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1. Introduction

In this note, we formulate a fundamental lemma for certain modules of a spherical
Hecke algebra in the context of Jacquet-Rallis transfer [Zhal4b]. We then prove this
comparison of relative orbital integrals, extending the result for the unit function due
to [Yunll]. More precisely, we introduce an isomorphism between two modules for a
spherical Hecke algebra, using work of Offen [Off04]. We then use results of Beuzart-
Plessis on the local Ichino-Tkeda conjecture to verify the matching of orbital integrals.

We were led to this statement by considering another relative trace formula (see
Remark 1.2). Tt serves as an example of the types of comparisons one ought to expect
based on global comparisons of relative trace formulae, as well as a simple illustration of
the method of reducing such fundamental lemma to a comparison of (relative) characters
(for example, [Clo90,Hal95,Les19]).

1.1. Smooth transfer for Jacquet-Rallis

Let E/F be an unramified quadratic extension of p-adic fields with odd residue char-
acteristic and let n > 2. We recall the context of the comparison of orbital integrals &
la Jacquet and Rallis. Let GL,, g = Resg/r GL,, denote the restriction of scalars of the
general linear group from E to F. Consider the symmetric space S,, = GL,, g / GLj, on
which GL,, acts via conjugation.

Now fix a split Hermitian space V,, of dimension n over F; for concreteness, we may
take V,, = E,, equipped with the Hermitian pairing (-, -) represented by the anti-diagonal
matrix J = (J;;) with J;; = (=1)""16; 411—;. Let U, := U(V,,) denote the associated
unitary group.

We recall the Jacquet—Rallis transfer between the spaces S, and U,. Fix a de-
composition V,, = V,_; ® Eep, where (ep,eq) = 1. Then we have an embedding

GLnfl,E — GLn’E by
g

We have a similar embedding U,,_; — U, as well as GL,,_1 — GL,,.

Considering the conjugation action of GL,_1(F) on S,(F), an element x € S,,(F) is
called relatively regular semi-simple if its orbit is closed and its stabilizer in GL,,_1 (F) is
trivial. We denote the locus of such elements as S"™*. Let n = ng,r denote the quadratic
character of F'* associated to the extension E/F. We consider the orbital integrals

OrbGan,W(f" r) = / f’(g_lffg)??(g)dg’
GL,,—1(F)
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where [ € C°(S,,(F)) and x € SI/*(F) and dg is the Haar measure normalized to give
GL,,—1(OF) volume 1.

Similarly, the subgroup U, _1(F') acts via conjugation on U, (F'), and we say that an
element = € U, (F) is relatively regular semi-simple if its orbit is closed and its stabilizer
in U,,_1(F) is trivial. We similarly denote the locus of such elements as U}*, and define
the Jacquet—Rallis orbital integrals to be

OrbUn1 (f,) = / (b yh)g,

Up—1(F)

where f € C*(U,(F)) and y € U, (F).

We now recall the notions of matching orbits and smooth transfer of test functions.
Two elements © € SI™*(F) and y € U, (F) are said to have matching orbits if they
are conjugate in GL,(E) by an element in the subgroup GL,_1(E). For a general z €
Srrs(F'), there need not exist a matching y € U, (F).

For x € S]™*(F'), we define

Qx) =1 (det(x)_[nTH] det(eg, zeq, . . . ,x"_leo)) .

With this definition, two functions f € C®(U,(F)) and f' € C*(S,(F)) are called
smooth transfers of each other if

Q) OrbEEn=1(f', ) = Orb"" = (f,y)
for all matching z € SI"*(F) and y € U, *(F).
1.2. The fundamental lemma

For both S,,(F') and U, (F'), there is a natural vector space of spherical functions. That
is, on S, (F') we consider the compactly-supported K, := GL,,(Og)-invariant functions

Hic, (Su(F)) = CZ(Sn(F))" 7,

n

and on U, (F') we consider the usual spherical Hecke algebra of K'" := U,,(Op)-invariant
function

Hicun (Un(F)) 1= C2 (U, (F) S5

In [Off04], Offen studied H, (S,,) as a module for the spherical Hecke algebra of GL,, (E).
His work implies that these two spaces are isomorphic as Hg, (GL,,(EF))-modules and
we introduce an isomorphism of modules (see Section 3 for details), which we call the
relative Satake transform,
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RS : Hi, (Sn(F)) — Hiun (Un(F)).
Our main result is the following theorem.

Theorem 1.1. The relative Satake transform RS realizes Jacquet—Rallis smooth transfer.
That s, for every matching pair x € SI™(F) and y € U,"*(F), and for every ¢ €
Hi, (Sn(F)), we have the identity

Q(z) Orbn=1(p, ) = Orb" 1 (RS (), ). (1)
Moreover, if there is no class y € U, (F) matching x, then Orb®=11(p z) = 0.

The phrase “fundamental lemma” in our title refers to this comparison of orbital
integrals between certain modules of Hecke algebras.

We prove this theorem by relating the relative Satake transform RS to a base-change
homomorphism associated to the products of unitary and general linear groups arising in
the unitary Gan-Gross-Prasad set up and a fundamental lemma with respect to this map;
see Section 4 for more details. Utilizing results of Beuzart-Plessis on relative characters
[BP20], we reduce this fundamental lemma to a certain identity between two such relative
characters. This final identity may be readily checked, proving the theorem.

Remark 1.2. We were led to formulate this result by considerations in our proof of the
fundamental lemma for unitary Friedberg-Jacquet periods [Les19]. In that work, we
consider the symmetric space

X =Uy, /U, xU,,

and study orbital integrals on the tangent space T,,X at a certain point.

It turns out that after a sequence of reductions, the unstable (or k-)orbital integrals
arising in that setting may be related to a comparison of orbital integrals analogous to the
statement of the theorem above. In particular, the reduction to the spectral identity in
Section 5 in part motivated the twisted Jacquet—Rallis comparison introduced in [Les19].

In general, one expects relative fundamental lemmas of the form (1) to hold when ever
one expects a global comparison of relative trace formulae. The first such comparison in
the literature is that of Jacquet [Jac05] in the study of unitary periods, which played a
crucial role for the global applications of the Jacquet—Ye relative trace formula [FLO12].

In the literature on the Jacquet—Rallis trace formula comparison [Zhal4b], the au-
tomorphic Tchebotarev density theorem of Ramakrishnan [Ram18] has allowed one to
bypass the lack of a fundamental lemma as in Theorem 1.1. Roughly speaking, if F/F
is a quadratic extension of number fields, that result states that one need only consider
places of F which split in E—~where the comparison of orbital integrals is trivial (see
[Zhal4b, Proposition 2.15])-to isolate cuspidal representations on the spectral side of
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the relative trace formula. This simplification is special to the base change functoriality
on general linear groups and is not available for more general comparisons, so it is of
interest to understand the relations between unramified relative orbital integrals even in
this case. We wish to emphasize however that our main result relies on Ramakrishnan’s
result, which is used in the proof of Beuzart-Plessis’s result [BP20]; a purely local proof
of the comparison local relative characters would remove this dependence.

We now outline the contents. In Section 2, we fix notations and define the varieties of
interest. Section 3 recalls the relevant work of Offen [Off04] and defines the isomorphism
RS : Hk, (Sn(F)) — Hgun (U (F)). In Section 4, we show how to reduce Theorem 1.1
to Proposition 4.2, which we prove in Section 5 by way of a result of Beuzart-Plessis and
an explicit calculation of local spherical characters.

1.8. Acknowledgments

We want to thank Jayce Getz for several helpful conversations. We also thank the
anonymous referees for their helpful remarks.

This work was partially supported by an AMS-Simons Travel Award and by National
Science Foundation grant DMS-1902865.

2. Preliminaries

Let F' be a non-archimedean local field of characteristic zero with odd residue char-
acteristic and let F/F be an unramified quadratic extension. Under this assumption,
we may choose an element w € F' C FE giving a uniformizer for both fields. Set Op
for the valuation ring of F' and Op for that of E. Set ¢ = #(Op/@wOF), and note that
¢®> = #(Op/wOg). Fix a non-trivial additive character 1 : F' — C* with conductor O,
and set Yp =Y oTrg . Let n = ng/r denote the quadratic character associated to this
extension by local class field theory. By abuse of notation, we also write n : E* — C*
for the unique unramified extension of n to E*.

For any F-group H, we set C°(H) to be the space of compactly-supported smooth
test functions. Haar measures are always normalized so that the appropriate maximal
compact subgroup has volume 1.

2.1. The symmetric space

Let G,, = Resg/p GL,, and let K,, = GL,(Og) C G,(F). Let dg denote the Haar
measure on G, (F') normalized so that voly,(K,) = 1. We equip G,, with an involutive
Galois action 7 € Gal(E/F) induced by applying the Galois involution x +— T to the
matrix entries; we will also denote 7(g) by g. Then G} = GL,, and the map g — gg~*

gives a morphism of F-varieties

Gy, — S, ={9€G,:g95=1,}
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This induces an isomorphism G,, / G, = S,, of F-varieties, and a bijection of F-points
Gn(F)/ G, (F)™ 2 S, (F) by Hilbert’s theorem 90. The group G, (F) acts on S, (F) by
the 7-twisted action: for g € G,,(F) and = € S,,(F), we set

g-x=grg .

This induces an action of G,,(F') on the Schwartz space C°(S,,(F)) by g-f(z) = f(g~1-z).
Let
Hic, (Su(F)) = C(Sa(F))""

denote the subspace of K, -fixed functions. We refer to this space as the (spherical) Hecke
module of the symmetric variety S, (F) as it is naturally equipped with the structure of
a module of the spherical Hecke algebra Hg, (G, (F)). More precisely, this algebra acts
on Hg, (Sp(F)) via the convolution action: for f € Hg, (G, (F)) and ¢ € Hk, (Sn(F)),

we set

(f*0)(x) = / F(g)elg™ - z)dg.

G, (F)

The basic structure of this module was studied by Offen in his thesis work [Off04] (see
also [Off08] for a correction of certain computations pertaining to the case at hand). We
recall the relevant facts here.

For m € Z>1, let

Afn:{)\:()\l,,/\m)€Zm/\ZZAZHZOforallz:l,mfl}

be the set of partitions of length m. For any A € A}, set the dual partition \* =
(=Amy ..y —=A1). For any g = (1, ..., tm) € Z™, let

oMt

wohm

w)\
dy = .
A <w)\ >a

if n = 2m is even; if n = 2m 4+ 1 is odd, then set

Finally, for any A € A}, define

dy = 1
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These elements give representatives for the K,-orbits on S,,(F).

Lemma 2.1. [Off04, Proposition 3.1] The K,-orbits of S, (F') are given by the disjoint
union

Su(F)= | | K-dy.

)\GAj;L

This decomposition is an analogue of the Cartan decomposition for the space S, (F),
and immediately implies that the functions {1\ := 1x.q, : A € A} } form a basis for
Hrc, (Sn(F ))

2.2. The unitary side

Now suppose that (-,-), is a split Hermitian form on E™. Up to isometry, we may
choose this form to be represented by the anti-diagonal matrix J = (J;;) with J;; =
(=1)*716; 44+1—, and we make this choice to align with that of [Off04]. In particular, the
lattice O% is self-dual with respect to (-, -),,. Let U,, C G,, be the associated (quasi-split)
unitary group. The self-dual lattice O induces a hyperspecial maximal compact group
K" :=U,(Op) C U, (F).

With these choices, we have the spherical Hecke algebra of K}/"-biinvariant functions
Hrcan (Up (F)) with unit 1cun.

2.2.1. Symmetric polynomials

We recall the notation for symmetric polynomials used in [Off04]. Set W = S,, to be
the Weyl group of type A,,_1. For m = [n/2], we let z = (z1,...,2m) € C™.

Let C[X 1i1, -+ XF1W denote the algebra of W-invariant polynomials in X iﬂ. For any
P e C[XF, - XFW | we will abuse notation and write P(¢~*) for the holomorphic
function z € C™ — P(q™ %) := P(¢”*',...,q *™), where ¢ = #(Op/wOp). We denote

the resulting space of functions as C[g¥*1, - .. ¢=*m]W.
Define the map v : C™ — C" by
(=21, = Zm, Zmy - -5 21) :n = 2m is even,
V(21 .y 2m) = .
(=21, o= 2Zmy L, Zmy ..o, 21) in=2m+1is odd.
Following the notational convention of [Off04], we define the C-algebra C[q~2%, ¢?*]V is

the algebra of holomorphic functions on C™ given as
z€ C™— P(q?®),
for all P € C[XE!, .. X)W, That is,

C[q—2z’q2z]W: {P(q_zzl,...,q_2z7"',q22m,...,q2zl) . PEC[Xlil,--~X$1]W}7
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if n = 2m is even and
(C[q72zaq22]w = {P(q72217"'7q72zm717q22m7"'7q2Z1) : Pe (C[Xlil’X;ltl]W}7

when n = 2m + 1 is odd. The resulting algebra is isomorphic to the space of S, X
(Z/27Z)™-invariant polynomials in m-variables, where the Z /2Z-factors act by inversion
on the appropriate variables [Off04, Section 2.1, Lemma 4.8].

3. The relative Satake homomorphism

In [Off04], Offen completely describes the H, (G, (F))-module Hg,, (S, (F)). This is

)-
accomplished by constructing the family of relative spherical functions for S, (F)
0, :S,(F) —C,

where z € C". These are normalized eigenfunctions for the convolution action of
Hr, (Gn(F)); we only recall the relevant facts about these, referring the reader to [Off04]
for additional details.

For any value v = (vq,...,v,) € C", let @, be the function on G such that

n

@V(g) _ 7%(n+172i),

i=1

where g = nak is the Iwasawa decomposition of g and a = diag(ay, ..., a,). Recall that
for a function f € Hg, (G, (F)), the Satake transform of f is given by

Sat(f / f(g

This gives an isomorphism of C-algebras
/HK,L (Gn(F)) o~ (C[q:|:2y17 o q:|:2un]W

satisfying the following: if y, : T,,(F) — C* is the unramified character

n

Xo(diag(ty, ... tn)) = [ ] t:

i=1

Vi

of the diagonal torus T,, and I(v) is the associated spherical representation, then

Sat(¢)(v) = Trace(o | 1(v)) (2)

for any ¢ € Hgk,(G,(F)). Note here that the Satake parameters of I(v) are
(" q7).
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Recall the map v : C™ — C™ in Section 2.2.1; this gives rise to a surjective map of
C-algebra

C[qi2y1, s qi2un]W L> (C[q—2z,q2z]W

P(q=2 ..., q % ¢%m .. ¢%*) in = 2m,

P(q*Q”l,...,q*Q”") —
P(g=2* ..., ¢ % 1,¢% ..., ¢*) n=2m+1,

for all P € C[X{!,- - X1W . Following the notation of [Off04, Section 4], set f(z) =
Sat(f)(v(z)) for z € C™. The composition

Hi, (Gn(F)) 25 Clg2 .. 22" 5 Clg %, g%V

n

is thus a surjection.

Proposition 3.1. [Off0/, Lemma 4.2, Theorem 1.2] For z = (z1,...,2zm) € C™, there
exists a unique function Q, € Hi, (Sn(F)), called the normalized relative spherical func-
tion, satisfying Q.(do) =1 and for any f € Hk, (G (F)),

f*Q(2) = f(2)Q(2).

Indeed, for any X € A},

~, we have the evaluation

_ V,
Q.(d\) =¢q <A’p>VAPz(>‘)7
0

where P,(X) is a Hall-Littlewood-type polynomial (see [Off08] for more details) and V)
is an explicit rational function in q.

We endow S,,(F) with a quotient measure dz normalized so that vol(S, (F)NK,,) = 1.

Theorem 3.2. [Off04, Proposition 4.10] Define the spherical Fourier transform by

SF(p)(z) = / (@) (),

Sn(F)

where ¢ € Hg, (Sp(F)). The transform SF induces an isomorphism of Hy, (Gn(F))-
modules

M, (Su(F)) — Cla™*,¢*]",

where Hi, (G (F)) acts on the left-hand side through v o Sat.
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In particular, Hg, (So(F)) is cyclic as a Hg, (Gn(F))-module: for every f €
Hi, (Sn(F)), there exists a ¢ € Hg, (G, (F)) such that

f(@) = ¢+ Lo(x).

This follows from the simple computation that SF(1p) = 1 along with the action of
Hr, (Gn(F)) on Clg~2?,¢?*]". This motivates the following lemma, which will prove
useful later.

Lemma 3.3. For each ¢ € Hk, (G, (F)), we define m(¢) € Hi, (Sn(F)) by
@0 = [ olhn(he)ds, g
GL.(F)

where dg is normalized so that vol(K,,) = 1. Then

m () = ¢ x 1.

In particular, for each f € Hi, (Sn(F)), there exists ¢ € Hi, (Gn(F)) such that m(¢) =
f.

Proof. First we prove the claim for ¢ = 1g. In this special case, it is immediate that
1k, *1p = 1g. On the other hand,

(k) (g5 ") = / 10(gh)iy" (hg)dh.
GL, (F)

The right-hand side is only non-zero if there exists h € GL,(F) such that hg € K, in
which case n"(hg) = 1. This implies that the left-hand side is non-zero only if gg—! €
SNK =K -dy [Off04, Lemma 3.3]. Thus, m(1g,) = clo for some constant ¢ € C. We
check that

c=m(lg,)(1) = / 1k, (h)dh = vol(K,) = 1.
GL,, (F)

For a general ¢ € Hg, (G, (F)), then for any other ¢1 € Hg, (G, (F)),

b m(on)(gg ") = / (b~ ym(61) (hgg™ T )dh

= / / o1(h" o (hgy)n™ (hgy)dgdy
GLo(E) GLo (F)
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= [ @ @Dl (g)dy = m(x (611 g,
GL..(F)

where (1 - 1")(g) = é1(9)n"(g) and ¢ * ¢1 € Hg, (Gn(F)) denotes the convolution
product. Now set ¢1 = 1k, and note that 1x, = 1k, -n" since n is unramified. Using the
Hi, (GL,(E))-module structure of Hg,, (S, (F)) and our calculation that m(1g, ) = 1o,
we find that

m(¢) = m(¢*1k,) = ¢+ m(lk,) = ¢ * (1k, * 1o) = (¢ * 1k, ) * Lo = ¢ * 1o,
proving the lemma. 0O

The surjective morphism v o Sat : f — f arises in another context: it realizes the
(stable) base change morphism from GL, (E) to the unitary group U,.

Proposition 3.4. There is a commutative diagram

Hic, (Gn(F)) —" Hpeun (U (F))

Jsm lsm (4)

(C[qj:%/l Ve 7qi21/,,L]W v ((:*[(]—2z7 q2z]W7
where the top horizontal arrow is the base change homomorphism.

Proof. With our choice of Hermitian form, a maximal torus M, C U, is given by
elements of the form

‘o diag(ty, ..., tm,tt, .t ) . if n = 2m is even,
diag(t1, .- tm,s,t! ...,tl_l) : if n=2m+11is odd,

yYm

where s,t; € E* where Nmp,p(s) = 1. The Satake isomorphism for U, (') gives an
isomorphism [M11, Theorem 2.4]

Sat : Hcun (Un(F)) —= Hicunan, (r)(Ma(F))Vn"

Il

where W™ = S, x (Z/2Z)™ is the Weyl group of U, (F'). Since H gunnar, () (Mn(F))
CIXE, ..., X% and

C[q72z, qZZ]W ~ (C[Xlil, o 7)(7:1:11]5’,,,l><(Z/2Z)m
[Off04, Section 2.1, Lemma 4.8], we see that

Sat : H cun (UL (F)) adN (C[q—Qz’ qu]W.
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Now the base change map BC,, : H,, (G (F)) — Hiun (U, (F)) may be computed as
follows; see [M11, Section 4.1.3]. For z € C™, let X, : M,,(F) — C* be the unramified
character

m
xa(t) = T [t
i=1

Let I(z) denote the associated spherical representation of U, (F') with Satake parameters
(g*,...,q *). Let BC,,(I(2)) denote the (stable) base change of I(z) to G, (F'). Then
for any ¢ € Hg, (Gn(F)), we have BCy(¢) € Hrun(Up(F)) is the unique spherical
function such that

Trace(BC, (@) | I(z)) = Trace(¢ | BCL(I(2))).

By [Mi1, Theorem 4.1], the Satake parameters of BC,,(I(z)) are

diag(q=*,...,q¢ %™, ¢*,...,q**) : if n is even,
diag(qg=*,...,¢ ", 1,¢*™,...,¢**) : if nis odd.

In particular, recalling (2) we conclude that
Trace(¢ | BCn(I(2))) = Sat(¢)(v(2)),
and the proposition follows. O

Combining Theorem 3.2 with Proposition 3.4, we define an isomorphism of
Hr, (Gn(F))-modules

RS == Sat™" 0 SF : Hi, (Sn(F)) — Hicun (Un(F)),
which we refer to as the relative Satake isomorphism for S, (F').
Corollary 3.5. Suppose that ¢ € Hy, (G (F)) and set f = ¢ 1o € Hx,, (Sp(F)). Then
BCn(9) = RS(f)-

Proof. Lemma 3.3 states that m(¢) = f. Theorem 3.2 tells us that SF(f)(z) = ¢(z).
But the commutativity of the diagram in Proposition 3.4 now implies that

SF(f)(2) = ¢(=z) = Sat o BC,(9).

Applying the inverse Satake transform to both sides proves the claim. O



S. Leslie / Journal of Number Theory 243 (2023) 475—494 487

3.1. Statement of main result

Recalling the orbital integrals and notion of matching orbits from the introduction,

we now restate the main theorem.

Theorem 3.6. The isomorphism RS : Hi, (Sn(F)) — Hk,, (Un(F)) realizes Jacquet-
Rallis smooth transfer. That is, for every regular semi-simple x € S, (F) matching y €
U, (F), and for every f € Hx, (Sn(F)), we have the identity

Q(x) Orb™ =+ (f, ) = Orb"*~* (RS(f),y)-
Moreover, if there is no class y € U, (F) matching x, then OrbGL"*l’”(f,x) =0.

As outlined in the introduction, we relate this relative Satake transform to a base
change homomorphism associated to larger groups and a fundamental lemma with re-
spect to this map in the next section. We then use work of Beuzart-Plessis [BP20] to
reduce this fundamental lemma to a spectral identity. This final identity is checked in
Section 5.

4. Reduction to stable base change

We first introduce the groups and orbital integrals present in the Jacquet—Rallis com-
parison; this is discussed in [Zhal4b]. Recall our decomposition E™ = E"~1@ Feq, where
(€0, ep) = 1. This gave an embedding GL,,_1 < GL,, by

(7))

Now consider the group G,_1 X G,, as well as the subgroups H; = G,_; embedded
diagonally and H) = G],_; X G}, = GL,,_1 x GL,,. We say that an element of G,,_1(F') X
G, (F) is regular semi-simple if its (H{(F'), Hy(F))-orbit is closed and the stabilizer
subgroup is trivial.

We have a similar embedding U,,_; — U,,. Consider the group U,,_; x U,, and di-
agonal subgroup H = U,_;. We say that an element of U,_1(F) x U,(F) is regular
semi-simple if its (H(F'), H(F))-orbit is closed and the stabilizer subgroup is trivial.

Note that as F-varieties

Hi\ anl X Gn = Gn,
where the right Hj-action intertwines with the action

v (91, 92) = 97 VG-
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Further quotienting out the free action of GL, = {I,_1} x GL,, we obtain a GL,_;-
equivariant isomorphism map

I H{\Gn,1 X Gn /{Infl} X GLn — Sn

Moreover, there is a corresponding matching of regular semi-simple orbits: for (y,—1,Vn)
€ Gpo1(F) X G (F) set

2 =7(9,119n) = (9,190 (97 2190) ™" € Su(F).
Similarly, there is a U, _;-equivariant isomorphism

H\U,_, xU, =5 U,
(hnfhhn) —r Yy = h;ilhru

taking regular semi-simple elements to regular semi-simple elements.
We say that regular semi-simple elements

(gn-1,9n) € Gp_1(F) x Gp(F) and (hy—1,hy) € Up_1(F) x U, (F)
are matching if y and x are in the sense of Section 1.1.

4.1. Orbital integrals redux

We recall the relative orbital integrals with occur in the Jacquet—Rallis transfer: for
freCP(Guo1(F) x Gp(F)) and (gn-1,9n) € (Gn1(F) x G, (F))™*, we set

O’ f (v, = [ [ £l gh e dhadh,
GLy 1(E) GL,_1(F)XGL, (F)
where for hy = (h,h') € GL,—1(F) x GL,,(F),
1(h2) = n(det(h))"n(det(h'))" .
We define the linear map m’ : C°(GL,—1(E) x GL,(E)) — C*(GL,(E)) given by
m(@)= [ oW wg)an,
GL,—1(E)

We also need the transfer factor. For all (gn—1,9n) € (Gn_1(F) x G,(F))"™"*, set

Q(x) : n is even,

Q(gn—1,9n) = {

n(gy 19,)x) : nis odd,
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where z = 7(g, *,g,). Setting f/ = m(m/(f")) : S, — C with m as in (3), we have the
reduction

Qgn_1,9n) O (' (g0 1, 90)) = Q) OrbCLr=11(F7 1), (5)

where the orbital integral on the right is as in the statement of Theorem 3.6.
The unitary orbital integrals in this case are of the form

O (f, (a1, 7m)) = / / F (1, 3o )R,
Un—l(F) Unfl(F)

for f € C*(Up_1(F) x Up(F)) and (hp—1,hyn) € (Up—1(F) x U, (F))™*. We similarly
define the linear map m : C2°(U,,_1(F) x U, (F)) — C>(U,(F)) given by

m(9)(y) = / #((h, hy))dh.

Upn—1(F)
If we set f =m(f) and y = h,, ", hy, then we similarly have
Orb”#(f, (hn-1,hn)) = Orb"" = (f, ) (6)

With this notation, two functions f € C°(U,_1(F)xU,(F)) and f' € CX(Gp—1(F)x
G, (F)) are said to be smooth transfers of each other if we have

Qgn—1,9n) OerR’n(f/a (Gn—-1,9n)) = OerR(fa (hn—1,hn))

for all (gn—lagn) S (Gn_l(F) X Gn(F))Trs and (hn—la hn) S (Un_1(F) X Un(F))TTS with
matching orbits.

4.2. Reduction
We need to know that spherical functions all have nice lifts to the group case.
Lemma 4.1. For any f € Hk, (GL,(FE)), there is a spherical function
¢ € Hi, 15k, (Gro1(F) x G (F))
such that m'(¢) = f. The analogous statement holds in the unitary case as well.
Proof. Set ¢ =1k, , ® f. It is simple to see that this satisfies m’(¢) = f. O
Now consider the tensor product of the base change maps

BC,_1 ® BC,, : HK7171><KH (Gn_l(F) X Gn(F)) — HK}:ﬁIXK}f" (Un_l(F) X Un(F))
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Proposition 4.2. The base change map BC := BC,_1 ® BC,, realizes Jacquet—Rallis
smooth transfer. That is, for every ¢ € Mk, ,xk,(Gn-1(F) x G,(F)) we have the
identity

Qgn-1,9n) Orb” (¢, (911, 9n)) = Orb”*(BC(9), (hn—1,hn))

for all (gn—1,9n) € (Gu_1(F) x Go(F))™ and (hp_1,hyn) € (Up_1(F) X Uy (F))""s
with matching orbits. Moreover, Orb” (¢ (gn_1,gn)) = 0 if there exists no matching
(hn—la hn) .

‘We postpone the proof of this proposition to the next section as it requires introducing
more notation. We now show that this suffices to prove Theorem 3.6.

Proposition 4.3. Proposition /4.2 implies Theorem 3.6.

Proof. Consider the diagram

BC,,-1®BC,

HKn_lxKn (anl(F) X Gn(F))

G m
y \
g2

Y 2t Hieun (U (F)),

Hicun xrcen (Un—1(F) x Uy (F))

Hr, (Sn(F

n

where the morphisms m and m’ were introduced in the previous section. Beginning in
the lower-left corner, we will show that the assumption that the top horizontal arrow
affects smooth transfer implies that the bottom horizontal arrow does.

Let f € Hg, (Sp(F)). By Lemma 3.3, there is a ¢ € Hg, (G,(F)) such that
m(¢) = f and SF(f)(z) = ¢(z). By Lemma 4.1, the function ¢ = 1x,_, @ ¢ €
Hr,  xx, (Cn_1(F) x G,(F)) satisfies m’(¢) = ¢. Similarly, if we consider BC,,(¢) €
Hrcun (Un), we have the lift BC,,(¢) = 1gun @ BC(¢) € Hrun srun (Un—1(F)).

Note that BC(¢) = BC(¢), since we are multiplying both sides by the unit of the
appropriate Hecke algebra. In particular, Proposition 4.2 implies that ¢ and BC(®) are

Jacquet—Rallis transfers of one another. By the relations of orbital integrals and transfer
factors in (5) and (6),
Q(z) Orb™ (£, ) = (611, 6n) Orb”" (@, (8,-161))

= OI‘bJR(BC<¢)’ (’771717 ’Yn))
= Orb""~1(BC(¢), ).

By Corollary 3.5, we know BC(¢) = RS(f) € Hxun (U, (F)). Noting that the appropriate
vanishing is similarly implied, we are done. O
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5. Proof of the theorem

In this final section, we prove Proposition 4.2. To simplify things, we will adopt new
notation for this section alone. Set G = U,,_1(F) x U, (F) and H = U,,_;(F) embedded
diagonally. We also set G' = G,,_1(F) x G,,(F), H; = GL,,_1 embedded diagonally, and
H), = GL,,_1(F)xGL,(F). Recall our fixed additive character . Let N,,(E) C GL,(F)
denote the maximal unipotent subgroup of upper triangular matrices, and denote by ¥ g
the generic character of N, (F) formed in the standard fashion.

5.1. Local spherical characters

We recall the definitions of the local spherical characters in this setting (see [BP20,
Section 3.2] for more detail). Let m be a tempered representation for G and define the
distribution J; : C°(G) — C to be

To(f) = / Trace(n(h)m(f))dh

H

for f € C°(G). This is absolutely convergent, and defines a tempered distribution on G
called the spherical character of 7.

Now suppose that II = II,,_; X II,, is a generic unitary representation of G’. Let
WL, _1,v5) and W(Il,,, ) denote the Whittaker models of IT,,_; and II,, respectively
and set W(IT) = W(II,,_1,v ) @W(I1,,, ¥ ). By strong multiplicity one, we may identify
IT with W(II) unambiguously. For k € {n — 1,n} and for g representing either 1, or
1) as our prior choices dictate, we define the Flicker-Rallis period By, : W(I,1y) — C
by

Bre(Wy) = / Wi (€r(7)gr—1)n(det(ge—1)) " ‘dgr—1,
Ni—1(F)\ GLg_1(F)

for Wy € W(IL,,,¢y) and where e;_1(g) = diag(e¥~1,e¥=2 ... 1) for a fixed non-zero
traceless element of E e. Since E/F is assumed to be unramified, we may assume that
¢ is a unit and that E = F(e).

In addition, we recall the scalar products 0y : W(Ilg, ) X W(Ig, ¢¥r) — C defined
by

0 (Wi, W) = / Wi (gr—1)W](gk—1)dgr—1
Ni—1(E)\ GLy_1(E)

for all Wy, W] € W(IL,, vx). Both i and 6}, are absolutely convergent as integrals (see
[JS81, Proposition 1.3]). Set 8 = -1 ® 5, and 0 = 6,1 & 0,,.
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Finally, for s € C, we define the local Rankin-Selberg period A(s,-) : W(II) — C by

A(s, Wy @ W) = / W1 (901 )W (gn—1)| det(gn—1) pdgn—1,
anl(E)\ GLn—l(E)

for all W,,_1 ® W,, € W(II). When II is tempered, this integral is absolutely convergent
whenever Re(s) > —3. In this setting, we denote A = (0, ).

For a tempered representation II of G’, we may now state the definition of the local
spherical character Ity : C°(G’) — C. Let f € C2°(G') and fix a compact open subgroup
K; C G’ so that f is K y-biinvariant. Let Br be a basis of II*/ | orthonormal with respect
to the scalar product 8. Then we define

In(f) = Y AI(HW)BW).

WeBn

This sum is independent of K; and the basis By, and defines a tempered distribution
on G’

We note that our definitions differ by a constant from those in [BP20] due to our
choice in measures. With this in mind, we define

Ag = HL(i777i>7

i=1

where L(s,n) is the local L-factor associated to the character 7.
5.2. A result of Beuzart-Plessis

We now recall the crucial local result. Let Temp(G) denote the tempered dual of G.

Proposition 5.1. [BP20, Corollary 4.5.1] Let f € C(G) and ' € C°(G’). Then f and
f' are smooth transfers of each other if and only if we have

Inc(n (f') = K(T)AG T=(f) (7)
for all m = mp—1 R 7, € Temp(G) and where
! (n—1)n/2
L (dnatdnyy2 (€055, %)
() = I (St B ) (©)

Here, wpc(x, _,) denotes the central character of BC(m,—1) and dy = (g)

The necessity part is one of the main results of [Zhal4a] and establishes a conjecture
of Wei Zhang. The proof combines global results of [Zhal4a], the principle of analytic
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continuation on the tempered dual Temp(G), and a local trace formula. Sufficiency is a
simple result of the theory of this local trace formula.

Proof of Proposition 4.2. Let f' € Hg, ,xk,(Gn-1(F) x G,(F)) and f = BC(f') €
Hicun xiun(Un_1(F) x Uy (F)). By Proposition 5.1, we need to establish the spectral
identity (7) for all 7 = m,_1 M7, € Temp(G). Since our functions are spherical, both
sides vanish away from the spherical component of the tempered dual Temp®?"(G), so
that the identity need only be verified on this component. Note that x(7) = 1 for any
such 7.

Let m = m,,_1 K7, be an unramified tempered representation with Satake parameter
2z = (2n—1,2n), and set II = BC(x). Then II is also unramified, and we let W, denote
the normalized spherical Whittaker function in W(II). Then

N AAL(fOWo)B(Wo) 4, M(Wo)B(Wo)
In(f) = e(WO,OWO) w7 e(wofo,wo; ’

where we have used the fact that II is the base change of 7 to compute the trace of f as
f(2). On the other hand, setting ¢ for the normalized spherical vector of m we have

To(f) = / (r(h)e(f) o, do)dh = Sat(f)(2) / (1) o, do)dh.

H H

With our choices of measure, we compute

A(Wo)B(Wo) _ L(3,BC(m))
G(WO,WO) L(l,?T,Ad) ’

where
L(s,m Ad) = L(s,BC(mp_1), AsC V" ) L(s,BC(m,), AsC1")

is the product of local Asai L-factors, as in [BP20]. On the other hand, [Har12, Theo-
rem 2.12] shows that

: T
/(W(h)d)()v ¢O>dh = )\G%
H

The proposition now reduces to the equality

f'(z) = Sat(f)(2),

which follows by Proposition 3.4 and the definition of the base change homomor-
phism. O
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