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ABSTRACT

Over the past decade we have seen a surge in research in Machine
Learning. Deep neural networks represent a subclass of machine
learning and are computationally intensive. Traditionally, GPUs
have been leveraged to accelerate the training of such deep net-
works by taking advantage of parallelization and the many core
architecture. As the datasets and models grow larger, scaling the
training or inference task can help reduce the time to solution for
research or production purposes. The Supercomputer Fugaku es-
tablished state of the art results in multiple benchmarks in machine
learning by scaling ARM based CPU technology. To that end, we
study and present the performance of machine learning training
and inference tasks on 64-bit ARM CPU architecture by exploiting
its features namely the Scalable Vector Extensions (SVE) in the
ARMvS-A.
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1 INTRODUCTION

Deep learning has revolutionized the fields of natural language
processing, computer vision, pattern recognition, recommendation
systems, etc. Massive efforts from industry and academia have
been poured into research and development in the last couple of
years. Deep learning represents a subset of machine learning and
is one of the most popular topics these days. Complexity in the
operations, layers, connections, gradient optimization algorithms
make deep neural networks computationally expensive to train.
To address the growing size of datasets and large/deep models, it
is beneficial to adopt techniques from HPC to accelerate training
and inference while taking maximum advantage of the underlying
hardware. Scaling deep learning workloads is a viable option to
reduce time to solution.

The concept of a neural network is not recent. A deep neural net-
work named LeNet [25] was a deep convolutional neural network
introduced in 1998. However, it was computationally expensive
to train with the available resources at that time. A decade ago
Alexnet [23] was featured, which presented significant prediction
improvements in the field of object recognition compared to previ-
ous studies, and demonstrated the use of GPUs to accelerate train-
ing. This reinvigorated research in artificial neural networks and
we can see multiple neural architectures, optimization algorithms,
frameworks, etc. pop up.

ARM architecture is widely used in the world, from mobile
devices to HPC. Until recently (June 2022), The Fugaku Super-
computer [33] (hereafter just "Fugaku") was ranked highest in the
Top500 [38], HPCG [37] and HPL-AI [17] benchmarks. At its heart
lies the A64FX processor developed by Fujitsu Limited based on the
ARM v8.2 instruction set architecture [12]. The key feature of this
chip includes the Scalable Vector Extension (SVE), which provides
SIMD (Single Instruction Multiple Data) instructions of size 512 bits,
and high bandwidth memory. Traditionally, GPUs have been used
to accelerate deep learning training and inference. Our interest in
ARM technology is motivated by the fact that scaling CPU based
technology efficiently has achieved commendable performance in
major benchmarks [10].

In this work, we evaluate the performance of PyTorch [32], a
popular machine learning framework, on the A64FX processor.
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We assess state of the art models in computer vision tasks over
image datasets in both intra- and inter-node fashion, and utilize
benchdnn for performance benchmarking of primitives provided
by oneDNN [19]. The primary goal of the paper is to record the
maximum throughput that can be achieved, in images per second.
Therefore, we perform weak scaling for inter-node tasks, and model
convergence is not considered.

This paper is laid out in the following manner. Section 2 provides
information on related works and 3 describes the ML libraries used
along with their versions and modifications. Section 4 describes the
programming environment of the underlying systems, including
the software stack, hardware and interconnect used. Section 5 we
describe the benchmark datasets and models used for experimenta-
tion in section 6. We make note of certain observations in section 7
and conclude in section 8.

2 RELATED WORK

Scaling is of crucial importance. Computation and communication
should be optimized and overlapped to deliver the best perfor-
mance. Popular machine learning libraries have had support for
distributing workloads in a data parallel or model parallel manner.
A notable piece of research to accelerate training was done by a
team at Facebook that accurately trained ImageNet [8] within an
hour by utilizing GPUs across multiple servers [14]. This partly
inspired other research groups to develop distributed frameworks
to efficiently use computation resources. Uber being one among
them, released their framework Horovod [34] to the community
in the following year, and now it has become a popular API for
multi-node deep learning.

Many works have been done on performance evaluation of Deep
Learning libraries on accelerators and CPUs [4], [30], [39]. Primar-
ily these have focused on CPU vs GPU comparisons, or framework
comparisons over GPUs and the CPUs have always been x86 CPUs,
to the best of our knowledge. [27] used the Cori system, an XC40
Cray machine, at NERSC to train their 3D CNN at scale on Intel’s
Xeon Phi (KNL) with the Cray ML Plugin to achieve high scaling
up to 8192 nodes. A team at HPE created a framework to model
the scalability of Distributed Machine Learning [39]. [24] intro-
duced novel communication strategies in synchronous distributed
learning with the goal to overlap computation and communication
and hide communication latency. They claim to achieve near linear
scaling with 27,600 NVIDIA V100 GPUs on the Summit Supercom-
puter. These papers show that there has been commendable work
on accelerating Deep Learning at scale on CPUs and GPUs.

There has been some study on Deep Learning and DL at scale
on A64FX micro-architecture. [10] introduces a standard for bench-
marking large-scale scientific machine learning workloads, and
Fugaku achieves a high ranking in both the benchmark applica-
tions - CosmoFlow and DeepCAM. [35] have shown some important
work in exploring a hybrid data and model parallelism approach to
scaling the CosmoFlow problem from the MLPerf HPC benchmark
training suite. Their study involves performance analysis, and more
importantly performance tuning of TensorFlow, I/O performance of
the filesystem, Tofu network topology, tuned MPI collective opera-
tions and generating tuned code for aarch64 for A64FX processors
on Fugaku. [9] analyse the performance of convolution operators
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on A64FX. Their interest lies in exploring the performance benefits
for latency constrained deep learning workloads by in integrating
long SIMD units in multicore processors and evaluate 3 convolution
implementations.

Fugaku employs the A64FX processor in the FX1000 node system
developed by Fujitsu and based on the ARMv8-A ISA. This chip is
the first to implement the Scalable Vector Extensions. The MLPerf
HPC training benchmark results include results from Fugaku with
their TensorFlow and PyTorch extensions [31] over multiple bench-
mark applications. They show comparable runtime performance
to GPU centric results. Therefore, we dive a little deeper in the Py-
Torch framework on the Ookami cluster [20] to see its performance
with other benchmark applications and models.

There have been studies on the A64FX processor, including but
not limited to, OpenMP benchmarking [29], [28], parallel bench-
marks [5], domain science applications [11], [6], [15]. PyTorch, a
hybrid MPI+X framework, acts as a good test of the systems com-
putation and communication capabilities.

3 ML LIBRARIES

Here we describe the libraries used for experimentation and any
changes that were made to them for the same. Table 1 briefly men-
tions the libraries we used for experimentation. All were compiled
from source and we used venv to create a virtual environment for
execution.

Table 1: Libraries

Library Version
Python 3.8.2
Numpy 1.22.4
PyTorch 1.10.0
Torchvision 0.11.0
oneDNN 243
Horovod 0.24.3

3.1 PyTorch

PyTorch is a high performance machine learning library which
supports tensor computations, strong GPU acceleration and reverse
mode automatic differentiation. It provides a front-end Python API,
but is written in C++ to achieve high performance. Multi-threading
is implemented in C++, which bypasses Python’s global interpreter
lock. The adoption rate of PyTorch has increased over the years [32].
Due to its popularity and ease of use, we based our experiments on
this library. Other popular machine libraries include TensorFlow [3],
Chainer [36], and MxNet [7].

We follow Fujitsu’s setup instructions, as published on their
GitHub repository for PyTorch v1.7 [13]. We do not use this
branch for our evaluations because it is specific for the A64FX pro-
cessors. Instead, we use PyTorch v1.10.0 cloned directly from
PyTorch’s GitHub page to establish consistency across all architec-
tures. Our experiments are based on the image classification prob-
lem and for that, we make use of torchvision v@.11.0 to provide
optimized models. BLAS, LAPACK, OpenMP and MPI CMake files
are modified to accommodate Fujitsu’s BLAS library, OpenMP flags
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and MPI wrapper to compile PyTorch. For the ARM compiler, only
the BLAS and LAPACK libraries are modified to accept the ARM
Performance Libraries, others can be used as is. With the GNU
compiler, no changes are necessary and PyTorch can be compiled
out of the box. With the recent GNU compiler (v11.x), we remove
the -Werror=format option in the CMakelists.txt file to avoid com-
pilation errors.

3.1.1 oneDNN. oneDNN, a part of oneAP], is an open source li-
brary providing highly optimized hardware-aware primitives for
building deep learning applications. This has been adopted in Py-
Torch for inference for some time now. However, training support
was introduced in PyTorch v1.9.

oneDNN was originally optimized for Intel CPUs by taking ad-
vantage of vectorization (SSE, AVX instruction sets on Intel CPUs)
and better cache reuse. To port this library to Aarch64, Fujitsu de-
veloped an AArch64 version of xbyak which is the just-in-time
assembler for x86 [21]. Along with that, they also built a binary
translator xbyak_translator_aarch64 to convert runtime gener-
ated x86 code to Aarch64 (ARMv8-A ISA specifically). This work
has been upstreamed into oneDNN.

Earlier, one would have to build this translator on the A64FX
chip before building oneDNN on A64FX. Since the necessary head-
ers have been upstreamed, one can easily build oneDNN without
having to build the aforementioned translator. We refer to MKL-
DNN as "onDNN" hereafter, and the blocking style provided by
oneDNN as "onDNN block format". To use the efficient primitives
in PyTorch during training, one can follow these steps:

input = torch.randn((10,10)).to_mkldnn()
output = model(input)
And during inference:

from torch.utils import mkldnn

input = torch.randn((10,10)).to_mkldnn()

model = mkldnn.to_mkldnn(model)

output = model(input)
For other compilers, we can build oneDNN out of the box with re-
spective BLAS libraries by setting DNNL_BLAS_VENDOR environment
variable during configuration.

3.1.2  PyTorch JIT. PyTorch provides just-in-time compilation via
torch. jit. Default training in PyTorch is done in "Eager mode"
execution where the computational graph is built at runtime and
managed by the Python process. The forward pass is supposed to
dynamically create this graph and the backward pass is supposed
to apply losses and then destroy it. This is not desirable for perfor-
mance and deployment, in which case PyTorch also supports graph
execution. In graph execution the computation graph is built once,
and the underlying process (which can be a C++ process) manages
this state. Graph execution is difficult to debug, but is expected to
be faster than eager execution and hence, once can take advantage
of this mode if their models are not supported by oneDNN. One can
use the torch. jit.script or torch. jit.trace functionality to
use just-in-time compilation for their custom model.

3.2 Horovod

Horovod is a popular, easy-to-use distributed deep learning frame-
work introduced by Uber and currently hosted by LF Al & Data
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Foundation [34]. Currently, it supports TensorFlow, Keras, PyTorch
and MXNet Machine Learning frameworks and can be built with
MPI, NCCL, Gloo and oneCCL backends for Tensor operations. In
our experiments we use Horovod for CPUs built with Open MPL
To use horovod with PyTorch, one can initialize the library init (),
apply the distributed sampler to distribute the dataset into equal
shards, wrap the optimizer object with the Distributed Optimizer
DistributedOptimizer(), broadcast model parameters from rank
0 broadcast_parameters() and train the model as one would. It
is important to note that the user should modify the learning rate
based upon the optimization algorithm and gradient averaging
technique used by horovod. A general rule of thumb is to scale
the learning rate proportional to the number of workers or ranks,
unless one uses AdaSum to perform reduction, then the learning
rate should be scaled by an empirical constant factor of 2-2.5 [2].
The batch size is decided based upon the scaling style (weak vs
strong). Setting the batch size in the DataLoader object sets the
rank local batch size. To build horovod, we add a CMake file to
find Fujitsu’s MPI wrapper. With the other libraries, no changes
are required. Horovod is built with PyTorch and MPI support by
setting HOROVOD_WITH_MPI=1 and HOROVOD_WITH_PYTORCH=1

With horovod, we evaluate data-parallel training in a weak scal-
ing setting. Here, each worker has a copy of the model and all
workers work on exclusive shards of the dataset. Model parallel
training is also possible but out of scope of this work. If the model
is too large and does not fit on a single node or single workers
resources, one may have to implement it.

4 COMPILERS AND HARDWARE

Our primary focus is to evaluate ARM architectures for Machine
Learning applications. Fugaku has been deemed to become the core
infrastructure providing a high performance Al platform for pro-
cessing and training over large amounts of data efficiently at scale.
So, we evaluate the intra- and inter-node performance of PyTorch
on the A64FX FX700 system with different compiler toolchains
and BLAS libraries. For fair comparison, we also evaluate the same
libraries with respective compilers on x86 systems. The hardware
and compilers are described in as follows:

4.1 Hardware

We make use of the Ookami cluster to experiment with A64FX
processors and Stampede?2 at TACC and clusters - Popeye and Rusty,
at the Flatiron institute for the Intel CPUs. The CPU versions for all
are mentioned in table 2. A64FX is an ARM based chip developed by
Fujitsu with the ARM v8-A ISA and the first to implement Scalable
Vector Extensions with a 512 bit implementation enabling vector
length agnostic (VLA) programming. It contains 48 cores (A64FX
on Fugaku may have 2/4 additional I/O cores on Fugaku) and runs
at a steady 1.8GHz frequency. There are no stepping modes as seen
on the x86 CPUs. The 48 cores are divided into 4 Core Memory
Groups (CMGs) representing NUMA domains and have 8GB of High
Bandwidth Memory per CMG, 32GB HBM2 on one node. These
nodes contain 64KB L1 cache and 8MB shared L2 cache. Ookami
has an Infiniband HDR100 interconnect with 200 gigabit switches
and a high performance Lustre file system.
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Table 2: CPU and Compilers

Cluster CPU Compiler BLAS library Compiler Flags
Ookami Fujitsu A64FX Fujitsu compiler v4.7% | SSL2 -Nclang -Kfast
-Knolargepage -Ipthread
Ookami Fujitsu A64FX ARM Compiler v22.0 | ARMPL v2022.0.1 | -O3 -mcpu=a64fx
-mtune=a64fx -lpthread
Ookami Fujitsu A64FX GNU v11.2.0 OpenBLAS v0.3.19 | -O3 -mcpu=a64fx
-mtune=a64fx -lpthread
Rusty Intel Xeon Gold GNU v10.3.0 OpenBLAS v0.3.19 | -O3 -Ipthread
6148 (40 cores) -mtune=skylake-avx512
Rusty Intel Xeon Gold Intel Compiler MKL v2022.0.1 -03 -lpthread
6148 (40 cores) v2022.0.1 -mtune=skylake-avx512
Popeye Intel Xeon Platinum | Intel Compiler MKL v2022.0.1 -03 -lpthread
8358 (64 cores) v2022.0.1 -mtune=icelake-server
Stampede2 | Intel Xeon Platinum | Intel v19.1.1 MKL v19.1.1 -03 -lpthread
8160 (48 cores) -mtune=skylake-avx512

8 We use the Fujitsu Compiler in Clang mode and the LLVM OpenMP library implementation.

All x86 CPUs involved in evaluation support 512 bit extensions to
Intel’s 256 bit Advanced Vector Extensions SIMD instruction set for
%86 ISA. The Skylake CPUs on Stampede2 have 48 cores, 24 cores
per socket with 32KB L1i and L1d cache, IMB L2 cache and 33MB
L3 cache. This CPU has 4 stepping states with a max frequency of
3.7GHz. Hyperthreading is enabled with 2 threads per core. The
interconnect is a 100Gb/sec Intel Omni-Path (OPA) network with a
fat tree topology employing six core switches [18]. We use Intel’s
MPIimplementation in our experiments on Stampede2. The Skylake
CPUs on Rusty have 40 cores, 20 per socket with Hyperthreading
disabled. They also have 4 stepping states with a max frequency
of 3.7GHz and contain same L1 and L2 cache as the Skylake CPU
on Stampede2 except the L3 cache is 28MB. Icelake CPUs were
added for benchDNN performance runs because they support VNNI
(Vector Neural Network Instructions) as an extension to AVX512
designed specifically for inference. The Icelake CPU has 64 cores,
32 per socket with Hyperthreading disabled. They have 6 stepping
states with a max frequency of 3.4GHz and contain 48KB L1d cache,
32KB L1i cache, 1.28MB L2 cache and 48MB L3 cache.

Two different clusters are used for PyTorch benchmarks on x86
because of the missing latest Intel oneAPI compilers and the pres-
ence of Hyperthreading on Stampede2.

4.2 Compilers and BLAS libraries

We have access to the ARM, Cray, Fujitsu, GNU, LLVM and NVIDIA
compilers on the Ookami cluster. NVIDIA’s compiler is not used
because it does not generate SVE code and defeats the purpose.
Cray’s compiler is also not used because we ran into compilation
problems with Python where it stalled during compilation. LLVM
versions 12 and 13 are available on the system but version 14 is
the first where the vectorizer uses scalable auto-vectorization by
default to generate SVE instructions on compatible targets. At the
time of experimentation, LLVM version 14 was not available on the
system.

We are left with 3 compilers on the ARM architecture - ARM,
Fujitsu and GNU. The ARM and Fujitsu toolchains have vectorized
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math library support via the ARM Performance Libraries and SSL2,
respectively. The GNU compilers suffer from this drawback that
they do not have a vectorized math library implementation (at least
for ARM architecture). During experimentation, OpenBLAS v0.3.19
had support for vectorized routines. Therefore, we make use of
OpenBLAS with the GNU compilers. For all experimentation on
the FX700 system, we use Open MPI version 4.1.2 except with the
Fujitsu compiler which has it’s own MPI implementation based on
Open MPI v4.0.1. RDMA support in Open MPI is provided via UCX
over Infiniband.

On the x86 platform, we have the GNU and Intel compilers.
MKL is the default BLAS library of choice on Intel CPUs. We have
access to 2 different sets of Intel x86 clusters. We perform single
node and distributed training on Skylake CPUs on Stampede2 at
TACC which has the Intel 19.1.1 compilers and benchDNN perfor-
mance benchmarking (Section refsubsect:bench) on the Flatiron
machines because they have the latest Intel compilers 2022.0.1.
We also note that HyperThreading (HT) is enabled on the Stam-
pede2 machines and this is not desirable for performance and we
use OMP_PLACES=cores to disable it for the GNU OpenMP library
libgomp and KMP_HW_SUBSET=1T with the rest. On x86, only the
GNU compiler builds of PyTorch are used for single node & dis-
tributed training comparison because the Intel compiler failed to
compile PyTorch. The intel compilers are successful in compiling
oneDNN and those results have been included in the next section.
The specific versions of compilers and libraries can be seen in 2.

5 BENCHMARK DATASETS AND MODELS

We use two benchmarks for our evaluation. These are specifically
chosen to get an idea of how the ARM chip performs on a research
code over the PACS dataset and a relatively standard benchmarking
dataset, CIFAR-10.

5.1 Datasets

e PACS [26] - The acronym stands for Picture, Art paint-
ing, Cartoon and Sketch - a popular dataset in distribution
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generalization problems, representing 4 different data do-
mains with 7 classes (dog, elephant, giraffe, guitar, house,
horse, person). There are 9991 images in total and we use
Art painting, Cartoon and Photo for training & validation
and Sketch for testing. This corresponds to 5444 images for
training, 605 for validation and 3942 for testing. This dataset
is used to evaluate single node performance for training and
inference. We employ the following transformations to the
images during training:
- Resize
Random Horizontal Flip
- Color Jittering
- Random Gray Scaling
— Normalization
During inference, we only employ Resize and Normalization.
e CIFAR-10 [22] - This is a very popular dataset. It contains
60,000 images, with 50,000 for training and 10,000 for infer-
ence. There are 10 classes - airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck. This dataset is used
to evaluate distributed performance for training. Normaliza-
tion is the only transformation applied to these images for
training and inference.

5.2 Models

We evaluate the performance of 3 models in our experiments
namely, ResNet - 34 [16], ResNext 50-32x4d [40] and Wide
Resnet 101 [41]. As one may surmise, all of these models are based
on residual connections. We chose models based on residual con-
nections primarily because they can be converted to the MKLDNN
block format and they represent state-of-the-art models in object
recognition tasks. Other models from respective model families
provided in torchvision.models were evaluated for their com-
patibility with MLKDNN block formats, and the aforementioned
classes were the only ones that could work without significant
changes from the user. To that end, the other models can still lever-
age PyTorch’s JIT mode for getting performance during training.

Residual Networks are popular because they introduced the con-
cept of skip connections to address problems with deeper networks
such as vanishing gradients and outperformed all models in the
ILSVRC challenge in 2015 [1] without adding additional complex
computations in the network. The residual network family of mod-
els can be converted to the oneDNN block format without making
any changes. In recent times, the transformer models for language
processing and vision have also received the spotlight for state-of-
the-art results and contain many more parameters (a magnitude
higher), but we do not consider those models in these study due to
computational resource constraints such as allotted computation
time. From initial testing, we found out that the visual transformer
cannot be converted to the block format. The three models also rep-
resent different computational complexity of deep learning models.
ResNet34 is a 34 layered network, ResNext50-32x4d is a 50 layered
network and Wide Resnet 101 is a 101 layer network. Each of these
models have approximately 21.79, 25.02 and 126.88 million trainable
parameters. The number of trainable parameters were generated
by the torch-summary package.
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6 EVALUATION

In this section we describe the evaluation strategy and the run-
time environment flags set to achieve said performance. Evaluation
is performed in a single node and inter-node (distributed) basis.
We evaluate training and inference runtime performance of the
models on the benchmark datasets. 8 OpenMP threads are set for
benchDNN performance profiling. As mentioned in 4, the A64FX
chip has a memory limitation of 32GB on a node. On the Ookami
cluster, the OS resides in main memory, and the application must
fit in approximately 27GB. Hence for intra node, we decided to
fill the memory of a node until we ran into Out-of-memory errors
and landed on 128 images in a batch for training. MKLDNN block
formats use memory efficiently compared to the native implementa-
tion in PyTorch. For the Wide ResNet model, we ran the JIT version
of the application with 64 images to avoid running into Out-of-
memory errors. For inter-node weak scaling runs, we decided to
go with 128 images as that was the maximum number of images
(in the power of 2) that could be set such that each node received
at least 1 shard of the dataset and can perform at least one local
gradient calculation and backpropagation. All training runs on both
clusters were performed at least 5 times and their average epoch
time / throughput is depicted in the plots.

Table 3: benchDNN Problems

Index | Problem
1 mb256ic3ih2240c640h112kh7sh2ph3n
2 mb256ic64ih560c2560h56kh1phOn
3 mb256ic64ih560c640h56kh1phOn
4 mb256ic64ih560c640h56kh3phin
5 mb256ic256ih560c640h56kh1phOn
6 mb256ic128ih280c1280h28kh3phln
7 mb256ic128ih280c5120h28kh1phOn
8 mb256ic512ih280c1280h28kh1phOn
9 mb256ic256ih140c2560h14kh3phln
10 mb256ic256ih140c10240h14kh1phOn
11 mb256ic1024ih140c2560h14kh1phOn
12 mb256ic512ih70c5120h7kh3phin
13 mb256ic512ih70c20480h7kh1phOn
14 mb256ic2048ih70c5120h7kh1phOn
15 mb256ic256ih560c1280h56kh1phOn
16 mb256ic128ih560c1280h28kh3sh2phin
17 mb256ic512ih280c2560h28kh1phOn
18 mb256ic256ih280c2560h14kh3sh2phin
19 mb256ic1024ih140c5120h14kh1phOn
20 mb256ic512ih140c¢5120h7kh3sh2phin

6.1 benchDNN

benchDNN is a robust harness for testing and performance analysis
of primitives provided by oneDNN. We make use of benchDNN to
run performance tests on the convolution primitive with different
problems keeping it consistent with [21]. Although they compare
performance of integer convolutions, we run performance tests on
32 bit floating point convolutions in forward and backward mode
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Table 4: benchDNN execution

Execution Command

OMP_NUM_THREADS=8 numactl -membind=0 —cpunodebind=0 ./benchdnn
—-conv —-mode=p —fix-times-per-prb=5 —reset —dir=dir —cfg=cfg (problem)

Direction

FWD_B, BWD_WB, FWD I

Configuration

32, u8s8s8, s8s8s8

because these are essential for understanding the compute time
taken by PyTorch on x86 and ARM64 during training. For inference,
we run tests in the forward mode on Skylake and Icelake machines
- the latter to explore the VNNI extension to the AVX512 vector
instruction set. The results of these runs can be seen in figure 1.

FWD_B stands for forward mode with bias, BWD_WB for back-
ward mode with bias and FWD _I for forward mode inference. For
A64FX inference mode the configuration is s8s8s8 instead of u8s8s8
as explained in [21]. u8 and s8 represent unsigned and signed inte-
gers and f32 is 32 bit floating point. £32 (or f32f32f32) represents,
source weights and destination respecively. Similarly for u8s8s8 and
$8s8s8. More details about datatypes can be found in benchDNN’s
documentation. We consider the same problems as in [21] and elab-
orate on the directions and configurations. And these problems are
run with similar settings i.e., with 8 OpenMP threads, convolution
driver, performance mode, etc. The (problem) can be found in
Table 3.

As we can see from Figure 1, the Xeon Scalable processor has
an advantage over A64FX in forward (FWD_B) and backward
(BWD_WB) mode. There is a larger gap in backward pass per-
formance between the ARM and x86 chip. The forward and back-
ward modes are run with 32 bit floating point format because they
are the commonly used training data type. However, in integer
convolutions, we see that A64FX has comparable performance or
significantly outperforms the Skylake CPU in many problems. The
Icelake CPU outperforms all in the integer configuration due to the
VNNI instruction vpdpbusd which combines 3 vector instructions
vpmaddubsw, vpmaddwd and vpaddd into 1. We note that these in-
structions are primarily for low precision operations and have no
influence on training modes.

6.2 Single Node

The purpose of evaluating single node performance is to test
various runtime environment flags to speedup computation, and
see how A64FX performs compared to Skylake. These flags can
then be directly applied in a distributed setting and the focus can
be shifted to the communication bottlenecks. For single node runs
on the PACS dataset, we set the batch size to 128 and convert
inputs to block format during training. The execution is done in
eager mode and hence we build and use TCMalloc for fast memory
allocation. We take advantage of intra-node parallelization via
the OpenMP Environment Variables. The following settings
are applied - OMP_NUM_THREADS=46, OMP_PROC_BIND=close,
OMP_PLACES=cores and OMP_STACKSIZE=8M. For libomp,
we can alternatively use the KMP_* variables, for ex-
ample, KMP_AFFINITY=granularity=fine, compact,1,0
and KMP_BLOCKTIME=0 and for 1libgomp, we can use
GOMP_CPU_AFFNITY=0-45. With the Fujitsu compiler, it is
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recommended to set XOS_MMM_L_HPAGE_TYPE=none to disable
huge pages.

One can note that we use 46 threads instead of 48. This is done
so that 2 cores are left idle for system or I/O operations. The A64FX
chip in FX1000 in Fugaku has additional 2/4 cores that perform
system or I/O operations, missing in the A64FX processor in the
FX700 system.

Our training runs on the PACS dataset in Figure 2 represent
a application research environment where costly transforms, op-
timization algorithms and learning rate scheduling are used for
getting high prediction accuracy. And there we see the benefits
of using the oneDNN block formats and their advantage over jit
scripting provided by PyTorch. Epoch times are lower on Skylake
nodes and we can see this from our evaluation of the convolution
primitive with benchDNN. With the ResNet-34 and Wide ResNet
models, we can see similar performance between the ARM v22.0,
Fujitsu v4.7 and GCC v11.2 compilers. However, the ARM compiler
outperforms the Fujitsu and GCC compilers in training. The per-
formance of the Fujitsu compiler is surprising, and requires further
investigation. The Skylake CPUs outperform the ARM chip, but
the gap reduces as the model size increases (from approximately
77.1% faster with ResNet-34 to approximately 20 % faster with Wide
ResNet).

Inference results are slightly different in Figure 3. A64FX gives
competitive and in one case better performance than the Skylake
CPU. ARM v22.0 compiled PyTorch on Ookami has the highest
throughput of about 104 images per second and Fujitsu v4.7 com-
piled PyTorch on A64FX is second with about 98 images per second.
GCC compiled PyTorch on Skylake has surprisingly lower through-
put with the ResNet-34 model, and requires further investigation.
JIT scripted results are laid out for a reader. If a custom model with
new operators is not supported by oneDNN block formats, one
can still take advantage of JIT scripting or tracing functionality
provided by PyTorch, though at reduced performance.

6.3 Distributed

We use easily available sample code for distributed training
with horovod on the CIFAR-10 dataset. Some modifications
are made to it so that the oneDNN block format can be used
and we add a user defined argument to pass either of the three
models we experiment with. No other changes are made to the
code. Distributed training with horovod represents a hybrid
MPI+OpenMP application. We use mpirun to launch multiple
copies of the program instead of horovodrun to control pro-
cess and thread binding on a node. The run command looks like
mpirun -map-by ppr:1:node:pe=46 -x var . ..
where -x var represents the shared environment variables. The
same OpenMP / KMP variables are passed to all nodes.

python3 . . .
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Figure 1: benchDNN Performance Evaluation: The first three columns in all groups represent A64FX and the remaining are
Skylake 6148, except the last figure where black column represents Icelake 8358. *on A64FX, s8s8s8 configuration is used

instead of u8s8s8 for inference.

We also test horovod with RDMA by disabling MPI threads.
However, we do not see significant performance gains and in some
cases the program stalls. Therefore, we go ahead with the default
TCP for MPI communication in Horovod. However, we shall see
that this impacts performance.

Figure 4 shows our results for inter-node runs. Each node corre-
sponds to 1 rank. ARM(22) compiled PyTorch is faster than Fujitsu
compiled PyTorch in all cases even though Fujitsu’s MPI is highly
optimized and has low overheads compared to Open MPI compiled
with the ARM compilers. We see much higher throughput with all
three models when comparing the ARM and Fujitsu compiler builds.
At a maximum of 128 nodes, the ARM compiler has 17.4% and 77.7%
higher throughput with the ResNet-34 and Wide ResNet 101 models
respectively. The applications scale very well on the Stampede2
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cluster with Intel’s OPA interconnect with approximately 56.06%
with ResNet-34, 104.4 % with ResNext 50-32x4d and 27.02% higher
throughput at 128 nodes than the best respective model throughput
we recorded on Ookami.

We make note of the scaling discrepancies in our experiments
here. The GCC and Fujitsu compiled PyTorch builds fail to scale
well on A64FX. There is a communication bottleneck and debug-
ging or profiling that is challenging due to the limited memory on
A64FX nodes. Using PyTorch’s Kineto profiler was our initial choice.
However, due to limited memory on the node, we are unsuccessful
in leveraging this profiling tool. We also make use of Horovod’s
Timeline feature, and see that the communication bottlenecks are
quite obtrusive negatively impact performance. In GCC’s case, some
operations are not optimized at all. For instance, we see that the
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Figure 2: Intra-node training processing time: The first four
groups of columns represent A64FX and the last two repre-
sent Skylake 8160.

memcpy operations are slower than the corresponding Fujitsu- and
ARM-compiled builds and this is because of the absence of an SVE
optimized memcpy operation in glibc. Horovod does not make use
of Infiniband on the Ookami cluster and partly explains the poor
scaling compared to x86 runs.
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6.4 ARM compiler improvement w.r.t.
benchmark application execution time

We see significant performance improvements with the ARM com-
piler v22.0 over v21.0 and take a moment to showcase this via the
single node runs for the same dataset, PyTorch application and
environment variables set at run time. The single node training and
inference figures 2 and 3 respectively, show us this improvement.
For training, the epoch times reduce and show a 20.12%, 22.39% and
9.2% improvement in training time with MKLDNN block format.
During inference, the throughput increases from 59 images to 81
images per second - a 37.2% improvement. The following tables 5
and 6 tell us the reduction in training time per epoch and infer-
ence time by that percentage with the MKLDNN block and default
memory formats.

7 OBSERVATIONS

e ARM toolchain delivers high throughput when scaled but
tuning is required.

e Transforms applied to images increase the memory usage
of the application and one must be careful while running
their application on A64FX. One may tune batch size and
transforms as needed.

e The new ARM compiler (22.0) has significant improvements
compared to the previous major version (21.0).

e GCC- and Fujitsu-compiled PyTorch do not scale as expected
and this warrants a thorough investigation.

e 512 bit SVE optimized kernels perform comparably with
AVX512 optimized kernels in benchDNN.

e As seen in the benchdnn results, backward passes are sig-
nificantly slower for some problems on A64FX compared to
Skylake.

e The VNNI instructions of the extended AVX512 ISA show
significant reduction in processing time.

8 CONCLUSION

In this work we did not compare performance of PyTorch’s native
DistributedDataParallel framework and there will be a follow up
work to see which distributed framework approach performs better.
Intel maintains its own extension which has hardware specific op-
timization, graph optimization for PyTorch which are upstreamed
from time to time, but we do not make use of that distribution for
evaluation. PyTorch’s just-in-time functionality is another promis-
ing direction to accelerate research without having to wait for
optimized oneDNN primitives and PyTorch’s implementation of
the same to catch up. This work did not study model convergence
which is imperative. Achieving high throughput at the expense of
model divergence is costly and undesirable. Weak scaling should
be performed cautiously.

The A64FX processor can be used to scale machine learning
workloads and building a tuned environment plays a crucial role
in it. A more thorough set of experiments with more applications,
perhaps from the MLPerf Training suite, and the latest PyTorch,
oneDNN and torchvision versions can give us a better picture of
which compiler/build performs better. Performance of the appli-
cation depends on the compiler used to build PyTorch and this is
evident from the performance differences of the ARM compiler
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Table 5: Training Improvement with the ARM compiler 22.0 vs 21.0

Memory Format ResNet-34 | ResNext-50-32x4d | Wide ResNet 101
MKLDNN block format 20.12% 22.39% 9.2%
Torch JIT 44.46% 59.51% 63.29%

Table 6: Inference Improvement with the ARM compiler 22.0 vs 21.0

Memory Format ResNet-34 | ResNext-50-32x4d | Wide ResNet 101
MKLDNN block format 40.28% 36.41% 17.23%
Torch JIT 25.23% 28.06% 7.4%

itself. Currently, we see that communication is not well hidden
by computation, and that is hindering scaling applications on the
Ookami cluster. While developers may focus more on improving
this overlap for GPU operations, attention to CPU operations is
also necessary. Overall the ARM compilers performs significantly
well on the Ookami cluster and in a few cases deliver comparable
scaled performance for training and inference and in turn supports
the place of ARM infrastructure in HPC and AL
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