
PowerTouch: A Security Objective-Guided Automation Framework
for GeneratingWired Ghost Touch Attacks on Touchscreens

Huifeng Zhu, Zhiyuan Yu, Weidong Cao, Ning Zhang, and Xuan Zhang
Washington University in St.Louis, MO, USA

ABSTRACT

The wired ghost touch attacks are the emerging and severe threats 
against modern touchscreens. The attackers can make touchscreens 
falsely report nonexistent touches (i.e., ghost touches) by injecting 
common-mode noise (CMN) into the target devices via power cables. 
Existing attacks rely on reverse-engineering the touchscreens, then 
manually crafting the CMN waveforms to control the types and 
locations of ghost touches. Although successful, they are limited 
in practicality and attack capability due to the touchscreens’ black-
box nature and the immense search space of attack parameters. To 
overcome the above limitations, this paper presents PowerTouch, 
a framework that can automatically generate wired ghost touch 
attacks. We adopt a software-hardware co-design approach and 
propose a domain-specific genetic algorithm-based method that is 
tailored to account for the characteristics of the CMN waveform. 
Based on the security objectives, our framework automatically op-
timizes the CMN waveform towards injecting the desired type of 
ghost touches into regions specified by attackers. The effectiveness 
of PowerTouch is demonstrated by successfully launching attacks on 
touchscreen devices from two different brands given nine different 
objectives. Compared with the state-of-the-art attack, we seminally 
achieve controlling taps on an extra dimension and injecting swipes 
on both dimensions. We can place an average of 84.2% taps on the 
targeted side of the screen, with the location error in the other di-
mension no more than 1.53mm. An average of 94.5% of injected 
swipes with correct directions is also achieved. The quantitative 
comparison with the state-of-the-art method shows that a better 
attack performance can be achieved by PowerTouch.

1 INTRODUCTION

The capacitive touchscreen technology has been widely used in 
every sphere of our daily life, ranging from smart devices and auto-
mobiles to medical equipment and industrial control centers [8, 24]. 
Its popularity stems from the inherent advantage in providing a more 
convenient human-computer interaction interface by directly using 
fingers than conventional methods through auxiliary mediums, such 
as keyboards and mouses. Given its increasingly prominent role in 
modern technologies, the essential capability of touchscreens to re-
liably and correctly recognize touch events (e.g., taps and swipes) is 
vital. Otherwise, once compromised, attacks on touchscreens could 
not only significantly deteriorate the usability of the device but also 
severely threaten user privacy.

Unfortunately, capacitive touchscreens have been shown to be 
susceptible to electromagnetic interference (EMI) due to their in-
trinsic electromagnetic characteristics. The capacitive property of 
the touchscreens can be easily manipulated with the presence of 
electromagnetic fields. Attackers are thus able to take advantage 
of this vulnerability to conduct Ghost Touch Attack by injecting 
EMI to the capacitive touchscreen such that it falsely recognizes 

nonexistent touch events (i.e., ghost touches). This ghost touch is

then identified as the authenticated behaviors of users who in fact

do not physically touch the screen using fingers, thereby leading

to unintended and even malicious operations. One tangible ghost

touch attack is injecting fake touches to smartphones to click the

answering buttons without the users’ attention when an eavesdrop-

ping phone call dials in [25]. Further, attackers can alter the actual

touch of a user to authenticate a malicious operation even though

the user intends to click “CANCEL” button [18].

Despite its great threat potential, ghost touch attack is an emerg-

ing topic in security and remains largely unexplored. So far, only few

works have demonstrated the attacks [11, 18, 22, 25]. Initial attempts

, including prior works such as Tap’n Ghost [18], GhostTouch [25],

and Invisible Finger [22], use radiated EMI for attacks. These early

explorations assume that attackers can stealthily retrofit the table

under the phone to install equipment (e.g., antenna array or device

locator circuits) for EMI injection. However, such sophisticated se-

tups are nowhere practical in real-world scenarios. A parallel work

(i.e., WIGHT [11]) has proposed a wired ghost touch attack, which is

an improved method using conducted EMI. Specifically, the authors

inject common-mode noise (CMN) to target devices via the power

cable (e.g., USB charging cable) and control the locations of ghost

touches by adjusting theCMNwaveform (see Figure 3 for an example

of CMNwaveform).

Althoughthewiredghost touchattacksignificantly lowers thebar-

rier of entry for attackers, it still suffers from several challenges. First,

the method exhibits low controllability. Based on injecting CMNwith

simple patterns, it can only randomly place taps on one horizontal

or vertical line. To achieve higher attack capabilities (e.g., swipe) and

finer-granular controllability, CMNwith more complex patterns is

required. Second,manually crafting effectiveCMNwaveform is a cum-

bersome procedure and time-consuming. Previous efforts are largely

based on manually sweeping the search space in a trial–and-error

manner, while automatically designing such CMN given arbitrary

security objective remains largely unexplored. Besides, experiments

in previous work typically involve multiple instruments. Even a

slight change in the CMN waveform requires adjusting excessive

configuration parameters of instruments. Third, the black-box nature

of touchscreens results in an immense search space. For touchscreens,

the design details of both their internal circuits and noise filtering

algorithms are not publicly available and vary significantly among

different vendors. Attackers can rarely attain practical constraints

to reduce the search space unless they entirely reverse engineering

against touchscreens.

In this paper, to overcome the limitations of existing wired ghost

touch attacks, we present PowerTouch–a genetic algorithm (GA)

based framework that can automatically generate wired ghost touch
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Figure 1: (a) A typical system architecture of capacitive touch-

screens with the scan drivingmethod. (b) Mutual capacitive

sensing. (c) Schematic diagram of common-mode noise.

attacks and find optimal CMNwaveform to maximize attack perfor-

mance given a security objective1. To the best of our knowledge, this

is the first framework to automate ghost touch attacks. PowerTouch

is developed by using a software-hardware co-design approach. A

domain-specific GA is adopted to be a black-box optimizer, which

treats the target touchscreen system as a black box. Unlike standard

GA,wepropose a tailoredgenetic encoding schemeandevolutionop-

erators. The complexity of theCMNwaveform is thus also optimized

to attain a complete search. To efficiently evaluate CMNwaveform,

we develop a software infrastructure to bridge the gap between the

software and hardware. It takes high-level CMN parameters as in-

puts and controls the custom-designed arbitrary CMN injector at

the hardware level to generate corresponding CMN. The software

infrastructure coordinates instruments and configures amplitude

and frequencymodulation to enable generating complexCMNwave-

forms. This evaluation procedure is thus automated. The generality

and effectiveness of PowerTouch are demonstrated through opti-

mizing CMNwaveform towards different objectives, such as taps

on different regions, and swipe up/down, swipe left/right. Aided by

PowerTouch, the advanced capability, such as injecting swipes using

CMN, is presented for the first time. The contributions of this work

are summarized as below:

• Domain-specific Genetic Algorithm. We adopt a GA specifi-

cally to generate CMNwaveform for launchingwired ghost touch

attack given a security objective. We design a specialized genetic

encoding scheme, a specialized crossover operator, and a new

genetic operator. The complexity of CMNwaveform at different

levels can thus be optimized efficiently.

• Automated Workflow. Our framework is devised using an

software-hardware co-design approach to automate the search

space exploration. Specifically, all procedures of evaluating CMN

waveform including sensing the touchscreen, generating complex

signals, injectingCMN, and analyzing ghost touch, are automated.

Users can focus on designing fitness functions without knowing

the details at the lower level.

1Wehave open sourced the tool with the source code available at: https://github.com/xz-
group/PowerTouch

• Improved Ghost Touch Attack Capability. We conducted

extensive experiments to demonstrate the effectiveness of Power-

Touch given nine different objectives on two different smart-

phones. Compared with previous attacks based on CMN, we

achieve a more powerful attack by showing additional capability

of controlling taps on the other dimension and injecting swipes.

For example, an average of 84.2% taps are placed on the targeted

side of the screen, with the location error in the other dimension

no more than 1.53mm. An average of 94.5% of injected swipes

with correct directions is also achieved.

2 BACKGROUND

This section introduces the background of wired ghost touch attacks

by discussing the mechanism of capacitive touchscreens and the

common-mode noise. The basic concept of the genetic algorithm is

also presented.

2.1 Capacitive Touchscreen

Figure 1(a) shows a typical system architecture of capacitive touch-

screens, which consists of touch sensors, analog auxiliary circuits,

and micro-controller unit (MCU) [14]. The touch sensor is a two-

dimensional crossbar array of two-layer transparent conductive

electrodes: the transmitting (TX) electrodes (the orange lines) and

the receiving (RX) electrodes (the blue lines). There is an insulator

layer between the two layers of electrodes (e.g., indium-tin-oxide

(ITO) [10]). Thus, parasitic mutual capacitors are formed at each

cross point of TX and RX electrodes. When a finger touches the

screen, it absorbs a partial electric field at this point due to the ad-

ditional capacitive coupling (see Figure 1(b)), affecting the mutual

capacitance𝐶𝑚 . The auxiliary circuits and the MCUmonitor such

changes to recognize the touch events. Note that in this paper, we

specify the two dimensions of the touchscreens as TX and RX dimen-

sions instead of vertical and horizontal dimensions. The orientation

of TX electrodes varies among different devices.

Tomeasure themutual capacitance of thewhole touchscreen, sev-

eral scanning method have been proposed [1, 15, 19, 23]. In this pa-

per, we consider the most classical one, i.e., the scan driving method

(SDM). As shown in Figure 1(a), the auxiliary circuits sequentially

send excitation signals𝑉𝑒𝑥𝑡 (e.g., square wave signals) to every TX

electrode in each touchscreen refresh. When driving one TX elec-

trode, the charges can be sensed on all RX electrodes, which is deter-

mined by𝑄𝑠 =𝐶𝑚×𝑉𝑒𝑥𝑡 . Then the charge amplifiers simultaneously

converts𝑄𝑠 to voltages𝑉𝑜𝑢𝑡 . These voltages are processed one-by-

one after passing the multiplexer, and finally are converted to digital

readouts.Theoretically, a toucheventwill be reported if𝑉𝑜𝑢𝑡 ishigher

than the pre-defined threshold𝑉𝑡ℎ . In practice, customized noisemit-

igating circuits and anti-mistouch algorithms are implemented to im-

prove the reliability of touchscreens [16, 29]. Since such techniques

are the critical intellectual property of the vendors, the design details

are not publicly available, making a touchscreen a black-box system.

2.2 Common-mode Noise on Power Cables

Theghost touch attacks are fundamentally resulted fromelectromag-

netic interference (EMI). According to the different paths that EMI is

propagated to the target devices, EMI can be further categorized into

twomajor types: radiated EMI and conducted EMI [31]. This work

focuses on one notable source of conducted EMI: the common-mode

2
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Figure 2: (a) The overview of PowerTouch framework. It

consists of threemain parts: genetic algorithm (GA) engine,

software infrastructure, and arbitrary CMN injector. (b) The

workflow of GA-based wire ghost touch attack generation.

noise (CMN) on power cables. CMN could severely compromise the

normal functionalities of various devices including capacitive touch-

screens [7, 13]. As illustrated in Figure 1(c), CMN is a type of noise

due to the ubiquitous stray capacitance between the device and the

earth. It is caused by current leakage through the stray capacitance,

which then returns to the noise source via the earth [30]. Since the

currents in both VDD and GND are in the same direction, the voltage

�uctuations equally appear on the two lines, making CMN sneaky

yet harmful. For instance, a large CMN can be injected into a USB

charger while keeping its differential output voltage at a clean 5V

power supply. However, once connecting the charger to a device,

the large current induced by CMNmay damage the system.

The capacitive touchscreens are intrinsically vulnerable to the

CMN. The intuition is that the touchscreens fundamentally leverage

the current in the device-human-earth path to detect touch events,

which is a common-mode path. Based on this vulnerability, in a

recent work (i.e., WIGHT [11]), the authors proposed a wired ghost

touch attack. The adversaries can implement malicious charging sta-

tions in public places and injectCMN into the target device via power

cables (e.g., USB charging cable). The CMN can be mistakenly rec-

ognized as ghost touches. To control the locations of ghost touches,

attackers need to identify the timing when a specific TX electrode

is being scanned, then inject a carefully-crafted CMN. However,

although successful, the black-box nature of touchscreens and the

immense parameter search space limit the attack capability based

on manual heuristic approaches. The crafted waveform also does

not readily port over to a different new device.

2.3 Genetic Algorithm

InPowerTouch,wedevelopagenetic algorithm(GA)basedblack-box

optimization technique to tackle the above limitation and automati-

cally generateCMNinjectingghost touches.GA is apopular artificial

intelligence (AI) algorithms due to its simplicity and generality [3, 12,

17]. It optimizes a target function𝐹 (G) byapplyinggenetic operators

(e.g., crossover and mutation) to input sequence G, mimicking the

natural evolution.G here is called the genotype and every parameter

in G is called the gene. Standard GA starts with a randomly sampled
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Figure 3: One example of CMN waveform and its genotype

representation.

seed population (i.e., the initial generation). Every generation con-

sists of individuals, and each individual is represented by a genotype

G. For each generation, individuals’ fitness scores will be evaluated

first. Then the best-fitted individuals will be selected as parents

which generate a new generation after crossover and mutation. The

process of evaluating fitness and creating the next generationwill be

repeated. As the population evolves, a particular bias is introduced in

terms of that new points in the search space will be sampled [9, 26].

In standard GA, the search space is rigid, meaning the number of

parameters inG is fixed to fit in genetic operators. However, for gen-

erating ghost touch attacks, a complete search is desired, meaning

the complexity of CMNwaveform is an essential dimension worth

exploring and optimizing. This requirement makes the lengths of

G variable as the CMN of different levels of complexity require a

various number of parameters to describe. One innovation in our

work is to customize the evolutionmechanism tomake it compatible

with �exible-length G.

3 POWERTOUCH FRAMEWORK

A high-level overview of PowerTouch framework is shown in Fig-

ure 2(a). PowerTouch is based on a software-hardware co-design

approach to automatically find optimal CMNwaveform for ghost

touch attacks. PowerTouch is written in Python 3 and takes inputs

via a Python script which defines configuration parameters and

objective-specific fitness function. There are three major compo-

nents in PowerTouch: genetic algorithm engine (Section 3.1), soft-

ware infrastructure (Section 3.2), and arbitrary common-mode noise

(CMN) injector (Section 3.3). The GA engine is the core of Power-

Touch and coordinates its execution. The software infrastructure

and arbitrary CMN injector work together as a ghost touch attack

analyzer, which takes as input genotype G (i.e., high-level param-

eters of the CMNwaveform) and returns the information of injected

ghost touches. We describe each component in detail as below.

3.1 Genetic Algorithm Engine
In our work, we formulate the ghost touch attack (GTA) as a black-
box optimization problem:

GTA problem: �nd the optimal common-mode noise waveform that ef-

�ciently, precisely, and exclusively injects a speci�c type of ghost touch

to the capacitive touchscreen without prior knowledge of the circuits of

touchscreens or the design of touch recognition algorithms.

Figure 3 illustrates one example of the CMN waveform, which is

an analog signal consisting of several packets of sinusoidal wave

pulses. The implementation of GA typically includes three parts: the

3
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problem encoding, which defines the input variables to be optimized

and the method for representing an individual; the fitness evalua-

tion, which establishes the method for measuring the quality of an

individual; and the procedure of population generation.

Problem Encoding. In our initial exploration, we broadly investi-

gate which properties of the CMNwaveform can impact the ghost

touch attack performance. Based on the results, we define the pa-

rameters of CMNwaveform (i.e., genotype G) to be optimized as:

G := {𝑁,𝑉𝑖 , 𝑓𝑖 , 𝐷𝑖 ,𝑊𝑖 , ..., 𝑉𝑛, 𝑓𝑛, 𝐷𝑛,𝑊𝑛}. (1)

Here 𝑁 is the attack interval, defined as injecting one CMN strike

per 𝑁 frames of touchscreen refreshes. We find 𝑁 can in�uence the

type of injected ghost touches. For example, for a smaller 𝑁 , the

touchscreen tends to identify the noises as the swipes rather than

taps. One CMN strike consists of𝑛 packets of sine wave pulses, each

ofwhich is determined by four parameters: amplitude (𝑉𝑖 ), frequency

(𝑓𝑖 ), delay (𝐷𝑖 ) and width (𝑊𝑖 ). Among these parameters,𝑉𝑖 and 𝑓𝑖
are related to the attack efficiency. For instance, one can inject a

large number of ghost touches by properly setting𝑉𝑖 and 𝑓𝑖 . Mean-

while, since the touchscreens are based on sequentially scanning

the TX electrodes, 𝐷𝑖 and𝑊𝑖 are vital for controlling the location

of ghost touches. At last, the number of packets 𝑛 can be viewed as

the measure of the complexity of CMNwaveform. And the number

of parameters to describe a CMNwaveform varies with different 𝑛.

We find there typically is an optimal 𝑛 for different levels of ghost

touch controllability. In the GA engine, all the above properties will

be simultaneously explored and optimized.

Figure 3 illustrates an exemplary CMNwaveformwith 𝑁 =2 and

𝑛 = 2. At 𝑡0, the touch screen starts to scan a new frame and the

oscilloscope is triggered. After a delay 𝐷1, the first packet with a

width of𝑊1 is injected. After another delay𝐷2, the second packet

with a width of𝑊2 is injected. Since the attack interval is 𝑁 =2, the

oscilloscope is not triggered until the start of the third frame scan

at 𝑡1. In this work, we focus on injecting Sine wave signal into the

devices as its spectrum is well controlled.

Fitness Evaluation. The overall work�ow of GA-based optimiza-

tion is illustrated in Figure 2(b). In fitness evaluation, the GA engine

first validates the genotype G described in Equation (1), where pa-

rameters are verified by satisfying user- or hardware constraints

(e.g., maximum available noise frequency). Then the genotype is

given to the software infrastructure. The software infrastructure and

arbitrary CMN injector corporately launch the ghost touch attack.

For each individual, we inject CMN strikes multiple times at the

attack interval 𝑁 to collect the statistics of the individual’s perfor-

mance. After injecting the desired number of strikes, the GA engine

receives the reported ghost touch information (i.e., three Pandas

dataframes containing data of taps, swipes, and comprehensive sta-

tistics, respectively) from the software infrastructure. Based on this

information, the fitness function scores each individual.

Note that fitness function is objective-specific and different objec-

tives typically require unique fitness functions. We discuss fitness

function design principles here and introduce fitness functions for

each objective in Section 4. For the GTA problem, we evaluate CMN

waveform based on three metrics.

• Efficiency. The number of ghost touches of the desired type (e.g.,

swipe upwards) within a certain number of strikes. With higher

efficiency, the attack performance of the CMNwaveform is more

reliable, and the average time between the start of an attack to

the moment it succeeds is shorter.

• Precision. The distribution of ghost touch locations, such as the

mean absolute error (MAE) to the target location and the standard

deviation (SD). Thismetric affects the success ratewhen attackers

intend to tap on a button.

• Exclusiveness. The proportion of the desired type of ghost

touches among all ghost touches. Since other types of ghost

touches may invalidate the attack, exclusiveness also impacts

the success rate.

Note that all above metrics should be included in fitness functions

with equal importance. Otherwise, we may succumb to pitfalls. For

example, by considering only precision, the GA engine may find

CMNwaveform that can precisely but barely inject successful ghost

touches, resulting in unreliable CMNwaveform. Another challenge

here is to balance these three metrics to avoid the overall fitness be-

ing solely dominated by onemetric with an extremely high score. To

resolve this issue, we propose to reshape the metrics using a logistic

function [27] defined below:

𝑆 (𝑥 | 𝑥0,𝑘)= [1+𝑒−𝑘 (𝑥−𝑥0) ]−1, (2)

where sufficiently good metrics can be soft-capped. Here, 𝑥 is the

input metric value. 𝑥0 is the 𝑥 value of the curve’s midpoint and 𝑘

is the logistic growth rate. They determine the shape of the curve.

Population Generation.As shown in Figure 2(b), once the fitness

evaluation is completed, genetic operators are applied to create a

newgeneration (i.e., offspring). Tomake ourmethod take any-length

G as inputs, we modify the Crossover operator. One new operator,

Growth & Aging, is also introduced to mutate 𝑛 (i.e., the complexity

of CMN). Each operator are discussed as follows:

• Parent Selection.We empirically use the Tournament selection

method. In a𝐾-way tournament selection,we select𝑘-individuals

and run a tournament among them. Only the fittest candidate

among those selected candidates is chosen and passed to the next

generation. This process will repeat until the desired number of

parents is selected.

• Crossover. The parents are first randomly paired. Then the par-

ents’ genotypes G are re-combined to produce the offspring. We

adopt uniformcrossover,where for eachgene, the offspringhas an

equal chance of inheriting it from either of the parents. Since the

genotypes of two parents may have different lengths, the shorter

genotypewill be paddedwith placeholders to the end to alignwith

the longerone.Note that every fourparametersofonepacket (𝑉 , 𝑓 ,

𝐷 , and𝑊 ) are viewed as one gene to be inherited. After crossover,

we remove the placeholders in the offspring’s genotype, if any.

• Mutation.We adopt randommutation here. Each parameter de-

fined in Equation (1), with a certain probability, will be mutated

by adding a random value (determined by the level of mutation)

to the original parameter.

• Growth & Aging. With a certain probability, the gene of one

packet (including𝑉 , 𝑓 ,𝐷 , and𝑊 ) will be added to the end of the

original genotype (i.e., Growth) or removed from the end of the

original genotype (i.e., Aging) if the afterward number of packets

does not exceed the user-defined range.

4
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3.2 Software Infrastructure

The software infrastructure works as an intermediate layer for in-

teracting with the hardware part of PowerTouch. It consists of three

parts: instruments driver, attack template, and touchscreen monitor.

Using the former two, the software infrastructure automatically sets

up the hardware based on the input CMN waveform parameters

(i.e., genotype G). Meanwhile, the touchscreen monitor collects and

analyzes the information of injected ghost touches.

Instrument Driver. The experimental setup in previous work [11,

18, 22, 25] includes diverse instruments and is highly intricate. To

address this limitation, we render amuchmore concise and low-cost

setup based on Analog Discovery 2 (AD2), which is a USB multi-

function instrument [6]. AD2 provides application programming

interfaces (APIs) for users to programAD2by interactingwithAD2’s

registers. We combine and wrap the APIs to automate configuring

instruments based on our application. Based on our application, four

instrument drivers are implemented: Oscilloscope, Waveform Gen-

erator (Analog), Logic Analyzer, and Pattern Generator (Digital),

and DC Power Supply.

Attack Templates. Even with instrument drivers, launching an at-

tack can still be cumbersome. A slight change in the CMNwaveform

could require adjustment of more than 20 instrument setup parame-

ters as all the instruments must be tightly synchronized. To this end,

we further abstract the interfaces as attack templates to automate

instrument cooperation. Therefore, users can conveniently input the

CMNwaveform parameters without knowing the details of AD2.

TouchscreenMonitor. The touchscreen monitor is used to collect

raw touch information from the target device, such as the location,

duration, and type of the touch. The raw touch information refers

to the ABS_MT events, which is the information that the touchscreen

controller reports to the kernel by following the multi-touch (MT)

protocol [21]. Nowadays, most touchscreen controllers use the type-

B MT protocol to simultaneously track different contacts (i.e., differ-

ent fingers). Each contact will be assigned with a unique tracking ID.

We capture ABS_MT events through Android Debug Bridge (ADB)

and implement a MT protocol parser to convert raw ABS_MT events

into touch events.

3.3 Arbitrary Common-mode Noise Injector

Figure 4 shows the schematic of the arbitrary CMN injector. It

consists of an AD2 instance, a high-voltage amplifier (PiezoDrive

MX200 [20]), and our customized noise injection PCB. The MX200

can generate high-voltage signals with a maximum amplitude of

100V and bandwidth of 500KHz2. Two relays (CH1 andCH2) in noise

injection PCB are used to isolate the low-voltage (blue) and high-

voltage (red) paths. Thus AD2 can be protected from being damaged

by high-voltage common-mode noise. Under the control of the soft-

ware infrastructure, AD2 continuously senses the touchscreen TX

excitation signals emitted from the target device. Once triggered,

AD2 generates a waveform at the desired timing. The waveform is

further amplified as a high-voltage signal, then converted to CMN

and injected into the target device aided by the noise injection PCB.

We will discuss the key techniques involved in this process next.

2The original bandwidth is 200KHz, but a 500KHz equivalent bandwidth can be
achieved after compensating the decayed gains.
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Figure 4: The schematic of arbitrary CMN injector.

Extended Noise Waveform Generation. We make use of the

WaveformGenerator and Oscilloscope instruments in AD2 to gener-

ate and examine the CMNwaveform respectively. The key technical

challenge in generating CMN specified in Equation 3 is its high

complexity. The requirements for separately adjusting each packet

(including𝑉 , 𝑓 , 𝐷 , and𝑊 ) force one to adopt expensive commer-

cial ArbitraryWaveform Generators. Otherwise, CMNwaveform

with more than one packet can not be generated. To address this

challenge, we adopt both amplitudemodulation (AM) and frequency

modulation (FM) techniques. And the modulation signals are gen-

erated using direct digital synthesis (DDS) technique [5]. The AM

is responsible for setting amplitudes of the packets and converting

continuous signals intomultiple separated packets. Then FM adjusts

the frequencies of Sine wave signal in each packet. This process, in-

cluding generating corresponding modulation signals, is automated

in the software infrastructure.

Common-mode Noise Injection. To inject the noise, we choose

to attach the noise source (i.e., amplifier) to the SHIELD of the USB

power cable, which is a common approach to testing EMI toler-

ance [4]. According to the USB standard, a USB cable (including all

14 different connector types [28]) must have SHIELD, which is made

of a stranded copper bread. It surrounds all other wires on the whole

length of the cable and is connected to the plug shells at both ends.

By connecting the positive and negative ends of the noise source

to SHIELD and the earth, respectively, the noise is converted to the

common-mode noise from the target perspective.

Synchronization with Touchscreen Refresh. PowerTouch fun-

damentally synchronizes with touchscreen refresh to determine

the timing to launch one new round of strike. The Oscilloscope in

AD2monitors the TX excitation signals unintentionally transmitted

from the touchscreen through the power cable and is triggeredwhen

the touchscreen starts scanning a new frame. Once triggered, the

Waveform Generator outputs noise signals. Meanwhile, the Pattern

Generator outputs control signals that turn on/off CH1 and CH2 re-

lays according to defined attack timings. It is worth mentioning that

the synchronization techniques in previous work [11, 25] are based

on first reverse-engineering the devices to interpret TX excitation

signals, and then determining when to inject noises. This process

is expensive and time-consuming. Besides, because different devices

typically use unique touchscreen designs, their TX excitation signals

can be completely different (see Figure 5). Such facts make tech-

niques proposed in previous work [11] impractical for new devices.

However, in PowerTouch, aided by GA-based automated �ow, users

only need to identify the periodical touchscreen refresh signal.
5
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Table 1: Summary of Evaluated Objectives.

Nexus 5 (Horizontal TX electrodes) Redmi 5A (Vertical TX electrodes)

T1 Taps on 10th TX electrode Taps on 2nd TX electrode
T2 Taps on 15th TX electrode Taps on 5th TX electrode
T3 Taps on 20th TX electrode Taps on 8th TX electrode
T4 Taps on 15th TX electrode (left side) Taps on 5th TX electrode (upper side)
T5 Taps on 15th TX electrode (right side) Taps on 5th TX electrode (lower side)
S1 Swipe Up Swipe Left
S2 Swipe Down Swipe Right
S3 Swipe Left Swipe Up
S4 Swipe Right Swipe Down

Nexus 5 has 27 TX electrodes [25]. For Redmi 5A, we assume the number to be 10.

4 EXPERIMENTALRESULTS

We evaluate the performance of PowerTouch using nine different

objectives. For eachobjective, PowerTouch is evaluatedon twosmart-

phones from different brands: LG Nexus 5 and Xiaomi Redmi 5A.

The effectiveness of PowerTouch is demonstrated by automatically

generating CMNwaveform to inject desired ghost touches.

4.1 Experimental Methodology

Objectives andFitness Functions.The summary of the nine evalu-

ated objectives is listed inTable 1,with five for injecting taps (T1∼T5)

and the other four for injecting swipes (S1∼S4). For both types of

touches, the controllability of two dimensions (i.e., TX and RX) is

included. Based on the principles introduced in Section 3.1, for in-

jecting taps (T1∼T5), we devise the fitness function as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =log10 (𝑁𝑡𝑎𝑝 )×𝑆 (𝑃𝑡𝑎𝑝 |0.7,20)×𝑆 (𝑃ℎ𝑖𝑡 |0.5,10)×

[𝑆 (𝑆𝐷𝑇𝑋 |100,−0.05)+𝑆 (𝑀𝐴�𝑇𝑋 |250,−0.02)],

where 𝑁𝑡𝑎𝑝 is the number of injected taps; 𝑃𝑡𝑎𝑝 is the proportion

of taps among all injected touches; and 𝑆𝐷𝑇𝑋 and𝑀𝐴�𝑇𝑋 are the

standard deviation and the mean absolute error of taps to the loca-

tion of the target TX electrode; 𝑃ℎ𝑖𝑡 is the proportion of taps hitting

the targeted half side (e.g., left) of the screen (for T4 and T5). We

make 𝑃ℎ𝑖𝑡 =1when targeting T1∼T3. Similarly, we design the fitness

function for injecting swipes (S1∼S5) as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = log10 (𝑁𝑠𝑤𝑖𝑝𝑒 )×[𝑆 (𝑃𝑠𝑤𝑖𝑝𝑒 |0.55,10)+10𝑆 (𝑃
𝑐
𝑠𝑤𝑖𝑝𝑒 |0.7,20)],

where𝑁𝑠𝑤𝑖𝑝𝑒 is the number of injected swipes; 𝑃𝑠𝑤𝑖𝑝𝑒 is the propor-

tion of swipes among all injected touches; 𝑃𝑐𝑠𝑤𝑖𝑝𝑒 is the proportion

of swipes with the correct direction among all injected swipes.

PowerTouchConfiguration. In thiswork,we follow existingwork

on ghost touch attacks [22, 25] and assume the device is placed face-

down on the table. To achieve a better signal quality, we further

assume the main part of the table is conductive. For the experiments

in this paper, we place a metal sheet on a wood-made table, and the

metal sheet is connected to EARTH of a power socket on the wall. A

glass plate is placed above the metal sheet. Figure 5 shows the TX

excitation signals of two devices collected by PowerTouch, where

the touchscreen refresh can be easily recognized (see the red labels).

We found the refresh rates of Nexus 5 and Redmi 5A are around

120Hz and 115Hz, respectively. To synchronize with Nexus 5, we set

the oscilloscope to trigger on rising edges with the trigger level at

25mV. For Redmi 5A, the oscilloscope is triggered at falling edges

with the trigger level at −540mV. The sampling rate of the oscillo-

scope is configured at 400KHz. For GA related configurations, we set
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Figure 5: The waveform of TX excitation signals on (a) Nexus

5 and (b) Redmi 5A.

Figure 6: An illustration of changes in distributions of

injected ghost touches as evolution continues: the best

individual after (a) 5, (b) 10, and (c) 25 generations. The green

circles are the taps, and the purple arrows are the swipes.

The red box is the target area. The objective is T5, and the

experiment is conducted on Redmi 5A.

population_size=50, and number_of_generations=25. In parent se-

lection, 20 individualswill be selected as parents (tournament_size=

3). The mutation probability and growth&aging probability are both

0.2. We set the maximum number of packets as 4.

4.2 E�ectiveness

In this subsection, we demonstrate the effectiveness of PowerTouch

by showing the performance of CMNwaveform generated by our

framework for each objective listed in Table 1. Figure 6 illustrates

the changes in the distribution of injected ghost touches as evolution

continues.Thegreencircles are the tapsand thepurple arrowsare the

swipes. The red box is the target area. In this example, we aim at in-

jecting pure taps to Redmi 5A,where the taps should be placed on the

lower side of the 5th TX electrode (i.e., the objective T5). Figure 6(a),

(b), and (c) present the best individual after 5, 15, 25 generations. For

the ultimateCMNwaveformgenerated byPowerTouch, themajority

of injected ghost touches are located in the target area. Similar results

are achieved when targeting other objectives on both devices. Next,

we analyze the detailed metrics of generated CMN waveform for

each objective. Specifically, the performance of CMNwaveform is

evaluated from efficiency, exclusiveness, and precision perspectives.

6
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Figure 7: The results of objectives T1∼T5: (a) Normalized

number of injected taps per 100 strikes; (b) the proportion

of taps that hit the target region; (c)(d) The distribution of

distance from injected taps to the target TX electrode.

InjectingTaps.Here the objectives T1∼T3 require placing taps on a

specific TX electrode. For T4 and T5, besides controlling touches on

desired TX electrode, they further require controlling the locations

ontheRXdimension.WefoundPowerTouchcansuccessfullyachieve

all objectives. Figure 7(a) illustrates the efficiency, where we plot the

normalized 𝑁𝑡𝑎𝑝 . It is the number of injected taps per 100 strikes.

The overall averaged 𝑁𝑡𝑎𝑝 over two devices is 86.3, and the 𝑁𝑡𝑎𝑝 for

individual objectives reaches up to 96.7 on Nexus 5 for the objective

T3. For exclusiveness,we focus on twometrics: theproportionof taps

among all injected touches 𝑃𝑡𝑎𝑝 , and the proportion of taps that hit

thedesired regiononthescreen𝑃ℎ𝑖𝑡 . Forall objectives, 100%of𝑃𝑡𝑎𝑝 is

achieved,meaningno swipes are injected. Figure 7(b) shows the com-

parison of 𝑃ℎ𝑖𝑡 for objective T4 and T5. On Nexus 5, 𝑃ℎ𝑖𝑡 are 74% and

63% for the twoobjectives.While onRedmi 5A,𝑃ℎ𝑖𝑡 are 99%and100%.

Figure 7(c) and (d) show the precision of the injected taps. The

distance distribution from injected taps to the target TX electrodes

is plotted. Due to the different TX orientations, we calculate the

distance (number of pixels) in the vertical dimension for Nexus 5

and the horizontal dimension for Redmi 5A. The number of pixels

is further converted into the absolute distance (i.e., millimeter) by

considering the physical dimensions and resolution of the screen.

For Nexus 5, the maximummean error is no more than 0.8mm (11.5

pixels). The maximum standard deviation is 5.27mm (73.4 pixels) for

objective T5, with the average standard deviation of other objectives

being 0.9mm (13.1 pixels). For Redmi 5A, the mean error is no more

than 1.5mm (16.3 pixels), with the standard deviation no more than

2.1mm(22.3 pixels). Comparedwith the size of an averagefingerprint

(17.8×12.7mm) [2], we can achieve reasonable precision.

Injecting Swipes. Similarly, objectives S1 and S2 are based on the

controllabilityofplacingswipesonTXelectrodes,whileS3andS4are

based on the controllability of RX electrodes. PowerTouch is shown

to successfully achieve the four objectives, and the performance of

optimal CMNwaveform for each objective is illustrated in Figure 8.

Figure 8(a) presents the number of injected swipes per 100 strikes

𝑁𝑠𝑤𝑖𝑝𝑒 , where the 𝑁𝑠𝑤𝑖𝑝𝑒 of two devices can be up to 94.9 and 92.5

Figure 8: The results of objectives S1∼S4: (a) Normalized

number of injected swipes per 100 strikes; (b) The proportion

swipes among all injected ghost touches; (c) Among injected

touches, the proportion of swipes with correct direction.

respectively. Regarding the exclusiveness, the proportion of swipes

among all injected swipes𝑃𝑠𝑤𝑖𝑝𝑒 is plotted in Figure 8(b). The𝑃𝑠𝑤𝑖𝑝𝑒

up to 99% can be achieved, meaning the swipes can be almost exclu-

sively injected. On both devices, we find injecting swipes along the

TX direction (i.e., S3 and S4) is more difficult than swipes perpendic-

ular to the TX direction (i.e., S1 and S2). For example, on Nexus 5, the

average𝑃𝑠𝑤𝑖𝑝𝑒 forS1andS2 is79%,whereas theaverage𝑃𝑠𝑤𝑖𝑝𝑒 forS3

and S4 being 37%. Correspondingly, the average𝑁𝑠𝑤𝑖𝑝𝑒 for S3 and S4

is 67.9 lower than the one for S1 and S2. It is relatively more efficient

to inject swipes on Redmi 5A compared with Nexus 5, with the aver-

age 𝑁𝑠𝑤𝑖𝑝𝑒 on the former is 85.6. Note that for all objectives on both

devices, PowerTouch ensures themajority of the injected swipes is in

the correct direction. Figure 8(c) shows the proportion of swipeswith

the correct direction among all injected swipes 𝑃𝑐𝑠𝑤𝑖𝑝𝑒 . The average

𝑃𝑐𝑠𝑤𝑖𝑝𝑒 for Nexus 5 and Redmi 5A are 93% and 96%, respectively.

4.3 Security Scenario Evaluation

In this subsection, we focus on evaluating the attack performance

achieved by PowerTouch by considering the real security scenarios.

Four example attacks are listed below, each requiring a different level

of ghost touch controllability. Note that since the required control-

lability is highly affected by the user interface (UI), we show the UIs

of the targets in Figure 9 for clarification.

• Establishmalicious connection.Attacker can initialize a con-

nection request (e.g., Bluetooth) to victim’s device and tap the “AL-

LOW”button (seeFigure9(a)).This connectioncanbe furtherused

to fully control the victim’s phone. The attacker can inject swipes

when injecting taps since the current UI is not sensitive to swipes.

• Answer an eavesdropping call. Suppose the attacker priorly

attains the victim’s phone number. The attacker can call the vic-

tim and answer it without noticing. This call can thus be used for

eavesdropping. Under the UI shown in Figure 9(b), the attacker

needs to inject swipes to answer the call. Taps can also be injected

since the current UI is not sensitive to taps.

• Clickmalicious link. The attacker sends the victim a message

containing a malicious link. By clicking the link, malware can

be installed on the victim’s phone. As shown in Figure 9(c), the

attacker taps the message from a list to open the link. Meanwhile,

swipes should not be injected to avoid the message being scrolled

to an unpredicted location.

• Disable user accessing data. Some smartphones (e.g., Redmi

5A) facilitate users to set a password to protect the privacy of their

data (e.g., message). The user can swipe down the message list to
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Table 2: The performance of four exemplary attacks on two di�erent smartphones.

Attack Scenario
Required
Exclusiveness

Required Controllability Attack Rate Success Rate

Nexus 5 (Horizontal TX) Redmi 5A (Vertical TX) Nexus 5 Redmi 5A Nexus 5 Redmi 5A

Establishmalicious connection Nonexclusive Tap on RX Tap on TX 67.1% 91.1% 74.0% 100%
Answer an eavesdropping call Nonexclusive Swipe along with TX Swipe perpendicular to TX 3.3% 92.5% 83.3% 100%
Clickmalicious link Tap-only Tap on TX Tap on RX 96.7% 89.0% 100% 100%
Disable user accessing data Swipe-only Swipe perpendicular to TX Swipe along with TX 50.4% 85.0% 55.9% 98.5%

Table 3: Comparison with the state-of-the-art.

WIGHT [11] ThisWork

Free of reverse engineering No Yes
Complexity of CMNwaveform Single packet Multiple packets
CMNwaveform designmethod Manually crafted Automatically generated
Control taps on TX electrodes Yes Yes
Control taps on RX electrodes No Yes
Inject swipes No Yes

Attack Performance (Taps on TX electrodes)

Average 𝑆�𝑇𝑋 21.8 pixels 12.5 pixels
Response Time 0.5∼1s <200ms
Success Rate 83% 100%

Allow to untrusted Bluetooth 

connection?
Text from Unknown

Open this link.

(a) (b) (c)

Unknown

(d)

Allow Deny

Figure 9: Example user interfaces for four di�erent ghost

touch attack scenarios: (a) establish malicious connection,

(b) answer an eavesdropping call, (c) clickmalicious link, and

(d) disable user accessing data.

pop up the password setting window shown in Figure 9(d). The

attacker can utilize such functions to disable users from accessing

data by setting a randompassword.When injecting the swipes, no

taps can be injected. Otherwise, the attacker will exit themessage

list and enter into one message dialog.

Table 2 lists the attack performance of the four examples when

conducting attacks on the two devices. The attack performance is

measuredwith the attack rate and success rate. The former is the per-

centage rate of CMN strikes recognized as the desired ghost touches.

The latter is the ratioof thenumberof thedesiredghost touches to the

numberof all ghost touches thatmayaffect the attackperformance in

real scenarios. We identified two factors that affect the attack perfor-

mance: the UI sensitivity, and TX electrode orientation. In the attack

scenarios, there are two levels of UI sensitivity (i.e., only sensitive to

taps or swipes, and sensitive to all touches). Correspondingly, to suc-

cessfully launch an attack, different exclusiveness levels of injected

ghost touches are required. The orientation of TX electrodes mainly

affects attack performance on different devices. For example, for the

first attack scenario, because the two phones have different TX elec-

trode orientations, the required ghost touch controllability is differ-

ent, leading to different attack performance. For all the scenarios us-

ing PowerTouch, an acceptable attack performance can be achieved

with an attack rate up to 96.7%, and the success rate up to 100%.

4.4 Comparison with Prior Arts

We compare our work with the state-of-the-art attack [11] as listed

in Table 3. Note that for the quantitative metrics comparison, since

WIGHT [11] only achieves injecting taps on specific TX electrodes,

we compare bothworks’ best performance in attacking smartphones

using such capability (i.e., the performance targetingT1∼T3 for Pow-

erTouch). The overall comparison shows that we do not need reverse

engineering the target device, and can automatically generate the

CMNwaveform given a specific security objection. In addition, we

develop an arbitrary CMN injector and customized GA evolution

schemes, making PowerTouch support complex CMN waveform

with multiple packets. Therefore, a more fine-granular control is

achieved in our work by facilitating control taps on RX electrodes.

Note that to the best of our knowledge, there are no existing ap-

proaches to controlling ghost touches on RX electrodes. As a result,

we found that the attacks demonstrate in previous work [11] are

limited to phones with a specific TX orientation, which is overcome

by our work. Moreover, we demonstrate the capability of injecting

swipes, which is not achieved in the prior work [11]. A better at-

tack performance is also achieved in terms of response time and

success rate. In summary, the comparison shows that PowerTouch

can significantly improve the attack performance.

5 DISCLOSURE

Wehave reported PowerTouch to Google, Xiaomi, and LG, including

a detailed description of the vulnerability and proof of concept. All

three companies have not requested an embargo for the vulnerabili-

ties described in thispaper.However,wewill add identity checking to

the open source process to avoid misuse of our framework. Further-

more, here we outline an overview of potential defense approaches.

6 CONCLUSION

We present PowerTouch, a GA-based framework that enables au-

tomatic generation of wired ghost touch attacks via power cables.

To the best of our knowledge, this is the first security objective-

guided framework to automate ghost touch attacks. Our framework

can optimize CMNwaveform towards a specific region probabilisti-

cally given the objective. A more fine-granular control on the ghost

touches and a more advanced attack capability than the state-of-the-

art can be achieved without reverse-engineering the touchscreens.

We envision that the CMNwaveform found by PowerTouch can be

interpreted to guide the community to a better understanding of the

attack and inspire potential defenses in the future.
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