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1. Introduction

In this note, we formulate a fundamental lemma for certain modules of a spherical 
Hecke algebra in the context of Jacquet–Rallis transfer [Zha14b]. We then prove this 
comparison of relative orbital integrals, extending the result for the unit function due 
to [Yun11]. More precisely, we introduce an isomorphism between two modules for a 
spherical Hecke algebra, using work of Offen [Off04]. We then use results of Beuzart-
Plessis on the local Ichino–Ikeda conjecture to verify the matching of orbital integrals.

We were led to this statement by considering another relative trace formula (see 
Remark 1.2). It serves as an example of the types of comparisons one ought to expect 
based on global comparisons of relative trace formulae, as well as a simple illustration of 
the method of reducing such fundamental lemma to a comparison of (relative) characters 
(for example, [Clo90,Hal95,Les19]).

1.1. Smooth transfer for Jacquet-Rallis

Let E/F be an unramified quadratic extension of p-adic fields with odd residue char-
acteristic and let n ≥ 2. We recall the context of the comparison of orbital integrals á 
la Jacquet and Rallis. Let GLn,E = ResE/F GLn denote the restriction of scalars of the 
general linear group from E to F . Consider the symmetric space Sn = GLn,E / GLn, on 
which GLn acts via conjugation.

Now fix a split Hermitian space Vn of dimension n over E; for concreteness, we may 
take Vn = En equipped with the Hermitian pairing 〈·, ·〉 represented by the anti-diagonal 
matrix J = (Jij) with Jij = (−1)i−1δi,d+1−j . Let Un := U(Vn) denote the associated 
unitary group.

We recall the Jacquet–Rallis transfer between the spaces Sn and Un. Fix a de-
composition Vn = Vn−1 ⊕ Ee0, where 〈e0, e0〉 = 1. Then we have an embedding 
GLn−1,E ↪→ GLn,E by

g �−→
(

g

1

)
.

We have a similar embedding Un−1 ↪→ Un, as well as GLn−1 ↪→ GLn.
Considering the conjugation action of GLn−1(F ) on Sn(F ), an element x ∈ Sn(F ) is 

called relatively regular semi-simple if its orbit is closed and its stabilizer in GLn−1(F ) is 
trivial. We denote the locus of such elements as Srrs. Let η = ηE/F denote the quadratic 
character of F × associated to the extension E/F . We consider the orbital integrals

OrbGLn−1,η(f ′, x) =
∫

f ′(g−1xg)η(g)dg,
GLn−1(F )
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where f ′ ∈ C∞
c (Sn(F )) and x ∈ Srrs

n (F ) and dg is the Haar measure normalized to give 
GLn−1(OF ) volume 1.

Similarly, the subgroup Un−1(F ) acts via conjugation on Un(F ), and we say that an 
element x ∈ Un(F ) is relatively regular semi-simple if its orbit is closed and its stabilizer 
in Un−1(F ) is trivial. We similarly denote the locus of such elements as Urrs

n , and define 
the Jacquet–Rallis orbital integrals to be

OrbUn−1(f, y) =
∫

Un−1(F )

f(h−1yh)g,

where f ∈ C∞
c (Un(F )) and y ∈ Urrs

n (F ).
We now recall the notions of matching orbits and smooth transfer of test functions. 

Two elements x ∈ Srrs
n (F ) and y ∈ Urrs

n (F ) are said to have matching orbits if they 
are conjugate in GLn(E) by an element in the subgroup GLn−1(E). For a general x ∈
Srrs

n (F ), there need not exist a matching y ∈ Un(F ).
For x ∈ Srrs

n (F ), we define

Ω(x) = η
(

det(x)−[ n+1
2 ] det(e0, xe0, . . . , xn−1e0)

)
.

With this definition, two functions f ∈ C∞
c (Un(F )) and f ′ ∈ C∞

c (Sn(F )) are called 
smooth transfers of each other if

Ω(x) OrbGLn−1,η(f ′, x) = OrbUn−1(f, y)

for all matching x ∈ Srrs
n (F ) and y ∈ Urrs

n (F ).

1.2. The fundamental lemma

For both Sn(F ) and Un(F ), there is a natural vector space of spherical functions. That 
is, on Sn(F ) we consider the compactly-supported Kn := GLn(OE)-invariant functions

HKn
(Sn(F )) := C∞

c (Sn(F ))Kn ,

and on Un(F ) we consider the usual spherical Hecke algebra of Kun
n := Un(OF )-invariant 

function

HKun(Un(F )) := C∞
c (Un(F ))Kun

n .

In [Off04], Offen studied HKn
(Sn) as a module for the spherical Hecke algebra of GLn(E). 

His work implies that these two spaces are isomorphic as HKn
(GLn(E))-modules and 

we introduce an isomorphism of modules (see Section 3 for details), which we call the 
relative Satake transform,
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RS : HKn
(Sn(F )) −→ HKun

n
(Un(F )).

Our main result is the following theorem.

Theorem 1.1. The relative Satake transform RS realizes Jacquet–Rallis smooth transfer. 
That is, for every matching pair x ∈ Srrs

n (F ) and y ∈ Urrs
n (F ), and for every ϕ ∈

HKn
(Sn(F )), we have the identity

Ω(x) OrbGLn−1,η(ϕ, x) = OrbUn−1(RS(ϕ), y). (1)

Moreover, if there is no class y ∈ Un(F ) matching x, then OrbGLn−1,η(ϕ, x) = 0.

The phrase “fundamental lemma” in our title refers to this comparison of orbital 
integrals between certain modules of Hecke algebras.

We prove this theorem by relating the relative Satake transform RS to a base-change 
homomorphism associated to the products of unitary and general linear groups arising in 
the unitary Gan-Gross-Prasad set up and a fundamental lemma with respect to this map; 
see Section 4 for more details. Utilizing results of Beuzart-Plessis on relative characters 
[BP20], we reduce this fundamental lemma to a certain identity between two such relative 
characters. This final identity may be readily checked, proving the theorem.

Remark 1.2. We were led to formulate this result by considerations in our proof of the 
fundamental lemma for unitary Friedberg-Jacquet periods [Les19]. In that work, we 
consider the symmetric space

X = U2n / Un × Un,

and study orbital integrals on the tangent space Tx0X at a certain point.
It turns out that after a sequence of reductions, the unstable (or κ-)orbital integrals 

arising in that setting may be related to a comparison of orbital integrals analogous to the 
statement of the theorem above. In particular, the reduction to the spectral identity in 
Section 5 in part motivated the twisted Jacquet–Rallis comparison introduced in [Les19].

In general, one expects relative fundamental lemmas of the form (1) to hold when ever 
one expects a global comparison of relative trace formulae. The first such comparison in 
the literature is that of Jacquet [Jac05] in the study of unitary periods, which played a 
crucial role for the global applications of the Jacquet–Ye relative trace formula [FLO12].

In the literature on the Jacquet–Rallis trace formula comparison [Zha14b], the au-
tomorphic Tchebotarev density theorem of Ramakrishnan [Ram18] has allowed one to 
bypass the lack of a fundamental lemma as in Theorem 1.1. Roughly speaking, if E/F

is a quadratic extension of number fields, that result states that one need only consider 
places of F which split in E–where the comparison of orbital integrals is trivial (see 
[Zha14b, Proposition 2.15])–to isolate cuspidal representations on the spectral side of 
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the relative trace formula. This simplification is special to the base change functoriality 
on general linear groups and is not available for more general comparisons, so it is of 
interest to understand the relations between unramified relative orbital integrals even in 
this case. We wish to emphasize however that our main result relies on Ramakrishnan’s 
result, which is used in the proof of Beuzart-Plessis’s result [BP20]; a purely local proof 
of the comparison local relative characters would remove this dependence.

We now outline the contents. In Section 2, we fix notations and define the varieties of 
interest. Section 3 recalls the relevant work of Offen [Off04] and defines the isomorphism 
RS : HKn

(Sn(F )) −→ HKun(Un(F )). In Section 4, we show how to reduce Theorem 1.1
to Proposition 4.2, which we prove in Section 5 by way of a result of Beuzart-Plessis and 
an explicit calculation of local spherical characters.

1.3. Acknowledgments

We want to thank Jayce Getz for several helpful conversations. We also thank the 
anonymous referees for their helpful remarks.

This work was partially supported by an AMS-Simons Travel Award and by National 
Science Foundation grant DMS-1902865.

2. Preliminaries

Let F be a non-archimedean local field of characteristic zero with odd residue char-
acteristic and let E/F be an unramified quadratic extension. Under this assumption, 
we may choose an element � ∈ F ⊂ E giving a uniformizer for both fields. Set OF

for the valuation ring of F and OE for that of E. Set q = #(OF /�OF ), and note that 
q2 = #(OE/�OE). Fix a non-trivial additive character ψ : F → C× with conductor OF , 
and set ψE = ψ ◦ TrE/F . Let η = ηE/F denote the quadratic character associated to this 
extension by local class field theory. By abuse of notation, we also write η : E× → C×

for the unique unramified extension of η to E×.
For any F -group H, we set C∞

c (H) to be the space of compactly-supported smooth 
test functions. Haar measures are always normalized so that the appropriate maximal 
compact subgroup has volume 1.

2.1. The symmetric space

Let Gn = ResE/F GLn and let Kn = GLn(OE) ⊂ Gn(F ). Let dg denote the Haar 
measure on Gn(F ) normalized so that voldg(Kn) = 1. We equip Gn with an involutive 
Galois action τ ∈ Gal(E/F ) induced by applying the Galois involution x �→ x to the 
matrix entries; we will also denote τ(g) by g. Then Gτ

n = GLn and the map g �→ gg−1

gives a morphism of F -varieties

π : Gn −→ Sn = {g ∈ Gn : gg = In}.
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This induces an isomorphism Gn / Gτ
n

∼= Sn of F -varieties, and a bijection of F -points 
Gn(F )/ Gn(F )τ ∼= Sn(F ) by Hilbert’s theorem 90. The group Gn(F ) acts on Sn(F ) by 
the τ -twisted action: for g ∈ Gn(F ) and x ∈ Sn(F ), we set

g · x = gxg−1.

This induces an action of Gn(F ) on the Schwartz space C∞
c (Sn(F )) by g·f(x) = f(g−1·x).

Let

HKn
(Sn(F )) = C∞

c (Sn(F ))Kn

denote the subspace of Kn-fixed functions. We refer to this space as the (spherical) Hecke 
module of the symmetric variety Sn(F ) as it is naturally equipped with the structure of 
a module of the spherical Hecke algebra HKn

(Gn(F )). More precisely, this algebra acts 
on HKn

(Sn(F )) via the convolution action: for f ∈ HKn
(Gn(F )) and ϕ ∈ HKn

(Sn(F )), 
we set

(f ∗ ϕ)(x) =
∫

Gn(F )

f(g)ϕ(g−1 · x)dg.

The basic structure of this module was studied by Offen in his thesis work [Off04] (see 
also [Off08] for a correction of certain computations pertaining to the case at hand). We 
recall the relevant facts here.

For m ∈ Z≥1, let

Λ+
m = {λ = (λ1, . . . , λm) ∈ Zm : λi ≥ λi+1 ≥ 0 for all i = 1, . . . m − 1}

be the set of partitions of length m. For any λ ∈ Λ+
m, set the dual partition λ∗ =

(−λm, . . . , −λ1). For any μ = (μ1, . . . , μm) ∈ Zm, let

�μ =

⎛⎜⎝ �μ1

. .
.

�μm

⎞⎟⎠ .

Finally, for any λ ∈ Λ+
m, define

dλ =
(

�λ

�λ∗

)
,

if n = 2m is even; if n = 2m + 1 is odd, then set

dλ =

⎛⎜⎝ �λ

1
�λ∗

⎞⎟⎠ .
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These elements give representatives for the Kn-orbits on Sn(F ).

Lemma 2.1. [Off04, Proposition 3.1] The Kn-orbits of Sn(F ) are given by the disjoint 
union

Sn(F ) = 

λ∈Λ+

m

K · dλ.

This decomposition is an analogue of the Cartan decomposition for the space Sn(F ), 
and immediately implies that the functions {1λ := 1K·dλ

: λ ∈ Λ+
m} form a basis for 

HKn
(Sn(F )).

2.2. The unitary side

Now suppose that 〈·, ·〉n is a split Hermitian form on En. Up to isometry, we may 
choose this form to be represented by the anti-diagonal matrix J = (Jij) with Jij =
(−1)i−1δi,d+1−j , and we make this choice to align with that of [Off04]. In particular, the 
lattice On

E is self-dual with respect to 〈·, ·〉n. Let Un ⊂ Gn be the associated (quasi-split) 
unitary group. The self-dual lattice On

E induces a hyperspecial maximal compact group 
Kun

n := Un(OF ) ⊂ Un(F ).
With these choices, we have the spherical Hecke algebra of Kun

n -biinvariant functions 
HKun

n
(Un(F )) with unit 1Kun

n
.

2.2.1. Symmetric polynomials
We recall the notation for symmetric polynomials used in [Off04]. Set W ∼= Sn to be 

the Weyl group of type An−1. For m = �n/2�, we let z = (z1, . . . , zm) ∈ Cm.
Let C[X±1

1 , · · · X±1
n ]W denote the algebra of W -invariant polynomials in X±1

i . For any 
P ∈ C[X±1

1 , · · · X±1
n ]W , we will abuse notation and write P (q−z) for the holomorphic 

function z ∈ Cm �→ P (q−z) := P (q−z1 , . . . , q−zm), where q = #(OF /�OF ). We denote 
the resulting space of functions as C[q±z1 , · · · q±zm ]W .

Define the map ν : Cm −→ Cn by

ν(z1, . . . , zm) =
{

(−z1, . . . − zm, zm, . . . , z1) : n = 2m is even,

(−z1, . . . − zm, 1, zm, . . . , z1) : n = 2m + 1 is odd.

Following the notational convention of [Off04], we define the C-algebra C[q−2z, q2z]W is 
the algebra of holomorphic functions on Cm given as

z ∈ Cm �−→ P (q2ν(z)),

for all P ∈ C[X±1
1 , · · · X±1

n ]W . That is,

C[q−2z, q2z]W =
{

P (q−2z1 , . . . , q−2zm , q2zm , . . . , q2z1) : P ∈ C[X±1
1 , · · · X±1

n ]W
}

,
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if n = 2m is even and

C[q−2z, q2z]W =
{

P (q−2z1 , . . . , q−2zm , 1, q2zm , . . . , q2z1) : P ∈ C[X±1
1 , · · · X±1

n ]W
}

,

when n = 2m + 1 is odd. The resulting algebra is isomorphic to the space of Sm �

(Z/2Z)m-invariant polynomials in m-variables, where the Z/2Z-factors act by inversion 
on the appropriate variables [Off04, Section 2.1, Lemma 4.8].

3. The relative Satake homomorphism

In [Off04], Offen completely describes the HKn
(Gn(F ))-module HKn

(Sn(F )). This is 
accomplished by constructing the family of relative spherical functions for Sn(F )

Ωz : Sn(F ) −→ C,

where z ∈ Cm. These are normalized eigenfunctions for the convolution action of 
HKn

(Gn(F )); we only recall the relevant facts about these, referring the reader to [Off04]
for additional details.

For any value ν = (ν1, . . . , νn) ∈ Cn, let Φν be the function on G such that

Φν(g) =
n∏

i=1
|ai|νi− 1

2 (n+1−2i),

where g = nak is the Iwasawa decomposition of g and a = diag(a1, . . . , an). Recall that 
for a function f ∈ HKn

(Gn(F )), the Satake transform of f is given by

Sat(f)(ν) :=
∫

Gn

f(g)Φν(g)dg.

This gives an isomorphism of C-algebras

HKn
(Gn(F )) ∼= C[q±2ν1 , . . . , q±2νn ]W

satisfying the following: if χν : Tn(F ) −→ C× is the unramified character

χν(diag(t1, . . . , tn)) =
n∏

i=1
|ti|νi

of the diagonal torus Tn and I(ν) is the associated spherical representation, then

Sat(φ)(ν) = Trace(φ | I(ν)) (2)

for any φ ∈ HKn
(Gn(F )). Note here that the Satake parameters of I(ν) are 

(q−ν1 , . . . , q−νn).
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Recall the map ν : Cm −→ Cn in Section 2.2.1; this gives rise to a surjective map of 
C-algebra

C[q±2ν1 , . . . , q±2νn ]W ν−→ C[q−2z, q2z]W

P (q−2ν1 , . . . , q−2νn) �−→
{

P (q−2z1 , . . . , q−2zm , q2zm , . . . , q2z1) : n = 2m,

P (q−2z1 , . . . , q−2zm , 1, q2zm , . . . , q2z1) : n = 2m + 1,

for all P ∈ C[X±1
1 , · · · X±1

n ]W . Following the notation of [Off04, Section 4], set f̃(z) =
Sat(f)(ν(z)) for z ∈ Cm. The composition

HKn
(Gn(F )) Sat−→ C[q±2ν1 , . . . , q±2νn ]W ν−→ C[q−2z, q2z]W

is thus a surjection.

Proposition 3.1. [Off04, Lemma 4.2, Theorem 1.2] For z = (z1, . . . , zm) ∈ Cm, there 
exists a unique function Ωz ∈ HKn

(Sn(F )), called the normalized relative spherical func-
tion, satisfying Ωz(d0) = 1 and for any f ∈ HKn

(Gn(F )),

f ∗ Ωz(x) = f̃(z)Ωz(x).

Indeed, for any λ ∈ Λ+
m, we have the evaluation

Ωz(dλ) = q−〈λ,ρ〉 Vλ

V0
Pz(λ),

where Pz(λ) is a Hall–Littlewood-type polynomial (see [Off08] for more details) and Vλ

is an explicit rational function in q.

We endow Sn(F ) with a quotient measure dx normalized so that vol(Sn(F ) ∩Kn) = 1.

Theorem 3.2. [Off04, Proposition 4.10] Define the spherical Fourier transform by

SF(ϕ)(z) =
∫

Sn(F )

ϕ(x)Ωz(x)dx,

where ϕ ∈ HKn
(Sn(F )). The transform SF induces an isomorphism of HKn

(Gn(F ))-
modules

HKn
(Sn(F )) ∼−→ C[q−2z, q2z]W ,

where HKn
(Gn(F )) acts on the left-hand side through ν ◦ Sat.
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In particular, HKn
(Sn(F )) is cyclic as a HKn

(Gn(F ))-module: for every f ∈
HKn

(Sn(F )), there exists a φ ∈ HKn
(Gn(F )) such that

f(x) = φ ∗ 10(x).

This follows from the simple computation that SF(10) = 1 along with the action of 
HKn

(Gn(F )) on C[q−2z, q2z]W . This motivates the following lemma, which will prove 
useful later.

Lemma 3.3. For each φ ∈ HKn
(Gn(F )), we define π!(φ) ∈ HKn

(Sn(F )) by

π!(φ)(hh
−1) =

∫
GLn(F )

φ(hg)ηn(hg)dg, (3)

where dg is normalized so that vol(Kn) = 1. Then

π!(φ) = φ ∗ 10.

In particular, for each f ∈ HKn
(Sn(F )), there exists φ ∈ HKn

(Gn(F )) such that π!(φ) =
f .

Proof. First we prove the claim for φ = 10. In this special case, it is immediate that 
1Kn

∗ 10 = 10. On the other hand,

π!(1Kn
)(gg−1) =

∫
GLn(F )

10(gh)ηn(hg)dh.

The right-hand side is only non-zero if there exists h ∈ GLn(F ) such that hg ∈ Kn, in 
which case ηn(hg) = 1. This implies that the left-hand side is non-zero only if gg−1 ∈
S ∩ K = K · d0 [Off04, Lemma 3.3]. Thus, π!(1Kn

) = c10 for some constant c ∈ C. We 
check that

c = π!(1Kn
)(1) =

∫
GLn(F )

1Kn
(h)dh = vol(Kn) = 1.

For a general φ ∈ HKn
(Gn(F )), then for any other φ1 ∈ HKn

(Gn(F )),

φ ∗ π!(φ1)(gg−1) =
∫

GLn(E)

φ(h−1)π!(φ1)(hgg−1h
−1)dh

=
∫ ∫

φ1(h−1)φ(hgy)ηn(hgy)dgdy
GLn(E) GLn(F )
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=
∫

GLn(F )

(φ ∗ (φ1 · ηn))(gy)ηn(hg)dy = π!(φ ∗ (φ1 · ηn))(gg−1),

where (φ1 · ηn)(g) = φ1(g)ηn(g) and φ ∗ φ1 ∈ HKn
(Gn(F )) denotes the convolution 

product. Now set φ1 = 1Kn
and note that 1Kn

= 1Kn
·ηn since η is unramified. Using the 

HKn
(GLn(E))-module structure of HKn

(Sn(F )) and our calculation that π!(1Kn
) = 10, 

we find that

π!(φ) = π!(φ ∗ 1Kn
) = φ ∗ π!(1Kn

) = φ ∗ (1Kn
∗ 10) = (φ ∗ 1Kn,E

) ∗ 10 = φ ∗ 10,

proving the lemma. �
The surjective morphism ν ◦ Sat : f �→ f̃ arises in another context: it realizes the 

(stable) base change morphism from GLn(E) to the unitary group Un.

Proposition 3.4. There is a commutative diagram

HKn
(Gn(F )) HKun

n
(Un(F ))

C[q±2ν1 , . . . , q±2νn ]W C[q−2z, q2z]W ,

BCn

Sat Sat

ν

(4)

where the top horizontal arrow is the base change homomorphism.

Proof. With our choice of Hermitian form, a maximal torus Mn ⊂ Un is given by 
elements of the form

t =
{

diag(t1, . . . , tm, t−1
m , . . . , t−1

1 ) : if n = 2m is even,

diag(t1, . . . , tm, s, t−1
m , . . . , t−1

1 ) : if n = 2m + 1 is odd,

where s, ti ∈ E× where NmE/F (s) = 1. The Satake isomorphism for Un(F ) gives an 
isomorphism [M1́1, Theorem 2.4]

Sat : HKun
n

(Un(F )) ∼−→ HKun
n ∩Mn(F )(Mn(F ))W un

n

where W un
n

∼= Sm�(Z/2Z)m is the Weyl group of Un(F ). Since HKun
n ∩Mn(F )(Mn(F )) ∼=

C[X±1
1 , . . . , X±1

m ] and

C[q−2z, q2z]W ∼= C[X±1
1 , . . . , X±1

m ]Sm�(Z/2Z)m

[Off04, Section 2.1, Lemma 4.8], we see that

Sat : HKun
n

(Un(F )) ∼−→ C[q−2z, q2z]W .
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Now the base change map BCn : HKn
(Gn(F )) −→ HKun

n
(Un(F )) may be computed as 

follows; see [M1́1, Section 4.1.3]. For z ∈ Cm, let χz : Mn(F ) −→ C× be the unramified 
character

χz(t) =
m∏

i=1
|ti|zi .

Let I(z) denote the associated spherical representation of Un(F ) with Satake parameters 
(q−z1 , . . . , q−zm). Let BCn(I(z)) denote the (stable) base change of I(z) to Gn(F ). Then 
for any φ ∈ HKn

(Gn(F )), we have BCn(φ) ∈ HKun
n

(Un(F )) is the unique spherical 
function such that

Trace(BCn(φ) | I(z)) = Trace(φ | BCn(I(z))).

By [M1́1, Theorem 4.1], the Satake parameters of BCn(I(z)) are

{
diag(q−z1 , . . . , q−zm , qzm , . . . , qz1) : if n is even,

diag(q−z1 , . . . , q−zm , 1, qzm , . . . , qz1) : if n is odd.

In particular, recalling (2) we conclude that

Trace(φ | BCn(I(z))) = Sat(φ)(ν(z)),

and the proposition follows. �
Combining Theorem 3.2 with Proposition 3.4, we define an isomorphism of

HKn
(Gn(F ))-modules

RS := Sat−1 ◦ SF : HKn
(Sn(F )) −→ HKun

n
(Un(F )),

which we refer to as the relative Satake isomorphism for Sn(F ).

Corollary 3.5. Suppose that φ ∈ HKn
(Gn(F )) and set f = φ ∗ 10 ∈ HKn

(Sn(F )). Then

BCn(φ) = RS(f).

Proof. Lemma 3.3 states that π!(φ) = f . Theorem 3.2 tells us that SF(f)(z) = φ̃(z). 
But the commutativity of the diagram in Proposition 3.4 now implies that

SF(f)(z) = φ̃(z) = Sat ◦ BCn(φ).

Applying the inverse Satake transform to both sides proves the claim. �
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3.1. Statement of main result

Recalling the orbital integrals and notion of matching orbits from the introduction, 
we now restate the main theorem.

Theorem 3.6. The isomorphism RS : HKn
(Sn(F )) −→ HKur

(Un(F )) realizes Jacquet–
Rallis smooth transfer. That is, for every regular semi-simple x ∈ Sn(F ) matching y ∈
Un(F ), and for every f ∈ HKn

(Sn(F )), we have the identity

Ω(x) OrbGLn−1,η(f, x) = OrbUn−1(RS(f), y).

Moreover, if there is no class y ∈ Un(F ) matching x, then OrbGLn−1,η(f, x) = 0.

As outlined in the introduction, we relate this relative Satake transform to a base 
change homomorphism associated to larger groups and a fundamental lemma with re-
spect to this map in the next section. We then use work of Beuzart-Plessis [BP20] to 
reduce this fundamental lemma to a spectral identity. This final identity is checked in 
Section 5.

4. Reduction to stable base change

We first introduce the groups and orbital integrals present in the Jacquet–Rallis com-
parison; this is discussed in [Zha14b]. Recall our decomposition En = En−1 ⊕Ee0, where 
〈e0, e0〉 = 1. This gave an embedding GLn−1 ↪→ GLn by

g �→
(

g

1

)
.

Now consider the group Gn−1 × Gn as well as the subgroups H ′
1 = Gn−1 embedded 

diagonally and H ′
2 = Gτ

n−1 × Gτ
n = GLn−1 × GLn. We say that an element of Gn−1(F ) ×

Gn(F ) is regular semi-simple if its (H ′
1(F ), H ′

2(F ))-orbit is closed and the stabilizer 
subgroup is trivial.

We have a similar embedding Un−1 ↪→ Un. Consider the group Un−1 × Un, and di-
agonal subgroup H = Un−1. We say that an element of Un−1(F ) × Un(F ) is regular 
semi-simple if its (H(F ), H(F ))-orbit is closed and the stabilizer subgroup is trivial.

Note that as F -varieties

H ′
1\ Gn−1 × Gn

∼= Gn,

where the right H ′
2-action intertwines with the action

γ · (g1, g2) = g−1
1 γg2.
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Further quotienting out the free action of GLn = {In−1} × GLn, we obtain a GLn−1-
equivariant isomorphism map

π : H ′
1\ Gn−1 × Gn /{In−1} × GLn −→ Sn.

Moreover, there is a corresponding matching of regular semi-simple orbits: for (γn−1, γn)
∈ Gn−1(F ) × Gn(F ) set

x = π(g−1
n−1gn) = (g−1

n−1gn)(g−1
n−1gn)−1 ∈ Sn(F ).

Similarly, there is a Un−1-equivariant isomorphism

H\ Un−1 × Un
∼−→ Un

(hn−1, hn) �−→ y = h−1
n−1hn,

taking regular semi-simple elements to regular semi-simple elements.
We say that regular semi-simple elements

(gn−1, gn) ∈ Gn−1(F ) × Gn(F ) and (hn−1, hn) ∈ Un−1(F ) × Un(F )

are matching if y and x are in the sense of Section 1.1.

4.1. Orbital integrals redux

We recall the relative orbital integrals with occur in the Jacquet–Rallis transfer: for 
f ′ ∈ C∞

c (Gn−1(F ) × Gn(F )) and (gn−1, gn) ∈ (Gn−1(F ) × Gn(F ))rrs, we set

OrbJR,η(f ′, (gn−1, gn)) =
∫

GLn−1(E)

∫
GLn−1(F )×GLn(F )

f ′(h1(gn−1, gn)h−1
2 )η(h2)dh2dh1,

where for h2 = (h, h′) ∈ GLn−1(F ) × GLn(F ),

η(h2) = η(det(h))nη(det(h′))n−1.

We define the linear map m′ : C∞
c (GLn−1(E) × GLn(E)) −→ C∞

c (GLn(E)) given by

m′(φ′)(g) =
∫

GLn−1(E)

φ′((h′, h′g))dh′.

We also need the transfer factor. For all (gn−1, gn) ∈ (Gn−1(F ) × Gn(F ))rrs, set

Ω(gn−1, gn) =
{

Ω(x) : n is even,
η(g−1 g )Ω(x) : n is odd,
n−1 n
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where x = π(g−1
n−1gn). Setting f ′ = π!(m′(f ′)) : Sn → C with π! as in (3), we have the 

reduction

Ω(gn−1, gn) OrbJR,η(f ′, (gn−1, gn)) = Ω(x) OrbGLn−1,η(f ′, x), (5)

where the orbital integral on the right is as in the statement of Theorem 3.6.
The unitary orbital integrals in this case are of the form

OrbJR(f, (γn−1, γn)) =
∫

Un−1(F )

∫
Un−1(F )

f(h(γn−1, γn)h′)dhdh′,

for f ∈ C∞
c (Un−1(F ) × Un(F )) and (hn−1, hn) ∈ (Un−1(F ) × Un(F ))rrs. We similarly 

define the linear map m : C∞
c (Un−1(F ) × Un(F )) −→ C∞

c (Un(F )) given by

m(φ)(y) =
∫

Un−1(F )

φ((h, hy))dh.

If we set f = m(f) and y = h−1
n−1hn, then we similarly have

OrbJR(f, (hn−1, hn)) = OrbUn−1(f, y) (6)

With this notation, two functions f ∈ C∞
c (Un−1(F ) ×Un(F )) and f ′ ∈ C∞

c (Gn−1(F ) ×
Gn(F )) are said to be smooth transfers of each other if we have

Ω(gn−1, gn) OrbJR,η(f ′, (gn−1, gn)) = OrbJR(f, (hn−1, hn))

for all (gn−1, gn) ∈ (Gn−1(F ) × Gn(F ))rrs and (hn−1, hn) ∈ (Un−1(F ) × Un(F ))rrs with 
matching orbits.

4.2. Reduction

We need to know that spherical functions all have nice lifts to the group case.

Lemma 4.1. For any f ∈ HKn
(GLn(E)), there is a spherical function

φ ∈ HKn−1×Kn
(Gn−1(F ) × Gn(F ))

such that m′(φ) = f . The analogous statement holds in the unitary case as well.

Proof. Set φ = 1Kn−1 ⊗ f . It is simple to see that this satisfies m′(φ) = f . �
Now consider the tensor product of the base change maps

BCn−1 ⊗ BCn : HKn−1×Kn
(Gn−1(F ) × Gn(F )) −→ HKun ×Kun(Un−1(F ) × Un(F )).
n−1 n
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Proposition 4.2. The base change map BC := BCn−1 ⊗ BCn realizes Jacquet–Rallis 
smooth transfer. That is, for every φ ∈ HKn−1×Kn

(Gn−1(F ) × Gn(F )) we have the 
identity

Ω(gn−1, gn) OrbJR,η(φ, (gn−1, gn)) = OrbJR(BC(φ), (hn−1, hn))

for all (gn−1, gn) ∈ (Gn−1(F ) × Gn(F ))rrs and (hn−1, hn) ∈ (Un−1(F ) × Un(F ))rrs

with matching orbits. Moreover, OrbJR,η(φ, (gn−1, gn)) = 0 if there exists no matching 
(hn−1, hn).

We postpone the proof of this proposition to the next section as it requires introducing 
more notation. We now show that this suffices to prove Theorem 3.6.

Proposition 4.3. Proposition 4.2 implies Theorem 3.6.

Proof. Consider the diagram

HKn−1×Kn
(Gn−1(F ) × Gn(F )) HKun

n−1×Kun
n

(Un−1(F ) × Un(F ))

HKn
(Gn(F ))

HKn
(Sn(F )) C[q−2z, q2z]W HKun(Un(F )),

m′

BCn−1⊗BCn

m

−∗10 BCn

SF Sat

where the morphisms m and m′ were introduced in the previous section. Beginning in 
the lower-left corner, we will show that the assumption that the top horizontal arrow 
affects smooth transfer implies that the bottom horizontal arrow does.

Let f ∈ HKn
(Sn(F )). By Lemma 3.3, there is a φ ∈ HKn

(Gn(F )) such that 
π!(φ) = f and SF(f)(z) = φ̃(z). By Lemma 4.1, the function φ = 1Kn−1 ⊗ φ ∈
HKn−1×Kn

(Gn−1(F ) × Gn(F )) satisfies m′(φ) = φ. Similarly, if we consider BCn(φ) ∈
HKun(Un), we have the lift BCn(φ) = 1Kun

n−1
⊗ BC(φ) ∈ HKun

n−1×Kun
n

(Un−1(F )).
Note that BC(φ) = BC(φ), since we are multiplying both sides by the unit of the 

appropriate Hecke algebra. In particular, Proposition 4.2 implies that φ and BC(Φ) are 
Jacquet–Rallis transfers of one another. By the relations of orbital integrals and transfer 
factors in (5) and (6),

Ω(x) OrbGLn−1,η(f, x) = Ω(δn−1, δn) OrbJR,η(φ, (δn−1δn))

= OrbJR(BC(φ), (γn−1, γn))

= OrbUn−1(BC(φ), y).

By Corollary 3.5, we know BC(φ) = RS(f) ∈ HKun(Un(F )). Noting that the appropriate 
vanishing is similarly implied, we are done. �



S. Leslie / Journal of Number Theory 243 (2023) 475–494 491
5. Proof of the theorem

In this final section, we prove Proposition 4.2. To simplify things, we will adopt new 
notation for this section alone. Set G = Un−1(F ) × Un(F ) and H = Un−1(F ) embedded 
diagonally. We also set G′ = Gn−1(F ) × Gn(F ), H ′

1 = GLn−1 embedded diagonally, and 
H ′

2 = GLn−1(F ) ×GLn(F ). Recall our fixed additive character ψE . Let Nn(E) ⊂ GLn(E)
denote the maximal unipotent subgroup of upper triangular matrices, and denote by ψE

the generic character of Nn(E) formed in the standard fashion.

5.1. Local spherical characters

We recall the definitions of the local spherical characters in this setting (see [BP20, 
Section 3.2] for more detail). Let π be a tempered representation for G and define the 
distribution Jπ : C∞

c (G) → C to be

Jπ(f) =
∫
H

Trace(π(h)π(f))dh

for f ∈ C∞
c (G). This is absolutely convergent, and defines a tempered distribution on G

called the spherical character of π.
Now suppose that Π = Πn−1 � Πn is a generic unitary representation of G′. Let 

W(Πn−1, ψE) and W(Πn, ψE) denote the Whittaker models of Πn−1 and Πn respectively 
and set W(Π) = W(Πn−1, ψE) ⊗W(Πn, ψE). By strong multiplicity one, we may identify 
Π with W(Π) unambiguously. For k ∈ {n − 1, n} and for ψE representing either ψk or 
ψE as our prior choices dictate, we define the Flicker-Rallis period βk : W(Πk, ψk) → C

by

βk(Wk) =
∫

Nk−1(F )\ GLk−1(F )

Wk(εk(τ)gk−1)η(det(gk−1))k−1dgk−1,

for Wk ∈ W(Πn, ψk) and where εk−1(ε) = diag(εk−1, εk−2, . . . , ε, 1) for a fixed non-zero 
traceless element of E ε. Since E/F is assumed to be unramified, we may assume that 
ε is a unit and that E = F (ε).

In addition, we recall the scalar products θk : W(Πk, ψk) × W(Πk, ψk) → C defined 
by

θk(Wk, W ′
k) =

∫
Nk−1(E)\ GLk−1(E)

Wk(gk−1)W ′
k(gk−1)dgk−1

for all Wk, W ′
k ∈ W(Πn, ψk). Both βk and θk are absolutely convergent as integrals (see 

[JS81, Proposition 1.3]). Set β = βn−1 ⊗ βn and θ = θn−1 ⊗ θn.
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Finally, for s ∈ C, we define the local Rankin-Selberg period λ(s, ·) : W(Π) → C by

λ(s, Wn−1 ⊗ Wn) =
∫

Nn−1(E)\ GLn−1(E)

Wn−1(gn−1)Wn(gn−1)| det(gn−1)|sEdgn−1,

for all Wn−1 ⊗ Wn ∈ W(Π). When Π is tempered, this integral is absolutely convergent 
whenever Re(s) > −1

2 . In this setting, we denote λ = λ(0, ·).
For a tempered representation Π of G′, we may now state the definition of the local 

spherical character IΠ : C∞
c (G′) → C. Let f ∈ C∞

c (G′) and fix a compact open subgroup 
Kf ⊂ G′ so that f is Kf -biinvariant. Let BΠ be a basis of ΠKf , orthonormal with respect 
to the scalar product θ. Then we define

IΠ(f) =
∑

W ∈BΠ

λ (Π(f)W ) β(W ).

This sum is independent of Kf and the basis BΠ, and defines a tempered distribution 
on G′

We note that our definitions differ by a constant from those in [BP20] due to our 
choice in measures. With this in mind, we define

λG =
n∏

i=1
L(i, ηi),

where L(s, η) is the local L-factor associated to the character η.

5.2. A result of Beuzart-Plessis

We now recall the crucial local result. Let Temp(G) denote the tempered dual of G.

Proposition 5.1. [BP20, Corollary 4.5.1] Let f ∈ C∞
c (G) and f ′ ∈ C∞

c (G′). Then f and 
f ′ are smooth transfers of each other if and only if we have

IBC(π)(f ′) = κ(π)λ−1
G Jπ(f) (7)

for all π = πn−1 � πn ∈ Temp(G) and where

κ(π) = |ε|(dn−1+dn)/2
E

(
ε(1

2 , η, ψ)
η(−2ε)

)(n−1)n/2

ωBC(πn−1)(ε).

Here, ωBC(πn−1) denotes the central character of BC(πn−1) and dk =
(

k
3
)
.

The necessity part is one of the main results of [Zha14a] and establishes a conjecture 
of Wei Zhang. The proof combines global results of [Zha14a], the principle of analytic 
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continuation on the tempered dual Temp(G), and a local trace formula. Sufficiency is a 
simple result of the theory of this local trace formula.

Proof of Proposition 4.2. Let f ′ ∈ HKn−1×Kn
(Gn−1(F ) × Gn(F )) and f = BC(f ′) ∈

HKun
n−1×Kun

n
(Un−1(F ) × Un(F )). By Proposition 5.1, we need to establish the spectral 

identity (7) for all π = πn−1 � πn ∈ Temp(G). Since our functions are spherical, both 
sides vanish away from the spherical component of the tempered dual Tempsph(G), so 
that the identity need only be verified on this component. Note that κ(π) = 1 for any 
such π.

Let π = πn−1 � πn be an unramified tempered representation with Satake parameter 
z = (zn−1, zn), and set Π = BC(π). Then Π is also unramified, and we let W0 denote 
the normalized spherical Whittaker function in W(Π). Then

IΠ(f ′) = λ(Π(f ′)W0)β(W0)
θ(W0, W0) = f̃ ′(z)λ(W0)β(W0)

θ(W0, W0) ,

where we have used the fact that Π is the base change of π to compute the trace of f as 
f̃ ′(z). On the other hand, setting φ0 for the normalized spherical vector of π we have

Jπ(f) =
∫
H

〈π(h)π(f)φ0, φ0〉dh = Sat(f)(z)
∫
H

〈π(h)φ0, φ0〉dh.

With our choices of measure, we compute

λ(W0)β(W0)
θ(W0, W0) =

L( 1
2 , BC(π))

L(1, π, Ad) ,

where

L(s, π, Ad) = L(s, BC(πn−1), As(−1)n−1
)L(s, BC(πn), As(−1)n

)

is the product of local Asai L-factors, as in [BP20]. On the other hand, [Har12, Theo-
rem 2.12] shows that

∫
H

〈π(h)φ0, φ0〉dh = λG

L( 1
2 , BC(π))

L(1, π, Ad) .

The proposition now reduces to the equality

f̃ ′(z) = Sat(f)(z),

which follows by Proposition 3.4 and the definition of the base change homomor-
phism. �
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