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ABSTRACT

The wired ghost touch attacks are the emerging and severe threats
against modern touchscreens. The attackers can make touchscreens
falsely report nonexistent touches (i.e., ghost touches) by injecting
common-mode noise (CMN) into the target devices via power cables.
Existing attacks rely on reverse-engineering the touchscreens, then
manually crafting the CMN waveforms to control the types and
locations of ghost touches. Although successful, they are limited
in practicality and attack capability due to the touchscreens’ black-
box nature and the immense search space of attack parameters. To
overcome the above limitations, this paper presents PowerTouch,
a framework that can automatically generate wired ghost touch
attacks. We adopt a software-hardware co-design approach and
propose a domain-specific genetic algorithm-based method that is
tailored to account for the characteristics of the CMN waveform.
Based on the security objectives, our framework automatically op-
timizes the CMN waveform towards injecting the desired type of
ghost touches into regions specified by attackers. The effectiveness
of PowerTouch is demonstrated by successfully launching attacks on
touchscreen devices from two different brands given nine different
objectives. Compared with the state-of-the-art attack, we seminally
achieve controlling taps on an extra dimension and injecting swipes
on both dimensions. We can place an average of 84.2% taps on the
targeted side of the screen, with the location error in the other di-
mension no more than 1.53mm. An average of 94.5% of injected
swipes with correct directions is also achieved. The quantitative
comparison with the state-of-the-art method shows that a better
attack performance can be achieved by PowerTouch.

1 INTRODUCTION

The capacitive touchscreen technology has been widely used in
every sphere of our daily life, ranging from smart devices and auto-
mobiles to medical equipment and industrial control centers [8, 24].
Its popularity stems from the inherent advantage in providing a more
convenient human-computer interaction interface by directly using
fingers than conventional methods through auxiliary mediums, such
as keyboards and mouses. Given its increasingly prominent role in
modern technologies, the essential capability of touchscreens to re-
liably and correctly recognize touch events (e.g., taps and swipes) is
vital. Otherwise, once compromised, attacks on touchscreens could
not only significantly deteriorate the usability of the device but also
severely threaten user privacy.

Unfortunately, capacitive touchscreens have been shown to be
susceptible to electromagnetic interference (EMI) due to their in-
trinsic electromagnetic characteristics. The capacitive property of
the touchscreens can be easily manipulated with the presence of
electromagnetic fields. Attackers are thus able to take advantage
of this vulnerability to conduct Ghost Touch Attack by injecting
EMI to the capacitive touchscreen such that it falsely recognizes
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nonexistent touch events (i.e., ghost touches). This ghost touch is
then identified as the authenticated behaviors of users who in fact
do not physically touch the screen using fingers, thereby leading
to unintended and even malicious operations. One tangible ghost
touch attack is injecting fake touches to smartphones to click the
answering buttons without the users’ attention when an eavesdrop-
ping phone call dials in [25]. Further, attackers can alter the actual
touch of a user to authenticate a malicious operation even though
the user intends to click “CANCEL” button [18].

Despite its great threat potential, ghost touch attack is an emerg-
ing topic in security and remains largely unexplored. So far, only few
works have demonstrated the attacks [11, 18, 22, 25]. Initial attempts
, including prior works such as Tap’n Ghost [18], GhostTouch [25],
and Invisible Finger [22], use radiated EMI for attacks. These early
explorations assume that attackers can stealthily retrofit the table
under the phone to install equipment (e.g., antenna array or device
locator circuits) for EMI injection. However, such sophisticated se-
tups are nowhere practical in real-world scenarios. A parallel work
(i.e., WIGHT [11]) has proposed a wired ghost touch attack, which is
an improved method using conducted EML. Specifically, the authors
inject common-mode noise (CMN) to target devices via the power
cable (e.g., USB charging cable) and control the locations of ghost
touches by adjusting the CMN waveform (see Figure 3 for an example
of CMN waveform).

Although the wired ghost touch attack significantly lowers the bar-
rier of entry for attackers, it still suffers from several challenges. First,
the method exhibits low controllability. Based on injecting CMN with
simple patterns, it can only randomly place taps on one horizontal
or vertical line. To achieve higher attack capabilities (e.g., swipe) and
finer-granular controllability, CMN with more complex patterns is
required. Second, manually crafting effective CMN waveform is a cum-
bersome procedure and time-consuming. Previous efforts are largely
based on manually sweeping the search space in a trial-and-error
manner, while automatically designing such CMN given arbitrary
security objective remains largely unexplored. Besides, experiments
in previous work typically involve multiple instruments. Even a
slight change in the CMN waveform requires adjusting excessive
configuration parameters of instruments. Third, the black-box nature
of touchscreens results in an immense search space. For touchscreens,
the design details of both their internal circuits and noise filtering
algorithms are not publicly available and vary significantly among
different vendors. Attackers can rarely attain practical constraints
to reduce the search space unless they entirely reverse engineering
against touchscreens.

In this paper, to overcome the limitations of existing wired ghost
touch attacks, we present PowerTouch—a genetic algorithm (GA)
based framework that can automatically generate wired ghost touch
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Figure 1: (a) A typical system architecture of capacitive touch-
screens with the scan driving method. (b) Mutual capacitive
sensing. (c) Schematic diagram of common-mode noise.

attacks and find optimal CMN waveform to maximize attack perfor-
mance given a security objective!. To the best of our knowledge, this
is the first framework to automate ghost touch attacks. PowerTouch
is developed by using a software-hardware co-design approach. A
domain-specific GA is adopted to be a black-box optimizer, which
treats the target touchscreen system as a black box. Unlike standard
GA, we propose a tailored genetic encoding scheme and evolution op-
erators. The complexity of the CMN waveform is thus also optimized
to attain a complete search. To efficiently evaluate CMN waveform,
we develop a software infrastructure to bridge the gap between the
software and hardware. It takes high-level CMN parameters as in-
puts and controls the custom-designed arbitrary CMN injector at
the hardware level to generate corresponding CMN. The software
infrastructure coordinates instruments and configures amplitude
and frequency modulation to enable generating complex CMN wave-
forms. This evaluation procedure is thus automated. The generality
and effectiveness of PowerTouch are demonstrated through opti-
mizing CMN waveform towards different objectives, such as taps
on different regions, and swipe up/down, swipe left/right. Aided by
PowerTouch, the advanced capability, such as injecting swipes using
CMN, is presented for the first time. The contributions of this work
are summarized as below:

e Domain-specific Genetic Algorithm. We adopt a GA specifi-
cally to generate CMN waveform for launching wired ghost touch
attack given a security objective. We design a specialized genetic
encoding scheme, a specialized crossover operator, and a new
genetic operator. The complexity of CMN waveform at different
levels can thus be optimized efficiently.

e Automated Workflow. Our framework is devised using an
software-hardware co-design approach to automate the search
space exploration. Specifically, all procedures of evaluating CMN
waveform including sensing the touchscreen, generating complex
signals, injecting CMN, and analyzing ghost touch, are automated.
Users can focus on designing fitness functions without knowing
the details at the lower level.

!We have open sourced the tool with the source code available at: https://github.com/xz-
group/PowerTouch

Zhu et al.

e Improved Ghost Touch Attack Capability. We conducted
extensive experiments to demonstrate the effectiveness of Power-
Touch given nine different objectives on two different smart-
phones. Compared with previous attacks based on CMN, we
achieve a more powerful attack by showing additional capability
of controlling taps on the other dimension and injecting swipes.
For example, an average of 84.2% taps are placed on the targeted
side of the screen, with the location error in the other dimension
no more than 1.53mm. An average of 94.5% of injected swipes
with correct directions is also achieved.

2 BACKGROUND

This section introduces the background of wired ghost touch attacks
by discussing the mechanism of capacitive touchscreens and the
common-mode noise. The basic concept of the genetic algorithm is
also presented.

2.1 Capacitive Touchscreen

Figure 1(a) shows a typical system architecture of capacitive touch-
screens, which consists of touch sensors, analog auxiliary circuits,
and micro-controller unit (MCU) [14]. The touch sensor is a two-
dimensional crossbar array of two-layer transparent conductive
electrodes: the transmitting (TX) electrodes (the orange lines) and
the receiving (RX) electrodes (the blue lines). There is an insulator
layer between the two layers of electrodes (e.g., indium-tin-oxide
(ITO) [10]). Thus, parasitic mutual capacitors are formed at each
cross point of TX and RX electrodes. When a finger touches the
screen, it absorbs a partial electric field at this point due to the ad-
ditional capacitive coupling (see Figure 1(b)), affecting the mutual
capacitance Cy,. The auxiliary circuits and the MCU monitor such
changes to recognize the touch events. Note that in this paper, we
specify the two dimensions of the touchscreens as TX and RX dimen-
sions instead of vertical and horizontal dimensions. The orientation
of TX electrodes varies among different devices.

To measure the mutual capacitance of the whole touchscreen, sev-
eral scanning method have been proposed [1, 15, 19, 23]. In this pa-
per, we consider the most classical one, i.e., the scan driving method
(SDM). As shown in Figure 1(a), the auxiliary circuits sequentially
send excitation signals V,x; (e.g., square wave signals) to every TX
electrode in each touchscreen refresh. When driving one TX elec-
trode, the charges can be sensed on all RX electrodes, which is deter-
mined by Qs =Cp; X Vex. Then the charge amplifiers simultaneously
converts Qs to voltages Vpy,;. These voltages are processed one-by-
one after passing the multiplexer, and finally are converted to digital
readouts. Theoretically, a touch event will be reported if V;,,; ishigher
than the pre-defined threshold V;j,. In practice, customized noise mit-
igating circuits and anti-mistouch algorithms are implemented to im-
prove the reliability of touchscreens [16, 29]. Since such techniques
are the critical intellectual property of the vendors, the design details
are not publicly available, making a touchscreen a black-box system.

2.2 Common-mode Noise on Power Cables

The ghost touch attacks are fundamentally resulted from electromag-
netic interference (EMI). According to the different paths that EMI is
propagated to the target devices, EMI can be further categorized into
two major types: radiated EMI and conducted EMI [31]. This work
focuses on one notable source of conducted EMI: the common-mode
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Figure 2: (a) The overview of PowerTouch framework. It
consists of three main parts: genetic algorithm (GA) engine,
software infrastructure, and arbitrary CMN injector. (b) The
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Growth & Aging

New Generation

Population Generation

noise (CMN) on power cables. CMN could severely compromise the
normal functionalities of various devices including capacitive touch-
screens [7, 13]. As illustrated in Figure 1(c), CMN is a type of noise
due to the ubiquitous stray capacitance between the device and the
earth. It is caused by current leakage through the stray capacitance,
which then returns to the noise source via the earth [30]. Since the
currents in both VDD and GND are in the same direction, the voltage
fluctuations equally appear on the two lines, making CMN sneaky
yet harmful. For instance, a large CMN can be injected into a USB
charger while keeping its differential output voltage at a clean 5V
power supply. However, once connecting the charger to a device,
the large current induced by CMN may damage the system.

The capacitive touchscreens are intrinsically vulnerable to the
CMN. The intuition is that the touchscreens fundamentally leverage
the current in the device-human-earth path to detect touch events,
which is a common-mode path. Based on this vulnerability, in a
recent work (i.e., WIGHT [11]), the authors proposed a wired ghost
touch attack. The adversaries can implement malicious charging sta-
tions in public places and inject CMN into the target device via power
cables (e.g., USB charging cable). The CMN can be mistakenly rec-
ognized as ghost touches. To control the locations of ghost touches,
attackers need to identify the timing when a specific TX electrode
is being scanned, then inject a carefully-crafted CMN. However,
although successful, the black-box nature of touchscreens and the
immense parameter search space limit the attack capability based
on manual heuristic approaches. The crafted waveform also does
not readily port over to a different new device.

2.3 Genetic Algorithm

InPowerTouch, we develop a genetic algorithm (GA) based black-box
optimization technique to tackle the above limitation and automati-
cally generate CMN injecting ghost touches. GA is a popular artificial
intelligence (AI) algorithms due to its simplicity and generality [3, 12,
17]. It optimizes a target function F(G) by applying genetic operators
(e.g., crossover and mutation) to input sequence G, mimicking the
natural evolution. G here is called the genotype and every parameter
in G is called the gene. Standard GA starts with a randomly sampled
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representation.

seed population (i.e., the initial generation). Every generation con-
sists of individuals, and each individual is represented by a genotype
G. For each generation, individuals’ fitness scores will be evaluated
first. Then the best-fitted individuals will be selected as parents
which generate a new generation after crossover and mutation. The
process of evaluating fitness and creating the next generation will be
repeated. As the population evolves, a particular bias is introduced in
terms of that new points in the search space will be sampled [9, 26].

In standard GA, the search space is rigid, meaning the number of
parameters in G is fixed to fit in genetic operators. However, for gen-
erating ghost touch attacks, a complete search is desired, meaning
the complexity of CMN waveform is an essential dimension worth
exploring and optimizing. This requirement makes the lengths of
G variable as the CMN of different levels of complexity require a
various number of parameters to describe. One innovation in our
work is to customize the evolution mechanism to make it compatible
with flexible-length G.

3 POWERTOUCH FRAMEWORK

A high-level overview of PowerTouch framework is shown in Fig-
ure 2(a). PowerTouch is based on a software-hardware co-design
approach to automatically find optimal CMN waveform for ghost
touch attacks. PowerTouch is written in Python 3 and takes inputs
via a Python script which defines configuration parameters and
objective-specific fitness function. There are three major compo-
nents in PowerTouch: genetic algorithm engine (Section 3.1), soft-
ware infrastructure (Section 3.2), and arbitrary common-mode noise
(CMN) injector (Section 3.3). The GA engine is the core of Power-
Touch and coordinates its execution. The software infrastructure
and arbitrary CMN injector work together as a ghost touch attack
analyzer, which takes as input genotype G (i.e., high-level param-
eters of the CMN waveform) and returns the information of injected
ghost touches. We describe each component in detail as below.

3.1 Genetic Algorithm Engine
In our work, we formulate the ghost touch attack (GTA) as a black-
box optimization problem:
GTA problem: find the optimal common-mode noise waveform that ef-
ficiently, precisely, and exclusively injects a specific type of ghost touch
to the capacitive touchscreen without prior knowledge of the circuits of
touchscreens or the design of touch recognition algorithms.
Figure 3 illustrates one example of the CMN waveform, which is
an analog signal consisting of several packets of sinusoidal wave
pulses. The implementation of GA typically includes three parts: the
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problem encoding, which defines the input variables to be optimized
and the method for representing an individual; the fitness evalua-
tion, which establishes the method for measuring the quality of an
individual; and the procedure of population generation.

Problem Encoding. In our initial exploration, we broadly investi-
gate which properties of the CMN waveform can impact the ghost
touch attack performance. Based on the results, we define the pa-
rameters of CMN waveform (i.e., genotype G) to be optimized as:

G={N, Vi, fy, Di, Wi, . Vi, for. D, Wa}. (1)

Here N is the attack interval, defined as injecting one CMN strike
per N frames of touchscreen refreshes. We find N can influence the
type of injected ghost touches. For example, for a smaller N, the
touchscreen tends to identify the noises as the swipes rather than
taps. One CMN strike consists of n packets of sine wave pulses, each
of which is determined by four parameters: amplitude (V;), frequency
(fi), delay (D;) and width (W;). Among these parameters, V; and f;
are related to the attack efficiency. For instance, one can inject a
large number of ghost touches by properly setting V; and f;. Mean-
while, since the touchscreens are based on sequentially scanning
the TX electrodes, D; and W; are vital for controlling the location
of ghost touches. At last, the number of packets n can be viewed as
the measure of the complexity of CMN waveform. And the number
of parameters to describe a CMN waveform varies with different n.
We find there typically is an optimal n for different levels of ghost
touch controllability. In the GA engine, all the above properties will
be simultaneously explored and optimized.

Figure 3 illustrates an exemplary CMN waveform with N=2 and
n = 2. At ty, the touch screen starts to scan a new frame and the
oscilloscope is triggered. After a delay Dj, the first packet with a
width of Wj is injected. After another delay D3, the second packet
with a width of W5 is injected. Since the attack interval is N =2, the
oscilloscope is not triggered until the start of the third frame scan
at t1. In this work, we focus on injecting Sine wave signal into the
devices as its spectrum is well controlled.

Fitness Evaluation. The overall workflow of GA-based optimiza-
tion is illustrated in Figure 2(b). In fitness evaluation, the GA engine
first validates the genotype G described in Equation (1), where pa-
rameters are verified by satisfying user- or hardware constraints
(e.g., maximum available noise frequency). Then the genotype is
given to the software infrastructure. The software infrastructure and
arbitrary CMN injector corporately launch the ghost touch attack.
For each individual, we inject CMN strikes multiple times at the
attack interval N to collect the statistics of the individual’s perfor-
mance. After injecting the desired number of strikes, the GA engine
receives the reported ghost touch information (i.e., three Pandas
dataframes containing data of taps, swipes, and comprehensive sta-
tistics, respectively) from the software infrastructure. Based on this
information, the fitness function scores each individual.

Note that fitness function is objective-specific and different objec-
tives typically require unique fitness functions. We discuss fitness
function design principles here and introduce fitness functions for
each objective in Section 4. For the GTA problem, we evaluate CMN
waveform based on three metrics.

e Efficiency. The number of ghost touches of the desired type (e.g.,
swipe upwards) within a certain number of strikes. With higher

Zhu et al.

efficiency, the attack performance of the CMN waveform is more
reliable, and the average time between the start of an attack to
the moment it succeeds is shorter.

e Precision. The distribution of ghost touch locations, such as the
mean absolute error (MAE) to the target location and the standard
deviation (SD). This metric affects the success rate when attackers
intend to tap on a button.

e Exclusiveness. The proportion of the desired type of ghost
touches among all ghost touches. Since other types of ghost
touches may invalidate the attack, exclusiveness also impacts
the success rate.

Note that all above metrics should be included in fitness functions
with equal importance. Otherwise, we may succumb to pitfalls. For
example, by considering only precision, the GA engine may find
CMN waveform that can precisely but barely inject successful ghost
touches, resulting in unreliable CMN waveform. Another challenge
here is to balance these three metrics to avoid the overall fitness be-
ing solely dominated by one metric with an extremely high score. To
resolve this issue, we propose to reshape the metrics using a logistic
function [27] defined below:

S(x| xo,k) = [1+e K E=x0) =1, (2)

where sufficiently good metrics can be soft-capped. Here, x is the
input metric value. x is the x value of the curve’s midpoint and k
is the logistic growth rate. They determine the shape of the curve.

Population Generation. As shown in Figure 2(b), once the fitness
evaluation is completed, genetic operators are applied to create a
new generation (i.e., offspring). To make our method take any-length
G as inputs, we modify the Crossover operator. One new operator,
Growth & Aging, is also introduced to mutate n (i.e., the complexity
of CMN). Each operator are discussed as follows:

e Parent Selection. We empirically use the Tournament selection
method. In a K-way tournament selection, we select k-individuals
and run a tournament among them. Only the fittest candidate
among those selected candidates is chosen and passed to the next
generation. This process will repeat until the desired number of
parents is selected.

e Crossover. The parents are first randomly paired. Then the par-
ents’ genotypes G are re-combined to produce the offspring. We
adopt uniform crossover, where for each gene, the offspring hasan
equal chance of inheriting it from either of the parents. Since the
genotypes of two parents may have different lengths, the shorter
genotype will be padded with placeholders to the end to align with
thelonger one. Note that every four parameters of one packet (V, f,
D, and W) are viewed as one gene to be inherited. After crossover,
we remove the placeholders in the offspring’s genotype, if any.

e Mutation. We adopt random mutation here. Each parameter de-
fined in Equation (1), with a certain probability, will be mutated
by adding a random value (determined by the level of mutation)
to the original parameter.

e Growth & Aging. With a certain probability, the gene of one
packet (including V, f, D, and W) will be added to the end of the
original genotype (i.e., Growth) or removed from the end of the
original genotype (i.e., Aging) if the afterward number of packets
does not exceed the user-defined range.
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3.2 Software Infrastructure

The software infrastructure works as an intermediate layer for in-
teracting with the hardware part of PowerTouch. It consists of three
parts: instruments driver, attack template, and touchscreen monitor.
Using the former two, the software infrastructure automatically sets
up the hardware based on the input CMN waveform parameters
(i.e., genotype G). Meanwhile, the touchscreen monitor collects and
analyzes the information of injected ghost touches.

Instrument Driver. The experimental setup in previous work [11,
18, 22, 25] includes diverse instruments and is highly intricate. To
address this limitation, we render a much more concise and low-cost
setup based on Analog Discovery 2 (AD2), which is a USB multi-
function instrument [6]. AD2 provides application programming
interfaces (APIs) for users to program AD2 by interacting with AD2’s
registers. We combine and wrap the APIs to automate configuring
instruments based on our application. Based on our application, four
instrument drivers are implemented: Oscilloscope, Waveform Gen-
erator (Analog), Logic Analyzer, and Pattern Generator (Digital),
and DC Power Supply.

Attack Templates. Even with instrument drivers, launching an at-
tack can still be cumbersome. A slight change in the CMN waveform
could require adjustment of more than 20 instrument setup parame-
ters as all the instruments must be tightly synchronized. To this end,
we further abstract the interfaces as attack templates to automate
instrument cooperation. Therefore, users can conveniently input the
CMN waveform parameters without knowing the details of AD2.

Touchscreen Monitor. The touchscreen monitor is used to collect
raw touch information from the target device, such as the location,
duration, and type of the touch. The raw touch information refers
to the ABS_MT events, which is the information that the touchscreen
controller reports to the kernel by following the multi-touch (MT)
protocol [21]. Nowadays, most touchscreen controllers use the type-
B MT protocol to simultaneously track different contacts (i.e., differ-
ent fingers). Each contact will be assigned with a unique tracking ID.
We capture ABS_MT events through Android Debug Bridge (ADB)
and implement a MT protocol parser to convert raw ABS_MT events
into touch events.

3.3 Arbitrary Common-mode Noise Injector

Figure 4 shows the schematic of the arbitrary CMN injector. It
consists of an AD2 instance, a high-voltage amplifier (PiezoDrive
MX200 [20]), and our customized noise injection PCB. The MX200
can generate high-voltage signals with a maximum amplitude of
100V and bandwidth of 500KHz?. Two relays (CH1 and CH2) in noise
injection PCB are used to isolate the low-voltage (blue) and high-
voltage (red) paths. Thus AD2 can be protected from being damaged
by high-voltage common-mode noise. Under the control of the soft-
ware infrastructure, AD2 continuously senses the touchscreen TX
excitation signals emitted from the target device. Once triggered,
AD2 generates a waveform at the desired timing. The waveform is
further amplified as a high-voltage signal, then converted to CMN
and injected into the target device aided by the noise injection PCB.
We will discuss the key techniques involved in this process next.

2The original bandwidth is 200KHz, but a 500KHz equivalent bandwidth can be
achieved after compensating the decayed gains.
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Extended Noise Waveform Generation. We make use of the
Waveform Generator and Oscilloscope instruments in AD2 to gener-
ate and examine the CMN waveform respectively. The key technical
challenge in generating CMN specified in Equation 3 is its high
complexity. The requirements for separately adjusting each packet
(including V, f, D, and W) force one to adopt expensive commer-
cial Arbitrary Waveform Generators. Otherwise, CMN waveform
with more than one packet can not be generated. To address this
challenge, we adopt both amplitude modulation (AM) and frequency
modulation (FM) techniques. And the modulation signals are gen-
erated using direct digital synthesis (DDS) technique [5]. The AM
is responsible for setting amplitudes of the packets and converting
continuous signals into multiple separated packets. Then FM adjusts
the frequencies of Sine wave signal in each packet. This process, in-
cluding generating corresponding modulation signals, is automated
in the software infrastructure.

Common-mode Noise Injection. To inject the noise, we choose
to attach the noise source (i.e., amplifier) to the SHIELD of the USB
power cable, which is a common approach to testing EMI toler-
ance [4]. According to the USB standard, a USB cable (including all
14 different connector types [28]) must have SHIELD, which is made
of a stranded copper bread. It surrounds all other wires on the whole
length of the cable and is connected to the plug shells at both ends.
By connecting the positive and negative ends of the noise source
to SHIELD and the earth, respectively, the noise is converted to the
common-mode noise from the target perspective.

Synchronization with Touchscreen Refresh. PowerTouch fun-
damentally synchronizes with touchscreen refresh to determine
the timing to launch one new round of strike. The Oscilloscope in
AD2 monitors the TX excitation signals unintentionally transmitted
from the touchscreen through the power cable and is triggered when
the touchscreen starts scanning a new frame. Once triggered, the
Waveform Generator outputs noise signals. Meanwhile, the Pattern
Generator outputs control signals that turn on/off CH1 and CH2 re-
lays according to defined attack timings. It is worth mentioning that
the synchronization techniques in previous work [11, 25] are based
on first reverse-engineering the devices to interpret TX excitation
signals, and then determining when to inject noises. This process
is expensive and time-consuming. Besides, because different devices
typically use unique touchscreen designs, their TX excitation signals
can be completely different (see Figure 5). Such facts make tech-
niques proposed in previous work [11] impractical for new devices.
However, in PowerTouch, aided by GA-based automated flow, users
only need to identify the periodical touchscreen refresh signal.
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Table 1: Summary of Evaluated Objectives.

Nexus 5 (Horizontal TX electrodes) Redmi 5A (Vertical TX electrodes)

T1  Taps on 10th TX electrode Taps on 2nd TX electrode
T2  Tapson 15th TX electrode Taps on 5th TX electrode
T3  Tapson 20th TX electrode Taps on 8th TX electrode

T4  Taps on 15th TX electrode (left side)
T5  Tapson 15th TX electrode (right side)

Taps on 5th TX electrode (upper side)
Taps on 5th TX electrode (lower side)

S1  Swipe Up Swipe Left
S$2  Swipe Down Swipe Right
S3  Swipe Left Swipe Up

S4  Swipe Right Swipe Down

Nexus 5 has 27 TX electrodes [25]. For Redmi 5A, we assume the number to be 10.

4 EXPERIMENTAL RESULTS

We evaluate the performance of PowerTouch using nine different
objectives. For each objective, PowerTouch is evaluated on two smart-
phones from different brands: LG Nexus 5 and Xiaomi Redmi 5A.
The effectiveness of PowerTouch is demonstrated by automatically
generating CMN waveform to inject desired ghost touches.

4.1 Experimental Methodology

Objectives and Fitness Functions. The summary of the nine evalu-
ated objectives is listed in Table 1, with five for injecting taps (T1~T5)
and the other four for injecting swipes (S1~S4). For both types of
touches, the controllability of two dimensions (i.e., TX and RX) is
included. Based on the principles introduced in Section 3.1, for in-
jecting taps (T1~T5), we devise the fitness function as:

Fitness=log;(Ntap) XS (Ptap|0.7,20) XS(Pp;;0.5,10) X
[S(SD7x|100,—0.05)+S(MAETx|250,—0.02)],

where Niqp is the number of injected taps; Pyqp is the proportion
of taps among all injected touches; and SD7x and MAET are the
standard deviation and the mean absolute error of taps to the loca-
tion of the target TX electrode; Py;; is the proportion of taps hitting
the targeted half side (e.g., left) of the screen (for T4 and T5). We
make Pp;; =1 when targeting T1~T3. Similarly, we design the fitness
function for injecting swipes (S1~S5) as:

Fitness=10ogy(Nswipe) X [S(Psipel0.55,10)+10S (P, ;. .10.7,20)],

wipe
where Nyipe is the number of injected swipes; Psyyipe is the propor-
tion of swipes among all injected touches; P¢, ; e is the proportion
of swipes with the correct direction among all injected swipes.

PowerTouch Configuration. In this work, we follow existing work
on ghost touch attacks [22, 25] and assume the device is placed face-
down on the table. To achieve a better signal quality, we further
assume the main part of the table is conductive. For the experiments
in this paper, we place a metal sheet on a wood-made table, and the
metal sheet is connected to EARTH of a power socket on the wall. A
glass plate is placed above the metal sheet. Figure 5 shows the TX
excitation signals of two devices collected by PowerTouch, where
the touchscreen refresh can be easily recognized (see the red labels).
We found the refresh rates of Nexus 5 and Redmi 5A are around
120Hz and 115Hz, respectively. To synchronize with Nexus 5, we set
the oscilloscope to trigger on rising edges with the trigger level at
25mV. For Redmi 5A, the oscilloscope is triggered at falling edges
with the trigger level at —540mV. The sampling rate of the oscillo-
scope is configured at 400KHz. For GA related configurations, we set
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Figure 5: The waveform of TX excitation signals on (a) Nexus
5 and (b) Redmi 5A.
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Figure 6: An illustration of changes in distributions of
injected ghost touches as evolution continues: the best
individual after (a) 5, (b) 10, and (c) 25 generations. The green
circles are the taps, and the purple arrows are the swipes.
The red box is the target area. The objective is T5, and the
experiment is conducted on Redmi 5A.

population_size =50, and number_of_generations=25.In parent se-
lection, 20 individuals will be selected as parents (tournament_size =
3). The mutation probability and growth&aging probability are both
0.2. We set the maximum number of packets as 4.

4.2 Effectiveness

In this subsection, we demonstrate the effectiveness of PowerTouch
by showing the performance of CMN waveform generated by our
framework for each objective listed in Table 1. Figure 6 illustrates
the changes in the distribution of injected ghost touches as evolution
continues. The green circles are the taps and the purple arrows are the
swipes. The red box is the target area. In this example, we aim at in-
jecting pure taps to Redmi 5A, where the taps should be placed on the
lower side of the 5th TX electrode (i.e., the objective T5). Figure 6(a),
(b), and (c) present the best individual after 5, 15, 25 generations. For
the ultimate CMN waveform generated by PowerTouch, the majority
of injected ghost touches are located in the target area. Similar results
are achieved when targeting other objectives on both devices. Next,
we analyze the detailed metrics of generated CMN waveform for
each objective. Specifically, the performance of CMN waveform is
evaluated from efficiency, exclusiveness, and precision perspectives.
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Figure 7: The results of objectives T1~T5: (a) Normalized
number of injected taps per 100 strikes; (b) the proportion
of taps that hit the target region; (c)(d) The distribution of
distance from injected taps to the target TX electrode.

Injecting Taps. Here the objectives T1~T3 require placing taps on a
specific TX electrode. For T4 and T5, besides controlling touches on
desired TX electrode, they further require controlling the locations
onthe RX dimension. We found PowerTouch can successfully achieve
all objectives. Figure 7(a) illustrates the efficiency, where we plot the
normalized N¢gp. It is the number of injected taps per 100 strikes.
The overall averaged Nyqp over two devices is 86.3, and the Nyqy for
individual objectives reaches up to 96.7 on Nexus 5 for the objective
T3.For exclusiveness, we focus on two metrics: the proportion of taps
among all injected touches P4y, and the proportion of taps that hit
the desired region on the screen Py;;. For all objectives, 100% of Prqp is
achieved, meaning no swipes are injected. Figure 7(b) shows the com-
parison of Pp;; for objective T4 and T5. On Nexus 5, Py,;; are 74% and
63% for the two objectives. While on Redmi 5A, Pj,;; are 99% and 100%.
Figure 7(c) and (d) show the precision of the injected taps. The
distance distribution from injected taps to the target TX electrodes
is plotted. Due to the different TX orientations, we calculate the
distance (number of pixels) in the vertical dimension for Nexus 5
and the horizontal dimension for Redmi 5A. The number of pixels
is further converted into the absolute distance (i.e., millimeter) by
considering the physical dimensions and resolution of the screen.
For Nexus 5, the maximum mean error is no more than 0.8mm (11.5
pixels). The maximum standard deviation is 5.27mm (73.4 pixels) for
objective T5, with the average standard deviation of other objectives
being 0.9mm (13.1 pixels). For Redmi 5A, the mean error is no more
than 1.5mm (16.3 pixels), with the standard deviation no more than
2.1mm (22.3 pixels). Compared with the size of an average fingerprint
(17.8x12.7mm) [2], we can achieve reasonable precision.

Injecting Swipes. Similarly, objectives S1 and S2 are based on the
controllability of placing swipes on TX electrodes, while S3 and S4 are
based on the controllability of RX electrodes. PowerTouch is shown
to successfully achieve the four objectives, and the performance of
optimal CMN waveform for each objective is illustrated in Figure 8.

Figure 8(a) presents the number of injected swipes per 100 strikes
Nswipe, where the Nsqyipe of two devices can be up to 94.9 and 92.5
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Figure 8: The results of ob_]ectlves S1~84: (a) Normallzed
number of injected swipes per 100 strikes; (b) The proportion
swipes among all injected ghost touches; (c) Among injected
touches, the proportion of swipes with correct direction.

respectively. Regarding the exclusiveness, the proportion of swipes
among all injected swipes Psyyipe is plotted in Figure 8(b). The Psyyipe
up to 99% can be achieved, meaning the swipes can be almost exclu-
sively injected. On both devices, we find injecting swipes along the
TX direction (i.e., S3 and S4) is more difficult than swipes perpendic-
ular to the TX direction (i.e., S1 and S2). For example, on Nexus 5, the
average Psyyipe for S1and S2is 79%, whereas the average Psyipe for S3
and $4 being 37%. Correspondingly, the average Nsyipe for S3 and S4
is 67.9 lower than the one for S1 and S2. It is relatively more efficient
to inject swipes on Redmi 5A compared with Nexus 5, with the aver-
age Nsyipe on the former is 85.6. Note that for all objectives on both
devices, PowerTouch ensures the majority of the injected swipes is in
the correct direction. Figure 8(c) shows the proportion of swipes with
the correct direction among all injected swipes P¢, . e’ . The average

SWlpe for Nexus 5 and Redmi 5A are 93% and 96%, respectively.

4.3 Security Scenario Evaluation

In this subsection, we focus on evaluating the attack performance
achieved by PowerTouch by considering the real security scenarios.
Four example attacks are listed below, each requiring a different level
of ghost touch controllability. Note that since the required control-
lability is highly affected by the user interface (UI), we show the Uls
of the targets in Figure 9 for clarification.

o Establish malicious connection. Attacker can initialize a con-
nectionrequest (e.g., Bluetooth) to victim’s device and tap the “AL-
LOW?”button (see Figure 9(a)). This connection can be further used
to fully control the victim’s phone. The attacker can inject swipes
when injecting taps since the current Ul is not sensitive to swipes.

e Answer an eavesdropping call. Suppose the attacker priorly
attains the victim’s phone number. The attacker can call the vic-
tim and answer it without noticing. This call can thus be used for
eavesdropping. Under the UI shown in Figure 9(b), the attacker
needs to inject swipes to answer the call. Taps can also be injected
since the current Ul is not sensitive to taps.

e Click malicious link. The attacker sends the victim a message
containing a malicious link. By clicking the link, malware can
be installed on the victim’s phone. As shown in Figure 9(c), the
attacker taps the message from a list to open the link. Meanwhile,
swipes should not be injected to avoid the message being scrolled
to an unpredicted location.

e Disable user accessing data. Some smartphones (e.g., Redmi
5A) facilitate users to set a password to protect the privacy of their
data (e.g., message). The user can swipe down the message list to
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Table 2: The performance of four exemplary attacks on two different smartphones.

. Required Required Controllability Attack Rate Success Rate
Attack Scenario Exclusiveness
Nexus 5 (Horizontal TX) Redmi 5A (Vertical TX) Nexus5 Redmi5A Nexus5 Redmi5A
Establish malicious connection ~ Nonexclusive Tap on RX Tap on TX 67.1% 91.1% 74.0% 100%
Answer an eavesdropping call Nonexclusive Swipe along with TX Swipe perpendicular to TX 3.3% 92.5% 83.3% 100%
Click malicious link Tap-only Tap on TX Tap on RX 96.7% 89.0% 100% 100%
Disable user accessing data Swipe-only Swipe perpendicular to TX ~ Swipe along with TX 50.4% 85.0% 55.9% 98.5%

Table 3: Comparison with the state-of-the-art.

WIGHT [11] This Work
Free of reverse engineering No Yes
Complexity of CMN waveform Single packet Multiple packets
CMN waveform design method  Manually crafted ~ Automatically generated
Control taps on TX electrodes Yes Yes
Control taps on RX electrodes No Yes
Inject swipes No Yes

Attack Performance (Taps on TX electrodes)

Average SDTx 21.8 pixels 12.5 pixels
Response Time 0.5~1s <200ms
Success Rate 83% 100%
Messaging
:{\j;:ﬁa;xgu:md Bluetooth U n know n - d"'\
e W,

Allow Deny

Intemat

Youove consumes 0% o Fresd

(a) (b) (c) (d)
Figure 9: Example user interfaces for four different ghost
touch attack scenarios: (a) establish malicious connection,
(b) answer an eavesdropping call, (c) click malicious link, and
(d) disable user accessing data.

pop up the password setting window shown in Figure 9(d). The
attacker can utilize such functions to disable users from accessing
data by setting a random password. When injecting the swipes, no
taps can be injected. Otherwise, the attacker will exit the message
list and enter into one message dialog.

Table 2 lists the attack performance of the four examples when
conducting attacks on the two devices. The attack performance is
measured with the attack rate and success rate. The former is the per-
centage rate of CMN strikes recognized as the desired ghost touches.
Thelatter is the ratio of the number of the desired ghost touches to the
number of all ghost touches that may affect the attack performance in
real scenarios. We identified two factors that affect the attack perfor-
mance: the Ul sensitivity, and TX electrode orientation. In the attack
scenarios, there are two levels of Ul sensitivity (i.e., only sensitive to
taps or swipes, and sensitive to all touches). Correspondingly, to suc-
cessfully launch an attack, different exclusiveness levels of injected
ghost touches are required. The orientation of TX electrodes mainly
affects attack performance on different devices. For example, for the
first attack scenario, because the two phones have different TX elec-
trode orientations, the required ghost touch controllability is differ-
ent, leading to different attack performance. For all the scenarios us-
ing PowerTouch, an acceptable attack performance can be achieved
with an attack rate up to 96.7%, and the success rate up to 100%.

4.4 Comparison with Prior Arts

We compare our work with the state-of-the-art attack [11] as listed
in Table 3. Note that for the quantitative metrics comparison, since
WIGHT [11] only achieves injecting taps on specific TX electrodes,
we compare both works’ best performance in attacking smartphones
using such capability (i.e., the performance targeting T1~T3 for Pow-
erTouch). The overall comparison shows that we do not need reverse
engineering the target device, and can automatically generate the
CMN waveform given a specific security objection. In addition, we
develop an arbitrary CMN injector and customized GA evolution
schemes, making PowerTouch support complex CMN waveform
with multiple packets. Therefore, a more fine-granular control is
achieved in our work by facilitating control taps on RX electrodes.
Note that to the best of our knowledge, there are no existing ap-
proaches to controlling ghost touches on RX electrodes. As a result,
we found that the attacks demonstrate in previous work [11] are
limited to phones with a specific TX orientation, which is overcome
by our work. Moreover, we demonstrate the capability of injecting
swipes, which is not achieved in the prior work [11]. A better at-
tack performance is also achieved in terms of response time and
success rate. In summary, the comparison shows that PowerTouch
can significantly improve the attack performance.

5 DISCLOSURE

We have reported PowerTouch to Google, Xiaomi, and LG, including
a detailed description of the vulnerability and proof of concept. All
three companies have not requested an embargo for the vulnerabili-
ties described in this paper. However, we will add identity checking to
the open source process to avoid misuse of our framework. Further-
more, here we outline an overview of potential defense approaches.

6 CONCLUSION

We present PowerTouch, a GA-based framework that enables au-
tomatic generation of wired ghost touch attacks via power cables.
To the best of our knowledge, this is the first security objective-
guided framework to automate ghost touch attacks. Our framework
can optimize CMN waveform towards a specific region probabilisti-
cally given the objective. A more fine-granular control on the ghost
touches and a more advanced attack capability than the state-of-the-
art can be achieved without reverse-engineering the touchscreens.
We envision that the CMN waveform found by PowerTouch can be
interpreted to guide the community to a better understanding of the
attack and inspire potential defenses in the future.
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