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ABSTRACT

Over the past decade we have seen a surge in research in Machine

Learning. Deep neural networks represent a subclass of machine

learning and are computationally intensive. Traditionally, GPUs

have been leveraged to accelerate the training of such deep net-

works by taking advantage of parallelization and the many core

architecture. As the datasets and models grow larger, scaling the

training or inference task can help reduce the time to solution for

research or production purposes. The Supercomputer Fugaku es-

tablished state of the art results in multiple benchmarks in machine

learning by scaling ARM based CPU technology. To that end, we

study and present the performance of machine learning training

and inference tasks on 64-bit ARM CPU architecture by exploiting

its features namely the Scalable Vector Extensions (SVE) in the

ARMv8-A.
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1 INTRODUCTION

Deep learning has revolutionized the fields of natural language

processing, computer vision, pattern recognition, recommendation

systems, etc. Massive efforts from industry and academia have

been poured into research and development in the last couple of

years. Deep learning represents a subset of machine learning and

is one of the most popular topics these days. Complexity in the

operations, layers, connections, gradient optimization algorithms

make deep neural networks computationally expensive to train.

To address the growing size of datasets and large/deep models, it

is beneficial to adopt techniques from HPC to accelerate training

and inference while taking maximum advantage of the underlying

hardware. Scaling deep learning workloads is a viable option to

reduce time to solution.

The concept of a neural network is not recent. A deep neural net-

work named LeNet [25] was a deep convolutional neural network

introduced in 1998. However, it was computationally expensive

to train with the available resources at that time. A decade ago

Alexnet [23] was featured, which presented significant prediction

improvements in the field of object recognition compared to previ-

ous studies, and demonstrated the use of GPUs to accelerate train-

ing. This reinvigorated research in artificial neural networks and

we can see multiple neural architectures, optimization algorithms,

frameworks, etc. pop up.

ARM architecture is widely used in the world, from mobile

devices to HPC. Until recently (June 2022), The Fugaku Super-

computer [33] (hereafter just "Fugaku") was ranked highest in the

Top500 [38], HPCG [37] and HPL-AI [17] benchmarks. At its heart

lies the A64FX processor developed by Fujitsu Limited based on the

ARM v8.2 instruction set architecture [12]. The key feature of this

chip includes the Scalable Vector Extension (SVE), which provides

SIMD (Single Instruction Multiple Data) instructions of size 512 bits,

and high bandwidth memory. Traditionally, GPUs have been used

to accelerate deep learning training and inference. Our interest in

ARM technology is motivated by the fact that scaling CPU based

technology efficiently has achieved commendable performance in

major benchmarks [10].

In this work, we evaluate the performance of PyTorch [32], a

popular machine learning framework, on the A64FX processor.
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We assess state of the art models in computer vision tasks over

image datasets in both intra- and inter-node fashion, and utilize

benchdnn for performance benchmarking of primitives provided

by oneDNN [19]. The primary goal of the paper is to record the

maximum throughput that can be achieved, in images per second.

Therefore, we perform weak scaling for inter-node tasks, and model

convergence is not considered.

This paper is laid out in the following manner. Section 2 provides

information on related works and 3 describes the ML libraries used

along with their versions and modifications. Section 4 describes the

programming environment of the underlying systems, including

the software stack, hardware and interconnect used. Section 5 we

describe the benchmark datasets and models used for experimenta-

tion in section 6. We make note of certain observations in section 7

and conclude in section 8.

2 RELATED WORK

Scaling is of crucial importance. Computation and communication

should be optimized and overlapped to deliver the best perfor-

mance. Popular machine learning libraries have had support for

distributing workloads in a data parallel or model parallel manner.

A notable piece of research to accelerate training was done by a

team at Facebook that accurately trained ImageNet [8] within an

hour by utilizing GPUs across multiple servers [14]. This partly

inspired other research groups to develop distributed frameworks

to efficiently use computation resources. Uber being one among

them, released their framework Horovod [34] to the community

in the following year, and now it has become a popular API for

multi-node deep learning.

Many works have been done on performance evaluation of Deep

Learning libraries on accelerators and CPUs [4], [30], [39]. Primar-

ily these have focused on CPU vs GPU comparisons, or framework

comparisons over GPUs and the CPUs have always been x86 CPUs,

to the best of our knowledge. [27] used the Cori system, an XC40

Cray machine, at NERSC to train their 3D CNN at scale on Intel’s

Xeon Phi (KNL) with the Cray ML Plugin to achieve high scaling

up to 8192 nodes. A team at HPE created a framework to model

the scalability of Distributed Machine Learning [39]. [24] intro-

duced novel communication strategies in synchronous distributed

learning with the goal to overlap computation and communication

and hide communication latency. They claim to achieve near linear

scaling with 27,600 NVIDIA V100 GPUs on the Summit Supercom-

puter. These papers show that there has been commendable work

on accelerating Deep Learning at scale on CPUs and GPUs.

There has been some study on Deep Learning and DL at scale

on A64FX micro-architecture. [10] introduces a standard for bench-

marking large-scale scientific machine learning workloads, and

Fugaku achieves a high ranking in both the benchmark applica-

tions - CosmoFlow andDeepCAM. [35] have shown some important

work in exploring a hybrid data and model parallelism approach to

scaling the CosmoFlow problem from the MLPerf HPC benchmark

training suite. Their study involves performance analysis, and more

importantly performance tuning of TensorFlow, I/O performance of

the filesystem, Tofu network topology, tuned MPI collective opera-

tions and generating tuned code for aarch64 for A64FX processors

on Fugaku. [9] analyse the performance of convolution operators

on A64FX. Their interest lies in exploring the performance benefits

for latency constrained deep learning workloads by in integrating

long SIMD units in multicore processors and evaluate 3 convolution

implementations.

Fugaku employs the A64FX processor in the FX1000 node system

developed by Fujitsu and based on the ARMv8-A ISA. This chip is

the first to implement the Scalable Vector Extensions. The MLPerf

HPC training benchmark results include results from Fugaku with

their TensorFlow and PyTorch extensions [31] over multiple bench-

mark applications. They show comparable runtime performance

to GPU centric results. Therefore, we dive a little deeper in the Py-

Torch framework on the Ookami cluster [20] to see its performance

with other benchmark applications and models.

There have been studies on the A64FX processor, including but

not limited to, OpenMP benchmarking [29], [28], parallel bench-

marks [5], domain science applications [11], [6], [15]. PyTorch, a

hybrid MPI+X framework, acts as a good test of the systems com-

putation and communication capabilities.

3 ML LIBRARIES

Here we describe the libraries used for experimentation and any

changes that were made to them for the same. Table 1 briefly men-

tions the libraries we used for experimentation. All were compiled

from source and we used venv to create a virtual environment for

execution.

Table 1: Libraries

Library Version

Python 3.8.2

Numpy 1.22.4

PyTorch 1.10.0

Torchvision 0.11.0

oneDNN 2.4.3

Horovod 0.24.3

3.1 PyTorch

PyTorch is a high performance machine learning library which

supports tensor computations, strong GPU acceleration and reverse

mode automatic differentiation. It provides a front-end Python API,

but is written in C++ to achieve high performance. Multi-threading

is implemented in C++, which bypasses Python’s global interpreter

lock. The adoption rate of PyTorch has increased over the years [32].

Due to its popularity and ease of use, we based our experiments on

this library. Other popular machine libraries include TensorFlow [3],

Chainer [36], and MxNet [7].

We follow Fujitsu’s setup instructions, as published on their

GitHub repository for PyTorch v1.7 [13]. We do not use this

branch for our evaluations because it is specific for the A64FX pro-

cessors. Instead, we use PyTorch v1.10.0 cloned directly from

PyTorch’s GitHub page to establish consistency across all architec-

tures. Our experiments are based on the image classification prob-

lem and for that, we make use of torchvision v0.11.0 to provide

optimized models. BLAS, LAPACK, OpenMP and MPI CMake files

are modified to accommodate Fujitsu’s BLAS library, OpenMP flags
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and MPI wrapper to compile PyTorch. For the ARM compiler, only

the BLAS and LAPACK libraries are modified to accept the ARM

Performance Libraries, others can be used as is. With the GNU

compiler, no changes are necessary and PyTorch can be compiled

out of the box. With the recent GNU compiler (v11.x), we remove

the -Werror=format option in the CMakelists.txt file to avoid com-

pilation errors.

3.1.1 oneDNN. oneDNN, a part of oneAPI, is an open source li-

brary providing highly optimized hardware-aware primitives for

building deep learning applications. This has been adopted in Py-

Torch for inference for some time now. However, training support

was introduced in PyTorch v1.9.

oneDNN was originally optimized for Intel CPUs by taking ad-

vantage of vectorization (SSE, AVX instruction sets on Intel CPUs)

and better cache reuse. To port this library to Aarch64, Fujitsu de-

veloped an AArch64 version of xbyak which is the just-in-time

assembler for x86 [21]. Along with that, they also built a binary

translator xbyak_translator_aarch64 to convert runtime gener-

ated x86 code to Aarch64 (ARMv8-A ISA specifically). This work

has been upstreamed into oneDNN.

Earlier, one would have to build this translator on the A64FX

chip before building oneDNN on A64FX. Since the necessary head-

ers have been upstreamed, one can easily build oneDNN without

having to build the aforementioned translator. We refer to MKL-

DNN as "onDNN" hereafter, and the blocking style provided by

oneDNN as "onDNN block format". To use the efficient primitives

in PyTorch during training, one can follow these steps:

input = torch.randn((10,10)).to_mkldnn()

output = model(input)

And during inference:

from torch.utils import mkldnn

input = torch.randn((10,10)).to_mkldnn()

model = mkldnn.to_mkldnn(model)

output = model(input)

For other compilers, we can build oneDNN out of the box with re-

spective BLAS libraries by setting DNNL_BLAS_VENDOR environment

variable during configuration.

3.1.2 PyTorch JIT. PyTorch provides just-in-time compilation via

torch.jit. Default training in PyTorch is done in "Eager mode"

execution where the computational graph is built at runtime and

managed by the Python process. The forward pass is supposed to

dynamically create this graph and the backward pass is supposed

to apply losses and then destroy it. This is not desirable for perfor-

mance and deployment, in which case PyTorch also supports graph

execution. In graph execution the computation graph is built once,

and the underlying process (which can be a C++ process) manages

this state. Graph execution is difficult to debug, but is expected to

be faster than eager execution and hence, once can take advantage

of this mode if their models are not supported by oneDNN. One can

use the torch.jit.script or torch.jit.trace functionality to

use just-in-time compilation for their custom model.

3.2 Horovod

Horovod is a popular, easy-to-use distributed deep learning frame-

work introduced by Uber and currently hosted by LF AI & Data

Foundation [34]. Currently, it supports TensorFlow, Keras, PyTorch

and MXNet Machine Learning frameworks and can be built with

MPI, NCCL, Gloo and oneCCL backends for Tensor operations. In

our experiments we use Horovod for CPUs built with Open MPI.

To use horovod with PyTorch, one can initialize the library init(),

apply the distributed sampler to distribute the dataset into equal

shards, wrap the optimizer object with the Distributed Optimizer

DistributedOptimizer(), broadcast model parameters from rank

0 broadcast_parameters() and train the model as one would. It

is important to note that the user should modify the learning rate

based upon the optimization algorithm and gradient averaging

technique used by horovod. A general rule of thumb is to scale

the learning rate proportional to the number of workers or ranks,

unless one uses AdaSum to perform reduction, then the learning

rate should be scaled by an empirical constant factor of 2-2.5 [2].

The batch size is decided based upon the scaling style (weak vs

strong). Setting the batch size in the DataLoader object sets the

rank local batch size. To build horovod, we add a CMake file to

find Fujitsu’s MPI wrapper. With the other libraries, no changes

are required. Horovod is built with PyTorch and MPI support by

setting HOROVOD_WITH_MPI=1 and HOROVOD_WITH_PYTORCH=1

With horovod, we evaluate data-parallel training in a weak scal-

ing setting. Here, each worker has a copy of the model and all

workers work on exclusive shards of the dataset. Model parallel

training is also possible but out of scope of this work. If the model

is too large and does not fit on a single node or single workers

resources, one may have to implement it.

4 COMPILERS AND HARDWARE

Our primary focus is to evaluate ARM architectures for Machine

Learning applications. Fugaku has been deemed to become the core

infrastructure providing a high performance AI platform for pro-

cessing and training over large amounts of data efficiently at scale.

So, we evaluate the intra- and inter-node performance of PyTorch

on the A64FX FX700 system with different compiler toolchains

and BLAS libraries. For fair comparison, we also evaluate the same

libraries with respective compilers on x86 systems. The hardware

and compilers are described in as follows:

4.1 Hardware

We make use of the Ookami cluster to experiment with A64FX

processors and Stampede2 at TACC and clusters - Popeye and Rusty,

at the Flatiron institute for the Intel CPUs. The CPU versions for all

are mentioned in table 2. A64FX is an ARM based chip developed by

Fujitsu with the ARM v8-A ISA and the first to implement Scalable

Vector Extensions with a 512 bit implementation enabling vector

length agnostic (VLA) programming. It contains 48 cores (A64FX

on Fugaku may have 2/4 additional I/O cores on Fugaku) and runs

at a steady 1.8GHz frequency. There are no stepping modes as seen

on the x86 CPUs. The 48 cores are divided into 4 Core Memory

Groups (CMGs) representing NUMA domains and have 8GB of High

Bandwidth Memory per CMG, 32GB HBM2 on one node. These

nodes contain 64KB L1 cache and 8MB shared L2 cache. Ookami

has an Infiniband HDR100 interconnect with 200 gigabit switches

and a high performance Lustre file system.
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Table 2: CPU and Compilers

Cluster CPU Compiler BLAS library Compiler Flags

Ookami Fujitsu A64FX Fujitsu compiler v4.7a SSL2 -Nclang -Kfast

-Knolargepage -lpthread

Ookami Fujitsu A64FX ARM Compiler v22.0 ARMPL v2022.0.1 -O3 -mcpu=a64fx

-mtune=a64fx -lpthread

Ookami Fujitsu A64FX GNU v11.2.0 OpenBLAS v0.3.19 -O3 -mcpu=a64fx

-mtune=a64fx -lpthread

Rusty Intel Xeon Gold GNU v10.3.0 OpenBLAS v0.3.19 -O3 -lpthread

6148 (40 cores) -mtune=skylake-avx512

Rusty Intel Xeon Gold Intel Compiler MKL v2022.0.1 -O3 -lpthread

6148 (40 cores) v2022.0.1 -mtune=skylake-avx512

Popeye Intel Xeon Platinum Intel Compiler MKL v2022.0.1 -O3 -lpthread

8358 (64 cores) v2022.0.1 -mtune=icelake-server

Stampede2 Intel Xeon Platinum Intel v19.1.1 MKL v19.1.1 -O3 -lpthread

8160 (48 cores) -mtune=skylake-avx512
a We use the Fujitsu Compiler in Clang mode and the LLVM OpenMP library implementation.

All x86 CPUs involved in evaluation support 512 bit extensions to

Intel’s 256 bit Advanced Vector Extensions SIMD instruction set for

x86 ISA. The Skylake CPUs on Stampede2 have 48 cores, 24 cores

per socket with 32KB L1i and L1d cache, 1MB L2 cache and 33MB

L3 cache. This CPU has 4 stepping states with a max frequency of

3.7GHz. Hyperthreading is enabled with 2 threads per core. The

interconnect is a 100Gb/sec Intel Omni-Path (OPA) network with a

fat tree topology employing six core switches [18]. We use Intel’s

MPI implementation in our experiments on Stampede2. The Skylake

CPUs on Rusty have 40 cores, 20 per socket with Hyperthreading

disabled. They also have 4 stepping states with a max frequency

of 3.7GHz and contain same L1 and L2 cache as the Skylake CPU

on Stampede2 except the L3 cache is 28MB. Icelake CPUs were

added for benchDNN performance runs because they support VNNI

(Vector Neural Network Instructions) as an extension to AVX512

designed specifically for inference. The Icelake CPU has 64 cores,

32 per socket with Hyperthreading disabled. They have 6 stepping

states with a max frequency of 3.4GHz and contain 48KB L1d cache,

32KB L1i cache, 1.28MB L2 cache and 48MB L3 cache.

Two different clusters are used for PyTorch benchmarks on x86

because of the missing latest Intel oneAPI compilers and the pres-

ence of Hyperthreading on Stampede2.

4.2 Compilers and BLAS libraries

We have access to the ARM, Cray, Fujitsu, GNU, LLVM and NVIDIA

compilers on the Ookami cluster. NVIDIA’s compiler is not used

because it does not generate SVE code and defeats the purpose.

Cray’s compiler is also not used because we ran into compilation

problems with Python where it stalled during compilation. LLVM

versions 12 and 13 are available on the system but version 14 is

the first where the vectorizer uses scalable auto-vectorization by

default to generate SVE instructions on compatible targets. At the

time of experimentation, LLVM version 14 was not available on the

system.

We are left with 3 compilers on the ARM architecture - ARM,

Fujitsu and GNU. The ARM and Fujitsu toolchains have vectorized

math library support via the ARM Performance Libraries and SSL2,

respectively. The GNU compilers suffer from this drawback that

they do not have a vectorized math library implementation (at least

for ARM architecture). During experimentation, OpenBLAS v0.3.19

had support for vectorized routines. Therefore, we make use of

OpenBLAS with the GNU compilers. For all experimentation on

the FX700 system, we use Open MPI version 4.1.2 except with the

Fujitsu compiler which has it’s own MPI implementation based on

Open MPI v4.0.1. RDMA support in Open MPI is provided via UCX

over Infiniband.

On the x86 platform, we have the GNU and Intel compilers.

MKL is the default BLAS library of choice on Intel CPUs. We have

access to 2 different sets of Intel x86 clusters. We perform single

node and distributed training on Skylake CPUs on Stampede2 at

TACC which has the Intel 19.1.1 compilers and benchDNN perfor-

mance benchmarking (Section refsubsect:bench) on the Flatiron

machines because they have the latest Intel compilers 2022.0.1.

We also note that HyperThreading (HT) is enabled on the Stam-

pede2 machines and this is not desirable for performance and we

use OMP_PLACES=cores to disable it for the GNU OpenMP library

libgomp and KMP_HW_SUBSET=1T with the rest. On x86, only the

GNU compiler builds of PyTorch are used for single node & dis-

tributed training comparison because the Intel compiler failed to

compile PyTorch. The intel compilers are successful in compiling

oneDNN and those results have been included in the next section.

The specific versions of compilers and libraries can be seen in 2.

5 BENCHMARK DATASETS AND MODELS

We use two benchmarks for our evaluation. These are specifically

chosen to get an idea of how the ARM chip performs on a research

code over the PACS dataset and a relatively standard benchmarking

dataset, CIFAR-10.

5.1 Datasets

• PACS [26] - The acronym stands for Picture, Art paint-

ing, Cartoon and Sketch - a popular dataset in distribution
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generalization problems, representing 4 different data do-

mains with 7 classes (dog, elephant, giraffe, guitar, house,

horse, person). There are 9991 images in total and we use

Art painting, Cartoon and Photo for training & validation

and Sketch for testing. This corresponds to 5444 images for

training, 605 for validation and 3942 for testing. This dataset

is used to evaluate single node performance for training and

inference. We employ the following transformations to the

images during training:

ś Resize

ś Random Horizontal Flip

ś Color Jittering

ś Random Gray Scaling

ś Normalization

During inference, we only employ Resize and Normalization.

• CIFAR-10 [22] - This is a very popular dataset. It contains

60,000 images, with 50,000 for training and 10,000 for infer-

ence. There are 10 classes - airplane, automobile, bird, cat,

deer, dog, frog, horse, ship and truck. This dataset is used

to evaluate distributed performance for training. Normaliza-

tion is the only transformation applied to these images for

training and inference.

5.2 Models

We evaluate the performance of 3 models in our experiments

namely, ResNet - 34 [16], ResNext 50-32x4d [40] and Wide

Resnet 101 [41]. As one may surmise, all of these models are based

on residual connections. We chose models based on residual con-

nections primarily because they can be converted to the MKLDNN

block format and they represent state-of-the-art models in object

recognition tasks. Other models from respective model families

provided in torchvision.models were evaluated for their com-

patibility with MLKDNN block formats, and the aforementioned

classes were the only ones that could work without significant

changes from the user. To that end, the other models can still lever-

age PyTorch’s JIT mode for getting performance during training.

Residual Networks are popular because they introduced the con-

cept of skip connections to address problems with deeper networks

such as vanishing gradients and outperformed all models in the

ILSVRC challenge in 2015 [1] without adding additional complex

computations in the network. The residual network family of mod-

els can be converted to the oneDNN block format without making

any changes. In recent times, the transformer models for language

processing and vision have also received the spotlight for state-of-

the-art results and contain many more parameters (a magnitude

higher), but we do not consider those models in these study due to

computational resource constraints such as allotted computation

time. From initial testing, we found out that the visual transformer

cannot be converted to the block format. The three models also rep-

resent different computational complexity of deep learning models.

ResNet34 is a 34 layered network, ResNext50-32x4d is a 50 layered

network and Wide Resnet 101 is a 101 layer network. Each of these

models have approximately 21.79, 25.02 and 126.88 million trainable

parameters. The number of trainable parameters were generated

by the torch-summary package.

6 EVALUATION

In this section we describe the evaluation strategy and the run-

time environment flags set to achieve said performance. Evaluation

is performed in a single node and inter-node (distributed) basis.

We evaluate training and inference runtime performance of the

models on the benchmark datasets. 8 OpenMP threads are set for

benchDNN performance profiling. As mentioned in 4, the A64FX

chip has a memory limitation of 32GB on a node. On the Ookami

cluster, the OS resides in main memory, and the application must

fit in approximately 27GB. Hence for intra node, we decided to

fill the memory of a node until we ran into Out-of-memory errors

and landed on 128 images in a batch for training. MKLDNN block

formats use memory efficiently compared to the native implementa-

tion in PyTorch. For the Wide ResNet model, we ran the JIT version

of the application with 64 images to avoid running into Out-of-

memory errors. For inter-node weak scaling runs, we decided to

go with 128 images as that was the maximum number of images

(in the power of 2) that could be set such that each node received

at least 1 shard of the dataset and can perform at least one local

gradient calculation and backpropagation. All training runs on both

clusters were performed at least 5 times and their average epoch

time / throughput is depicted in the plots.

Table 3: benchDNN Problems

Index Problem

1 mb256ic3ih224oc64oh112kh7sh2ph3n

2 mb256ic64ih56oc256oh56kh1ph0n

3 mb256ic64ih56oc64oh56kh1ph0n

4 mb256ic64ih56oc64oh56kh3ph1n

5 mb256ic256ih56oc64oh56kh1ph0n

6 mb256ic128ih28oc128oh28kh3ph1n

7 mb256ic128ih28oc512oh28kh1ph0n

8 mb256ic512ih28oc128oh28kh1ph0n

9 mb256ic256ih14oc256oh14kh3ph1n

10 mb256ic256ih14oc1024oh14kh1ph0n

11 mb256ic1024ih14oc256oh14kh1ph0n

12 mb256ic512ih7oc512oh7kh3ph1n

13 mb256ic512ih7oc2048oh7kh1ph0n

14 mb256ic2048ih7oc512oh7kh1ph0n

15 mb256ic256ih56oc128oh56kh1ph0n

16 mb256ic128ih56oc128oh28kh3sh2ph1n

17 mb256ic512ih28oc256oh28kh1ph0n

18 mb256ic256ih28oc256oh14kh3sh2ph1n

19 mb256ic1024ih14oc512oh14kh1ph0n

20 mb256ic512ih14oc512oh7kh3sh2ph1n

6.1 benchDNN

benchDNN is a robust harness for testing and performance analysis

of primitives provided by oneDNN. We make use of benchDNN to

run performance tests on the convolution primitive with different

problems keeping it consistent with [21]. Although they compare

performance of integer convolutions, we run performance tests on

32 bit floating point convolutions in forward and backward mode
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Table 4: benchDNN execution

Execution Command OMP_NUM_THREADS=8 numactl śmembind=0 ścpunodebind=0 ./benchdnn

śconv śmode=p śfix-times-per-prb=5 śreset śdir=dir ścfg=cfg (problem)

Direction FWD_B, BWD_WB, FWD_I

Configuration f32, u8s8s8, s8s8s8

because these are essential for understanding the compute time

taken by PyTorch on x86 and ARM64 during training. For inference,

we run tests in the forward mode on Skylake and Icelake machines

- the latter to explore the VNNI extension to the AVX512 vector

instruction set. The results of these runs can be seen in figure 1.

FWD_B stands for forward mode with bias, BWD_WB for back-

ward mode with bias and FWD_I for forward mode inference. For

A64FX inference mode the configuration is s8s8s8 instead of u8s8s8

as explained in [21]. u8 and s8 represent unsigned and signed inte-

gers and f32 is 32 bit floating point. f32 (or f32f32f32) represents,

source weights and destination respecively. Similarly for u8s8s8 and

s8s8s8. More details about datatypes can be found in benchDNN’s

documentation. We consider the same problems as in [21] and elab-

orate on the directions and configurations. And these problems are

run with similar settings i.e., with 8 OpenMP threads, convolution

driver, performance mode, etc. The (problem) can be found in

Table 3.

As we can see from Figure 1, the Xeon Scalable processor has

an advantage over A64FX in forward (FWD_B) and backward

(BWD_WB) mode. There is a larger gap in backward pass per-

formance between the ARM and x86 chip. The forward and back-

ward modes are run with 32 bit floating point format because they

are the commonly used training data type. However, in integer

convolutions, we see that A64FX has comparable performance or

significantly outperforms the Skylake CPU in many problems. The

Icelake CPU outperforms all in the integer configuration due to the

VNNI instruction vpdpbusd which combines 3 vector instructions

vpmaddubsw, vpmaddwd and vpaddd into 1. We note that these in-

structions are primarily for low precision operations and have no

influence on training modes.

6.2 Single Node

The purpose of evaluating single node performance is to test

various runtime environment flags to speedup computation, and

see how A64FX performs compared to Skylake. These flags can

then be directly applied in a distributed setting and the focus can

be shifted to the communication bottlenecks. For single node runs

on the PACS dataset, we set the batch size to 128 and convert

inputs to block format during training. The execution is done in

eager mode and hence we build and use TCMalloc for fast memory

allocation. We take advantage of intra-node parallelization via

the OpenMP Environment Variables. The following settings

are applied ś OMP_NUM_THREADS=46, OMP_PROC_BIND=close,

OMP_PLACES=cores and OMP_STACKSIZE=8M. For libomp,

we can alternatively use the KMP_* variables, for ex-

ample, KMP_AFFINITY=granularity=fine,compact,1,0

and KMP_BLOCKTIME=0 and for libgomp, we can use

GOMP_CPU_AFFNITY=0-45. With the Fujitsu compiler, it is

recommended to set XOS_MMM_L_HPAGE_TYPE=none to disable

huge pages.

One can note that we use 46 threads instead of 48. This is done

so that 2 cores are left idle for system or I/O operations. The A64FX

chip in FX1000 in Fugaku has additional 2/4 cores that perform

system or I/O operations, missing in the A64FX processor in the

FX700 system.

Our training runs on the PACS dataset in Figure 2 represent

a application research environment where costly transforms, op-

timization algorithms and learning rate scheduling are used for

getting high prediction accuracy. And there we see the benefits

of using the oneDNN block formats and their advantage over jit

scripting provided by PyTorch. Epoch times are lower on Skylake

nodes and we can see this from our evaluation of the convolution

primitive with benchDNN. With the ResNet-34 and Wide ResNet

models, we can see similar performance between the ARM v22.0,

Fujitsu v4.7 and GCC v11.2 compilers. However, the ARM compiler

outperforms the Fujitsu and GCC compilers in training. The per-

formance of the Fujitsu compiler is surprising, and requires further

investigation. The Skylake CPUs outperform the ARM chip, but

the gap reduces as the model size increases (from approximately

77.1% faster with ResNet-34 to approximately 20 % faster with Wide

ResNet).

Inference results are slightly different in Figure 3. A64FX gives

competitive and in one case better performance than the Skylake

CPU. ARM v22.0 compiled PyTorch on Ookami has the highest

throughput of about 104 images per second and Fujitsu v4.7 com-

piled PyTorch on A64FX is second with about 98 images per second.

GCC compiled PyTorch on Skylake has surprisingly lower through-

put with the ResNet-34 model, and requires further investigation.

JIT scripted results are laid out for a reader. If a custom model with

new operators is not supported by oneDNN block formats, one

can still take advantage of JIT scripting or tracing functionality

provided by PyTorch, though at reduced performance.

6.3 Distributed

We use easily available sample code for distributed training

with horovod on the CIFAR-10 dataset. Some modifications

are made to it so that the oneDNN block format can be used

and we add a user defined argument to pass either of the three

models we experiment with. No other changes are made to the

code. Distributed training with horovod represents a hybrid

MPI+OpenMP application. We use mpirun to launch multiple

copies of the program instead of horovodrun to control pro-

cess and thread binding on a node. The run command looks like

mpirun –map-by ppr:1:node:pe=46 -x var . . . python3 . . .

where -x var represents the shared environment variables. The

same OpenMP / KMP variables are passed to all nodes.
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Figure 1: benchDNN Performance Evaluation: The first three columns in all groups represent A64FX and the remaining are

Skylake 6148, except the last figure where black column represents Icelake 8358. *on A64FX, s8s8s8 configuration is used

instead of u8s8s8 for inference.

We also test horovod with RDMA by disabling MPI threads.

However, we do not see significant performance gains and in some

cases the program stalls. Therefore, we go ahead with the default

TCP for MPI communication in Horovod. However, we shall see

that this impacts performance.

Figure 4 shows our results for inter-node runs. Each node corre-

sponds to 1 rank. ARM(22) compiled PyTorch is faster than Fujitsu

compiled PyTorch in all cases even though Fujitsu’s MPI is highly

optimized and has low overheads compared to Open MPI compiled

with the ARM compilers. We see much higher throughput with all

three models when comparing the ARM and Fujitsu compiler builds.

At a maximum of 128 nodes, the ARM compiler has 17.4% and 77.7%

higher throughput with the ResNet-34 andWide ResNet 101 models

respectively. The applications scale very well on the Stampede2

cluster with Intel’s OPA interconnect with approximately 56.06%

with ResNet-34, 104.4 % with ResNext 50-32x4d and 27.02% higher

throughput at 128 nodes than the best respective model throughput

we recorded on Ookami.

We make note of the scaling discrepancies in our experiments

here. The GCC and Fujitsu compiled PyTorch builds fail to scale

well on A64FX. There is a communication bottleneck and debug-

ging or profiling that is challenging due to the limited memory on

A64FX nodes. Using PyTorch’s Kineto profiler was our initial choice.

However, due to limited memory on the node, we are unsuccessful

in leveraging this profiling tool. We also make use of Horovod’s

Timeline feature, and see that the communication bottlenecks are

quite obtrusive negatively impact performance. In GCC’s case, some

operations are not optimized at all. For instance, we see that the
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(a) ResNet34

(b) ResNext50-32x4d

(c) Wide ResNet 101

Figure 2: Intra-node training processing time: The first four

groups of columns represent A64FX and the last two repre-

sent Skylake 8160.

memcpy operations are slower than the corresponding Fujitsu- and

ARM-compiled builds and this is because of the absence of an SVE

optimized memcpy operation in glibc. Horovod does not make use

of Infiniband on the Ookami cluster and partly explains the poor

scaling compared to x86 runs.

(a) ResNet34

(b) ResNext50-32x4d

(c) Wide ResNet 101

Figure 3: Intra-node inference throughput: The first four

groups of columns represent A64FX and the last two repre-

sent Skylake 8160.
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(a) ResNet34

(b) ResNext50-32x4d

(c) Wide ResNet 101

Figure 4: Distributed training throughput: The first three

columns in every group represent A64FX and the last two

represent Skylake 8160.

6.4 ARM compiler improvement w.r.t.
benchmark application execution time

We see significant performance improvements with the ARM com-

piler v22.0 over v21.0 and take a moment to showcase this via the

single node runs for the same dataset, PyTorch application and

environment variables set at run time. The single node training and

inference figures 2 and 3 respectively, show us this improvement.

For training, the epoch times reduce and show a 20.12%, 22.39% and

9.2% improvement in training time with MKLDNN block format.

During inference, the throughput increases from 59 images to 81

images per second - a 37.2% improvement. The following tables 5

and 6 tell us the reduction in training time per epoch and infer-

ence time by that percentage with the MKLDNN block and default

memory formats.

7 OBSERVATIONS

• ARM toolchain delivers high throughput when scaled but

tuning is required.

• Transforms applied to images increase the memory usage

of the application and one must be careful while running

their application on A64FX. One may tune batch size and

transforms as needed.

• The new ARM compiler (22.0) has significant improvements

compared to the previous major version (21.0).

• GCC- and Fujitsu-compiled PyTorch do not scale as expected

and this warrants a thorough investigation.

• 512 bit SVE optimized kernels perform comparably with

AVX512 optimized kernels in benchDNN.

• As seen in the benchdnn results, backward passes are sig-

nificantly slower for some problems on A64FX compared to

Skylake.

• The VNNI instructions of the extended AVX512 ISA show

significant reduction in processing time.

8 CONCLUSION

In this work we did not compare performance of PyTorch’s native

DistributedDataParallel framework and there will be a follow up

work to see which distributed framework approach performs better.

Intel maintains its own extension which has hardware specific op-

timization, graph optimization for PyTorch which are upstreamed

from time to time, but we do not make use of that distribution for

evaluation. PyTorch’s just-in-time functionality is another promis-

ing direction to accelerate research without having to wait for

optimized oneDNN primitives and PyTorch’s implementation of

the same to catch up. This work did not study model convergence

which is imperative. Achieving high throughput at the expense of

model divergence is costly and undesirable. Weak scaling should

be performed cautiously.

The A64FX processor can be used to scale machine learning

workloads and building a tuned environment plays a crucial role

in it. A more thorough set of experiments with more applications,

perhaps from the MLPerf Training suite, and the latest PyTorch,

oneDNN and torchvision versions can give us a better picture of

which compiler/build performs better. Performance of the appli-

cation depends on the compiler used to build PyTorch and this is

evident from the performance differences of the ARM compiler
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Table 5: Training Improvement with the ARM compiler 22.0 vs 21.0

Memory Format ResNet-34 ResNext-50-32x4d Wide ResNet 101

MKLDNN block format 20.12% 22.39% 9.2%

Torch JIT 44.46% 59.51% 63.29%

Table 6: Inference Improvement with the ARM compiler 22.0 vs 21.0

Memory Format ResNet-34 ResNext-50-32x4d Wide ResNet 101

MKLDNN block format 40.28% 36.41% 17.23%

Torch JIT 25.23% 28.06% 7.4%

itself. Currently, we see that communication is not well hidden

by computation, and that is hindering scaling applications on the

Ookami cluster. While developers may focus more on improving

this overlap for GPU operations, attention to CPU operations is

also necessary. Overall the ARM compilers performs significantly

well on the Ookami cluster and in a few cases deliver comparable

scaled performance for training and inference and in turn supports

the place of ARM infrastructure in HPC and AI.
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