipitation occurs and 0 if no precipitation occurs.
One fits the logistic function y = 1/(1 + e /UALBDY to match the outcomes by varying a, b, and In
Kp.to best separate the outcome classes. Standard libraries for performing logistic regression and
obtaining these parameters exist for many programming languages.’’-*® As the parameters can all be
multiplied by a constant value and obtain the same fit, it is necessary to normalize the values relative to
one of the parameters—in this case, setting the stoichiometric coefficient of Pb** as the unit is a natural

choice.

Learning Objectives

e Apply knowledge of solution mixing and equilibria in an experimental setting.

e Introduce laboratory automation (for synthesis and characterization) and learn where this is an
appropriate strategy.

e Introduce ideas about error and precision in laboratory experimentation.

e Develop and practice basic computer and data handling skills.

Materials

Lead(II) nitrate (Pb(NO3)2, 99+ %) and potassium iodide (KI, 99 %) were purchased from
Sigma-Aldrich and used without further purification, (approximately 0.330 g of Pb(NO3)2 and 0.166 g of
KI are needed per group). Deionized water was used in these reactions. Equipment needs consist of two
100 mL volumetric flasks, two ~20 mL vials, three SBS microplates, and one or two 100 uL

micropipettes per group. Two different robot systems were used for testing the experiment. The Sidekick



is an open-source, low-cost liquid dispenser;* the device used in the experiment was built by the two
undergraduate coauthors (KH and GJ). A Hamilton NIMBUS 4 enclosed 4-channel liquid handler was
also used. Alternative hardware options are discussed below. Student exercises were performed using
Mathematica 13.2;*° a free version of this software is available for non-commercial use on the Raspberry
Pi computer.*! New users of Mathematica at academic institutions are encouraged to consult their
information and technology department as licensing is controlled at an institutional level. We have also
provided versions of these student exercises as Python 3 Jupyter notebooks; this requires some

additional installation of modules for interactivity described in the Instructor Guide.

Hazards and Disposal

Caution: Lead compounds are poisonous; wear gloves and wash your hands thoroughly after use. Lead
is a well-known toxic substance whose primary toxicity mode is by ingestion.** Follow usual laboratory
best-practices of safety eyewear, lab coats, gloves, and handwashing after lab to minimize lead

exposure. Lead-containing waste should be properly disposed of in a dedicated waste container.

Caution: Use caution with automated liquid handlers by keeping hands away from the moving parts
during operation. Larger liquid handlers, like the NIMBUS, are often inside a safety interlock cabinet to
prevent the user from reaching inside during operation; this should be used, if applicable. This is less of

a concern with the Sidekick, whose motors provide too little torque to cause pinch hazards.

Description of the Laboratory
The laboratory experience consists of a pre-lab computational exercise, an experimental

laboratory period, and a post-lab data analysis period, depicted schematically in Figure 2.



The target student population are first-year undergraduate general chemistry students, without any
specific pre-requisites in computer programming or mathematics. About half of the students had
previous exposure to Mathematica through undergraduate calculus courses, with the others having no
prior experience. Mathematica and Python notebooks, laboratory protocols, and scripts facilitating the
automation are provided in the electronic Supporting Information. The pre-lab experience provides a
theoretical discussion of concentration space, reaction design, and some basic programming activities.
The in-lab exercises provide opportunities to introduce micro pipettors, volumetric solution preparation
and the use of automated experiment platforms. The post-lab activities focus on observation, reaction

evaluation, data entry and data analysis.

Pre-lab activities In-lab exercises Post-lab exercises

&
manual pipetting |n|

i W [

: : : e o
[Pb*] robotic pipetting ﬁ [Pb”]
- Mathematica tutorial - Analytical chemistry techniques - Reaction scoring
- Concentration exercises - Stock solution preparation - Data visualization
- Reaction generation - Automated experimentation - Fitting and analyses

FIGURE 2: Schematic of experimental workflow.

Pre-lab computational activity. An interactive Mathematica 13.2 notebook is provided to the
students for a pre-lab activity introducing the key concepts. This exercise covers the following topics: (i)
Introduction to Mathematica (variables, functions, plotting); (ii) Concentration space representation of
mixtures and equilibria; (ii1) Generation of randomized reactions; (iv) Plotting and fitting of hypothetical
data. (We also developed a Python 3 version of these exercises, which covers similar material, but the

interactivity is less polished.)



A brief prelude introduces computer programming concepts of variables and functions, links to
Mathematica tutorial videos, , and supplementary reading resources. The emphasis is on students
learning how to read program code and to make small modifications to the code; they are not required to
write large sections of code. In places, the text provides additional optional explanations or calculation
methods that involve ideas from linear algebra to engage students with more advanced mathematics

experience.

{0.36,0.30}
n

0.000 |
(O] 0.000 0.002 0.004 0.006 0.008 0.010
0

o [ a0 1 N O A

a b c
FIGURE 3: Interactive activities contained in the pre-lab assignment: (a) solution mixing; (b)

equilibrium curve; (c¢) equilibrium curve after taking the logarithm of the concentrations.

The first part of the notebook contains interactive visualizations which do not require the
students to enter any program code, but instead to explore how the system responds by manipulating
slider bars. See Figure 3. The first activity introduces the idea of solution mixing and convex hulls (Fig
3a). Students are instructed to see how selecting different volume fractions results in different final
mixtures. An interactive animation of the equilibrium curve in terms of the linear concentration (Fig 3b)
and logarithm of concentration (Fig 3c) is used to build student intuition about data-fitting. The slider
changes the fitting parameters, allowing students to adjust the equilibrium curve (red line) to best divide
the two sets of outcomes in an example dataset. Finally, students perform a numerical logistic regression

fit on an example data set and plot the results.



The second part of the notebook guides students through generating their own experimental plan.
Students construct a convex hull for three stock solution concentrations (a lead source, and iodide
source, and water), sample random concentrations within this space, and convert those concentrations to
stock solution volumes. Students each generate 96 random experiments to perform, exporting them as a
comma-separated-value (CSV) file, for use in both the both the manual- and automated-experiments.
Each row specifies an experiment, described in terms of three columns indicating the volumes of the
three liquids (water, Pb*" (aq), I (aq)). TAs perform file conversions into robot specific formats using

file conversion scripts provided in the Supporting Information.

In-lab exercises. This experiment is designed to be viable for a range of experimental
configurations involving 96-well microtiter plates. A detailed, step-by-step lab procedure is provided in
the Supporting Information. The laboratory begins with a demonstration of the proper use of a
micropipette, as many students have little to no experience with this equipment and it is a useful
laboratory skill for subsequent molecular biology and biochemistry courses. The instruction includes the
proper way to pick up and drop a tip, setting the volume of the micropipette, and accurately dispensing
the desired volume. The instruction is most effective when each student has a micropipette in hand.
Commercial micropipettes are commonly available, but 3d-printed micropipettes are sufficiently
accurate.*’ Each student performed 12 or 24 manual experiments, depending on time, from their
randomly generated 96-reaction dataset generated in the pre-lab exercise.

A low-cost approach to automation used the Sidekick liquid dispenser robot, which can be built
for under $800 USD in about 4 hours.** The Sidekick uses digital dispensing pumps which are pre-
calibrated to dispense 10 uL per cycle, minimizing the need for extensive volumetric or gravimetric

calibration. A higher-cost approach is to use a general liquid handler robot, which is essentially a

10



computer-controlled micropipette on a Cartesian axis gantry capable of both aspirating samples and
dispensing them. However, for this laboratory requires only liquid dispensing. We used a Hamilton
NIMBUS 4 with disposable 300-uL tips, which retails for approximately $70,000. Many other liquid
handlers are capable of the experiments described here, including the OpenTrons OT-2 (which can be
purchased for approximately $10,000 USD**) and pipette-based liquid handlers constructed from

M 4.13 or laser-cut parts.*®

LegoT
Students are divided into pairs, with each student prepared one 100 mL of 0.010 M stock
solution (either Pb?* or I') using Pb(NOs), or KI and deionized water. Students calculate the mass of
either Pb(NO3)2 or KI required for their respective stock solution. Stock solution volumes of 100 mL
suffice for 144 experiments, comprising both manual- and automated experiments. In order to be
efficient in lab, hand pipetting, automated NIMBUS and Sidekick experiments are conducted
concurrently. Completing 96 automated-experiments required approximately 20 — 30 minutes. As such,
the first two groups to prepare their stock solutions started with the automated experiments, under the
supervision of the TA or instructor. Each group performed one complete set of 96 automated
experiments according to the plan they generated, on one of the two robots described above. The
remaining groups began with hand-pipetting experiments. As automated experiment runs completed,
additional groups shifted from hand-pipetting to automated experiments. Each student performed at least
12 hand-pipetting reactions, based upon their 96 random reaction dataset, with additional experiments
performed if time permitted. Seven of the fourteen students completed 12 hand-pipetting experiments,
while the remaining seven completed 24 reactions. At the conclusion of the experiment, students cover

and label their SBS plates. Lead-containing and non-lead-containing (KI solution) aqueous waste were

collected separately in waste containers.
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Precipitation can be slow, especially if the reaction composition is near the equilibrium curve
(i.e., only slightly supersaturated). This means observations taken at the end of the laboratory period are
likely to result in significant false negative results. To avoid this, digital photographs were taken of each
reaction plate after 24 hours using a cell phone camera, and shared with students via Google drive,
before disposing of the plates. Reaction plates were stored at room temperature in the laboratory. No
additional temperature control was employed.

Our emphasis was on giving students hands-on experience with solution preparation, manual
micropipettes, and laboratory automation. However, the experiments could be conducted using a
teleoperated laboratory, such as the Carnegie Mellon University Cloud Lab.*” Xie et al. discuss nuances

of teaching remote-operated wet labs.*®

Post-lab data analysis. Students score the outcomes by examining the photograph, noting the
presence or absence of any quantity of yellow precipitate. An example is shown in Figure 4. Reaction
scoring criteria were discussed prior to each student evaluating their own reaction results. The instructor
described the main characteristics of crystal formation (color, habit, and yield), using examples from a
projected image of a reaction plate. The distinction between crystals and bubbles was intentionally
addressed, with a focus on round versus angular (for distinguishing bubbles from crystals) and colorless
versus yellow (for distinguishing the presence of lead iodide). Example differences can be observed in
wells A8 (bubble) vs A9 (small crystallites) in Figure 4. Reaction yield was discussed in the context of
both distance between the point in concentration space and the equilibrium curve, and different in the
reaction quotient, O, and equilibrium constant, K. We considered automated scoring (e.g., computer
vision, plate readers) but preferred having the students score outcomes by eye, both for operational

simplicity and because it enabled student discussions about error sources.
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Figure 4. Photograph of 96 reactions.

To facilitate student scoring and comparisons, we developed a worksheet that students can use to
categorize their results before entering them into a spreadsheet. Students used a figure of a blank 96-well
plate, coloring in reactions with precipitates (provided in the SI). In pairs, scores (1 or precipitation, 0
for no precipitation) were added as a fourth column to their datasets. All reactions were scored.

Students then imported and analyzed their data. We developed a series of instructor slides that
guide students through the process (using a sample dataset) as they follow along with each step. Each
student then performed steps to separate the different reaction outcomes, plot results, fit the data, extract
Ky values, and analyze ‘misfit’ reactions. Students reported calculated K, values and the number of
misclassified experiments for each batch of experiments (hand pipetting vs automated experiments).

Finally, students submitted Mathematica notebooks and CSV data files after completing their analyses.

13



Results and Discussion

Chemical system selection. We considered three commonly used systems—Iead iodide, barium
sulfate, and silver sulfate. The desired properties are that the stock solutions should not be too dilute (to
minimize possible sources of error in the stock solution), that observational information be accurate
(facilitated by colored products), and that the reactions be relatively fast (to enable reactions to reach
equilibrium before solvent evaporation affects outcomes). The stock solution concentrations are selected
such that approximately half of random reactions sampled within the convex hull result in precipitation.
We eliminated barium sulfate because of the challenge in making the dilute stock solution needed
(which would increase error). A colored product facilitates accurate determination of the presence or
absence of precipitates; Lead iodide is yellow, while silver sulfate is white, making lead iodide the
superior choice. Although avoiding hazardous materials is desirable, there is ample precedent for using
lead iodide in pedagogical experiments.?® The use of microscale chemistry minimizes waste generation,

but developing greener alternatives could be an area for future development.

Reliability and sources of error. Typical first-year laboratory experiments involve performing a
single—or at most triplicate—experiment, and students expect perfect results. Laboratory experiments
are generally designed to ‘work’ on a single trial, meaning the absence of a product indicates the student
failed to correctly perform the appropriate sequence of steps. In contrast, automation lets students take a
statistical approach to the problem, allowing small variations to be averaged out across many trials.
Automation lets students quickly generate a large dataset to see statistically meaningful trends, without
the tedium of repetitive manipulations. Additionally, students can directly observe how the initial
distance from equilibrium is manifested in the time until an observable outcome, the quantity of product,

and the likelihood of misclassification.
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Pre-lab discussions focused on: (i) differences in ‘control’ between traditional and high-
throughput experiments; (ii) sources, qualitative estimation and propagation effects of noise and errors;
and, (iii) variations in fitted results given a finite data sample. Intuitions gained by the interactive fitting
activities depicted in Figure 3 helped illustrate how many possible solutions exist. Post-lab discussions
focused on errors associated with observations (the same 96 reactions being scored and entered by two
different students) and differences in control and error of the various experimental methods (hand-
pipetting vs automated experiments using different liquid handlers). Discussions were focused around
calculated K, values, as each student performed the data analyses for their hand-pipetted and automated
experiments during the post lab meeting. The instructor asked for the lowest and highest calculated Ky,
values for each experiment type. Qualitative differences between experiment type were quickly
identified. Hand-pipetting resulted in the largest range of values, whereas NIMBUS experiments
resulted in the smallest range. See Figure 5. These qualitative results were discussed in the context of
expected precision for each experiment type. Differences were also observed between partners
evaluating the same 96 experiments. The use of the printed 96-well plate scoring template enabled
students to quickly determine if their observations differed or if the discrepancy resulted from data entry

CITors.
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FIGURE 5: Student measurements of Ky, by different processes. Shaded boxes indicate the

limits of top and bottom quartiles, whiskers indicate the total range of data, black horizontal

lines indicate the mean, and the shaded diamond indicates the 95% confidence interval limits.

Accuracy of the Determined Equilibrium Constant. Fifteen students performed hand-

pipetting experiments, 9 used the Sidekick, and 7 used the Nimbus (one student performed automated
experiments on both machines). The determined solubility constants are shown in Figure 5. Hand-
pipetting experiments show a wide range of results and outlier points. Mean and standard error of the
measured K, values from three methods were (2.29 + 0.31) x 107%,(2.7 + 0.4) x 10, and (2.60 +
0.19) x 10°%, respectively. All methods agree with the mean prediction, but unsurprisingly the variances
are greater for the hand-pipetting reactions. This is comparable to the value of 3.1 X 1078 determined by
titration of a 0.01 M Pb(NO3): solution by Goodman and Petrucci?® and values in the range of
2.68 x 1078 — 5.90 x 1078 (depending on variations in the ionic strength) determined

spectroscopically by Green et al.*
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Do you have any experience Have you heard the term Do you know of any chemistry
with robotics before, in a “automation” before (outside (or other science laboratory)
classroom or otherwise? of class)? applications of automation?

Have you ever used a
micropipette before?

Yes 14.3 % Yes 7.1 %

Have you ever used the

programming classes before? language before (outside of before (e.g., linear regression)? leaming?

class)?

Yes 14.3 %

FIGURE 6: Pre-lab student survey responses from the student participants.

Student Feedback. We surveyed students before and after the lab to assess their preparation and
perception of the experience. The pre-lab survey comprised 8 yes/no questions about prior preparation;
the results are depicted in Figure 6. Most students reported no prior classroom or extracurricular
experience in robotics, data fitting, or machine learning. While most students had heard about
automation before, they did not know that it was applicable to chemistry. Approximately half of the
students had prior experience in computer programming and in Mathematica specifically from previous
mathematics coursework. We did not characterize the extent of these prior experiences, but the even
distribution in experience levels suggests that dividing the students into pairs would allow for peer-
instruction.

The post-lab survey comprised 10 questions scored on a 5-point Likert scale (with 5 is “Very
strongly agree, 4 is “Agree”, etc.); the results are summarized in Table 1. Students had a positive
response about their perceived learning of the underlying course content (solution mixing and
equilibria), perceived acquisition of technical skills (micropipetting, data analysis, programming), and

desires to learn more about the topics. Students had a stronger perception of improved ability to read

17



program code than they did of writing code. Overall, the experience created a strong desire by the
students to learn more about laboratory automation and data science, and they enjoyed the experience.
Having students perform both “traditional” and automated experimentation, stimulated them to think
and discuss about the relative advantages and disadvantages of different methods, so that they can think
critically about where this might be applicable in their future work. A more advanced class might follow
up on this discussion by reading relevant papers, such as Ref. °°, which discuss these issues in the

context of organic chemistry.

TABLE 1. Post-lab student perception survey. *Mean and standard deviation, scored on a 5-point
Likert Scale, with 5 as “Very strongly agree”.

Post-lab student perception Outcome®
Understand solution mixing better | 4.3 £0.6
Understand equilibria better. 39+0.7

Understand the tradeoffs between | 4.1 + 0.8
manual and automated
experimentation better.
Learned some skills that will be 4.6 +0.5
useful for my future studies.
Learned about new ways to fit 4.2+0.7
experimental data to solve
problems.

More able to read Mathematica 42+0.7
code.
More able to write Mathematica 3.7+1.0
code.
Interested in learning more about 43+0.7
laboratory automation.
Interested in learning more about 43+0.7
data science.
Enjoyed this lab 4.7+£0.6

Instructor observations. First, the familiarity with Mathematica varied widely across the

student participants. This made live coding prohibitively slow. Debugging code became an impediment
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to understanding and to progress. Instead, we shifted to an alternative approach in which students are
asked to modify provided code. This enabled them to gain an understanding of the code and personalize
their efforts while avoiding needlessly long steps. Alternatively, students could be provided with the
code and an asynchronous video explanation, which they could follow at their own pace. The pre-lab
meeting could then be used for debugging purposes. Second, most student participants had no
experience with manual pipettors. We found that it was critically important to have a ‘training step’ in
which each student held a pipettor while an instructor demonstrated how it works. A few minutes
practicing pipetting water as a group helps avoid many errors in the actual experiments. Third, the
student participants appreciated engaging with as many aspects of the automated experiments as
possible. For example, each group recalibrated the Sidekick robot, even though it was not absolutely
necessary. The inclusion of such steps, if practical or reasonable, provides a more active experience for

the students.

Conclusion

In this paper, we describe a combined experimental and computational laboratory experience for
first-year undergraduate students that introduces micropipetting skills, laboratory automation, and data
analysis in the context of solubility equilibria determination. Students with little or no prior experience
in these advanced techniques were able to successfully use and apply them in a lab course and reported a
positive learning experience. This is a first step towards training a chemistry workforce that is aware of
automation and data-science methods, and can think critically about sources of error and limitations of
these approaches. Students reported a desire to learn more about these emerging aspects of chemical

research practice. They also acquired discrete skills (use of volumetric flasks, solution preparation,
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pipetting, use of robotic liquid handlers, data import/export, data visualization and fitting), which are
useful for future coursework and research.

While we focused on first-year undergraduate students, this experience could be adapted for
other student populations. For example, if more time was spent scaffolding the programming and data
analysis aspects, this could also be used in a high-school chemistry course. Physical or analytical
chemistry courses could incorporate the nonideality of the ionic system,?”>! adapting the Pbl solubility
lab of Green et al.** Analytical chemistry students could engage more extensively with the equipment by
building and calibrating the Sidekick robot dispensing system?® before applying it to this problem. An
instrumental/quantitative analysis or computer-programming-for-chemists course might incorporate
basic image analysis, such as counting the number of yellow precipitate pixels in each cell and relating
this to the distance of each point from the equilibrium curve. (Zhang et al. recently described teaching
these methods in the context of a senior undergraduate or beginning graduate bioanalytical chemistry

course,>? which could serve as a model.)
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Drawing of a big 96-well plate to assist in scoring (pdf)

Student questionnaires (pre- and post-lab) (docx)

Example data file of dispense instructions and crystallization results (.csv and .xlsx)

Instructor Guide (.docx)
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