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ABSTRACT

To build a cohort of computationally educated young researchers
and to deepen community expertise, the Ookami project is actively
integrating graduate students into the project team. They learn how
to get started on a novel architecture and what to take care of when
porting applications. This experience enables them to do production
research on A64FX as well as grow their general knowledge in HPC,

benefiting not just them but also the codes they are working on.

Embedding them within the project team greatly facilitates the
transfer of skills, builds a common vocabulary and culture, provides
experience in large project execution, and builds confidence and a
can-do attitude. In this paper, we report the student’s preliminary

efforts in porting several science applications to Fujitsu A64FX.

The Arm-based Fujitsu A64FX processor developed by Fujitsu and
RIKEN is used in Fugaku, which until June 2022 has been the fastest
machine worldwide for two years. Its main features of SVE, HBM,

and being power efficient makes it unique in the world of HPC.

The studied applications (SIESTA, MOM6, Amber, ROMS) are from
various disciplines and give a good overview of the A64FX porting
process.
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1 INTRODUCTION - THE OOKAMI TESTBED

In this paper, we investigate the porting and tuning efforts of four
different applications for the Fujitsu A64FX processor.

The Ookami testbed [1-3], located at Stony Brook University, is
supported by the National Science Foundation (NSF) under grant
OAC 1927880. It gives researchers access to 176 Fujitsu A64FX
processors. This Arm-based processor is developed by Fujitsu and
RIKEN and a variant is used in Fugaku [4]. From June 2020 until
June 2022 Fugaku was number one in the Top500 ranking. It also
ranked number one in all four other major benchmarks (Green50,
HPL-AI HPCG, Graph500), indicating that the chip is well suited
for a wide set of applications, while simultaneously being power
efficient.

Ookami has been open to researchers worldwide since January
2021 as a testbed. As of October 2022, it has also been integrated
into ACCESS as a resource provider. Experience has shown that
most applications compile and run out of the box on this architec-
ture. Getting decent performance, however, can require some effort.
This includes testing the available compilers. Their capabilities for
vectorizing codes differ a lot and depend on the characteristics of
the code.

The Fujitsu A64FX-FX700 processor has a clock speed of 1.8GHz.
It is based on Arm v8.2 and has support for SVE (Scalable Vector
Extension) with a vector length of up to 512 bits. The processor
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consists of 4 NUMA regions, or Core Management Groups (CMG),
each having 12 cores, giving a total of 48 cores per node.

By focusing on crucial architectural details, the Arm-based pro-
cessor with ultrahigh-bandwidth memory promises to retain famil-
iar and successful programming models, while achieving very high
performance for a wide range of applications. It supports 64/32/16-
bit floating-point representations and fast partial dot-product of
8-bit integers to 32-bit results and hence enables both HPC and big
data. On Ookami, 176 nodes are available, facilitated by an HDR100
fat tree interconnect with 200GB switches.

The four different compilers available for the A64FX architecture
include Fujitsu (both traditional and clang mode for C and C++),
GCC (or GNU), Arm, and Cray (or CPE). The specific vectorization
flags for all those compilers are listed in Table 1.

2 EDUCATIONAL INITIATIVES

Since the start of the Ookami project, it was clear that there were
multiple barriers to new users making effective use of the system,
and, moreover, that many of these concerns were not specific to
Ookami. The Ookami team has a multimodal approach [5] to sup-
port researchers: (i) an active slack channel, that provides nearly
instant help and feedback; (ii) a traditional ticketing system, mainly
for installation and project requests; (iii) virtual office hours, lasting
for two hours twice a week, for on the spot feedback and support
on various topics such as compilation, choosing the right environ-
ment, debugging, and profiling; (iv) regular webinars and other
virtual training activities; and (v) extensive online documentation
and user-oriented FAQ.

Since the beginning of the project, ten graduate students have
been employed and integrated into the team. The primary high-level
aims were to increase the number of science codes that can make
effective use of this technology and to broaden the number of disci-
plines utilizing the system. However, by partnering with application
teams to develop successful ACCESS applications and accelerating
the adoption of the system for science, the Ookami team is transfer-
ring knowledge into the research science community; translating
success on Ookami into performance and productivity advances on
other NSF resources; and most importantly, providing substantial
educational and research opportunities for the supported students.
The students regularly present their progress in the weekly project
meetings, as well as in the annual NSF review meeting. They ac-
tively join the office hours and already support other new users with
their expertise. The Ookami project is also actively encouraging
the students to publish their results and findings.

In this paper, the students show their work, development, and
their efforts in porting their applications. All of them started with
little HPC experience and no exposure to A64FX. Nevertheless, the
results demonstrate substantial progress in porting useful applica-
tions to this novel architecture.

3 APPLICATIONS
3.1 Amber

Amber is a set of programs widely used in atomic-level molecular
dynamic (MD) simulations, especially biomolecules, including pro-
teins and nucleic acids [9]. Molecular simulations can be used to
overcome the limitations of wet-lab experiments. It has become a
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common practice to combine experiments and simulations for re-
searchers in the field of biochemistry. The latest version is Amber22.
The core program of Amber, pmemd, is responsible for running MD
simulations on high-performance computing platforms. Pmemd
supports parallelization by MPI and acceleration by CUDA [10, 11],
allowing computing tasks to be distributed on multiple CPU cores
and single or multiple GPUs. Amber has been widely tested on x86
CPUs and NVIDIA GPUs.

3.1.1  Compilation. Amber22 uses CMake to prepare the build
file for compilation. We compiled Amber on Ookami using GCC
(v12.1.0) and Cray (v22.03). Arm (v22.1) and Fujitsu (v4.7) compilers
were also tried, which need some modifications in the source code
to be compiled successfully, including editing CMake files to sup-
port the compilers and fixing some coding errors that are tolerated
by GCC but not other compilers. Compilation and testing were
focused on pmemd.MPI, the parallel version of pmemd. For com-
parison with x86 systems, we compiled Amber22 on a computing
cluster (Seawulf) with Intel Haswell CPUs with 28 cores.

3.1.2 Molecular systems for testing. Amber supports two types of
solvent (water) models, explicit solvent and implicit solvent. We pre-
pared two test systems for each solvent model. For explicit solvent,
we chose Dihydrofolate reductase (DHFR). The system consists of
23,558 atoms, among which 2429 are protein atoms. DHFR was
simulated at constant volume and constant energy, using a 4 fs step
length with hydrogen mass repartition. For implicit solvent, we
chose myoglobin, with 2492 atoms in the system. The simulation
was conducted at 300K, using the GB-HCT water model [12].

3.1.3  Performance. We used GCC, Arm, and Fujitsu compilers for
explicit water systems. The Cray compiler version failed at runtime
and is not included in the results. The three compilers performed
similarly when using less than 30 cores. When using more than 30
cores, the Arm compiler performed best. All three compilers are
slower than the Intel Haswell CPU with 28 cores. The Arm compiler
version failed to run on two or more nodes (Fig 1a). Both GCC and
Fujitsu showed similar performance on A64FX. Notably, the peak
performance for 2 nodes was observed at 46 cores, instead of the
available 48 cores per CPU. This is possibly related to the internal
architecture of the Fujitsu CPU. We also found a performance drop
when using more than three nodes on Ookami. Similar behaviors
were also observed on Intel nodes. This could be explained by the
limitation of the parallelization strategy of Amber software.

The scaling performance for the implicit solvent system was
generally better than explicit water. The Fujitsu compiler was the
fastest on a single node among all four tested compilers. It was also
observed that using 46 cores per node was the fastest choice on
two nodes (Fig 1b). The Arm compiler failed again when using two
and more CPUs. The total number of cores was limited to 240 (one-
tenth of the number of atoms in the system) due to the software
restriction of Amber. When using 46 cores, Amber consumed 103 W
of power on an A64FX node while running the DHFR test system.

Generally, the performance of Amber on Ookami is lower than
Intel X86 CPUs, but it also comes with the benefit of low energy
consumption. With the recent fast development of GPU computing,
the GPU version of Amber (pmemd.CUDA) has gained much popu-
larity. However, the computing precision was reduced to a mixed
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Table 1: Optimization flags recommended for A64FX

Compiler Versions Flags
-Ofast - =a64
Arm 21, 21.1, 22.0, 22.0.2, 22.1 fast -mepu-a6ifx
-armpl
CPE 20.10, 21.03, 22.3, 21.10, 22.03, 22.10 -03 -h vector3
GCC 7.5.0,9.4.0,10.2.2, 11.1.0, 11.2.0, 11.3.3, 12.1.0, 12.2.0 -Ofast -mcpu=a64fx
Fujitsu 4.2,45,4.7,4.8 -Kfast -KSVE
.. -Nclang -Kfast
Fujit: 1 4.2,4.5,4.7,4.8
s clang T -march=armv8.2-1+sve
a) —e—GCC —e—GCC b)
120 —e—Arm 70 Arm
.. Fujitsu
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Figure 1: a) Simulation speed of DHFR with explicit water in Amber. b) Simulation speed of myoglobin with implicit water in

Amber

single point and double point floating number scheme in the GPU
code of Amber. In cases where computing precision is necessary,
CPU computing can still be useful.

3.2 SIESTA

SIESTA is an open source ab-initio materials modeling Fortran code
that applies Density Functional Theory (DFT). DFT can be used to
simulate materials that are used in a wide variety of applications
including particle detectors, quantum computers, catalysts, drugs,
etc. The main computation of DFT involves solving an eigenvalue
problem for the electron density self-consistently starting from an
initial guess [20, 21].

The widely used diagonalization options are exact diagonal-
ization and OrderN. Exact diagonalization has cubic scaling with
system size O(N®) and is implemented using the divide and con-
quer (D&C) algorithm which divides the matrix into blocks and
calculates the eigenvalues of the full matrix from the eigenvalues of
the individual blocks. OrderN scales linearly with system size O(N).
The linear scaling of the latter option can be used to yield accurate
results when the localization radius of the orbitals is small com-
pared to the system size and does not work for smaller systems
where the range of the orbitals spans the system size. Investigations
in this work are restricted to exact diagonalization implemented
with the D&C algorithm [20, 22].

3.2.1 Parallel implementation. The running modes supported are

serial, MPI, and MPI+OPENMP. Parallelization is controlled by
two independent flags Blocksize and ProcessorY. The former is
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passed into Scalapack routines to aid diagonalization and the latter
is used in speeding up real space 3D integrals computed in the
code. In MPI runs, each individual block of the D&C algorithm is
assigned a rank and associated memory space. The distribution of
the basis into blocks is controlled by the Blocksize flag. It can be
set by the user, however, the default value is chosen such that the
basis elements are as evenly distributed among the MPI ranks as
possible. In the hybrid mode, the computation of the individual
blocks is distributed amongst the threads which use the shared
memory space. The ProcessorY flag is used to distribute the mesh
points into MPI ranks for numerical integrations performed in the
code. The 3D mesh is split into 2+1 dimensions with parallelization
over the first 2 dimensions (this is chosen as Y and Z coordinates
by default internally). The default value for the ProcessorY flag is
the integer closest to ~ VN. The YZ plane is then approximately
distributed into ProcessorY X ﬁ = N where N is the
number of MPI ranks. [22]

3.2.2  Compilation details. Compilation of SIESTA in serial was
achieved in all compilers (GCC v11.2, Fujitsu v4.8, Arm v22.0, Cray
v22.03) with successful runs. The flags used to compile the code are
in Table 1. The optimization levels of the code atom.F reduced to -01
for all compilers [22]. Additionally for the Fujitsu compilation, the
optimization for mneighb.f also needed to be reduced to -01 based
on previous installation experience on the Fugaku supercomputer.

Parallel compilation of the application was successfully achieved
with the GCC v11.2 + OpenMPI(GCC v11.2), Fujitsu v4.8, and Cray
v22.03 + Cray-mvapich2 v2.3.6; however, the compilation with Arm
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failed with an internal compiler error. Our compilation experience
was similar to what was discussed in [24].

3.2.3  Simulation runs and experience. To test runtimes and scaling,
we consider a system of ferroelectric PbTiO3/BaTiO3 slabs for our
results. We choose one small system, with only one formula unit of
the crystal with 5 atoms of ~ 4A size for the test case of serial/low
core runs and a slab of ~ 10nm size consisting of 150 atoms for the
test case for large parallel runs.

For the serial calculation runs, the wall clock times were 1060
secs, 787.4 secs and 604 secs for the Cray, GCC, and Fujitsu runs
respectively. The best runtimes were obtained for the Fujitsu runs.

The parallel runs were successfully performed with the GCC
compiled version.

Fujitsu compiler parallel runs were also successful on single com-
pute node jobs with speeds comparable to GCC. However, during
multi-node jobs, the calculations terminated at the beginning of
the diagonalization step with a SIGBUS error originating from the
Infiniband drivers. We eliminated the error by using the --mca-bt1"
openib flag with mpiexec. This caused significant slowdowns
in the runs as indicated in Fig 2. An update to the Infiniband dri-
vers was able to solve the errors and the Fujitsu runtimes were
comparable to the GCC runtimes (see Fig 2).

Fig 2 shows the comparison of 2-node runtimes of single diago-
nalization steps performed using the GCC(11.2), Fujitsu + Fujitsu-
MPI, Fujitsu + GCC-OpenMPI compilers and Fujitsu + --mca-bt1"
openib flag with mpiexec. We see that the Fujitsu compiler suite
incl. their compiler and MPI compiler has the fastest runtime for
the large system and the GCC compiler has the fastest runtime for
the small system.

To test performance across a large number of cores, we report
the wall clock times taken for 10 self-consistent iterations which
involve 10 diagonalizations in the calculation to get a sense of the
average time taken.

We consider parallel runs using the GCC and Fujitsu compilers of
the large system with the Blocksize and ProcessorY flags allowed
to be set automatically by the code. If the number of cores (MPI
ranks) is ¢ and the number of threads is t, we choose the number or
nodes to be int((c*t)/48)+1 (as each node has 48 cores). We restrict
the number of threads to be 1, 2 or 4 in order to bind the threads
to the NUMA regions. The performance of the Fujitsu and GCC
compilers show similar runtimes, however, the scaling for both
compilers is different.

The Fujitsu compiler shows better performance at a smaller
number of cores (c=64, 920 secs) than the GCC compiler (c=200,
975 secs). Further, the GCC runtimes stabilize and remain almost
constant for a larger number of cores. The Fujitsu compiler shows
a sharper peak at the minima and runtimes increase as the number
of cores increases (Fig. 3). For both compilers, threading does not
seem to make a large difference in runtimes.

Fig 3 shows the time comparison SIESTA on A64FX and SIESTA
compiled using Intel compiler and Intel-MKL math libraries on
the x86_64 architecture of the Intel-Haswell cores (available on
on-campus Seawulf cluster).

The runtimes on the Intel cores are ~500 secs compared to the
~900 secs minima of the A64FX runs. The runtime remains rela-
tively constant in the range of cores suggesting that the CPU time
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flattened at a smaller number of cores. The difference in the run-
times could be fixed by compiling the source code with different
flags or the difference could be due to diagonalization routines in
the scalapack libraries of Fujitsu, GCC, and Intel-MKL.

The calculations performed with the Cray compiler + Cray-
mvapich? failed for all the ¢/t combinations except for 40/4 (2270.814
secs) and 64/1 (2440.746 secs) where runtimes were ~ 2 times GCC
and Fujitsu. The errors were sometimes in the diagonalization (er-
rors in Cholesky decomposition) and sometimes in the initialization.
(This issue may be related to similar errors reported for ROMS (sec
3.4) and is beyond the scope of this work).

To summarize, we have successfully ported the SIESTA code to
the A64FX architecture on the Ookami computer with the GCC and
Fujitsu compilers. However, further code optimization is needed
to achieve competitive speeds with Intel cores. Additionally, we
have also compiled the PSML version [22] of SIESTA with the GCC
compiler. The successful runs with the Fujitsu compiler needed
an update to the Infiniband driver, and resulting runtimes were
comparable to GCC. Porting to Cray and Arm compilers has not
been achieved at the moment. The optimal values for the MPI ranks
and threads to be used are strongly dependent on the system and
compiler under consideration.

3.3 The Modular Ocean Model version 6 - MOM6

Since the first numerical weather forecast was made in the 1950s
using Electronic Numerical Integrator and Computer (ENIAC) [26],
the capability of cutting-edge high-performance computation has
been a key factor to improve weather forecast and climate pre-
diction. Ocean general circulation models (OGCMs) are signifi-
cant tools to study and predict the climate. OGCMs are numerical
models simulating fluid properties and circulations based on the
Navier—Stokes equations on the rotating sphere with thermody-
namic terms [27]. According to previous research [28], the advan-
tage of SVE on A64FX may optimize the performance of geophysical
fluid simulation. Therefore, our motivation is to optimize OGCMs
utilizing the technology of A64FX.

MOME6 is a new-generation OGCM developed at the Geophysical
Fluid Dynamics Laboratory (GFDL) of the National Oceanic and
Atmospheric Administration (NOAA). MOM6 is widely applied in
climate research. For example, MOMS is the ocean component of
GFDL’s globally coupled and Earth system models, CM4 and ESM4,
respectively. Besides, MOMS is the new ocean component of the
Community Earth System Model (CESM). All these models are used
in Version 6 of the Coupled Model Intercomparison Project (CMIP6)
supporting the Intergovernmental Panel on Climate Change (IPCC)
sixth assessment report (AR6).

We choose the ocean_only/global configuration in the MOM6-
example from GFDL’s Github repository as our test case.

3.3.1 Compilation. MOMS6 is Fortran code and has been compiled
successfully using all supported compilers on Ookami including
GCCv12.1.0, Arm v22.1, Cray v22.03 and Fujitsu v4.8. The compiling
instruction is given on the MOM6-examples wiki webpage. All op-
timization flags in Table 1 are applied. For GCC v12.1.0, besides the
FFLAGS in MOM6-examples/src/mkmf/templates/1inux-GNU.mk,
-fallow-invalid-boz and -fallow-argument-mismatch are

added to the makefile. Flag -fallow-invalid-boz degrades the
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Table 2: Compiler flags for parallel implementation of siesta.(SF stands for the serial flags mentioned in Table 1)

Compiler+parallel implementation

Flags

GCC(11.2)+ OpenMPI(Gee11.2)

SF + -fopenmp

Fujitsu(4.8)

SF + -Kopenmp -SSL2MPI -SSL2BLAMP -SCALAPACK

Cray(CPE 22.03)+Cray-mvapich2(2.3.6)

SF + -h omp -eT -G2

a)

1200

1000
800
600
400
200

0

GNU(11.2) Fujitsu(4.8) Fujitsu(4.8)+GNU Fujitsu(4.8)+ "--
openmpi mca-btl openib"
flag

Times [s]

b)
250
200
Z150
g
£ 100
50

GNU(11.2) Fujitsu(4.8) Fujitsu(4.8)+GNU  Fujitsu(4.8)+ "--
openmpi mca-bt]“openib"

flag

Figure 2: 2-node(4 tasks/node) runtime of the 150 atom system (a) and the 5 atom system(b) for GCC and Fujitsu, Fujitsu+

GCC-OpenMP, Fujitsu+--mca-btl“openib flag
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Figure 3: Wall clock times and scaling with number of cores and threads for Fujitsu (a) and GCC (b) compilers. Minimum

runtimes are horizontal black lines.

error to a warning and allows binary, octal, and hexadecimal inte-
ger constants to appear. The option -fallow-argument-mismatch
allows the mismatch between the calls and the procedure definition.

For Arm v22.1, we added the rank function to the MPI library
using Fortran compiler flag, -D’ rank (X)=size(shape(X))’. Open
MPI v4.1.4 and NetCDF v4.8.1 are both loaded prior to the GCC
v12.1.0 and Arm v22.1 compilation. For Cray v22.03, flags are identi-
cal to the MOM6-examples/src/mkmf/templates/ncrc-cray.mk,
plus all optimization flags.

Cray-mvapich2 v2.3.5 and Cray NetCDF v4.7.4.0 are loaded be-
cause for MPI library, only Cray-mvapich is available and there
is no corresponding Cray openmpi on Ookami. MOMS6 supports
serial, OpenMP, and MPI computations.

For the MPI + OpenMP computation, the OpenMP flags (-fopenmp
for Arm and GCC compiler and -Kopenmp for Fujitsu compiler)
have been added to the makefiles before the compilation. OPENMP=1
is also required in the make commend. As a reference, we also
compiled MOM6 with Intel v2022.01 activating -03 optimization

22

on Cheyenne, the National Science Foundation (NSF)-supported
Cheyenne supercomputer housed at the National Center for Atmo-
spheric Research (NCAR).

3.3.2  Performance Analysis of pure-MPI tasks. We investigate the
runtime of a simulation of 30 days realtime compiled with different
compilers as a function of the number of cores shown in Figure
4. All the experiments in this section are pure-MPI tasks. For the
single-node performance, the Fujitsu compiler outperforms other
compilers on Ookami using both 24 cores and 48 cores on a sin-
gle node. The Fujitsu compiler is two times faster than the GCC
compiler. For multi-node performance, the runtime decreases with
increasing cores, and the growth rate of runtime with respect to
the number of cores decreases and gradually reaches saturation
indicating that the performance benefits less from increasing the
number of cores. The Fujitsu compiled model is still the fastest
for multi-core jobs. The model can be compiled successfully with
the Cray compiler but it is only able to run on 1,2 and 5 nodes.
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Figure 4: The total runtime of 30-day simulations of MOM6
compiled by GCC, Arm, Cray, Fujitsu on Ookami, and Intel
on Cheyenne.

Otherwise, the simulation will be aborted due to a Segmentation
fault, which is still under investigation.

Surprisingly, the Intel model running on Cheyenne has a better
performance than all the compilers on Ookami. The model through-
put using 6 cores (288 processors) is estimated in Table 3. The fewer
core hours per simulated year means that with the same simu-
lation time, the model consumes fewer computational resources.
Fujitsu-built MOMS6 provided a 50-year simulation per wall clock
day running on 6 nodes with a power consumption of around 117W
per node.

We further allocate fewer MPI tasks per node with a single thread
based on NUMA to improve the efficiency of Fujitsu-built MOMS6.
The cores in idle are evenly distributed on four NUMA regions
using —map-by numa. We run these experiments on 6 nodes. The
total runtime of fully loaded (12 tasks per NUMA) is 143.5 seconds.
However, if only 11 tasks are allocated per NUMA, the total runtime
decreases to 129.0 seconds (Table 4).

We further use the Fujitsu Profiling Tool to compare more metrics
between 12-task-per-NUMA case (casel, hereafter) and 11-task-
per-NUMA case (case2, hereafter). The memory throughput peak
ratio of casel (case2) is 38.2% (41.4%). The SVE operation rates for
both cases are 85%. mca_btl_vader_component_progress is the
highest cost application accounting for 29.5% ( 26.6%) in casel
(case2). The MPI communication of case2 (26.6%) is lower than
casel (36.3%). The above indicates that the MPI communication
between two processes via shared memory on the same node is
expensive and might have potential room to improve the efficiency
of the simulation.

3.3.3 MOM6 MPI+OpenMP hybrid run. To mimic the A64FX lay-
out on Ookami, we use MPI+OpenMP two-level parallelization
to minimize interconnect communication for acceleration. The
OpenMP-enabled MOMS is successfully compiled by Arm, GCC,
Fujitsu, and Intel compilers. However, it fails to run all compiled
versions of MOM6. We and the members of GFDL faculty suspect
that it is an initialization bug in the source code. This bug is submit-
ted as #231 issue on the Github page of MOM6-example. Once the
bug is fixed, we will test the acceleration using OpenMP threads
on A64FX.
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3.4 Regional Ocean Modeling System - ROMS

ROMS [6-8] is a free-surface, terrain-following, primitive equations
ocean model widely used by the scientific community. It is an open-
source Fortran-based code.

The example we are investigating here concerns research on
Pygoscelis penguins and how their diets reflect the retention of prey
around and near their colonies on the west Antarctic Peninsula [17-
19]. This region was one of the fastest warming places on the
planet [13-16] and how this warming is impacting penguins is
still an area of active research. This project will help determine
the relationship between penguin diets, local prey retention, and
colony presence.

ROMS supports serial, OpenMP, and MPI computations, but no
hybrid MPI + OpenMP computations. The domain is partitioned
into tiles, where the number of tiles (NtileI and Ntile]) is specified
manually by the user. For an MPI job, the product of Ntilel and
Ntile] must equal the number of MPI processes and for an OpenMP
job, the number of threads must be a multiple of the number of
tiles. We are using MPI and tried to choose Ntile and Ntile]J close
to each other, as experience showed the best performance for this
configuration.

3.4.1 Compilation. ROMS uses the NetCDF library. Hence, this
library was also compiled with all the investigated compilers. All
four available compilers with the recommended flags (Table 1) were
tested. The Arm v22.0 compiler with OpenMPI v4.1.4 did compile
the application without any issues. When running, however, it
crashed due to running out of memory. Note that we are restricted to
27GB per node. This is because of the total 32GB available per node,
5GB are reserved for the OS. The Cray v22.03 compiler with Cray-
mvapich2 v2.3.6 did compile ROMS. When running a test example
the code hung in the initialization step. Further investigation needs
to be done to see what causes code initialization to fail. However,
this is not in the scope of this paper. The GCC compiler v12.1.0
with OpenMPI v4.1.4 compiled and ran fine. The same is true for
the Fujitsu v4.7 compiler in traditional mode.

3.4.2  Performance Analysis. We started by investigating the per-
formance differences between the GCC and the Fujitsu compiled
version. As our test setup we are using 32 nodes and 8 tasks per
node (see Figure 5). With the GCC compiler, the runtime was 41.13
minutes. With the Fujitsu compiler, it took 30.05 minutes. This
substantial performance difference demonstrated the importance
of the compiler, as reported by [3, 25].

By default the threads are bound to the core, resulting in the first
NUMA region being filled with threads. If the number of threads
exceeds 12, the second NUMA region is filled, and so on. The threads
can also be distributed between the NUMA regions in a round-robin
way. This ensures equal computational load on the NUMA regions.
The binding is done by running using the -map-by numa option.
Using this option the runtime decreased to 26.6 minutes.

The next step was to study the influence of the number of tasks
per node. We again used 32 nodes. The number of tasks per node
can be increased up to 20 and still fit into the 27GB per node limit.
More tasks exceed the memory limitation. Ntilel and Ntile] were
chosen such that their product equals the total number of MPI
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Core Hour/Simulated Year

Simulated Year/Wall Clock Day

GCC 239.0
Arm 146.9
Fujitsu 137.8
Intel 70.4

28.9
47.0
50.1
98.2

Table 3: Throughput of model compiled by different compilers on 6 nodes
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Figure 5: a) Runtime of the GCC compiler as well as of the Fujitsu compiler in different configurations. b) Runtimes on 32

nodes with varying numbers of tasks per node.

Number of tasks per NUMA Total runtime (seconds)

8 154.8
9 147.4
10 143.5
11 129.0
12 143.5

Table 4: Total runtime of Fujitsu built MOM6 with respect to
the number of tasks per NUMA running on 6 nodes.

processes. Figure 5 shows the runtimes for the different setups. The
best performance is reached by using 16 tasks per node.

3.4.3 Comparison and Scaling. We compared the performance on
A64FX using the Fujitsu compiler with results on Intel Skylake and
Intel Haswell nodes. Those nodes are part of an on-campus cluster,
to which we have access. The Intel Skylake nodes (Xeon Gold 6148
CPU) with a clockspeed of 2.40GHz consist of 40 cores. The Intel
Haswell nodes (Xeon CPU E5-2690 v3) running at 2.60 GHz have
24 cores. The nodes are interconnected via a high-speed InfiniBand
FDR network by Mellanox Technologies, allowing transfer speeds
of up to 7 Gigabytes of data per second.

On the Intel nodes ROMS as well as NetCDF and OpenMPI were
compiled with GCC v12.1.0. We investigated the setup which gave
the best performance on A64FX, namely 16x16 tiling running on
32 nodes and using 8 tasks per node. On the Haswell nodes, the
calculation finished within 26.4 minutes, whereas on Skylake it
took 21.9 minutes.

Do those performance differences sustain when increasing the
number of nodes?

For A64FX we could scale up to 128 nodes. For the Intel nodes, the
lack of computational resources limited us to 50 nodes. On the Intel

24

300
. —e— Fujitsu A64FX
250 | Intel Skylake
----e-- Intel Haswell
=) 200
E
o 150
£
=100
50
J @ —
0 20 40 60 80 100 120 140
Nodes

Figure 6: Scaling results on Fujitsu A64FX, Intel Skylake and
Intel Haswell

nodes, the setup successfully ran on 2 nodes, whereas on Ookami
at least 4 nodes were needed to fulfill the memory requirements of
using less than 27GB per node.

Figure 6 shows the runtimes for those runs. Note that each setup
was run five times. However, the deviation in runtime was so small
that it is not reported in the plot due to visibility (0.5% -2.5%).

On 4 to 32 nodes the Intel Skylake nodes exhibited better per-
formance than the Fujitsu A64FX nodes. At 50 nodes there was
performance parity.

We can only speculate that using more than 50 nodes the A64FX
nodes might win in terms of performance. Due to the lack of In-
tel nodes, we could not test this hypothesis at the time of paper
submission. However, a performance parity implies a huge power
advantage for the Fujitsu nodes.
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The Skylake nodes including motherboard, InfiniBand, etc. have
a peak power consumption of around 510W. The Fujitsu nodes
including all necessary other hardware have a peak consumption
of around 180W. We did measure the power consumption for the
investigated setups. Measurements were taken once per minute
and averaged over the whole runtime. On Fujitsu A64FX ROMS
consumed 110.25W and on the Intel Skylake nodes 265.23W. This
means that runs on A64FX use 2.4 less power than on Intel Skylake
nodes.

4 SUMMARY & OUTLOOK

The paper showcases the work of graduate students from different
disciplines as they commence the use of advanced computing tech-
nology. From initially being pure HPC users, in the sense that they
relied on preinstalled software on a cluster, they are evolving into
HPC experts, aware and capable of handling different architectures,
with deep knowledge of code design and the cornerstones of perfor-
mance engineering. They are already transferring this knowledge
into their research groups and bringing yet more users into the
ACCESS ecosystem. Science codes, which are mainly written by
researchers and not by software engineers, will vastly benefit from
the users’ experience and new know-how.

During the next two years of this project, we will continue to
work with new and continuing students. The students will also have
the opportunity to attend other NSF-provided cyberinfrastructure
training. Many science codes will be ported, tuned, and made avail-
able for production on Fujitsu A64FX, with multiple new groups and
communities benefiting from national cyberinfrastructure, many
for the first time.
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