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Abstract
Genomic regions containing loci with effect sizes that interact with environmen-

tal factors are desirable targets for selection because of increasingly unpredictable

growing seasons. Although selecting upon such gene-by-environment (G × E) loci

is vital, identifying significantly associated loci is challenging due to the multiple

testing correction. Consequently, G × E loci of small- to moderate effect sizes may

never be identified via traditional genome-wide association studies (GWAS). Vari-

ance GWAS (vGWAS) have been previously shown to identify G × E loci. Combined

with its inherent reduction in the severity of multiple testing, we hypothesized that

vGWAS could be successfully used to identify genomic regions likely to contain

G × E effects. We used publicly available genotypic and phenotypic data in maize

(Zea mays L.) to test the ability of two vGWAS approaches to identify G × E loci con-

trolling two flowering traits. We observed high inflation of −log10(𝑝−values) from
both approaches. This suggests that these two vGWAS approaches are not suitable

to the task of identifying G × E loci. We advocate that similar future applications of

vGWAS use more sophisticated models that can adequately control the inflation of

−log10(𝑝−values). Otherwise, the application of vGWAS to search for G × E effects

that are critical for combating the effects of climate change will not reach its full

potential.

1 INTRODUCTION

Climate change is already undermining all aspects of eukary-
otic life, with negative impacts affecting species in vulnerable
ecosystems, crops and livestock in breeding populations, and
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even human health (Cheng et al., 2022; Kliem & Sievers-
Glotzbach, 2022). Major abiotic consequences of climate
change include more unpredictable precipitation, whether it
is too much or too little, as well as generally higher tem-
peratures (Ceccarelli & Grando, 2020). In addition, climate
change will make environments more favorable to biotic stres-
sors such as increased weed, insect, and pathogen pressures
(Ceccarelli & Grando, 2020; Shahzad et al., 2021). With these
stressors becoming more prevalent due to climate change,
the needs to breed both against and for more yield-stable
crops are of utmost importance (Langridge et al., 2021). One
approach for achieving these breeding objectives is to exploit
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gene-by-environment (G × E) interactions (Bernardo, 2010).
Under this approach, breeders would select against G × E
loci to reduce phenotypic variance across environments and
years (Langridge et al., 2021; Reckling et al., 2021). Contrast-
ingly, breeders could also select for G × E loci to increase
phenotypic variance and hence increase responsiveness when
introducing a crop to a novel environment, new manage-
ment practices, or new biotic pressures (Kusmec et al., 2018).
Thus, the identification of G × E loci could prove to be piv-
otal for enabling breeders to promptly respond to challenging
environments emerging due to climate change.
The availability of approaches seeking to understand G × E

(Des Marais et al., 2013; Li et al., 2021; van Eeuwijk et al.,
2010) underscores the attention that has been given to better
understand this critical component of trait variability. Har-
nessing G×E interactions is vital for plant breeding, and there
are several important challenges that need to be addressed.
First, the identification of putative G × E loci themselves
poses a substantial increase in the statistical multiple testing
correction because the number of tests for association at each
marker is at least doubled (Dempfle et al., 2008). The resulting
conservativeness arising from correcting for this could result
in a failure to detect G × E loci of small to moderate effect
sizes (Bustos-Korts, 2016; Gauderman et al., 2017). To fur-
ther complicate this issue, the risk of identifying false-positive
G × E interactions increases when not all environmental
covariates are accounted for (Westerman et al., 2022). Finally,
G × E loci that behave non-additively (e.g., having differ-
ent phenotypic variances between genotypic groups) may
be missed entirely with the most commonly-used statistical
approaches (Ansarifar et al., 2020; Westerman et al., 2022).

Statistical analyses seeking to identify loci that control
the variance of a trait, called variance quantitative trait loci
(vQTL), have been shown to be capable of identifying G × E
loci underlying simulated (Murphy et al., 2022) and real
plant traits (Song et al., 2022). Such analyses have been rou-
tinely applied to variance genome-wide association studies
(vGWAS) in plants and have contributed to the elucidation
of the genetic architecture of metabolic plant traits (Fors-
berg et al., 2015; Hussain et al., 2020; Li et al., 2020; Shen
et al., 2012), as well as plant architectural and phenology traits
(Zhang & Qi, 2021). Given these contributions, as well as the
lower multiple testing correction burden in vGWAS arising
from the need to only conduct one test of association at each
marker, it is critical to further study the potential of vGWAS
approaches to identify G × E in plants.
There are two commonly-used vGWAS statistical

approaches whose potential for identifying G × E loci have
been previously shown in Murphy et al. (2022). The first
approach is to conduct the Brown–Forsythe test (BFT)
at each marker (Brown & Forsythe, 1974). Although this
test is computationally efficient, it has potential to lose
power to detect vQTLs in the presence of other large-effect

Core Ideas
∙ We ran two commonly used vGWAS models to
search for G × E interactions for two flowering-
time traits in maize.

∙ We identified SNPs associated with the flowering-
time traits.

∙ We observed severe inflation of false positives for
all models and traits.

loci controlling the studied trait (Córdova-Palomera et al.,
2020; Hong et al., 2017). The other approach is the double
generalized linear model (DGLM; Smyth, 1989; Rönnegård
& Valdar, 2012) and is widely used for vGWAS because of its
potential to account for population structure and the presence
of loci that control the population mean value of the traits. In
Murphy et al. (2022), it was shown that the BFT and DGLM
could identify simulated G × E loci at the largest possible
tested sample size of N = 2815.
The purpose of this study was to apply the findings of Mur-

phy et al. (2022) on the potential for vGWAS approaches
to identify simulated G × E loci to the analysis of actual
traits. We partitioned a subset of maize data collected across
multiple environments (Buckler et al., 2009; Tian et al.,
2011; Hung et al. 2012) to Midwestern and southern mega-
environments and then assessed the ability of two different
vGWAS approaches to detect G × E loci associated with two
flowering time traits. From a biological perspective, there is
a substantial amount of diversity in maize flowering time,
which allows this species to thrive in both temperate and
tropical climatic conditions (Bouchet et al., 2013). More-
over, flowering time traits in maize are highly heritable and
controlled by many small-effect additive loci, with G × E
making a small but non-zero contribution to total pheno-
typic variance (Buckler et al., 2009). The latter implies that
the effect sizes of G × E loci could be small, and thus, we
hypothesized that vGWAS could be particularly well suited
to identify these loci. Given the evidence of genes responsible
for environmental sensitivity inmaize (Li et al., 2016), we also
hypothesized that the day lengths of at the Midwestern and
southern mega-environments were sufficiently different for
vGWAS to identify the G × E loci responsible for differences
in flowering time across environments.

2 MATERIALS AND METHODS

2.1 Phenotypic data

We analyzed two publicly available maize traits: grow-
ing degree days (GDD) to anthesis and GDD to silking.
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MURPHY AND LIPKA 2809Crop Science

These traits were collected across multiple grow-outs of the
281-member Goodman-Buckler diversity panel (Flint-Garcia
et al., 2005) at five locations in the USA from 2006 to
2009. This diversity panel was grown alongside the US maize
nested associationmapping panel (NAM; Buckler et al., 2009;
McMullen et al., 2009; Yu et al., 2008), and the field design is
described in Section 2 of Hung et al. (2012). To study G × E,
we first collated the GDD phenotypic data into two separate
data sets corresponding to two locations in the Midwestern
USA (Urbana, IL; and Columbia, MO; called the Midwest-
ern mega-environment in subsequent analyses) and two in
the southern USA (Homestead, FL; and Ponce, PR; called
the southern mega-environment). We choose these two mega-
environments due to the potential of capturing photoperiod
sensitivity differences (Bonhomme et al., 1994; Chen et al.,
2015; Xu et al., 2012). With the expectation of Ponce, PR, all
locations had 2 years’ worth of data. However, we excluded
phenotypic data from Urbana, IL, 2006 and Columbia, MO,
2007 due to one of the studied traits being unavailable in
the former and extensive missing phenotypic data in the
latter. For each of the two traits, best unbiased linear predic-
tions (BLUPs) of the genotype effect were predicted using a
mixed linear model (MLM) fitted at each of these two mega-
environments using the lme4 R package (Bates et al., 2015).
This MLM is written as follows:

𝑌𝑖𝑗 = μ + 𝐺𝑖 + 𝐸𝑗 + ε𝑖𝑗 , (1)

where 𝑌𝑖𝑗 represents the observed trait value of the 𝑖th geno-
type grown in the 𝑗th environment, μ is the grand mean, 𝐺𝑖

represents the random effect of the 𝑖th genotype, 𝐸𝑗 is the
random effect of the 𝑗th environment, and ε𝑖𝑗 represents the
error term for the 𝑖th genotype grown in the 𝑗th environment.
Because the 5702 recombinant inbred lines (RILs) from the
US NAM panel were grown alongside the Goodman-Buckler
diversity panel at all locations, these RILs were included dur-
ing the model fitting process to improve BLUP accuracy,
as previously described (McMullen et al., 2009; Rice et al.,
2020). The resulting BLUPs from each mega-environment are
provided in their entirety in Table S1 and visualized in Figure
S1.
The process of configuring the BLUPs for GDD to anthesis

and GDD to silking from each mega-environment for vGWAS
is visualized in Figure 1. Briefly, for each of the two traits, the
difference between the BLUPs from each mega-environment
was taken. To factor out signals attributable to population
structure and familial relatedness, each of these differences
was fitted to a unified MLM similar to Yu et al. (2006) in
TASSEL 5.0 (Bradbury et al., 2007). The Bayesian informa-
tion criterion (Schwarz, 1978) option in the GAPIT R package
(Lipka et al., 2012) was used to determine the optimal number
of fixed-effect covariates (in this case, principal components,
or PCs, of genome-wide markers) to include in the unified
MLM. The ensuing analysis suggested to include the first

five PCs as fixed-effect covariates to account for population
structure. Additionally, we used the VanRaden (2008) addi-
tive kinship matrix to account for familial relatedness in the
unified MLM. Consequently, the residuals from these fitted
two fitted unified MLMs (one with the difference in GDD to
anthesis as the response variable, and one with the difference
in GDD to silking as the response variable) were used as the
response variable for vGWAS. We henceforth refer to these
residuals as the G × E traits. All of these steps, along with
each vGWAS, are outlined Figure 1, which was created using
the “DiagrammeR” R package (Iannone & Iannone, 2022).

2.2 Genotypic data

We used fully sequenced genotypic data from the Goodman-
Buckler diversity panel for the G × E traits (Bukowski et al.,
2018; Flint-Garcia et al., 2005). Briefly, this marker data set
was genotyped for 327,056 SNPs and anchored to the B73
RefGen_v4 reference genome. The filtering and imputation
procedures for this dataset are described in Rice et al. (2020).
LinkImpute (Money et al., 2015) was used to impute missing
marker data.

2.3 Competing vGWAS models

We used two common vGWAS approaches to search for
G × E, namely, the BFT and the DGLM. Both of these
approaches are described in detail in Murphy et al. (2022).
Essentially, both approaches test for unequal population
variances of the differences between trait values across mega-
environments (after they were filtered through the pipeline
previously described in the “Phenotypic data” section and
illustrated in Figure 1) at each tested marker. In general,
the BFT tests for equality of population variances across
different groups by running a standard analysis of variance
on a median-derived transformation of the response variable
(Brown & Forsythe, 1974). The test statistic follows an F-
distribution under the null hypothesis of equal population
variances across treatment levels. When applied to vGWAS,
the BFTwill test for equal trait population variances across the
genotypes at a testedmarker, as described previously (Murphy
et al., 2022; Shen et al., 2012). The CAR R package was used
to fit the BFT using the Levene.Test function with the central
argument set to “median” (Fox & Weisberg, 2011).
The DGLM is a vGWAS statistical model that belongs

to the family of generalized linear models. The DGLM can
model a single trait to (a) explanatory variables controlling its
population mean and (b) explanatory variables controlling its
population variance. The DGLM can also incorporate fixed
effects (e.g., PCs calculated from a genome-wide marker set)
to control population structure and markers tagging major-
effect genes that control the trait. More detailed descriptions
of the DGLM can be found in Corty and Valdar (2018),
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2810 MURPHY AND LIPKACrop Science

F IGURE 1 Flowchart summarizing the steps taken to process the difference in best linear unbiased predictions (BLUPs) for growing degree

dates to anthesis and silking calculated between the Midwestern and southern mega-environments, factor out sources of genetic variability attributed

to population structure and familial relatedness, and then run a variance genome-wide association study using the Brown–Forsythe test and double

generalized linear model. Orange rectangles depict each step this process, and black arrows depict the how these steps are interconnected with each

other. BIC, Bayesian information criterion; PCs, principal components; TASSEL, a software package whose abbreviation is trait analysis by

aSSociation, Evolution, and Linkage.

Hussain et al. (2020), and Murphy et al. (2022). Because we
implicitly controlled for population structure prior to running
the vGWAS (as described in phenotypic data), we did not
incorporate PCs in the mean component of DGLM. To per-
form the DGLM, we used R code from Hussain et al. (2020)
and Murphy et al. (2022), which was fitted using the dglm R
package (Dunn et al., 2009).
To account for multiple testing, we used the Bonferroni

procedure to control for the genome-wide type I error rate at
α = 0.05 for all tests. The CMPlots R package generated QQ-
plots and Manhattan plots for all the tests (Yin, 2020). We
used the genomic control (Devlin & Roeder, 1999) to quantify
the degree of inflation of the test statistics from both vGWAS
approaches.

2.4 Linkage disequilibrium analysis

To assess the local linkage disequilibrium (LD) in candidate
genomic regions identified by our vGWAS approaches, we
calculated 𝑟2 estimates between each SNP in a given genomic
region with the SNP that has the highest −log10(𝑝−values)
in this genomic region using TASSEL version 5 (Bradbury et
al., 2007). The resulting 𝑟2 estimates of the candidate genomic
region were plotted with the−log10(𝑝−values)with respect to
base pairs in the B73 reference genome (version 4) using an
R script previously used in Lipka et al. (2013).

2.5 Mixed model fitted across
mega-environments

To assess the extent to which the twomega-environments cap-
tured putative G × E loci underlying GDD to GDD to anthesis
and GDD to silking, the following mixed model was fitted to

each of these two traits:

𝑌𝑖𝑗𝑘 = μ +𝑀𝐸𝑖 + 𝑇 𝑟𝑖𝑎𝑙𝑘(𝑖) + 𝐺𝑗 + (𝑀𝐸 × 𝐺)𝑖𝑗 + ε𝑖𝑗𝑘,
(2)

where 𝑌𝑖𝑗𝑘 represents the observed trait value of the 𝑗th geno-
type grown in the 𝑘th trial (i.e., particular year at a particular
location) nested within the 𝑖th mega-environment; μ repre-
sents the grand mean; 𝑀𝐸𝑖 represents the random effect of
the 𝑖th mega-environment; 𝑇 𝑟𝑖𝑎𝑙𝑘(𝑖) is the random effect of
the 𝑘th trial nested within the 𝑖thmega-environment;𝐺𝑗 is the
random effect of the 𝑗th genotype; (𝑀𝐸 × 𝐺)𝑖𝑗 is the random
two-way interaction effect between the 𝑖thmega-environment
and the 𝑗th genotype; and ε𝑖𝑗𝑘 represents the error term for the
𝑗th genotype grown in the 𝑘th trial (i.e., particular year at a
particular location) nested within the 𝑖th mega-environment.
After fitting this model in the “statgenGxE” R package (van
Rossum et al., 2021), we used the variance component esti-
mates to assess the contribution of (𝑀𝐸 × 𝐺)𝑖𝑗 variance
component (which quantifies G × E) to the overall phenotypic
variability of both traits.

3 RESULTS

3.1 Midwestern and southern
mega-environments capture G × E for both
studied traits

We fitted model (2) across the two mega-environments for
GDD to anthesis and GDD to silking. The results revealed
that the variance component estimate corresponding to the
G × E term (i.e., the variance component estimate of the
(𝑀𝐸 × 𝐺)𝑖𝑗 random effect) accounted for approximately 20%
of the total variability of both traits (Tables S2 and S3). This
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MURPHY AND LIPKA 2811Crop Science

F IGURE 2 Venn diagrams showing the number of statistically significant SNPs for each trait identified by two variance genome-wide

association studies (vGWAS) approaches, the Brown–Forsythe test (BFT) as the left circle, and the double generalized linear model (DGLM) as the

right circle. The overlap between the circles represents the number of statistically significant SNPs that were identified in both of the vGWAS

approaches. (a) Venn diagram showing the number of statistically significant SNPs identified by the vGWAS tests and their overlaps for the

difference in growing degree days (GDD) to anthesis. (b) Venn diagram showing the number of statistically significant SNPs identified by the

vGWAS tests and their overlaps for the difference in GDD to silking.

suggests that the subdivision of the publicly available field
trials into Midwestern and southern mega-environments cap-
tures a sufficient amount of G × E for both of the studied traits
to justify conducting the ensuing vGWAS.

3.2 DGLM identified the greatest number
of statistically significantly associated markers

Even after using the conservative Bonferroni procedure to
adjust for multiple testing across the genome at α = 0.05,
each of the two tested vGWAS approaches identified mark-
ers that were statistically significantly associated with both
G × E traits (i.e., the difference in GDD to anthesis and
GDD to silking across the two mega-environments). The two
vGWAS approaches found more markers that were signif-
icantly associated with the difference in GDD to anthesis
than the difference in GDD to silking. Of the two vGWAS
approaches, the DGLM identified the greatest number of sta-
tistically significant associations. The number of significantly
associated markers identified from each vGWAS approach is
summarized in Figure 2 and presented in detail in Table S4.

3.3 All two vGWAS approaches did not
sufficiently control for false positives

For each of the tested traits, we noted that both vGWAS
approaches yielded −log10(𝑝−values) that were highly
inflated relative to what would be expected under the corre-
sponding null hypotheses tested at each marker (Figure 3).
The greatest amount of such inflation was observed
for the DGLM. Nevertheless, the observed increases in
−log10(𝑝−values) for all the analyses performed suggest that

these two vGWAS approaches inadequately control for false
positive associations for these data.

3.4 Peak-associated markers from vGWAS
approaches colocalized to similar genomic
regions within traits

We sought to characterize the consistency of which genomic
regions were found to contain peak-associated markers across
the two vGWAS approaches (Figure 4). This task was partic-
ularly challenging for analyzing the vGWAS results for the
difference in GDD to anthesis because the DGLM identified
statistically significant associations on every chromosome.
Nevertheless, many of the peak-associated markers identified
by the DGLM were located roughly in the same genomic
regions as peak-associated markers identified by the BFT.
When vGWAS was conducted on the difference in GDD
to silking, we noted that the DGLM and BFT both iden-
tified markers significantly associated with the difference
in GDD to silking in proximal genomic regions located on
Chromosome 9.

3.5 Chromosome 9 region containing
plausible candidate genes consistently identified
across both vGWAS approaches for both traits

To illustrate the potential of these vGWAS approaches to
highlight putative candidate genes, we present detailed results
for GDD to anthesis using the DGLM in the genomic
region on Chromosome 9 in Figure 5. We also created
similar figures for the other vGWAS scans, which can be
found in Figures S2–S4. Across all vGWAS approaches and
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2812 MURPHY AND LIPKACrop Science

F IGURE 3 Quantile–quantile (QQ)-plots of all the tested variance genome-wide association studies (vGWAS) approaches (rows) tested in all

traits (columns). For each plot, the observed −log10(𝑝−values) from testing each marker is presented on the Y-axis, whereas the expected
−log10(𝑝−values) assuming the corresponding null hypotheses are correct are presented on the X-axis. The orange dots correspond to SNPs that are

statistically significant after the Bonferroni procedure was used to control for multiple testing across the entire genome at α = 0.05, whereas the
blue dots correspond to non-statistically significant SNPs. Lambda values (λ) for genomic control are shown to the right of each QQ-plot. (a and c)

QQ-plot of the difference in growing degree days (GDD) to anthesis for the Brown–Forsythe test (BFT) and double generalized linear model

(DGLM). (b and d) QQ-plot of the difference in GDD to silking for the BFT and DGLM.

F IGURE 4 Summary of two variance genome-wide association studies (vGWAS) results. (a–d) Manhattan plots of the association results from

the two vGWAS approaches across the ten maize chromosomes. The Y-axis represents the −log10(𝑝−values) plotted with respect to B73 RefGen_v4

genome position (X-axis). The gray horizontal line represents the threshold from Bonferroni procedure to control for genome-wide type I error rate at

α = 0.05. Statistically significantly associated SNPs are highlighted in purple. (a and c) Association results from the Brown–Forsythe test (BFT) and

double generalized linear model (DGLM) for difference in growing degree days (GDD) to anthesis. (b–d) Association results from the BFT and

DGLM for difference in GDD to silking.
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MURPHY AND LIPKA 2813Crop Science

F IGURE 5 Variance genome-wide association studies (vGWAS)

results for the difference in growing degree days (GDD) to anthesis.

Plot of association results from the double generalized linear model

(DGLM) and linkage disequilibrium (𝑟2) estimates in the genomic

region between 152 and 158 Mb on Chromosome 9. The left Y-axis
presents −log10(𝑝−values) from the vGWAS, whereas the right Y-axis
and plots the 𝑟2 values between each SNP and the peak associated

marker, which is indicated by an orange triangle. The X-axis is the B73
RefGen_v4 position of this 6-Mb region on Chromosome 9. The gray

vertical-lines represent the −log10(𝑝−values) of the SNPs. The blue
triangles represent the 𝑟2 values of each SNP relative to the peak

associated SNP. The solid purple lines represent the end positions of

Zm00001d048358 (154,923,673 bp) and Zm00001d048359

(154,975,225 bp).

traits, the strongest peak associations (S9_151791144 and
S9_151791148; 154,942,763 and 154,942,767 bp, respec-
tively, p-value 1.19 × 10−10) were identified for the differ-
ence in GDD to anthesis by the DGLM. This marker was
within 40 kb of two candidate genes (Zm00001d048358 and
Zm00001d048359, B73 version 4). We also noted that there
were SNPs surrounding these two candidate genes that are in
moderate LD with this peak-associated SNP.

4 DISCUSSION

One of the most important findings of our previous study
(Murphy et al., 2022) was that vGWAS approaches could
identify quantitative trait nucleotides contributing G × E
effects to simulated traits. Therefore, we evaluated the poten-
tial for two different vGWAS approaches to identify genomic
regions likely to contain loci with G × E effects in real, pub-
licly available flowering time traits in maize. Although all two
vGWAS models identified statistically significant marker-
trait associations, we also observed that they yielded highly
inflated −log10(𝑝−values). Thus, this analysis did not provide
any further insights into the contribution of G × E to maize
flowering time but instead suggested that there is a critical
need to explore the genomic sources underlying this severe
inflation and to account for them in vGWAS models.

4.1 vGWAS identified markers significantly
associated with the difference between at least
one flowering time trait across two
mega-environments

Identifying specific loci with G × E effects is vital because
they can be selected for (or against) to achieve specific breed-
ing goals. Selecting for such G × E loci is theoretically
favorable for both introducing a crop to a novel environment
and increasing responsiveness to favorable environments
using new management practices (Kusmec et al., 2018). On
the other hand, selecting against G × E loci is preferred when
breeding for uniformity and stability in unpredictable grow-
ing environments (Bernardo, 2010; Kusmec et al., 2018). The
fact that both vGWAS models identified statistically signifi-
cant associations for the difference in two flowering time traits
across two mega-environments suggests that vGWAS could
become a viable approach to help breeders identify G × E loci
once the issues of inflated −log10(𝑝−values) are addressed.

4.2 Unable to make inferences on
contribution of G × E loci to genetic
architecture of flowering time in maize due to
inflated high false positives

The genetic architecture of flowering time in maize is consis-
tent with the Fisher–Orr model (Fisher, 1919; Orr, 1998) in
that it consists of many small-effect genes, as well as a small
number of large-effect genes (Bouchet et al., 2013; Peiffer
et al., 2013). In particular, the analysis conducted by Buckler
et al. (2009) in the US maize NAM population provided over-
whelming evidence that flowering time is controlled by many
small-effect genes, and that the overarching genetic architec-
ture can be well approximated by accounting for their additive
effects. Analyses conducted in other panels have identified
larger effect loci (e.g., Bouchet et al., 2013; Romay et al.,
2013), while also underscoring that flowering time appeared
to be controlled by a large number of small-effect genes
(Bouchet et al., 2013; Li et al., 2016).
Although not as strong as the collective contribution of the

additive effects of these genes, Buckler et al. (2009) found
evidence that G×E loci contribute to the overall genetic archi-
tecture of flowering time. It was for this reason that we chose
to perform our vGWAS analysis onGDD to anthesis andGDD
to silking. Specifically, the potential for vGWAS to identify
smaller effect G × E loci (by reducing the severity of the
multiple testing correction) could highlight which particular
loci contribute to the small G × E signals detected by Buck-
ler et al. (2009). Unfortunately, our analyses did not provide
further elucidation into the genetic architecture of flowering
time because both vGWAS approaches yielded substantially
inflated type I error rates. Therefore, we urge future research
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to determine how to reduce the severity of inflated type I error
rates in vGWAS approaches and then reconduct this analysis.
Once this issue is resolved, vGWAS has potential to charac-
terize the putatively small-effect G × E loci for flowering time
in maize. This could lead to similar, complementary advances
that were already made for understanding the role of G× E for
flowering time in Arabidopsis (Sasaki et al., 2015), sorghum
(Li et al., 2018), and rice (Guo et al., 2020).

4.3 Future studies need to overcome the
hurdle of high false positive rates

The most important finding from this study was the severe
inflation of −log10(𝑝−values) from both vGWAS approaches,
especially those from the DGLM. This degree of inflation
was surprising because both G × E flowering time traits
were first fitted to a unified MLM that accounted for popu-
lation structure and familial relatedness (please see Section 2
for details). The residuals from this fitted model were used
in our subsequent vGWAS evaluations. Similar approaches
have been implemented in previous studies (Forsberg et al.,
2015; Li et al., 2020; Shen et al., 2012), and thus, we antici-
pated that these sources of false positives would have already
been accounted for in our vGWAS. Consequently, we empiri-
cally demonstrated that the fixed and random effects used by
the unified MLM to account for false positives in traditional
GWAS approaches are not guaranteed to also account for false
positives inflating vGWAS associations. Thus, it is imperative
that future research focuses on identifying and characterizing
the genomic sources underlying these false positives. Concur-
rently, the computational bandwidth of statistical models that
should account for these sources of false positives, for exam-
ple, the hierarchical generalized linear model and the double
hierarchical generalized linear model (Lee & Nelder, 1996,
2006; Rönnegård & Valdar, 2012) needs to be reduced so that
researchers can feasibly use them in a vGWAS.

4.4 Follow-up studies need to address the
inflation of −𝐥𝐨𝐠𝟏𝟎(𝒑−𝐯𝐚𝐥𝐮𝐞𝐬) before
investigating the putative G × E genomic
regions identified in our study

Even though the tested vGWAS statistical approaches were
prone to severe inflation of −log10(𝑝−values), both of them
identified a genomic region of interest on Chromosome 9 con-
taining peak-associated markers with both traits. This result
does offer some promise of using vGWAS as a tool for prior-
itizing G × E genomic regions. However, follow-up studies
using more sophisticated vGWAS models that account for
false positives need to be conducted to determine if there
are still peak-associated markers in this genomic region after

explicitly controlling for population structure and familial
relatedness. These follow-up studies should also be comple-
mented with vQTL linkage mapping analyses as described
in Corty and Valdar (2018). By using biparental crosses and
similar experimental populations, linkage mapping has the
potential to confirm peak vGWAS associations in indepen-
dent data where extraneous sources of genetic variability can
be controlled for by the mating design (Korte & Farlow, 2013;
Nordborg & Weigel, 2008).

5 CONCLUSION

Although our previous work, in Murphy et al. (2022), high-
lighted the potential of the BFT and DGLM to identify
G × E loci in simulated traits, the analysis conducted
here clearly shows these approaches yielded highly inflated
−log10(𝑝−values) when applied to searching for G × E sig-
nals associated with flowering time in maize. This inflation
highlights a serious weakness in this application of both
approaches, and thus, we recommend not applying the BFT
and DGLM to search for G × E loci real trait data. There is a
critical need for future studies to explore use of more sophisti-
cated vGWAS models to account for false positives. Without
such an undertaking, the potential for using vGWAS to high-
light specific genomic regions likely to harbor G × E loci for
agronomically important traits like flowering time in maize
will not be realized.
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