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Abstract. In this paper we develop a state transition function for par-
tially observable multi-agent epistemic domains and implement it using
Answer Set Programming (ASP). The transition function computes the
next state upon an occurrence of a single action. Thus it can be used
as a module in epistemic planners. Our transition function incorporates
ontic, sensing and announcement actions and allows for arbitrary nested
belief formulae and general common knowledge. A novel feature of our
model is that upon an action occurrence, an observing agent corrects his
(possibly wrong) initial beliefs about action precondition and his observ-
ability. By examples, we show that this step is necessary for robust state
transition. We establish some properties of our state transition function
regarding its soundness in updating beliefs of agents consistent with their
observability.

Keywords: Answer Set Programming · Multi-agent systems ·
Epistemic planning · State transition

1 Introduction

Many Artificial Intelligence applications involve multiple autonomous agents
interacting with each other and the environment. Agents can take actions that
may change the physical state of the world as well as beliefs of agents. A typical
problem in a multi-agent setting is how to update agents’ beliefs in a sound
manner upon an action occurrence, especially when some agents initially have
incorrect or incomplete beliefs about the world and other agents. Another chal-
lenge is that not all agents might be able to fully observe the effect of the action.
Some agents might only observe that the action takes place but not its effects
(partial observer agents) and some agents might be completely unaware of the
action occurrence (oblivious agents).

In this paper, we study the abovementioned problem of robust state transi-
tion upon an action occurrence in multi-agent epistemic settings. We use pos-
sible world semantics in the form of Kripke structure [11] to represent agents’
beliefs and investigate action occurrences in possible world semantics. We clas-
sify actions into three categories: An ontic action changes the actual state of the
world by changing the value of fluent(s). A sensing action allows an agent to
learn the value of a set of fluent variable(s). An announcement action conveys
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the value of a set of fluent variable(s) to other agents. We develop a novel state
transition function for ontic, sensing, announcement actions using Answer Set
Programming (ASP), a popular logic programming paradigm. Our model allows
for different levels of observability, uncertainity of the initial state, arbitrarily
nested belief formulae and general common knowledge. Hence our ASP program
can be imported as a module into single and multi agent epistemic planners
to compute the next state. Our choice of ASP is due to its capability in writ-
ing compact and understandable rules in recursive form for state transition and
entailment of belief formulae.

One important feature of our state transition is that when an action occurs,
full and partial observer agents correct their initial (possibly wrong) beliefs about
action precondition and their observability before the effect is realized. Namely,
an observing agent realizes that the precondition of the action holds and he is
not ignorant of the action. This correction step is vital for robust state transition
because whether the effect of the action is applicable to a world in the Kripke
structure depends on satisfaction of precondition and observability conditions
at that world. We provide some examples to illustrate that without correcting
beliefs, state transition is not robust1 This is indeed the problem with the existing
models of state transition.

One method to compute state transition is to employ action models, intro-
duced in [1,2] and later extended to event update models in [6,10]. Event update
models involve different events and agents’ accessibility relations between events
depending on their observability. The next state is computed by cross product
of the initial Kripke structure with the event update model. However, Example
1 shows that the standard event update model [4,6], by itself, is not capable of
correcting agents’ beliefs and robust state transition.

Example 1. We examine a scenario with two agents A,B in a power plant. Agent
B has a voltmeter device which senses the level of the voltage. At the actual
state, the voltmeter is sound and the voltage level is normal. Agent A initially
believes that the voltmeter is defective and he does not know the voltage level.
This state is represented as a pointed Kripke structure, as in Fig. 1(a), top.
Possible worlds are represented by circles. A double circle represents the true
world. Links between worlds encode the belief accessibility relations of agents.
Suppose that agent B takes the check voltage action which senses the voltage
level. Its precondition is the device being sound, i.e., sound and the condition
for full observability is �. Hence A and B are full observers at all worlds. The
event update model for check voltage is given in Fig. 1(a), bottom left. The σ
event corresponds to sensed value being normal and the τ event corresponds to
¬normal. The result of applying this event model to the initial state is given
in Fig. 1(a) bottom right. The action model removes the accessibility relation of
agent A from world s to u and v because u, v do not satisfy action precondition.
In the next state, A has no accessibility relation and believes in every formula.

1 Details of state transition in these examples can be found in our online appendix at
https://github.com/yizmirlioglu/Epistemic.
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Intuitively, when A observes the action, he should realize that the meter is sound
and learn the voltage level. Therefore, the event model in [4,6], by itself, is not
capable of correcting agent’s beliefs and robust state transition.

a b

Fig. 1. (a) The first example (b) The second example

Example 2. Consider a variation of Example 1 depicted in Fig. 1 (b). Now agent A
initially knows that the meter is sound, but he has incorrect belief that the voltage
level is not normal. Agent B performs the check voltage action as before. Applying
the event model for the check voltage action to the initial Kripke structure, we
obtain the next state shown in Fig. 1(b) (bottom right). Again agent A ends up
having no accessibility relation. Ideally A should change his belief and knows that
the voltage level is normal. Hence the next state is counter-intuitive.

[7] has constructed a model of state transition where agents correct their
beliefs about action precondition. However, their transition function does not
involve belief correction for observability. Their framework requires two separate
operators for belief and knowledge. As the next example suggests, correcting
beliefs for an agent’s own observability as well as his beliefs about other agents’
observability are necessary for robust state transition.

Example 3. We examine another scenario in Fig. 2(left) with two agents A,B. The
knowledge and beliefs of the agents are encoded with the knowledge and the belief
accessibility relations. At the actual world, the door is closed and both agents are
near to the door. Initially agent A believes that both A,B are near the door, how-
everB believes thatA is near butB is far from the door (wrong initial belief).Agent
A performs the open door action whose precondition is haskey a and effect is open.
The condition for full observability of agent A,B is near a, near b respectively.
The next state according to transition function of [7] is shown in Fig. 2 (right). At
the next state according to [7], agent B believes that the door is open but believes
that he is far from the door. This is not a realistic outcome because B wouldn’t
observe opening the door if he were far from the door.

The above discussion inspires us to develop a robust state transition function
for multi-agent domains. Using ASP, we compute state transition which corrects
agents’ beliefs about action precondition, observability and effect of the action. In
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Fig. 2. Example 3

sensing/announcement actions, partial observer agents correct their beliefs about
precondition and observability; full observer agents, in addition, also correct their
beliefs about the sensing/announcement variables. We provide theorems about
soundness of our state transition function in updating beliefs of the agents.

2 Preliminaries

Possible World Semantics: Let AG be a finite and non-empty set of agents
and F be a set of fluents encoding the properties of the world. Belief formulae
over 〈AG,F〉 are defined by the BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Biϕ

where p ∈ F is a fluent and i ∈ AG. We refer to a belief formula which does not
contain any occurrence of Bi as a fluent formula. In addition, for a formula γ
and a non-empty set α ⊆ AG, Bαγ and Cαγ denote

∧
i∈α Biγ and

∧∞
k=0 B

k
αγ,

where B0
αγ=γ and Bk+1

α γ=Bk
αBαγ for k ≥ 0, respectively. Let LAG denote the

set of belief formulae over 〈AG,F〉.
Satisfaction of belief formulae is defined over pointed Kripke structures [11].

A Kripke structure M is a tuple 〈S, π,B1, . . . ,Bn〉, where S is a set of worlds
(denoted by M [S]), π : S 
→ 2F is a function that associates an interpretation
of F to each element of S (denoted by M [π]), and for i ∈ AG, Bi ⊆ S × S is a
binary relation over S (denoted by M [i]). For convenience, we will often draw
a Kripke structure M as a directed labeled graph, whose set of labeled nodes
represent S and whose set of labeled edges contains s

i−→ t iff (s, t) ∈ Bi. The
label of each node is its interpretation and the name of the world is written
above the node. For u ∈ S and a fluent formula ϕ, M [π](u) and M [π](u)(ϕ)
denote the interpretation associated to u via π and the truth value of ϕ with
respect to M [π](u). For a world u ∈ M [S], (M,u) is a pointed Kripke structure,
also called state hereafter.

Given a belief formula ϕ and a state (M,u), (M,u) � Biϕ if (M, t) � ϕ for
every t such that (u, t) ∈ Bi. (M,u) � CGϕ if (M,u) � ϕ and (M, t) � ϕ for
every t such that (u, t) ∈ R∗

G where R∗
G is the transitive closure of Bi, i ∈ G.

For a fluent f ∈ F , let f = ¬f and ¬f = f ; and for a set of fluent literals
X, let X = {� | � ∈ X}. If χ= b1 ∧ ... ∧ be and γ = l1 ∧ ... ∧ lg are conjunctions
of fluent literals, χ ∪ γ denotes the set {b1, ..., be, l1, ..., lg}.
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Domain Description: Let D = 〈AG, F , A〉 be a multi-agent epistemic domain.
We assume that the precondition of an action is of the form ψ =h1 ∧ ... ∧ hr ∧ ξ
where ξ is a belief formula. In the multi-agent action language mA∗ [4], the
precondition of action a is encoded by the statement “executable a if ψ”. We
allow for conditional effects of an ontic action a. In mA∗, effect of an ontic action
a is described by “a causes β if μ”, where μ is a fluent formula and β is a set
of literals. Intuitively, if condition μ holds at a world u, the action replaces the
relevant literals in the world with the ones in β. Let Effectsa be the set of
(μ, β) pairs. We assume that if (μ, ϕ) and (μ′, ϕ′) are in Effectsa then μ ∧ μ′

is inconsistent. M ′[π](u′)= φ(a, π(u)) stands for interpretation of the resultant
world u′ upon applying the action a on the world u. Formally, if (M,u) � μ
and (μ, β) ∈ Effectsa, then M ′[π](u′) = (π(u) \ β) ∪ β. If (M,u) � μ for any
(μ, β) ∈ Effectsa then M ′[π](u′)= π(u).

mA∗ describes the effects of sensing and announcement actions by the state-
ments “a determines ϕ” and “a announces ϕ” respectively. In the sensing
actions, ϕ= {ρ1, ..., ρo} is the set of fluents that the agent senses, whereas in the
announcement actions, ϕ is the set of fluents that the agent announces.

Full and partial observability conditions are encoded in mA∗ as “i observes a
if δi,a” and “i aware of a if θi,a” respectively. We assume δi,a, θi,a are conjuction
of literals and they are pairwise disjoint. Note that observability depends on a
world and it is defined over pointed Kripke structures. In case neither δi,a nor
θi,a holds at (M,u), then agent i is oblivious at (M,u).

We say that a domain D is consistent if it satisfies the above conditions
for action description and observability rules. We define the initial state as
T = (M, s) where s is the actual world.

Answer Set Programming: Answer Set Programming (ASP) is a knowledge
representation and reasoning paradigm [12,13] which provides a formal framework
for declaratively solving problems. The idea of ASP is to model a problem by a set
of logical formulas (called rules), so that its models (called answer sets) character-
ize the solutions of the problem. Our ASP formulation is based on stable model
semantics [12]. ASP provides logical formulas, called rules, of the form

Head ← L1, . . . , Lk, not Lk+1, . . . , not Ll (1)

where l ≥ k ≥ 0, Head is a literal (i.e., an atom A or its negation ¬A) or ⊥,
and each Li is a literal. A rule is called a constraint if Head is ⊥, and a fact if
l = 0. A set of rules is called a program. ASP provides special constructs to express
nondeterministic choices, cardinality constraints, and aggregates. Programs using
these constructs can be viewed as abbreviations for programs that consist of rules
of the form (1). Further information about ASP can be found in [14].

3 State Transition Using ASP

Let D = 〈AG, F , A〉 be a consistent multi-agent domain and (M, s) be the initial
state. We study the problem of computing the next state ΦD(a, (M, s)) given the
initial state (M, s) and the occurrence of action a. Our state transition function
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ΦD(a, (M, s)) works as follows: In ontic actions, we first correct full observer
agents’ beliefs about action precondition and observability, and then apply the
effect of the action by modifying the relevant fluents. Namely, full observers
observe the effects of the action and correct their beliefs, while oblivious agents
remain in the old state.

Sensing and announcement actions do not alter the actual world, they only
change beliefs of the agents. We assume that agents always announce truthfully
and the listening agents always believe in the announced value of variables and
update their beliefs accordingly. In sensing/announcement actions, a full observer
agent i will correct his beliefs about precondition, his observability, and the
sensing/announcement variables, i.e., he will correct the literals in ψ, δi,a and ϕ.
A partial observer agent i will correct his beliefs about only precondition and
his observability, but not about the sensing/announcement variables. Beliefs of
oblivious agents do not change. By construction, agents also correct their beliefs
about belief of other agents, for all types of actions.

Below we build the ASP program ΠD,T,a which computes the next state
ΦD(a, T ) given an initial state T = (M, s) and occurrence of an action a. Due to
limited space, we provide only the core ASP rules that illustrate the idea behind
the formulation; for the full code we refer to our online repository2.

Input: We represent agents and agent sets by ag(I), ag set(G) atoms.
formula(F ) atom shows the belief formulae that appear in the domain D.
Actions are described by action(A), type(A, Y ), exec(A,F ), causes(A,L, F ),
determines(A,F ), announces(A,F ) atoms. observes(I,A, F ) and aware(I,A,
F ) atoms state the condition for full observability and partial observability of agent
I, respectively. pre lit(A,F ) denote the literals h1, ..., hr in action precondition ψ,
full lit(I,A, F ) denote the literals in δi,a and partial lit(I,A, F ) denote the liter-
als in θi,a. Sensing/announcement variables are identified by varphi(A,F ) atoms.

The worlds, accessibility relations and the valuations at the initial state T
are encoded by world(U), access(I, U, V ), val(U,F ) atoms, respectively, where
I denotes an agent, U and V are worlds, and F is a fluent. For efficiency, we
state only the positive literals in the valuation of a world. actual(S) stands for
the actual world S. occ(a) atom shows the action a that occurs. The next state
is represented by world n(U), actual n(Z), access n(I, U, V ), val n(U,F ).

State Transition: We first compute entailment of belief formulae at the initial
state T . entails(U,F ) atom denotes that the world U ∈ M [S] satisfies the belief
formula F . Some of the rules that compute entailment of belief formula are:

entails(U,F ) ← world(U), val(U,F ), f luent(F ). (2)
entails(U,¬F ) ← world(U), not val(U,F ), f luent(F ). (3)
entails(U,F1 ∧ F2) ← world(U), entails(U,F1), entails(U,F2),

formula(F1 ∧ F2). (4)
¬entails(U,BIF ) ← world(U), access(I, U, V ), not entails(V, F ),

formula(BIF ). (5)
2 https://github.com/yizmirlioglu/Epistemic.

https://github.com/yizmirlioglu/Epistemic
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entails(U,BIF ) ← not ¬entails(U,BIF ), world(U), formula(BIF ). (6)

Rule (5) states that the belief formula BIF is not entailed at world U if there
is a world V (that agent I considers at U) and V does not satisfy F . If there is
no such case, U entails BIF by the rule (6).

Then we compute observability of the agents at each world by

f obs(I, A, U) ← observes(I, A, F ), entails(U,F ), world(U), occ(A). (7)
p obs(I, A, U) ← aware(I, A, F ), entails(U,F ), world(U), occ(A). (8)
obliv(I,A, U) ← not f obs(I,A, U), not p obs(I, A, U), world(U), ag(I), occ(A). (9)

The rule below checks whether the action is executable i.e. the precondition
of the action a holds at the actual world (M, s). In this case, s′ is the actual
world at the next state.

pre hold(S) ← actual(S), entails(S, F ), exec(A,F ), occ(A). (10)
actual n(S′) ← actual(S), pre hold(S), occ(A). (11)

We identify the worlds in the next state M ′ by the rules below. If the pre-
condition of the action holds at (M, s), then s′ is a world in M ′. The worlds that
are reachable from s′ are also worlds in M ′.

world n(S′) ← actual(S), pre hold(S), occ(A). (12)
world n(V ) ← actual n(Z), access n(I, Z, V ). (13)
world n(V ) ← world n(U), access n(I, U, V ). (14)

We construct the accessibility relations of full observers in the next state M ′

for an ontic action as below. Full observers correct their beliefs about action pre-
condition and observability and observe the effect of the action. Suppose that
(M,U) � δi,a and (U, V ) ∈ M [i]. In the next state, we keep only the accessibil-
ity relations of agent i from U to the worlds V which satisfy action precondition
and observability of i. In this case we apply the effect of the action to world V ,
obtain V ′ ∈ M ′[S] and create the accessibility relation (U ′, V ′) ∈ M ′[i]. However,
if all the V worlds that agent i considers possible at U violate precondition and/or
observability (indicated by the ontic cond(i, U) atom), we cannot remove all the
edges, thus we amend the worlds to obtain Vi and create relations from U ′ to Vi.

formula full(I, A, F1 ∧ F2) ← exec(A,F1), observes(I, A, F2), ag(I). (15)
¬ontic cond(I, U) ← access(I, U, V ), entails(V, F ), formula full(I,A, F ),

occ(A), type(A, ontic). (16)
access n(I, U ′, V ′) ← world n(U ′), access(I, U, V ), f obs(I, A, U),

entails(V, F ), formula full(I,A, F ), occ(A), type(A, ontic). (17)
access n(I, U ′, VI) ← world n(U ′), access(I, U, V ), f obs(I, A, U),

not ¬ontic cond(I, U), occ(A), type(A, ontic). (18)
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Oblivious agents remain at the old state and their beliefs do not change. We
keep all accessibility relations in M so that beliefs of oblivious agents remain the
same, namely M [i] ⊆ M ′[i] for all i ∈ AG.

access n(I, U, V ) ← world n(U), access(I, U, V ), occ(A). (19)
access n(I, U ′, V ) ← world n(U ′), access(I, U, V ), obliv(I,A, U),

occ(A), type(A, ontic). (20)
access n(I, UJ , V ) ← I �= J, world n(UJ ), access(I, U, V ), obliv(I, A, U),

occ(A), type(A, ontic). (21)

For sensing/announcement actions, we need to check whether sens-
ing/announcement variables are the same across two worlds U, V ∈ M [S].
var diff(U, V ) indicates that at least one variable differs across U and V .

var diff(U, V ) ← access(I, U, V ), val(U,F ), not val(V, F ), varphi(A,F ), occ(A). (22)
var diff(U, V ) ← access(I, U, V ), not val(U,F ), val(V, F ), varphi(A,F ), occ(A). (23)

Now we create accessibility relations in the next state for a sensing/
announcement action. We first consider full observers. Suppose that (M,U) � δi,a

and (U, V ) ∈ M [i]. In the next state agent i keeps links to those V worlds which
satisfy precondition, observability of i and whose value of sensing/announcement
variables are the same as U ; and removes links to V worlds which do not satisfy
such conditions. If all V worlds that agent i considers possible at U , violate pre-
condition and/or observability and/or value of sensing/announcement variables
(indicated by the sa f cond(i, U) atom), then i will amend all these V worlds
and create link to amended V f

i,U worlds.

¬sa f cond(I, U) ← access(I, U, V ), entails(V, F ), formula full(I,A, F ),

not var diff(U, V ), occ(A), type(A, sa). (24)
access n(I, U ′, V ′) ← world n(U ′), access(I, U, V ), f obs(I,A, U), entails(V, F ),

formula full(I,A, F ), not var diff(U, V ), occ(A), type(A, sa). (25)
access n(I, U ′, V f

I,U ) ← world n(U ′), access(I, U, V ), f obs(I, A, U),

not ¬sa f cond(I, U), occ(A), type(A, sa). (26)

Partial observers correct for only the precondition and observability, but
not for the sensing/announcement variables. Suppose that (M,U) � θi,a and
(U, V ) ∈ M [i]. In the next state, agent i keeps links to those V worlds which
satisfy precondition and observability of i; and remove links to V worlds which
do not satisfy precondition and observability. However, if all V worlds that agent
i considers possible at U violate precondition and/or observability (indicated by
the sa p cond(i, U) atom), then i will amend all these V worlds and create links
to amended V p

i worlds.

formula partial(I, A, F1 ∧ F2) ← exec(A,F1), aware(I, A, F2), ag(I). (27)
¬sa p cond(I, U) ← access(I, U, V ), entails(V, F ), formula partial(I,A, F ),

occ(A), type(A, sa). (28)
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access n(I, U ′, V ′) ← world n(U ′), access(I, U, V ), p obs(I, A, U),

entails(V, F ), formula partial(I,A, F ), occ(A), type(A, sa). (29)
access n(I, U ′, V p

I ) ← world n(U ′), access(I, U, V ), p obs(I, A, U),

not ¬sa p cond(I, U), occ(A), type(A, sa). (30)

Accessibility relations of oblivious agents are constructed in a similar manner
to the ontic actions. We also need to compute the valuation function at the next
state M ′. We first consider ontic actions. Note that μ, β for an ontic action may
include common fluent(s) with precondition and/or observability formula. For
robust state transition, the observing agent should first correct for precondition
and observability, and then apply the effect of the action. Let λ(Ui) = (π(U) \
(ψ ∪ δi,a)) ∪ (ψ ∪ δi,a) be an interpretation such that agent i corrects his beliefs
at world U ∈ M [S] about precondition and his observability. We compute λ(Ui)
by the rules

lambda(UI , H) ← world n(UI), pre lit(A,H), f luent(H),

occ(A), type(A, ontic). (31)
lambda(UI , H) ← world n(UI), full lit(I, A,H), f luent(H),

occ(A), type(A, ontic). (32)
lambda(UI , H) ← world n(UI), val(U,H), not pre lit(A,¬H),

not full lit(I, A,¬H), f luent(H), occ(A), type(A, ontic). (33)

Whether the interpretation λ(Ui) satisfies a belief formula is denoted by
entails lambda(Ui, F ) atom and can be computed by the ASP rules similar to
(2)–(6). Valuation of U ′, Ui ∈ M ′[S] are computed by M ′[π](U ′)= φ(a, π(U))
and M ′[π](Ui)= φ(a, λ(Ui)) respectively. Namely, if π(U) (resp. λ(Ui)) satisfies
μ, then the literals in β are placed into the valuation of U ′ (resp. Ui).

val n(U ′, E) ← world n(U ′), entails(U,F ), causes(A,E, F ), f luent(E),

occ(A), type(A, ontic). (34)
val n(U ′, H) ← world n(U ′), val(U,H), entails(U,F ), not causes(A,¬H,F ),

f luent(H), occ(A), type(A, ontic). (35)
val n(UI , E) ← entails lambda(UI , F ), causes(A,E, F ), f luent(E),

occ(A), type(A, ontic). (36)
val n(UI , H) ← lambda(UI , H), entails lambda(UI , F ), not causes(A,¬H,F ),

f luent(H), occ(A), type(A, ontic). (37)

Last, we compute the valuation of worlds at the next state for a sensing/
announcement action. The valuation of the world U ′ ∈ M ′[S] is the same as
valuation of U ∈ M [S]. Valuation of Up

i and V f
i,U worlds may be different from

π(U). Recall that Up
i is created for partial observer agent i where he corrects for

action precondition and observability; and V f
i,U is created for full observer agent

i where he corrects for precondition, observability and sensing/announcement
variables (with respect to U ∈ M [S]).
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val n(Up
I , H) ← world n(Up

I ), pre lit(A,H), f luent(H), occ(A), type(A, sa). (38)
val n(Up

I , H) ← world n(Up
I ), partial lit(I,A,H), f luent(H),

occ(A), type(A, sa). (39)
val n(Up

I , H) ← world n(Up
I ), val(U,H), not pre lit(A,¬H),

not partial lit(I, A,¬H), f luent(H), occ(A), type(A, sa). (40)
val n(V f

I,U , H) ← world n(V f
I,U ), pre lit(A,H), f luent(H), occ(A), type(A, sa). (41)

val n(V f
I,U , H) ← world n(V f

I,U ), full lit(I, A,H), f luent(H),

occ(A), type(A, sa). (42)
val n(V f

I,U , F ) ← world n(V f
I,U ), varphi(A,F ), val(U,F ), occ(A), type(A, sa). (43)

val n(V f
I,U , h) ← world n(V f

I,U ), val(V,H), not pre lit(A,¬H),

not full lit(I, A,¬H), not varphi(A,H), f luent(H), occ(A), type(A, sa). (44)

To compute the entailment of belief formulae at the next state, we add
rules that are analogous to the rules (2)–(6) by replacing entails(U,F ),
world(U), access(I, U, V ), val(U,F ) atoms with entails n(U,F ), world n(U),
access n(I, U, V ), val n(U,F ) respectively.

4 Properties of the State Transition Function

We now provide results that our ASP formulation updates the state and beliefs of
agents in a robust way. The proof of the theorems can be found in the appendix,
available online3. Throughout the section, we assume D = 〈AG, F , A〉 is a multi-
agent epistemic domain and T = (M, s) is the initial state where s is the actual
world. We first ensure that the ASP program ΠD,T,a yields an answer set.

Theorem 1. The ASP program ΠD,T,a has an answer set provided that D is a
consistent domain.

Theorem 2 describes how beliefs of full observer and oblivious agents change
due to the occurrence of an ontic action. Full observers observe the effect of the
action and update their beliefs accordingly. Beliefs of oblivious agents do not
change. Moreover a full observer agent knows that another full observer agent
has updated his beliefs and beliefs of oblivious agents stay the same.

Theorem 2. Suppose that a is an ontic action, (μ, β) ∈ Effectsa, Z is an
answer set of the ASP program ΠD,T,a and occ(a), pre hold(s) ∈ Z.

1. For i ∈ AG, if entails(s, δi,a), entails(s,Bi μ) ∈ Z then entails n(s′,Bi �) ∈
Z for � ∈ β.

2. Suppose that entails(s,¬δi,a) ∈ Z. For a belief formula η, entails n(s′,Bi η) ∈
Z if and only if entails(s,Bi η) ∈ Z.

3 https://github.com/yizmirlioglu/Epistemic.

https://github.com/yizmirlioglu/Epistemic
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3. Suppose that entails(s, δi,a), entails(s,Bi δj,a) ∈ Z where i �= j, i, j ∈ AG.
If entails(s,Bi Bj μ) ∈ Z then entails n(s′,Bi Bj �) ∈ Z holds, for � ∈ β.

4. Suppose that entails(s,Bi ¬δj,a) ∈ Z holds where i �= j, i, j ∈ AG. For a
belief formula η, if entails(s,Bi Bj η) ∈ Z then entails n(s′,Bi Bj η) ∈ Z.

Theorem 3 states that full observers learn the value of the sensing/announce-
ment variables � ∈ ϕ while partial observers know that full observers know the
value of sensing variables; belief of oblivious agents stays the same.

Theorem 3. Suppose that a is a sensing/announcement action, Z is an answer
set of the ASP program ΠD,T,a and occ(a), pre hold(s) ∈ Z.

1. For i∈AG, �∈ϕ, if entails(s, δi,a), entails(s, �)∈Z then entails n(s′,Bi�)∈Z.
2. For i∈AG, �∈ϕ, if entails(s, δi,a), entails(s,¬�)∈Z then entails n(s′,

Bi¬�)∈Z.
3. Suppose that entails(s, θi,a), entails(s,Bi δj,a) ∈ Z where i �= j, i, j ∈ AG.

Then entails n(s′,Bi (Bj � ∨ Bj �)) ∈ Z for � ∈ ϕ.
4. Suppose that obliv(i, a, s) ∈ Z. For a belief formula η, entails n(s′,Bi η) ∈ Z

if and only if entails(s,Bi η) ∈ Z.

5 Example Scenarios

This section demonstrates our state transition function by applying it to the
example scenarios in the introduction. We consider the belief operator in the
Kripke structures at Fig. 1, 2. The ASP encoding of input and output for these
scenarios can be found in our online repository. For instance, the initial state
and the computed next state of the first scenario are

actual(s). world(s). world(u). world(v).

val(s, normal). val(s, sound). val(u, normal). access(a, s, u). access(a, s, v). access(b, s, s).

actual n(prime(s)). world n(prime(s)). world n(subf(u, a, s)). world n(subf(v, a, s)).

val n(prime(s), normal). val n(prime(s), sound). val n(subf(u, a, s), normal).

val n(subf(u, a, s), sound). val n(subf(v, a, s), normal). val n(subf(v, a, s), sound).

access n(a, prime(s), subf(u, a, s)). access n(a, prime(s), subf(v, a, s)). access n(b, prime(s), prime(s)).

The next state of each scenario is depicted in Fig. 3 according to the ASP
output. Now the next state is intuitive: In the first scenario, agent A has corrected
his beliefs at world u, v and he believes that the meter is sound and the voltage
level is normal. In the second scenario, the transition function was able to revert
agent A’s initial incorrect belief about the sensing variable normal. After the
sensing action, A believes that the voltage level is normal as expected. In the
third scenario, at the next state B knows that the door is open and he has
realized that he is full observer (near b). Besides agent A believes that B is full
observer and A believes that B believes that B is full observer.
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Fig. 3. Solution of example scenarios in the introduction

6 Related Literature

In dynamic epistemic logic literature, state transition in possible world semantics
have been studied by [3,4,7,15]. Event update models have also been employed
for state transition [1,2,6]. For multi-agent contexts, [4,16] have developed action
languages that describe the domain, actions and observability of agents. [4] uti-
lizes a simple belief correction mechanism for sensing/announcement actions
where the full observer agents “directly learn the actual state of the world”.

[7] proposed an alternative state transition function, where full and partial
observers correct their beliefs about action precondition, but not about observ-
ability. Observability of agents is computed at the actual world and assumed to
be fixed across worlds. Thus an agent corrects his beliefs even in those worlds
where he is not a full or partial observer. Conditional effects are not allowed for
an ontic action. The authors do not examine how an agent’s beliefs about other
agents change during state transition. In our model, the knowledge operator is
not required and the belief operator is sufficient for belief correction. Besides,
we do not assume a fixed observability across all worlds. By construction, our
state transition function corrects an agent’s first order beliefs and beliefs about
other agents (higher order beliefs).

Our work also contributes to the field on applications of Answer Set Program-
ming. ASP has been utilized in epistemic reasoning literature by [5,8,9,17]. [5]
have used ASP to encode Kripke structures and showed that epistemic prob-
lems such as “Muddy child”, “Sum and Product” can be solved in this setting.
[9,17] have developed conditional epistemic planners for single agent setting. A
multi-agent planner have been implemented using ASP by [8].

7 Conclusion

We have developed an ASP-based state transition function for ontic, sensing and
announcement actions for partially observable multi-agent epistemic domains.
One novel feature of our transition function is that agents correct their belief
about precondition, observability and sensing/announcement variables upon an
action occurrence. By examples, we have shown that this step is crucial for
observing the effect of the action, and thus for robust state transition.
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Answer Set Programming enables us to write state transition in terms of sim-
ple, understandable logical rules in recursive form. We establish some properties
of our planner regarding its robustness in updating beliefs of agents consistent
with their level of observability. For future work, we aim to implement a planner
using this ASP formulation. Our transition function can also be used in existing
conformant and conditional epistemic planning systems as a module to compute
the next state.
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