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ABSTRACT

The parallel execution of many graph algorithms is frequently dom-
inated by data communication overheads between compute nodes.
This bottleneck becomes even more pronounced in Near-Memory
Processing (NMP) architectures with multiple memory cubes as
local memory accesses are less expensive. Existing near-memory
architectures typically use graph partitioning methods with a fixed
vertex assignment, which limits their potential to improve perfor-
mance and reduce energy consumption. Here, we argue that an
NMP-based graph processing system should also consider the dis-
tribution of vertices onto memory cubes. We propose SuperCut,
a framework for near-memory architectures to effectively reduce
communication overheads while maintaining computational bal-
ance. We evaluate SuperCut via architectural simulation with 6
real-world datasets and 4 representative applications. The results
show that it provides up to 1.8X total energy reduction and 2.6x
speedup relative to current state-of-the-art approaches.
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1 INTRODUCTION

Due to their ability to capture the complex dependencies and re-
lationships among individual data elements, graphs constitute an
important data structure that have been widely used to represent so-
cial networks, citation networks, road networks, genome sequences,
etc. The recent proliferation of graph processing applications, in-
cluding machine learning [38], recommendation systems [25], and
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social network analysis [31], has heightened the need for efficiently
processing graphs, both in terms of performance and energy con-
sumption. Hence, a number of approaches have been proposed to
efficiently process large-scale graphs [11, 22, 23, 27, 42].

The inherent properties of graph analytic applications pose chal-
lenges for conventional memory and communications systems,
which in turn become performance bottlenecks. First, the operation
of traversing neighbourhood vertices shows poor locality due to
random memory accesses. Second, many graph algorithms have
high memory bandwidth requirements because the node-level com-
putation is relatively simple. Third, when executing in parallel,
frequent data movement across the system puts pressure on the
communications network.

Since the demand for higher memory bandwidth is an important
part of accelerating large-scale graph processing, Near-Memory
Processing (NMP) has been proposed to accelerate these tasks. The
emergence of 3-D stacked memory technology, in which multiple
DRAM chips are stacked on top of a single logic chip, has opened
the door for the deployment of computation units near the physical
DRAM. Instead of a single memory stack (often referred to as a cube),
recent NMP architectures for large-graph parallel processing utilize
multiple memory cubes [1-3, 40], which are able to provide both
higher memory capacity and memory-capacity-proportional band-
width. Figure 1 illustrates a general abstraction of near-memory
graph processing systems. Real-world information is abstracted
into graph data structures. Graph processing applications are de-
ployed to computing units inside memory chips and executed in
parallel. Interaction between memory chips is communicated via
an interconnection network.

Executing graph processing applications on NMP architectures is
distinct from traditional systems for a pair of reasons. First, the num-
ber of compute nodes can scale up substantially in a shared-memory
paradigm since cache coherence is often not needed. E.g., Zhao et
al. [41] show substantial performance gains in an NMP system pri-
marily due to the greater parallelism achieved. Second, delivering
information between compute nodes utilizes mechanisms that are
substantially less heavy-weight than message-passing protocols.

Tesseract [1] proposes an NMP architecture for parallel graph
processing with 16 cubes. While providing substantial performance
gains over conventional DRAM-based architectures, its perfor-
mance is ultimately limited by cross-cube communications. To
alleviate such communication overhead, prior works [1, 40] tried
METIS [16] to execute graph partitioning. However, the results
were not promising. It was reported that there are several factors
limiting the performance of METIS on such cases: (1) it leads to sub-
stantial variance between maximum and average communication;
(2) it exacerbates intra-cube computational balance.
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Figure 1: Near-memory graph processing system.

Subsequent works have proposed to diminish communication
bottlenecks by alternative preprocessing of the graph [40] or by
run-time adaptations [2, 3]. GraphP [40] proposes source-cut parti-
tioning, in which replicas of the source vertex of each cross-cube
edge are deployed in destination cubes, so that multiple cross-cube
edges sent from a common source vertex to the same destination
cube can be reduced to one. Therefore, lower cross-cube communi-
cation volume is required relative to Tesseract.

Despite the promising results from source-cut partitioning, there
is still room for improvement. We observe that after performing
source-cut partitioning, cross-cube communication still takes a
significant portion of execution time (12%-78%) and energy con-
sumption (14%-73%). This invites the open research question: how
effectively can partitioning algorithms reduce communications over-
heads while maintaining computational balance in an NMP system?

To further explore this question, we introduce a co-design frame-
work for near-memory graph processing, called SuperCut, and eval-
uate its effectiveness. In this paper, we make several contributions:

e We propose a set of graph partitioning algorithms, contain-
ing: (1) a mixed-cut partitioning method which reduces com-
munication volume by recognizing more cross-cube edge
patterns, and (2) a vertex-swapping-based greedy algorithm to
further reduce communication volume by iteratively chang-
ing the vertex distribution.

e We propose a three-phase programming model that is ex-
pressive for general vertex programs and explicitly handles
computation and communication via user-defined functions
along with a custom graph representation to bridge the soft-
ware and hardware design while diminishing the irregularity
of vertex traversal and communication.

e We generate specialized accelerators via high-level synthe-
sis (HLS) and map them to FPGA resources on the logic layer
of 3D-stacked memory cubes.

To evaluate our framework, we build a multi-cube, near-memory
processing simulation platform with reconfigurable logic kernels

43

as computing units by extending gem5-SALAM [30]. Our evaluation
results show that SuperCut provides up to 1.8X total energy re-
duction and 2.6X speedup with 45% lower extra memory footprint
relative to GraphP.

2 BACKGROUND
2.1 3-D Stacked Memory Technology

The basic principle of near-memory processing is to place com-
putation units inside the memory device(s) to implement compu-
tation closer to the data. The emergence of 3-D stacked memory
technology has provided a practical opportunity for realizing this
vision [34]. These 3-D memories consist of multiple DRAM chips
stacked on top of a single logic chip. The chips are connected by
multiple vertical through-silicon vias (TSVs) so that the DRAM lay-
ers can be accessed with higher bandwidth and lower power than
conventional off-chip memory channels. The underutilized logic
layer has both area and power available for integrating compute
functions [28, 41]. Commercial offerings include the early Hybrid
Memory Cube (HMC) [13] as well as High Bandwidth Memory
(HBM) [14]. While there are variations across the specific imple-
mentations, the core technology is common. To facilitate fair com-
parison with earlier work, we use technology parameters from
HMC in our simulation models.

Figure 2 (on the left) shows the structure of a single memory
cube. Each cube is divided into 32 vertical partitions called vaults
and has 4 SerDes high-speed links to implement off-chip accesses.
With each cube having a capacity of 8 GB, each vault has a capacity
of 256 MB. The logic layer at the bottom of the stack consists of both
interconnections and vault controller logic. Each vault can provide
10 GB/s bandwidth. Therefore, the internal bandwidth of each cube
is 320 GB/s. For off-chip access implemented by the SerDes links,
each link can provide a bandwidth of 120 GB/s. Each cube then
has an external bandwidth of 480 GB/s. In addition, each cube has
unused area on its logic layer. Previous works [1, 5] report that the
spare area is about 60 mm?, comprising 26.5% of the the total die
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area (226 mm? per cube [32]). While much previous work has used
small, in-order cores to implement the computing units within the
logic layer [1, 28, 41], in this work we assume that the logic layer
has a reconfigurable logic fabric [10, 33].
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Figure 2: A single memory cube (left), and topology of the
Dragonfly cube-to-cube interconnection network (right).

2.2 Memory Interconnection Network

Due to the flexibility of the SerDes links, various interconnect
topologies can be considered. One prevalent topology is Dragon-
fly [17], which has high connectivity and a low network diameter.
Figure 2 (on the right) shows a Dragonfly interconnection network
with 16 cubes. Unused links are used to provide connectivity to
host cores. We use the Dragonfly network topology in this work.

For the 16 cube system, the aggregated internal memory band-
width is 5 TB/s while the bisection bandwidth of the interconnection
network is only 480 GB/s, implying that inter-cube communications
can easily become a performance limiter [8, 40]. In addition to per-
formance, prior work [2] reports that cross-cube communication is
also the primary source of energy consumption in graph processing
applications, taking up 62% of the total.

2.3 Previous Near-Memory Architectures

There are several NMP architectures based on multiple memory
cubes proposed to improve graph processing applications’ perfor-
mance and energy consumption. Tesseract [1] leverages the large
internal bandwidth provided by 16 memory cubes connected in a
Dragonfly topology. A single-issue in-order CPU and a prefetcher,
serving as computation units, are deployed on the logic layer of each
vault. Tesseract adopts Pregel [23] and provides a vertex-centric
programming model. The authors report 9X speedups relative to a
traditional multicore system using out-of-order cores. While this
performance gain is substantial, Dai et al. [8] and Zhang et al. [40]
indicate that Tesseract’s overall memory bandwidth utilization is
less than 40%, implying there are additional performance gains to
be had. The reason for this bandwidth utilization limit is cross-cube
memory accesses, which Tesseract did not try to optimize.

To reduce cross-cube communications, Zhang et al. [40] pro-
posed a graph partitioning method, called source-cut. If two or more
cross-edges share the same source vertex but have different desti-
nation vertices in a common cube, a replica of the source vertex
is placed in the destination cube. Therefore, the data of the source
vertex need only be transferred once. To realize the source-cut parti-
tioning method, Zhang et al. proposed a Two-Phase Vertex Program-
ming model. The GenUpdate phase generates the update for each
replica and the ApplyUpdate phase updates each replica. Cross-
cube communication will only happen before ApplyUpdate. To
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hide the remote latency of cross-cube communication, GenUpdate
and communication are overlapped asynchronously. A barrier after
each phase ensures that hardware cache coherence is not required.

Despite of the promising results of Zhang et al. [40], there are
two inherent properties of source-cut partitioning that limits its
potential: (1) Since only one cross-cube edge pattern is considered,
it only considers a fraction of the cross-cube edges that might poten-
tially be eliminated. (2) It adopts a fixed initial vertex distribution,
which limits its options for reducing cross-cube communication
overheads. To address these limitations, we introduce a novel soft-
ware/hardware co-design framework for multi-cube NMP systems,
called SuperCut, to effectively reduce cross-cube communication
overheads while maintaining workload balance.

3 SUPERCUT FRAMEWORK

Here, we describe SuperCut, our co-design framework for near-
memory graph processing. First, the graph dataset is pre-processed
by graph partitioning algorithms (Sec. 3.1 to 3.3). Then the three-
phase programming model (Sec. 3.4) is built with user-defined func-
tions to express the graph processing applications. Next, NMP
accelerators are generated via HLS (Sec. 3.5). The partitioned graph
is stored using the custom graph representation (Sec. 3.6). Both the
graph and the accelerator design is fed into the NMP simulation.

We repeatedly refer to Figure 3 to illustrate several points related
to the graph partitioning. Figure 3(a) shows an example of a small
synthetic graph. This graph has 8 cross-cube edges, each of which
initially represents one cross-cube communication.

3.1 Mixed-Cut Partitioning

Our initial partitioning algorithm is called mixed-cut, which is a
combination of source-cut partitioning and destination-cut parti-
tioning. The source-cut pattern (described by Zhang et al. [40]) is
illustrated by the blue dashed rectangle in Figure 3(a). After the
transformation, the revised graph is shown in blue in Figure 3(b).

For cross-cube updates with a common destination vertex, Mes-
sageFusion [2] dynamically merges these updates at the source
cube before transferring them to the destination cube. Inspired by
MessageFusion, we propose a static graph partitioning method,
called destination-cut, to reduce cross-cube edges exhibiting this
same pattern (multiple cross-cube edges which have the same des-
tination vertex and distinct source vertices, all from the same cube).
Figure 3(a) illustrates an example of the cross-cube edge pattern of
destination-cut partitioning (marked in red). In this example, there
are three cross-cube edges: v5 — v4, v — v4, and v7 — v4 which
have the same destination vertex, vq4.

In mixed-cut partitioning, we first implement source-cut par-
titioning as the initial partitioning method and then implement
destination-cut partitioning as the secondary method. Figure 3(b)
illustrates the results of mixed-cut partitioning on the example
graph. Here, 6 out of 8 original cross-cube edges (75%) have been
reduced, which is higher than source-cut partitioning alone (37.5%).

3.2 Vertex-Swapping Greedy Algorithm

The partitioning algorithms discussed so far do not consider moving
vertices between cubes. The next element of SuperCut partitioning
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Figure 3: (a) A synthetic graph as an example to illustrate source-cut and destination-cut patterns. (b) The mixed-cut partitioned
graph. (c) The mixed-cut example graph after swapping v4 and vg.

is a stochastic, greedy optimization algorithm that explicitly moves
vertices across cube boundaries.

Inspired by the iterative placement algorithms of IC physical
design [15], which continuously modify the placement of circuits by
exchanging randomly-selected cells, we propose a greedy algorithm
to diminish the cost of communication while maintaining workload
balance across the cubes. In order to implement a greedy algorithm,
a cost function is needed. The goal of the cost function is to capture
both the execution time and energy consumption of cross-cube
communication, described as follows:

cost(G) = a; X max(costcomm) + a2 X mean(costcomm)

where costcomm is the cube-level communication cost in graph G
calculated by multiplying the number of cross-cube edges and the
number of SerDes links between each cube pair, and max(costcomm)
is the maximum communication cost among all the cube pairs while
mean(costcomm) is the average communication cost among all the
cube pairs. The first term represents the worst-case runtime of cross-
cube data transfer and the latter term represents the aggregated
energy consumption of cross-cube communications. Parameters
a1 and ay are adjusted to balance these two different goals into
a single metric, which are set on the basis of the significance of
performance and energy as required in different scenarios.

In order to avoid introducing workload imbalance, we imple-
ment a vertex-swapping strategy as the perturbation function in
the greedy algorithm, shown in Algorithm 1. In this algorithm, G
represents the original graph before the swapping operation, H
represents the mixed-cut graph of the original graph before the
swapping operation, and graph names with suffix’ represent graphs
after the swapping operation (e.g., G’ represents the original graph
after the swapping operation) Initially, all the vertices are mapped
into cubes using a hash function to get an initial vertex distribution
(line 1), e.g., with a modulo function:

cube_index = vertex_index modulo total number of cubes

which is widely used in prior works [8, 23, 40]. Next, initialize the
cost value based on the mixed-cut graph H (line 2). In each iteration
(lines 3-9) , the greedy algorithm will randomly swap two vertices
in different cubes (line 4) . Then mixed-cut partitioning is applied to
the graph and the cost is calculated based on the mixed-cut graph
(line 5). If the cost increases, then undo the swap of the selected
vertices (line 6); otherwise, keep the change (lines 7-9).
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Algorithm 1: Vertex-Swapping Greedy Mixed-Cut Alg.

input :G: The original graph

output: H: The partitioned graph
1 assign vertices to cubes by a simple hash function;
2 H, cost_old = mixed_cut(G);
3 for i =1;i < max_iterations;i++ do

4 G’ = swap random pair of vertices in distinct cubes in G;
5 H’, cost_new = mixed_cut(G’, H);

6 if cost_old < cost_new then undo_swap(G) ;

7 else

cost_old = cost_new;
update H with H” and G with G’;

!

Figure 3(c) illustrates the example graph after being processed
by one iteration of the greedy algorithm. After swapping v4 and vg,
the number of cross-cube edges is reduced from 4 to 3, compared
to mixed-cut partitioning. Since the workload of each vertex is
related to the vertex degree, the total degree of cube C04 remains
unchanged and the total degree of C00 is reduced from 5 to 4.
Therefore, by swapping a pair of vertices in different cubes instead
of moving a single vertex cross cubes, the greedy algorithm can
maintain some degree of workload balance.

3.3 Partial Graph Repartitioning

Since the execution time of the iterative optimization algorithm is
proportional to the number of iterations, it can be slow when the
iteration number is large. Even worse, since the mixed-cut parti-
tioning and cost calculation is performed every iteration (lines 4-5
in Algorithm 1), the larger the scale of the graph, the slower the it-
erative algorithm. Therefore, implementing mixed-cut partitioning
to the whole graph every time after swapping the selected node
pair is inefficient, especially for large-scale graphs. Fortunately, we
observe that only a portion of the graph is modified after exchang-
ing a pair of vertices. This observation provides an opportunity
to increase the efficiency of the vertex-swapping strategy by only
processing the influence scope of the swapping operation, instead
of the whole graph, in each iteration.
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Based on this observation, we propose a method, called partial
graph repartitioning, in which the scope of the input graph con-
sidered is reduced to a smaller-scale subgraph (except for the first
iteration). This method is inspired by FPGA partial reconfiguration
techniques [37] which change the logic for a particular region in
an FPGA without impacting operation in areas outside this region.
This method is illustrated in Figure 4. It consists of 4 steps: @ Find
the influence scope of the swapping operation (a small-scale sub-
graph called G;u p) from the graph G’ in which a target vertex pair
has been swapped. ® Find Hy,,;, the influence scope of the swap
perturbation in H which is the mixed-cut graph of G. ® Extract
G;ub from G’ and implement mixed-cut partitioning to the sub-

graph G, ,. Then we can get H/ ,, the mixed-cut graph of G| ,. @
Generate H’, the mixed-cut graph of G’, by removing Hy,,;, from H
and embedding H ; ,p, 1nto H. The cost of H ’ can also be calculated
in the same way. In this way, we process the small-scale subgraph
representing the influence scope of the swap operation instead of
processing the entire graph from scratch each iteration.

To find G/, and Hyy, we process all of the edges e € G that
are incident with at least one of the swapped vertices, enumerating
all the possible cases. After checking all the possible scenarios, one
of the key observations is that the boundary of the influence scope
will not be expanded to the whole graph due to the fixed pattern of
mixed-cut. Instead, the distance from any vertex in the influence
scope to one of the swapped vertices is no more than 3. In other
words, the scale of the influence scope is smaller than the whole
graph for datasets with depth greater than 3.

o ’ (3]
G Swap & G Extract &
Find scope G'sw Mixed-cut

.,

Hao  \
)

Ay AN H’
Mixed-cut’, @Merge', H’suo
; i nd

H ¢ H 1] H - Heub!

Extract &
Remove

Find scope

Figure 4: The partial graph repartitioning method. G, rep-
resents the influence scope of the target vertex pair before
the swapping operation. Hy,;, is the mixed-cut graph of Gy},

3.4 Three-Phase Programming Model

The two-phase programming model of GraphP has two limitations:
(1) it supports source-cut partitioning, however it doesn’t support
destination-cut partitioning; (2) because the cross-cube data trans-
fer procedure is scheduled by the operating system kernel rather
than explicitly exposed to users, there is a lack of flexibility for
optimizing and/or measuring cross-cube communication. In order
to implement mixed-cut partitioning while maintaining compati-
bility with the source-cut method, we propose a new three-phase
programming model shown in Algorithm 2, which has 3 steps:
Original Vertex Update (OVU) phase (lines 1-2): the original
vertices are processed locally by collecting data from incoming
neighbours and combining these data via computation operations
packaged in the gather_combine () function which is customized
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Algorithm 2: Pseudocode of Three-Phase Programming
Model (one iteration).

input :The SuperCut graph H and original graph G
output:Results of graph processing applications

1 for each original vertex vorg € G do

2 Lgather_combine(vwg)

3 for each cross-cube edge e = (u,v) € H do
4 L update «— gather_combine(u); scatter(update)

s for each original vertex vorg and replica v, do
6 L aPPlY(Uorg)§ apply(or)

to adapt to various graph applications. E.g., in the PageRank appli-
cation, gather_combine() is an accumulation operation.

Remote Vertex Update (RVU) phase (lines 3-4): remote up-
dates are generated and transferred across cubes. These updates are
generated using user-defined function gather_combine () where:
(1) destination-cut vertices are processed by combining data from
incoming neighbors, and (2) each cross-cube edge starting from
original vertices is traversed to get its source vertex data directly.
After generating the updates, the user-defined function scatter()
is invoked to transfer these updates across cubes.

Due to the inherent parallelism of graph applications, the OVU
and RVU phase are executed in parallel so that the cross-cube com-
munication latency is somewhat masked. Once OVU and RVU phase
finish, all the updates are at their targets. It should be noted that
cross-cube communication only happens during the RVU phase.

Apply phase (lines 5-6): In this phase, these updates are pro-
cessed locally by the user-defined apply() function to generate
the result for the current iteration, which also serves as the initial
value of the next iteration.

Distinct from the two-phase programming model in GraphP,
our programming model introduces the RVU phase for remote
updates. If performing source-cut alone, the RVU phase is only
responsible for data movement across cubes without the combining
procedure. In this way, our programming model is not only suitable
for mixed-cut partitioning but also compatible with source-cut.
In addition, the cross-cube communication in our programming
model is explicitly handled by the user-defined function scatter(),
broadening the opportunity for communication functionality. A
barrier before and after the Apply phase ensures that hardware
cache coherence is not required.

3.5 Proposed Near-Memory System

To assess the benefits of SuperCut, we describe a near-memory
system architecture that is similar, in many respects, to the near-
memory systems of previous works. We use an HMC-like cube
as our 3-D stacked memory with 8 GB DRAM capacity and 32
vaults per cube. Consistent with other multi-stack near-memory
architectures, we utilize a Dragonfly topology (see Figure 2) to build
a system with 16 memory cubes, in which each cube is connected
to its neighbor cubes via SerDes links. We put FPGA resources on
the logic layer of each cube, to which the 512 compute engines are
mapped via HLS. These resources only take 0.26 mm? per cube (i.e.,
0.12% of the total area), which is comparable to prior work.
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Figure 5 illustrates the SuperCut NMP architecture on the logic
layer of each memory cube. For intra-cube computation and commu-
nication (via the existing intra-cube switch), we include one Vertex
Computation Engine (VCE) per vault consisting of 3 components:
OVU Computation Unit, RVU Computation Unit and Apply Unit.
We also design DMAs to implement cross-cube communication.

OVU Computation Unit: The OVU computation unit consists
of a status register, address registers, an address fetcher, a data
fetcher and a combine module. The status register includes the
trigger and status bits, while the address registers are used to store
the starting address of input vectors. The data addresses calculated
by summing starting addresses and offsets fetched by the address
fetcher are fed to the data fetcher. Then the fetched data is combined,
performing the gather_combine() function. E.g., To implement
the PageRank application, the gather_combine() is defined by
users as an accumulation operation. Thus the combine module is
synthesized to be an accumulator by the HLS compiler.

RVU Computation Unit: The RVU computation unit imple-
ments remote update generation. Distinct from the OVU compu-
tation unit, the address fetcher is replaced with a hash table of
cross-cube edge information, based on which remote updates are
generated by the specialized data fetcher and combine module
performing the gather_combine() function.

Updates are transferred to specialized DMAs, along with distinct
destination addresses, through the intra-cube switch. Since the OVU
and RVU phases are overlapped, the OVU and RVU computation
units are triggered together each iteration.

DMA: The DMAs perform the cross-cube communication. We
include a send queue in each DMA to which updates with destina-
tion addresses are sent. The enqueued updates are transferred to
another cube by the specialized scatter module, the realization of
the user-defined scatter () function in the RVU phase. By default,
the scatter() function is defined as a copy function to directly
transfer data across memory cubes. It could also be defined by
users with other purposes to satisfy various functionality of graph
applications.

Apply Unit: The function of the apply unit is to implement
the apply() function of the Apply phase in which updates are
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fetched by the data fetcher and then processed to generate results
for original vertices and replicas by the apply module.

3.6 Graph Representation

The representation of the graphs in memory is a key link bridg-
ing the software and hardware system. We propose a new graph
representation with a customized data structure stored in mem-
ory. Figure 6 illustrates an example of the graph representation in
Cube0. In our graph representation, original vertices and replicas
are stored in CSR format while cross-cube edges information is
stored in the form of a hash table where the key is edge ID and
values are neighbors’ IDs and destination addresses. The memory
footprint of the hash table ranges from 0.17 MB to 189 MB, taking
up 10%-13% of the overall memory footprint.

However, only considering the storage format is likely to intro-
duce massive irregular memory accesses, which is more expensive
than sequential memory accesses, when accessing and updating
vertices in memory. To mitigate such irregularity, the order of
vertices in the graph representation is rearranged during prepro-
cessing. Original vertices and replicas are deployed within separate
address ranges, so that these vertices can be accessed and updated
sequentially in the appropriate phases of the programming model.
In addition, since replicas in the same cube are updated by separate
DMAs across cubes, to reduce irregularity of remote update, we also
divide replicas into several address ranges, in the order of the index
of the predecessor’s memory cubes. In this way, replicas originating
from the same cube can be updated contiguously.

Figure 6 illustrates an example of the intra-cube communica-
tion (inside Cube0) and cross-cube communication (from Cube0 to
Cubel) in data layout view. @ In the OVU phase, data of original
vertices and replicas from different address ranges are gathered and
combined based on graph topology to generate updates for original
vertices in Cube0. @ In the RVU phase, data of adjacent original
vertices listed in the hash table is processed to generate remote
updates. Separate from intra-cube communication, these updates
are buffered in the send queue of the DMAs and then transferred
to replicas originating from Cube0 in Cubel using the destination
addresses in the table. ® After the first two phases finish, updates
are fetched from memory to apply for target vertices.
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Figure 6: Diagram of graph representation in Cube0 and data
communication (inside Cube0 and from Cube0 to Cubel).

4 EXPERIMENTAL METHODOLOGY

Simulation platform: We have adapted the gem5-SALAM [30]
framework to build a bare-metal full-system NMP simulation plat-
form. The host-side CPUs are based on the ARM ISA and the mem-
ory system consists of 16 HMC-like cubes to form a memory-centric
network using a Dragonfly topology [17]. For our simulations, we
use the standard distribution of gem5 [4] that contains a stacked
memory modeled after HMC and LLVM-based HLS accelerators to
realize the computation units and programmable DMAs at 500 MHz.
Datasets: Table 1 shows the graph datasets used in our experiments.
All these input graphs are collected from the Stanford Network
Analysis Project (SNAP), a general-purpose graph library for net-
work analysis and graph mining. These graphs have a wide range
of types and fields, and are in the same scale range as prior works.
In addition, Table 1 also shows maximum and average degree of
graphs which have varying in-degree distributions, ranging from
regular-like to powerlaw-like distributions.
Workloads: We code four popular graph processing applications in
C using the proposed three-phase programming model. PageRank
(PR) iteratively calculates the importance of web pages [6]. Average
Teenage Follower (ATF) calculates the number of teenage followers
of every user represented by vertices in the graph and the average
number of teenage followers over K years old [12]. Breadth-First
Search (BFS) searches a tree data structure, starting from a root ver-
tex and traversing all the neighbours at the same depth iteratively. It
is coded with a brute-force data parallel method to make it suitable
for SIMD architecture [29]. Weakly Connected Components (WCC)
finds a subgraph in which all the vertices are connected by some
paths in which the direction of edges are ignored [35].
Evaluation methods: To evaluate the SuperCut framework, we
simulate all the applications across all the graph datasets running
on the NMP platform. We do the same for Tesseract and GraphP
as well. Note that this implies we are comparing our proposed
partitioning methods to the previously described Tesseract and
GraphP on a common hardware platform (described in Section 3.5).
The preprocessing step is implemented with Python and Net-
worKit library [36]. Without any optimization, the execution time
of the single-thread python version ranges from several minutes
to multiple hours. Since the implications of preprocessing substan-
tially vary among different implementations, we show the number
of iterations the greedy algorithm takes for each graph in Table 1
(executed off-line). We hope this work would inspire follow-on
studies for efficient implementations that would speedup this step.
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In this work, we focus on exploring the on-line benefits of the par-
titioning methods. The parameters ; and a2 in the cost function
are set to @ = 0.2 and a2 = 0.8 so as to emphasize energy savings
somewhat over performance as the optimization goal.

Since the HLS accelerators are triggered and run in parallel, we
use the maximum execution time across the HLS accelerators as
the execution time for each iteration. The energy is computed by
summing the dynamic energy consumption contributions from the
local computation phases and the cross-cube communication phase.
The total energy consumption of the HLS accelerators in each phase
is modeled by gem5-SALAM. The energy consumption of the SerDes
links, memory accesses to DRAM layers, and other modules on the
logic layer are drawn from prior works [13, 28, 41].

5 EVALUATION

5.1 Energy Consumption and Performance

We first quantitatively examine the energy consumption benefits
of SuperCut, comparing SuperCut with 2 baselines: Tesseract and
GraphP. Figure 7 shows the normalized energy consumption break-
down into computation, local memory accesses, and cross-cube
communication relative to Tesseract. Focusing first on the energy
consumption reduction of cross-cube communication, we observe
that all the applications benefit from cross-cube communication
reduction. The energy consumption reduction of cross-cube com-
munication for each application ranges from 3.12X to 7.23X relative
to Tesseract. Compared with GraphP, the energy consumption re-
duction of cross-cube communication ranges from 1.32X to 3.09x.
This is because SuperCut incorporates the aggregated cross-cube
communication volume as one of the optimization targets. Due to
the energy reduction of cross-cube communication, overall energy
consumption is also reduced. The overall energy consumption re-
duction ranges from 1.1X to 3.09% and 1.06X to 1.84X relative to
Tesseract and GraphP, respectively.

We next examine performance improvement by showing the
overall speedup, defined as the execution time of the four graph ap-
plications relative to Tesseract, in Figure 8. Examining the last bar of
each application, we observe that all the applications improve over
both Tesseract and GraphP. Particularly, compared with GraphP (i.e.,
the state-of-the-art work), the geometric mean speedup is 1.59%,
1.64X, 1.24x%, 1.33% for PageRank, ATF, BFS and WCC, respectively.
We conclude that due to lower cross-cube communication volume
and a balanced computational load, the performance of SuperCut
is strong for all of the applications and all of the graph datasets.

Turning our attention to how the energy consumption and per-
formance benefit varies across applications, we observe a common
relationship for both of them between applications with cross-cube
communication and local memory access ratios. Figure 9 illustrates
the average energy delay product (EDP) of each application across
all the graph datasets with cross-cube communication ratio calcu-
lated as the average fraction of the data volume transferred across
cubes to the overall data access volume. Here, we observe that high
vertex activity applications (i.e., PageRank and ATF) with higher
cross-cube communication ratio show more significant EDP reduc-
tion. This is consistent with a large communication volume within
these applications. Since all the vertices in these applications are
active in each iteration, the communication-to-computation ratio is
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Table 1: Graph dataset.
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high, leading to greater potential benefits achievable by SuperCut.
In contrast, the property of low vertex activity applications (i.e., BFS
and WCC), that only a portion of vertices participate each iteration,
leads to a lower communication ratio. Thus, SuperCut achieves
lower EDP reduction on these applications. We conclude that Su-
perCut is most beneficial for high vertex activity applications with
a larger cross-cube communication ratio.

5.2 Mixed-Cut Partitioning

As mentioned in Section 3, SuperCut incorporates both the mixed-
cut partitioning method and the greedy algorithm, illustrated in
Figure 3(b) and (c) respectively. To understand how different compo-
nents contribute to the benefits of SuperCut in terms of performance
and energy consumption, we implement mixed-cut partitioning
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without greedy in SuperCut. Since all the graphs have similar ten-
dency, here we take AZ as an example. Figure 10(a) shows the
energy of all four applications on AZ. We have two observations:
First, mixed-cut partitioning reduces the overall energy consump-
tion by generating less communication volume than GraphP on
all the applications, validating our assumption that recognizing
more edge patterns is beneficial to communication reduction. Sec-
ond, the greedy algorithm combined with mixed-cut partitioning
further reduces cross-cube communication volume by optimizing
the vertex distribution. Figure 10(b) illustrates the overall speedup.
From the figure, we can draw the same conclusions about mixed-cut
partitioning in terms of performance. Note that the high vertex
activity applications benefit the most from the inclusion of the
greed algorithm.
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Figure 10: (a) Energy consumption breakdown and (b) over-
all speedup of mixed-cut partitioning on Amazon0302 (AZ),
normalized to Tesseract.

5.3 Memory Footprint

Since SuperCut adopts the replica mechanisms of GraphP, both
these works introduce extra memory footprint. In addition, Super-
Cut also generates destination-cut vertices during partitioning, the
topological information of which is stored in memory. To assess the
feasibility of SuperCut in terms of memory usage, we quantitatively
examine the extra memory footprint of GraphP and SuperCut.
The evaluation results show that the extra memory footprint of
SuperCut is 48%-75% of GraphP. This benefit comes from 3 facts:
(1) SuperCut is better than GraphP at reducing the aggregated cross-
cube communication volume (i.e., it introduces fewer replicas);
(2) destination-cut vertices are only added for the pattern with
multiple cross-cube edges, which guarantees that SuperCut has a
lower memory footprint than GraphP; and (3) data for destination-
cut vertices is buffered in the queue of DMAs instead of in memory.

6 RELATED WORK
6.1 Near-Memory Graph Processing Systems

Besides the comparison baselines of Tesseract and GraphP, there are
other NMP architectures designed to accelerate large-scale graph
processing. GraphPIM [26] proposes an instruction offloading mech-
anism to computation units on the logic layer of a single HMC
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device instead of a network consisting of multiple cubes. Message-
Fusion [2] proposes an NMP architecture to reduce cross-cube
communication in transit by coalescing multiple cross-cube mes-
sages before reaching the same destination vertex. We take inspira-
tion from this technique in our destination-cut static partitioning
algorithm. GraphVine [3] explores another way to reduce HMC
network congestion at runtime using multicast techniques. Both
these works failed to optimize the distribution of vertices, limiting
their efficiency. GraphH [8], GraphQ [43] and GraphRing [21] tried
to regularize communication overhead by proposing reconfigurable
HMC interconnection, a vertex reordering mechanism, and a ring-
structured memory network, respectively. None of them directly
reduced communication volume or considered graph distribution.

6.2 General Graph Partitioning Strategies

For general distributed graph processing systems, graph partition-
ing strategies also play a vital role in communication optimization
and workload balance, which can be classified [9] into edge-cut and
vertex-cut. PowerGraph [11] and PowerLyra [7] adopt vertex-cut
to minimize vertex numbers across partitions by assigning edges
to replicas in different machines. Although vertex-cut shows good
load balance for skewed graphs, it is not suitable for near-memory
graph processing because it leads to higher communication cost and
requires more complicated implementation mechanisms. Therefore,
the partitioning algorithms designed for near-memory graph pro-
cessing, including the algorithms proposed in this work, are edge-
cut [22, 23, 42] in which vertices of the graph are evenly assigned
to minimize the number of edges across partitions. Pregel [23] is
an early distributed graph processing system which adopts random
edge-cut partitioning and provides the message-passing mecha-
nism to deliver updates between machines. Tesseract adopts this
approach. The partitioning proposed in GraphP [40] is also an edge-
cut method in essence, in which out-going edges across memory
cubes are partitioned. The basic principle of destination-cut parti-
tioning as an edge-cut method where edges sharing a destination
are combined has been adopted for traditional systems [11, 42]. In
this work, we are interested in its effectiveness on near-memory
systems, in which the overheads of a cross-cube data transfer are
very different than a message-passing send/receive pair.

7 CONCLUSIONS

For many graph processing applications, especially those with high
vertex activity, cross-cube communication is a performance bottle-
neck on multi-cube NMP architectures. Here, we propose SuperCut,
a framework for near-memory architectures to effectively reduce
communication overheads while maintaining computational bal-
ance. We evaluate SuperCut on an NMP architecture based on
reconfigurable logic using 4 representative graph applications and
6 real-world graphs. Results show that it provides up to 1.8X total
energy consumption reduction and 2.6x speedup with 45% lower
extra memory footprint relative to the current state-of-the-art.
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