
SuperCut: Communication-Aware Partitioning
for Near-Memory Graph Processing

Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang
McKelvey School of Engineering, Washington Univ. in St. Louis

St. Louis, Missouri, USA

{chenfeng.zhao,roger,xuan.zhang}@wustl.edu

ABSTRACT

The parallel execution of many graph algorithms is frequently dom-

inated by data communication overheads between compute nodes.

This bottleneck becomes even more pronounced in Near-Memory

Processing (NMP) architectures with multiple memory cubes as

local memory accesses are less expensive. Existing near-memory

architectures typically use graph partitioning methods with a fixed

vertex assignment, which limits their potential to improve perfor-

mance and reduce energy consumption. Here, we argue that an

NMP-based graph processing system should also consider the dis-

tribution of vertices onto memory cubes. We propose SuperCut,

a framework for near-memory architectures to effectively reduce

communication overheads while maintaining computational bal-

ance. We evaluate SuperCut via architectural simulation with 6

real-world datasets and 4 representative applications. The results

show that it provides up to 1.8× total energy reduction and 2.6×

speedup relative to current state-of-the-art approaches.

CCS CONCEPTS

• Hardware→Memory and dense storage; Emerging archi-

tectures; • Computer systems organization→Multicore ar-

chitectures.

KEYWORDS

near-data processing, 3D-stacked memory, graph processing

ACM Reference Format:

Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang. 2023. SuperCut: Comm-

unication-Aware Partitioning for Near-Memory Graph Processing. In 20th

ACM International Conference on Computing Frontiers (CF ’23), May 9–11,

2023, Bologna, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3587135.3592209

1 INTRODUCTION

Due to their ability to capture the complex dependencies and re-

lationships among individual data elements, graphs constitute an

important data structure that have been widely used to represent so-

cial networks, citation networks, road networks, genome sequences,

etc. The recent proliferation of graph processing applications, in-

cluding machine learning [38], recommendation systems [25], and

CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0140-5/23/05.
https://doi.org/10.1145/3587135.3592209

social network analysis [31], has heightened the need for efficiently

processing graphs, both in terms of performance and energy con-

sumption. Hence, a number of approaches have been proposed to

efficiently process large-scale graphs [11, 22, 23, 27, 42].

The inherent properties of graph analytic applications pose chal-

lenges for conventional memory and communications systems,

which in turn become performance bottlenecks. First, the operation

of traversing neighbourhood vertices shows poor locality due to

random memory accesses. Second, many graph algorithms have

high memory bandwidth requirements because the node-level com-

putation is relatively simple. Third, when executing in parallel,

frequent data movement across the system puts pressure on the

communications network.

Since the demand for higher memory bandwidth is an important

part of accelerating large-scale graph processing, Near-Memory

Processing (NMP) has been proposed to accelerate these tasks. The

emergence of 3-D stacked memory technology, in which multiple

DRAM chips are stacked on top of a single logic chip, has opened

the door for the deployment of computation units near the physical

DRAM. Instead of a singlememory stack (often referred to as a cube),

recent NMP architectures for large-graph parallel processing utilize

multiple memory cubes [1–3, 40], which are able to provide both

higher memory capacity and memory-capacity-proportional band-

width. Figure 1 illustrates a general abstraction of near-memory

graph processing systems. Real-world information is abstracted

into graph data structures. Graph processing applications are de-

ployed to computing units inside memory chips and executed in

parallel. Interaction between memory chips is communicated via

an interconnection network.

Executing graph processing applications on NMP architectures is

distinct from traditional systems for a pair of reasons. First, the num-

ber of compute nodes can scale up substantially in a shared-memory

paradigm since cache coherence is often not needed. E.g., Zhao et

al. [41] show substantial performance gains in an NMP system pri-

marily due to the greater parallelism achieved. Second, delivering

information between compute nodes utilizes mechanisms that are

substantially less heavy-weight than message-passing protocols.

Tesseract [1] proposes an NMP architecture for parallel graph

processing with 16 cubes. While providing substantial performance

gains over conventional DRAM-based architectures, its perfor-

mance is ultimately limited by cross-cube communications. To

alleviate such communication overhead, prior works [1, 40] tried

METIS [16] to execute graph partitioning. However, the results

were not promising. It was reported that there are several factors

limiting the performance of METIS on such cases: (1) it leads to sub-

stantial variance between maximum and average communication;

(2) it exacerbates intra-cube computational balance.

42

This work is licensed under a Creative Commons Attribution International 4.0 License.

CF ’23, May 9–11, 2023, Bologna, Italy Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang

Deploy & Execute

AbstractTraffic Network

Social Network

Bioinformatics
[...]

For v in g.vertices:

 gather(v, g)

 apply(v, g)

[...]

Graph Data

Structure

Graph Processing

Application

3D Memory

CUsDRAM

3D Memory

CUsDRAM

3D Memory

CUsDRAM

Flight Network

...

3D Memory

CUsDRAM

Figure 1: Near-memory graph processing system.

Subsequent works have proposed to diminish communication

bottlenecks by alternative preprocessing of the graph [40] or by

run-time adaptations [2, 3]. GraphP [40] proposes source-cut parti-

tioning, in which replicas of the source vertex of each cross-cube

edge are deployed in destination cubes, so that multiple cross-cube

edges sent from a common source vertex to the same destination

cube can be reduced to one. Therefore, lower cross-cube communi-

cation volume is required relative to Tesseract.

Despite the promising results from source-cut partitioning, there

is still room for improvement. We observe that after performing

source-cut partitioning, cross-cube communication still takes a

significant portion of execution time (12%-78%) and energy con-

sumption (14%-73%). This invites the open research question: how

effectively can partitioning algorithms reduce communications over-

heads while maintaining computational balance in an NMP system?

To further explore this question, we introduce a co-design frame-

work for near-memory graph processing, called SuperCut, and eval-

uate its effectiveness. In this paper, we make several contributions:

• We propose a set of graph partitioning algorithms, contain-

ing: (1) a mixed-cut partitioning method which reduces com-

munication volume by recognizing more cross-cube edge

patterns, and (2) a vertex-swapping-based greedy algorithm to

further reduce communication volume by iteratively chang-

ing the vertex distribution.

• We propose a three-phase programming model that is ex-

pressive for general vertex programs and explicitly handles

computation and communication via user-defined functions

along with a custom graph representation to bridge the soft-

ware and hardware design while diminishing the irregularity

of vertex traversal and communication.

• We generate specialized accelerators via high-level synthe-

sis (HLS) and map them to FPGA resources on the logic layer

of 3D-stacked memory cubes.

To evaluate our framework, we build a multi-cube, near-memory

processing simulation platform with reconfigurable logic kernels

as computing units by extending gem5-SALAM [30]. Our evaluation

results show that SuperCut provides up to 1.8× total energy re-

duction and 2.6× speedup with 45% lower extra memory footprint

relative to GraphP.

2 BACKGROUND

2.1 3-D Stacked Memory Technology

The basic principle of near-memory processing is to place com-

putation units inside the memory device(s) to implement compu-

tation closer to the data. The emergence of 3-D stacked memory

technology has provided a practical opportunity for realizing this

vision [34]. These 3-D memories consist of multiple DRAM chips

stacked on top of a single logic chip. The chips are connected by

multiple vertical through-silicon vias (TSVs) so that the DRAM lay-

ers can be accessed with higher bandwidth and lower power than

conventional off-chip memory channels. The underutilized logic

layer has both area and power available for integrating compute

functions [28, 41]. Commercial offerings include the early Hybrid

Memory Cube (HMC) [13] as well as High Bandwidth Memory

(HBM) [14]. While there are variations across the specific imple-

mentations, the core technology is common. To facilitate fair com-

parison with earlier work, we use technology parameters from

HMC in our simulation models.

Figure 2 (on the left) shows the structure of a single memory

cube. Each cube is divided into 32 vertical partitions called vaults

and has 4 SerDes high-speed links to implement off-chip accesses.

With each cube having a capacity of 8 GB, each vault has a capacity

of 256 MB. The logic layer at the bottom of the stack consists of both

interconnections and vault controller logic. Each vault can provide

10 GB/s bandwidth. Therefore, the internal bandwidth of each cube

is 320 GB/s. For off-chip access implemented by the SerDes links,

each link can provide a bandwidth of 120 GB/s. Each cube then

has an external bandwidth of 480 GB/s. In addition, each cube has

unused area on its logic layer. Previous works [1, 5] report that the

spare area is about 60 mm2, comprising 26.5% of the the total die

43

SuperCut: Communication-Aware Partitioning for Near-Memory Graph Processing CF ’23, May 9–11, 2023, Bologna, Italy

area (226 mm2 per cube [32]). While much previous work has used

small, in-order cores to implement the computing units within the

logic layer [1, 28, 41], in this work we assume that the logic layer

has a reconfigurable logic fabric [10, 33].

DRAM

Layers

Logic

Layer

TSVs

Vault

Host

Host

HostC00 C01

C04 C05

C02 C03

C06 C07

C08 C09

C12 C13

C10 C11

C14 C15 Host

Figure 2: A single memory cube (left), and topology of the

Dragonfly cube-to-cube interconnection network (right).

2.2 Memory Interconnection Network

Due to the flexibility of the SerDes links, various interconnect

topologies can be considered. One prevalent topology is Dragon-

fly [17], which has high connectivity and a low network diameter.

Figure 2 (on the right) shows a Dragonfly interconnection network

with 16 cubes. Unused links are used to provide connectivity to

host cores. We use the Dragonfly network topology in this work.

For the 16 cube system, the aggregated internal memory band-

width is 5 TB/s while the bisection bandwidth of the interconnection

network is only 480 GB/s, implying that inter-cube communications

can easily become a performance limiter [8, 40]. In addition to per-

formance, prior work [2] reports that cross-cube communication is

also the primary source of energy consumption in graph processing

applications, taking up 62% of the total.

2.3 Previous Near-Memory Architectures

There are several NMP architectures based on multiple memory

cubes proposed to improve graph processing applications’ perfor-

mance and energy consumption. Tesseract [1] leverages the large

internal bandwidth provided by 16 memory cubes connected in a

Dragonfly topology. A single-issue in-order CPU and a prefetcher,

serving as computation units, are deployed on the logic layer of each

vault. Tesseract adopts Pregel [23] and provides a vertex-centric

programming model. The authors report 9× speedups relative to a

traditional multicore system using out-of-order cores. While this

performance gain is substantial, Dai et al. [8] and Zhang et al. [40]

indicate that Tesseract’s overall memory bandwidth utilization is

less than 40%, implying there are additional performance gains to

be had. The reason for this bandwidth utilization limit is cross-cube

memory accesses, which Tesseract did not try to optimize.

To reduce cross-cube communications, Zhang et al. [40] pro-

posed a graph partitioning method, called source-cut. If two or more

cross-edges share the same source vertex but have different desti-

nation vertices in a common cube, a replica of the source vertex

is placed in the destination cube. Therefore, the data of the source

vertex need only be transferred once. To realize the source-cut parti-

tioning method, Zhang et al. proposed a Two-Phase Vertex Program-

ming model. The GenUpdate phase generates the update for each

replica and the ApplyUpdate phase updates each replica. Cross-

cube communication will only happen before ApplyUpdate. To

hide the remote latency of cross-cube communication, GenUpdate

and communication are overlapped asynchronously. A barrier after

each phase ensures that hardware cache coherence is not required.

Despite of the promising results of Zhang et al. [40], there are

two inherent properties of source-cut partitioning that limits its

potential: (1) Since only one cross-cube edge pattern is considered,

it only considers a fraction of the cross-cube edges that might poten-

tially be eliminated. (2) It adopts a fixed initial vertex distribution,

which limits its options for reducing cross-cube communication

overheads. To address these limitations, we introduce a novel soft-

ware/hardware co-design framework for multi-cube NMP systems,

called SuperCut, to effectively reduce cross-cube communication

overheads while maintaining workload balance.

3 SUPERCUT FRAMEWORK

Here, we describe SuperCut, our co-design framework for near-

memory graph processing. First, the graph dataset is pre-processed

by graph partitioning algorithms (Sec. 3.1 to 3.3). Then the three-

phase programming model (Sec. 3.4) is built with user-defined func-

tions to express the graph processing applications. Next, NMP

accelerators are generated via HLS (Sec. 3.5). The partitioned graph

is stored using the custom graph representation (Sec. 3.6). Both the

graph and the accelerator design is fed into the NMP simulation.

We repeatedly refer to Figure 3 to illustrate several points related

to the graph partitioning. Figure 3(a) shows an example of a small

synthetic graph. This graph has 8 cross-cube edges, each of which

initially represents one cross-cube communication.

3.1 Mixed-Cut Partitioning

Our initial partitioning algorithm is called mixed-cut, which is a

combination of source-cut partitioning and destination-cut parti-

tioning. The source-cut pattern (described by Zhang et al. [40]) is

illustrated by the blue dashed rectangle in Figure 3(a). After the

transformation, the revised graph is shown in blue in Figure 3(b).

For cross-cube updates with a common destination vertex, Mes-

sageFusion [2] dynamically merges these updates at the source

cube before transferring them to the destination cube. Inspired by

MessageFusion, we propose a static graph partitioning method,

called destination-cut, to reduce cross-cube edges exhibiting this

same pattern (multiple cross-cube edges which have the same des-

tination vertex and distinct source vertices, all from the same cube).

Figure 3(a) illustrates an example of the cross-cube edge pattern of

destination-cut partitioning (marked in red). In this example, there

are three cross-cube edges: E5 → E4, E6 → E4, and E7 → E4 which

have the same destination vertex, E4.

In mixed-cut partitioning, we first implement source-cut par-

titioning as the initial partitioning method and then implement

destination-cut partitioning as the secondary method. Figure 3(b)

illustrates the results of mixed-cut partitioning on the example

graph. Here, 6 out of 8 original cross-cube edges (75%) have been

reduced, which is higher than source-cut partitioning alone (37.5%).

3.2 Vertex-Swapping Greedy Algorithm

The partitioning algorithms discussed so far do not consider moving

vertices between cubes. The next element of SuperCut partitioning

44

CF ’23, May 9–11, 2023, Bologna, Italy Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang

v1 Original Vertex

R Replica

D Destination-Cut Vertex

Communication

Source-Cut pattern

(a) Random Partitioning (b) Mixed-Cut Partitioning (c) Mixed-Cut with Vertex Swapping

C04 C05

C00 C01

C05

Destination-Cut pattern

v9

v10

v1 v2 v3 v4

v8

v5

v6

v7

C00 C01

C04 C05

v9

v10

v1 v2 v3 v4

v8

v5

v6

v7
R RR

R

D

C00 C01

C04 C05

swap

v9

v10

v1 v2 v3

v4

v8

v5

v6

v7

R

D

R

R

Figure 3: (a) A synthetic graph as an example to illustrate source-cut and destination-cut patterns. (b) The mixed-cut partitioned

graph. (c) The mixed-cut example graph after swapping E4 and E8.

is a stochastic, greedy optimization algorithm that explicitly moves

vertices across cube boundaries.

Inspired by the iterative placement algorithms of IC physical

design [15], which continuously modify the placement of circuits by

exchanging randomly-selected cells, we propose a greedy algorithm

to diminish the cost of communication while maintaining workload

balance across the cubes. In order to implement a greedy algorithm,

a cost function is needed. The goal of the cost function is to capture

both the execution time and energy consumption of cross-cube

communication, described as follows:

2>BC (�) = U1 ×max(2>BC2><<) + U2 ×mean(2>BC2><<)

where 2>BC2><< is the cube-level communication cost in graph �

calculated by multiplying the number of cross-cube edges and the

number of SerDes links between each cube pair, andmax(2>BC2><<)

is the maximum communication cost among all the cube pairs while

mean(2>BC2><<) is the average communication cost among all the

cube pairs. The first term represents the worst-case runtime of cross-

cube data transfer and the latter term represents the aggregated

energy consumption of cross-cube communications. Parameters

U1 and U2 are adjusted to balance these two different goals into

a single metric, which are set on the basis of the significance of

performance and energy as required in different scenarios.

In order to avoid introducing workload imbalance, we imple-

ment a vertex-swapping strategy as the perturbation function in

the greedy algorithm, shown in Algorithm 1. In this algorithm, �

represents the original graph before the swapping operation, �

represents the mixed-cut graph of the original graph before the

swapping operation, and graph names with suffix ′ represent graphs

after the swapping operation (e.g.,� ′ represents the original graph

after the swapping operation) Initially, all the vertices are mapped

into cubes using a hash function to get an initial vertex distribution

(line 1), e.g., with a modulo function:

cube_index = vertex_indexmodulo total_number_of_cubes

which is widely used in prior works [8, 23, 40]. Next, initialize the

cost value based on the mixed-cut graph� (line 2). In each iteration

(lines 3-9) , the greedy algorithm will randomly swap two vertices

in different cubes (line 4) . Then mixed-cut partitioning is applied to

the graph and the cost is calculated based on the mixed-cut graph

(line 5). If the cost increases, then undo the swap of the selected

vertices (line 6); otherwise, keep the change (lines 7-9).

Algorithm 1: Vertex-Swapping Greedy Mixed-Cut Alg.

input :� : The original graph

output :� : The partitioned graph

1 assign vertices to cubes by a simple hash function;

2 � , 2>BC_>;3 = mixed_cut(�);

3 for 8 = 1; 8 < <0G_8C4A0C8>=B ; 8 + + do

4 � ′ = swap random pair of vertices in distinct cubes in� ;

5 � ′, 2>BC_=4F = mixed_cut(� ′, �);

6 if 2>BC_>;3 < 2>BC_=4F then undo_swap(�) ;

7 else

8 2>BC_>;3 = 2>BC_=4F ;

9 update � with � ′ and � with � ′;

Figure 3(c) illustrates the example graph after being processed

by one iteration of the greedy algorithm. After swapping E4 and E8,

the number of cross-cube edges is reduced from 4 to 3, compared

to mixed-cut partitioning. Since the workload of each vertex is

related to the vertex degree, the total degree of cube C04 remains

unchanged and the total degree of C00 is reduced from 5 to 4.

Therefore, by swapping a pair of vertices in different cubes instead

of moving a single vertex cross cubes, the greedy algorithm can

maintain some degree of workload balance.

3.3 Partial Graph Repartitioning

Since the execution time of the iterative optimization algorithm is

proportional to the number of iterations, it can be slow when the

iteration number is large. Even worse, since the mixed-cut parti-

tioning and cost calculation is performed every iteration (lines 4-5

in Algorithm 1), the larger the scale of the graph, the slower the it-

erative algorithm. Therefore, implementing mixed-cut partitioning

to the whole graph every time after swapping the selected node

pair is inefficient, especially for large-scale graphs. Fortunately, we

observe that only a portion of the graph is modified after exchang-

ing a pair of vertices. This observation provides an opportunity

to increase the efficiency of the vertex-swapping strategy by only

processing the influence scope of the swapping operation, instead

of the whole graph, in each iteration.

45

SuperCut: Communication-Aware Partitioning for Near-Memory Graph Processing CF ’23, May 9–11, 2023, Bologna, Italy

Based on this observation, we propose a method, called partial

graph repartitioning, in which the scope of the input graph con-

sidered is reduced to a smaller-scale subgraph (except for the first

iteration). This method is inspired by FPGA partial reconfiguration

techniques [37] which change the logic for a particular region in

an FPGA without impacting operation in areas outside this region.

This method is illustrated in Figure 4. It consists of 4 steps: ❶ Find

the influence scope of the swapping operation (a small-scale sub-

graph called � ′
BD1

) from the graph� ′ in which a target vertex pair

has been swapped. ❷ Find �BD1 , the influence scope of the swap

perturbation in � which is the mixed-cut graph of � . ❸ Extract

� ′
BD1

from � ′ and implement mixed-cut partitioning to the sub-

graph� ′
BD1

. Then we can get � ′
BD1

, the mixed-cut graph of� ′
BD1

. ❹

Generate � ′, the mixed-cut graph of� ′, by removing �BD1 from �

and embedding � ′
BD1

into � . The cost of � ′ can also be calculated

in the same way. In this way, we process the small-scale subgraph

representing the influence scope of the swap operation instead of

processing the entire graph from scratch each iteration.

To find � ′
BD1

and �BD1 , we process all of the edges 4 ∈ �
′ that

are incident with at least one of the swapped vertices, enumerating

all the possible cases. After checking all the possible scenarios, one

of the key observations is that the boundary of the influence scope

will not be expanded to the whole graph due to the fixed pattern of

mixed-cut. Instead, the distance from any vertex in the influence

scope to one of the swapped vertices is no more than 3. In other

words, the scale of the influence scope is smaller than the whole

graph for datasets with depth greater than 3.

H’sub

G’

G’sub

G

H H

Hsub

H - HsubExtract &

Remove

H’

H’sub

Swap &

Find scope

Extract &

Mixed-cut

Find scope

Mixed-cut Merge

1

2

3

4

4

swap

Figure 4: The partial graph repartitioning method. �BD1 rep-

resents the influence scope of the target vertex pair before

the swapping operation. �BD1 is the mixed-cut graph of�BD1 .

3.4 Three-Phase Programming Model

The two-phase programming model of GraphP has two limitations:

(1) it supports source-cut partitioning, however it doesn’t support

destination-cut partitioning; (2) because the cross-cube data trans-

fer procedure is scheduled by the operating system kernel rather

than explicitly exposed to users, there is a lack of flexibility for

optimizing and/or measuring cross-cube communication. In order

to implement mixed-cut partitioning while maintaining compati-

bility with the source-cut method, we propose a new three-phase

programming model shown in Algorithm 2, which has 3 steps:

Original Vertex Update (OVU) phase (lines 1-2): the original

vertices are processed locally by collecting data from incoming

neighbours and combining these data via computation operations

packaged in the gather_combine() function which is customized

Algorithm 2: Pseudocode of Three-Phase Programming

Model (one iteration).

input :The SuperCut graph � and original graph �

output :Results of graph processing applications

1 for each original vertex E>A6 ∈ � do

2 gather_combine(E>A6)

3 for each cross-cube edge 4 = (D, E) ∈ � do

4 D?30C4 ← gather_combine(D); scatter(D?30C4)

5 for each original vertex E>A6 and replica EA do

6 apply(E>A6); apply(EA)

to adapt to various graph applications. E.g., in the PageRank appli-

cation, gather_combine() is an accumulation operation.

Remote Vertex Update (RVU) phase (lines 3-4): remote up-

dates are generated and transferred across cubes. These updates are

generated using user-defined function gather_combine() where:

(1) destination-cut vertices are processed by combining data from

incoming neighbors, and (2) each cross-cube edge starting from

original vertices is traversed to get its source vertex data directly.

After generating the updates, the user-defined function scatter()

is invoked to transfer these updates across cubes.

Due to the inherent parallelism of graph applications, the OVU

and RVU phase are executed in parallel so that the cross-cube com-

munication latency is somewhatmasked. Once OVU and RVU phase

finish, all the updates are at their targets. It should be noted that

cross-cube communication only happens during the RVU phase.

Apply phase (lines 5-6): In this phase, these updates are pro-

cessed locally by the user-defined apply() function to generate

the result for the current iteration, which also serves as the initial

value of the next iteration.

Distinct from the two-phase programming model in GraphP,

our programming model introduces the RVU phase for remote

updates. If performing source-cut alone, the RVU phase is only

responsible for data movement across cubes without the combining

procedure. In this way, our programming model is not only suitable

for mixed-cut partitioning but also compatible with source-cut.

In addition, the cross-cube communication in our programming

model is explicitly handled by the user-defined function scatter(),

broadening the opportunity for communication functionality. A

barrier before and after the Apply phase ensures that hardware

cache coherence is not required.

3.5 Proposed Near-Memory System

To assess the benefits of SuperCut, we describe a near-memory

system architecture that is similar, in many respects, to the near-

memory systems of previous works. We use an HMC-like cube

as our 3-D stacked memory with 8 GB DRAM capacity and 32

vaults per cube. Consistent with other multi-stack near-memory

architectures, we utilize a Dragonfly topology (see Figure 2) to build

a system with 16 memory cubes, in which each cube is connected

to its neighbor cubes via SerDes links. We put FPGA resources on

the logic layer of each cube, to which the 512 compute engines are

mapped via HLS. These resources only take 0.26mm2 per cube (i.e.,

0.12% of the total area), which is comparable to prior work.

46

CF ’23, May 9–11, 2023, Bologna, Italy Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang

Intra-Cube Swtich

Vertex Computation Engine (VCE)

VCE...

SuperCut NMP Architecture

SerDes Links for Cross-Cube Communication

OVU Computation Unit

Addr Regs Addr Fetcher

Data Fetcher Combine

Status Reg

RVU Computation Unit

Addr Regs

Data Fetcher Combine

Status Reg

Apply Unit

Addr Regs Addr Fetcher

Data Fetcher Apply

Status Reg

DMA...

Direct Memory Access (DMA)

ScatterStatus Regs
Queue

Controller
Send Queue

Vault Controller...Vault Controller

Figure 5: SuperCut near-memory processing architecture in the logic layer of each memory cube, composed of Vertex Computa-

tion Engines (VCEs) for intra-cube computation and DMAs for cross-cube communication. VCE consists of OVU Computation

Unit, RVU Computation Unit, and Apply Unit.

Figure 5 illustrates the SuperCut NMP architecture on the logic

layer of eachmemory cube. For intra-cube computation and commu-

nication (via the existing intra-cube switch), we include one Vertex

Computation Engine (VCE) per vault consisting of 3 components:

OVU Computation Unit, RVU Computation Unit and Apply Unit.

We also design DMAs to implement cross-cube communication.

OVU Computation Unit: The OVU computation unit consists

of a status register, address registers, an address fetcher, a data

fetcher and a combine module. The status register includes the

trigger and status bits, while the address registers are used to store

the starting address of input vectors. The data addresses calculated

by summing starting addresses and offsets fetched by the address

fetcher are fed to the data fetcher. Then the fetched data is combined,

performing the gather_combine() function. E.g., To implement

the PageRank application, the gather_combine() is defined by

users as an accumulation operation. Thus the combine module is

synthesized to be an accumulator by the HLS compiler.

RVU Computation Unit: The RVU computation unit imple-

ments remote update generation. Distinct from the OVU compu-

tation unit, the address fetcher is replaced with a hash table of

cross-cube edge information, based on which remote updates are

generated by the specialized data fetcher and combine module

performing the gather_combine() function.

Updates are transferred to specialized DMAs, along with distinct

destination addresses, through the intra-cube switch. Since the OVU

and RVU phases are overlapped, the OVU and RVU computation

units are triggered together each iteration.

DMA: The DMAs perform the cross-cube communication. We

include a send queue in each DMA to which updates with destina-

tion addresses are sent. The enqueued updates are transferred to

another cube by the specialized scatter module, the realization of

the user-defined scatter() function in the RVU phase. By default,

the scatter() function is defined as a copy function to directly

transfer data across memory cubes. It could also be defined by

users with other purposes to satisfy various functionality of graph

applications.

Apply Unit: The function of the apply unit is to implement

the apply() function of the Apply phase in which updates are

fetched by the data fetcher and then processed to generate results

for original vertices and replicas by the apply module.

3.6 Graph Representation

The representation of the graphs in memory is a key link bridg-

ing the software and hardware system. We propose a new graph

representation with a customized data structure stored in mem-

ory. Figure 6 illustrates an example of the graph representation in

Cube0. In our graph representation, original vertices and replicas

are stored in CSR format while cross-cube edges information is

stored in the form of a hash table where the key is edge ID and

values are neighbors’ IDs and destination addresses. The memory

footprint of the hash table ranges from 0.17 MB to 189 MB, taking

up 10%-13% of the overall memory footprint.

However, only considering the storage format is likely to intro-

duce massive irregular memory accesses, which is more expensive

than sequential memory accesses, when accessing and updating

vertices in memory. To mitigate such irregularity, the order of

vertices in the graph representation is rearranged during prepro-

cessing. Original vertices and replicas are deployed within separate

address ranges, so that these vertices can be accessed and updated

sequentially in the appropriate phases of the programming model.

In addition, since replicas in the same cube are updated by separate

DMAs across cubes, to reduce irregularity of remote update, we also

divide replicas into several address ranges, in the order of the index

of the predecessor’s memory cubes. In this way, replicas originating

from the same cube can be updated contiguously.

Figure 6 illustrates an example of the intra-cube communica-

tion (inside Cube0) and cross-cube communication (from Cube0 to

Cube1) in data layout view. ❶ In the OVU phase, data of original

vertices and replicas from different address ranges are gathered and

combined based on graph topology to generate updates for original

vertices in Cube0. ❷ In the RVU phase, data of adjacent original

vertices listed in the hash table is processed to generate remote

updates. Separate from intra-cube communication, these updates

are buffered in the send queue of the DMAs and then transferred

to replicas originating from Cube0 in Cube1 using the destination

addresses in the table. ❸ After the first two phases finish, updates

are fetched from memory to apply for target vertices.

47

SuperCut: Communication-Aware Partitioning for Near-Memory Graph Processing CF ’23, May 9–11, 2023, Bologna, Italy

Cube0 Cube1

Cube0 Replicas

Cube2 Replicas

Cube15 Replicas

...

Original Vertices
2

Cross-Cube Edges

1

3

2

Cube1 Replicas

Cube2 Replicas

Cube15 Replicas

...

Original Vertices

Edge IDs
Nbr Org

Vertex IDs

Dest

Address

0 0, 3, 5 Cube1 Addr

1 2, 4 Cube2 Addr

2

Figure 6: Diagram of graph representation in Cube0 and data

communication (inside Cube0 and from Cube0 to Cube1).

4 EXPERIMENTAL METHODOLOGY

Simulation platform: We have adapted the gem5-SALAM [30]

framework to build a bare-metal full-system NMP simulation plat-

form. The host-side CPUs are based on the ARM ISA and the mem-

ory system consists of 16 HMC-like cubes to form amemory-centric

network using a Dragonfly topology [17]. For our simulations, we

use the standard distribution of gem5 [4] that contains a stacked

memory modeled after HMC and LLVM-based HLS accelerators to

realize the computation units and programmable DMAs at 500 MHz.

Datasets: Table 1 shows the graph datasets used in our experiments.

All these input graphs are collected from the Stanford Network

Analysis Project (SNAP), a general-purpose graph library for net-

work analysis and graph mining. These graphs have a wide range

of types and fields, and are in the same scale range as prior works.

In addition, Table 1 also shows maximum and average degree of

graphs which have varying in-degree distributions, ranging from

regular-like to powerlaw-like distributions.

Workloads: We code four popular graph processing applications in

C using the proposed three-phase programming model. PageRank

(PR) iteratively calculates the importance of web pages [6]. Average

Teenage Follower (ATF) calculates the number of teenage followers

of every user represented by vertices in the graph and the average

number of teenage followers over years old [12]. Breadth-First

Search (BFS) searches a tree data structure, starting from a root ver-

tex and traversing all the neighbours at the same depth iteratively. It

is coded with a brute-force data parallel method to make it suitable

for SIMD architecture [29]. Weakly Connected Components (WCC)

finds a subgraph in which all the vertices are connected by some

paths in which the direction of edges are ignored [35].

Evaluation methods: To evaluate the SuperCut framework, we

simulate all the applications across all the graph datasets running

on the NMP platform. We do the same for Tesseract and GraphP

as well. Note that this implies we are comparing our proposed

partitioning methods to the previously described Tesseract and

GraphP on a common hardware platform (described in Section 3.5).

The preprocessing step is implemented with Python and Net-

worKit library [36]. Without any optimization, the execution time

of the single-thread python version ranges from several minutes

to multiple hours. Since the implications of preprocessing substan-

tially vary among different implementations, we show the number

of iterations the greedy algorithm takes for each graph in Table 1

(executed off-line). We hope this work would inspire follow-on

studies for efficient implementations that would speedup this step.

In this work, we focus on exploring the on-line benefits of the par-

titioning methods. The parameters U1 and U2 in the cost function

are set to U1 = 0.2 and U2 = 0.8 so as to emphasize energy savings

somewhat over performance as the optimization goal.

Since the HLS accelerators are triggered and run in parallel, we

use the maximum execution time across the HLS accelerators as

the execution time for each iteration. The energy is computed by

summing the dynamic energy consumption contributions from the

local computation phases and the cross-cube communication phase.

The total energy consumption of the HLS accelerators in each phase

is modeled by gem5-SALAM. The energy consumption of the SerDes

links, memory accesses to DRAM layers, and other modules on the

logic layer are drawn from prior works [13, 28, 41].

5 EVALUATION

5.1 Energy Consumption and Performance

We first quantitatively examine the energy consumption benefits

of SuperCut, comparing SuperCut with 2 baselines: Tesseract and

GraphP. Figure 7 shows the normalized energy consumption break-

down into computation, local memory accesses, and cross-cube

communication relative to Tesseract. Focusing first on the energy

consumption reduction of cross-cube communication, we observe

that all the applications benefit from cross-cube communication

reduction. The energy consumption reduction of cross-cube com-

munication for each application ranges from 3.12× to 7.23× relative

to Tesseract. Compared with GraphP, the energy consumption re-

duction of cross-cube communication ranges from 1.32× to 3.09×.

This is because SuperCut incorporates the aggregated cross-cube

communication volume as one of the optimization targets. Due to

the energy reduction of cross-cube communication, overall energy

consumption is also reduced. The overall energy consumption re-

duction ranges from 1.1× to 3.09× and 1.06× to 1.84× relative to

Tesseract and GraphP, respectively.

We next examine performance improvement by showing the

overall speedup, defined as the execution time of the four graph ap-

plications relative to Tesseract, in Figure 8. Examining the last bar of

each application, we observe that all the applications improve over

both Tesseract andGraphP. Particularly, comparedwith GraphP (i.e.,

the state-of-the-art work), the geometric mean speedup is 1.59×,

1.64×, 1.24×, 1.33× for PageRank, ATF, BFS and WCC, respectively.

We conclude that due to lower cross-cube communication volume

and a balanced computational load, the performance of SuperCut

is strong for all of the applications and all of the graph datasets.

Turning our attention to how the energy consumption and per-

formance benefit varies across applications, we observe a common

relationship for both of them between applications with cross-cube

communication and local memory access ratios. Figure 9 illustrates

the average energy delay product (EDP) of each application across

all the graph datasets with cross-cube communication ratio calcu-

lated as the average fraction of the data volume transferred across

cubes to the overall data access volume. Here, we observe that high

vertex activity applications (i.e., PageRank and ATF) with higher

cross-cube communication ratio show more significant EDP reduc-

tion. This is consistent with a large communication volume within

these applications. Since all the vertices in these applications are

active in each iteration, the communication-to-computation ratio is

48

CF ’23, May 9–11, 2023, Bologna, Italy Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang

Table 1: Graph dataset.

Graph Graph Vertex Edge Description Iteration Maximum Average

Name Type Count Count Count Degree Degree

Wiki-Vote (WV) Directed 7.1K 103.7K Wikipedia who-votes-on-whom network [19] 200K 893 14.6

ego-Twitter (TT) Directed 81K 1.8M Social circles from Twitter [24] 500K 1205 21.7

Amazon0302 (AZ) Directed 262.1K 1.2M Amazon product co-purchasing network [18] 3M 5 4.7

Com-Amazon (AU) Undirected 334.9K 925.9K Amazon product network [39] 5M 168 2.8

Com-DBLP (DU) Undirected 317.1K 1M DBLP collaboration network [39] 5M 306 3.3

soc-LiveJournal1 (LJ) Directed 4.8M 69M LiveJournal online social network [20] 20M 20293 14.2

Local Computation Local Memory Access Cross-cube Communication

WV TT AZ AU DU LJ WV TT AZ AU DU LJ WV TT AZ AU DU LJ WV TT AZ AU DU LJ

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

0

0.2

0.4

0.6

0.8

1.0

(a)

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

(b)

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

(c)

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

(d)

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

T
e

s
s
e

ra
t

G
ra

p
h

P
S

u
p

e
rC

u
t

Figure 7: Normalized energy consumption breakdown of (a) PageRank, (b) ATF, (c) BFS, and (d) WCC applications, normalized

to Tesseract. WV, TT, AZ, AU, DU and LJ are individual graphs.

Tesseract Source-Cut SuperCut-Greedy

O
v
e

ra
ll

S
p

e
e

d
u

p

0

0.5

1.0

1.5

2.0

2.5

3.0

(a)

WV TT AZ AU DU LJ GM

(b)

WV TT AZ AU DU LJ GM

(c)

WV TT AZ AU DU LJ GM

(d)

WV TT AZ AU DU LJ GM

Figure 8: Overall speedup of (a) PageRank, (b) ATF, (c) BFS, and (d) WCC applications, normalized to Tesseract. WV, TT, AZ, AU,

DU and LJ are individual graphs, GM is the geometric mean.

0%

1.2%

2.5%

3.8%

5%

C
ro

s
s
-C

u
b

e
 R

a
tio

 (%
)

Tesseract GraphP Greedy Cross-Cube ratio

A
v
e

ra
g

e
 N

o
rm

a
liz

e
d

 E
D

P

0

0.25

0.50

0.75

1.00

PR ATF BFS WCC

Figure 9: Average energy delay product and cross-cube com-

munication ratio.

high, leading to greater potential benefits achievable by SuperCut.

In contrast, the property of low vertex activity applications (i.e., BFS

and WCC), that only a portion of vertices participate each iteration,

leads to a lower communication ratio. Thus, SuperCut achieves

lower EDP reduction on these applications. We conclude that Su-

perCut is most beneficial for high vertex activity applications with

a larger cross-cube communication ratio.

5.2 Mixed-Cut Partitioning

As mentioned in Section 3, SuperCut incorporates both the mixed-

cut partitioning method and the greedy algorithm, illustrated in

Figure 3(b) and (c) respectively. To understand how different compo-

nents contribute to the benefits of SuperCut in terms of performance

and energy consumption, we implement mixed-cut partitioning

49

SuperCut: Communication-Aware Partitioning for Near-Memory Graph Processing CF ’23, May 9–11, 2023, Bologna, Italy

without greedy in SuperCut. Since all the graphs have similar ten-

dency, here we take AZ as an example. Figure 10(a) shows the

energy of all four applications on AZ. We have two observations:

First, mixed-cut partitioning reduces the overall energy consump-

tion by generating less communication volume than GraphP on

all the applications, validating our assumption that recognizing

more edge patterns is beneficial to communication reduction. Sec-

ond, the greedy algorithm combined with mixed-cut partitioning

further reduces cross-cube communication volume by optimizing

the vertex distribution. Figure 10(b) illustrates the overall speedup.

From the figure, we can draw the same conclusions about mixed-cut

partitioning in terms of performance. Note that the high vertex

activity applications benefit the most from the inclusion of the

greed algorithm.

Local Computation

Local Memory Access

Cross-Cube Communication

PR ATF BFS WCC

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

0

0.2

0.4

0.6

0.8

1.0

(a)

S
o

u
rc

e
-C

u
t

M
ix

e
d

-C
u

t
G

re
e

d
y

S
o

u
rc

e
-C

u
t

M
ix

e
d

-C
u

t
G

re
e

d
y

S
o

u
rc

e
-C

u
t

M
ix

e
d

-C
u

t
G

re
e

d
y

S
o

u
rc

e
-C

u
t

M
ix

e
d

-C
u

t
G

re
e

d
y

Source-Cut

Mixed-Cut

Greedy

O
v
e

ra
ll

S
p

e
e

d
u

p

0

0.5

1.0

1.5

2.0

2.5

3.0

(b)
PR ATF BFS WCC

Figure 10: (a) Energy consumption breakdown and (b) over-

all speedup of mixed-cut partitioning on Amazon0302 (AZ),

normalized to Tesseract.

5.3 Memory Footprint

Since SuperCut adopts the replica mechanisms of GraphP, both

these works introduce extra memory footprint. In addition, Super-

Cut also generates destination-cut vertices during partitioning, the

topological information of which is stored in memory. To assess the

feasibility of SuperCut in terms of memory usage, we quantitatively

examine the extra memory footprint of GraphP and SuperCut.

The evaluation results show that the extra memory footprint of

SuperCut is 48%-75% of GraphP. This benefit comes from 3 facts:

(1) SuperCut is better than GraphP at reducing the aggregated cross-

cube communication volume (i.e., it introduces fewer replicas);

(2) destination-cut vertices are only added for the pattern with

multiple cross-cube edges, which guarantees that SuperCut has a

lower memory footprint than GraphP; and (3) data for destination-

cut vertices is buffered in the queue of DMAs instead of in memory.

6 RELATEDWORK

6.1 Near-Memory Graph Processing Systems

Besides the comparison baselines of Tesseract and GraphP, there are

other NMP architectures designed to accelerate large-scale graph

processing. GraphPIM [26] proposes an instruction offloadingmech-

anism to computation units on the logic layer of a single HMC

device instead of a network consisting of multiple cubes. Message-

Fusion [2] proposes an NMP architecture to reduce cross-cube

communication in transit by coalescing multiple cross-cube mes-

sages before reaching the same destination vertex. We take inspira-

tion from this technique in our destination-cut static partitioning

algorithm. GraphVine [3] explores another way to reduce HMC

network congestion at runtime using multicast techniques. Both

these works failed to optimize the distribution of vertices, limiting

their efficiency. GraphH [8], GraphQ [43] and GraphRing [21] tried

to regularize communication overhead by proposing reconfigurable

HMC interconnection, a vertex reordering mechanism, and a ring-

structured memory network, respectively. None of them directly

reduced communication volume or considered graph distribution.

6.2 General Graph Partitioning Strategies

For general distributed graph processing systems, graph partition-

ing strategies also play a vital role in communication optimization

and workload balance, which can be classified [9] into edge-cut and

vertex-cut. PowerGraph [11] and PowerLyra [7] adopt vertex-cut

to minimize vertex numbers across partitions by assigning edges

to replicas in different machines. Although vertex-cut shows good

load balance for skewed graphs, it is not suitable for near-memory

graph processing because it leads to higher communication cost and

requires more complicated implementation mechanisms. Therefore,

the partitioning algorithms designed for near-memory graph pro-

cessing, including the algorithms proposed in this work, are edge-

cut [22, 23, 42] in which vertices of the graph are evenly assigned

to minimize the number of edges across partitions. Pregel [23] is

an early distributed graph processing system which adopts random

edge-cut partitioning and provides the message-passing mecha-

nism to deliver updates between machines. Tesseract adopts this

approach. The partitioning proposed in GraphP [40] is also an edge-

cut method in essence, in which out-going edges across memory

cubes are partitioned. The basic principle of destination-cut parti-

tioning as an edge-cut method where edges sharing a destination

are combined has been adopted for traditional systems [11, 42]. In

this work, we are interested in its effectiveness on near-memory

systems, in which the overheads of a cross-cube data transfer are

very different than a message-passing send/receive pair.

7 CONCLUSIONS

For many graph processing applications, especially those with high

vertex activity, cross-cube communication is a performance bottle-

neck on multi-cube NMP architectures. Here, we propose SuperCut,

a framework for near-memory architectures to effectively reduce

communication overheads while maintaining computational bal-

ance. We evaluate SuperCut on an NMP architecture based on

reconfigurable logic using 4 representative graph applications and

6 real-world graphs. Results show that it provides up to 1.8× total

energy consumption reduction and 2.6× speedup with 45% lower

extra memory footprint relative to the current state-of-the-art.

ACKNOWLEDGMENTS

This work is supported by NSF under grants CNS-1739643 and

CNS-1763503.

50

CF ’23, May 9–11, 2023, Bologna, Italy Chenfeng Zhao, Roger D. Chamberlain, Xuan Zhang

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.
In Proc. of 42nd International Symposium on Computer Architecture. ACM, New
York, NY, USA, 105–117.

[2] Leul Belayneh, Abraham Addisie, and Valeria Bertacco. 2019. MessageFusion:
On-path message coalescing for energy efficient and scalable graph analytics. In
Proc. of IEEE/ACM International Symposium on Low Power Electronics and Design.
IEEE, 6 pages.

[3] Leul Belayneh and Valeria Bertacco. 2020. GraphVine: Exploiting multicast for
scalable graph analytics. In Proc. of Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 762–767.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[5] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google workloads for consumer devices:
Mitigating data movement bottlenecks. In Proc. of 23rd Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems. ACM, New York, NY,
USA, 316–331.

[6] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems 30, 1-7 (1998), 107–117.

[7] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
2019. PowerLyra: Differentiated graph computation and partitioning on skewed
graphs. ACM Transactions on Parallel Computing 5, 3 (2019), 13:1–13:39.

[8] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan
Liu, et al. 2018. GraphH: A processing-in-memory architecture for large-scale
graph processing. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 38, 4 (2018), 640–653.

[9] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, et al. 2018. Gluon: A communication-optimizing substrate for
distributed heterogeneous graph analytics. In Proc. of 39th Conference on Pro-
gramming Language Design and Implementation. ACM, New York, NY, USA,
752–768.

[10] Mingyu Gao and Christos Kozyrakis. 2016. HRL: Efficient and flexible recon-
figurable logic for near-data processing. In Proc. of IEEE Int’l Symp. on High
Performance Computer Architecture. IEEE, 126–137.

[11] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed graph-parallel computation on natural graphs.
In Proc. of 10th USENIX Symp. on Operating Systems Design and Implementation.
USENIX, 17–30.

[12] Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun. 2014.
Simplifying scalable graph processing with a domain-specific language. In Proc.
of IEEE/ACM Int’l Symp. on Code Generation and Optimization. ACM, New York,
NY, USA, 208–218.

[13] Joe Jeddeloh and Brent Keeth. 2012. Hybridmemory cube newDRAMarchitecture
increases density and performance. In Proc. of Symposium on VLSI Technology
(VLSIT). IEEE, 87–88.

[14] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho
Jin, and Keith Kim. 2017. HBM (high bandwidth memory) DRAM technology
and architecture. In Proc. of IEEE International Memory Workshop (IMW). IEEE,
4 pages.

[15] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. 2011. VLSI Physical
Design: From Graph Partitioning to Timing Closure. Springer.

[16] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing 20, 1
(1998), 359–392.

[17] Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. 2013. Memory-centric
system interconnect design with hybrid memory cubes. In Proc. of 22nd Int’l Conf.
on Parallel Arch. and Compilation Techniques. IEEE, 145–155.

[18] Jure Leskovec, Lada Adamic, and Bernardo Huberman. 2007. The dynamics of
viral marketing. ACM Trans. on the Web 1, 1 (2007), 5:1–5:39.

[19] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks
in social media. In Proc. of SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, NY, USA, 1361–1370.

[20] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.

[21] Zerun Li, Xiaoming Chen, and Yinhe Han. 2022. GraphRing: an HMC-ring based
graph processing framework with optimized data movement. In Proc. of 59th
ACM/IEEE Design Automation Conference. ACM, New York, NY, USA, 1063–1068.

[22] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephMHellerstein. 2012. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. Proceedings of the VLDB Endowment 5,
8 (2012), 716–727.

[23] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proc. of ACM Int’l Conf. on Management of Data. ACM, New
York, NY, USA, 135–146.

[24] Julian McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles in
Ego Networks. In Proc. of 25th International Conference on Neural Information
Processing Systems. Curran Associates, Inc., 539–547.

[25] Batul J Mirza, Benjamin J Keller, and Naren Ramakrishnan. 2003. Studying
recommendation algorithms by graph analysis. Journal of Intelligent Information
Systems 20, 2 (2003), 131–160.

[26] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. GraphPIM: Enabling instruction-level PIM offloading in
graph computing frameworks. In Proc. of IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 457–468.

[27] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. 2016. Energy Efficient Architecture for Graph
Analytics Accelerators. In Proc. of 43rd International Symposium on Computer
Architecture. IEEE, 166–177.

[28] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijay-
alakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. NDC:
Analyzing the impact of 3D-stacked memory+logic devices on MapReduce work-
loads. In Proc. of IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 190–200.

[29] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized
architectures. In Proc. of Int’l Symp. on Workload Characterization. IEEE, 110–119.

[30] Samuel Rogers, Joshua Slycord, Mohammadreza Baharani, and Hamed Tabkhi.
2020. gem5-SALAM: A System Architecture for LLVM-based Accelerator Model-
ing. In Proc. of 53rd IEEE/ACM Int’l Symp. on Microarchitecture. IEEE, 471–482.

[31] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and
Ben Y Zhao. 2010. Measurement-calibrated graph models for social network
experiments. In Proc. of 19th Int’l Conf. on World Wide Web. ACM, New York, NY,
USA, 861–870.

[32] Manjunath Shevgoor, Jung-Sik Kim, Niladrish Chatterjee, Rajeev Balasubramo-
nian, Al Davis, and Aniruddha N Udipi. 2013. Quantifying the relationship
between the power delivery network and architectural policies in a 3D-stacked
memory device. In Proc. of 46th IEEE/ACM Int’l Symp. on Microarchitecture. IEEE,
198–209.

[33] Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopou-
los, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu. 2021. FPGA-based
Near-Memory Acceleration of Modern Data-Intensive Applications. IEEE Micro
41, 4 (2021), 39–48.

[34] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander
Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra. 2019. Near-
memory computing: Past, present, and future. Microprocessors and Microsystems
71 (2019), 102868.

[35] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS
and coloring-based parallel algorithms for strongly connected components and
related problems. In Proc. of IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, 550–559.

[36] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. Net-
worKit: A tool suite for large-scale complex network analysis. Network Science 4,
4 (2016), 508–530.

[37] Kizheppatt Vipin and Suhaib A Fahmy. 2018. FPGA dynamic and partial reconfig-
uration: A survey of architectures, methods, and applications. Comput. Surveys
51, 4 (2018), 72:1–72:39.

[38] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Trans. on Neural Networks and Learning Systems 32, 1 (2020), 4–24.

[39] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[40] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communi-
cation for PIM-based graph processing with efficient data partition. In Proc. of
Int’l Symp. on High Performance Computer Architecture. IEEE, 544–557.

[41] Chenfeng Zhao, Xuan Zhang, and Roger D Chamberlain. 2022. Executing Data
Integration Effectively and Efficiently Near the Memory. IEEE Design & Test 29,
2 (2022), 65–73.

[42] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In Proc. of USENIX
Symp. on Operating Systems Design and Implementation. USENIX, 301–316.

[43] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. 2019. GraphQ: Scalable PIM-based graph processing. In Proc. of
52nd IEEE/ACM International Symposium on Microarchitecture. ACM, New York,
NY, USA, 712–725.

51

