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Bone mineralization is critical to maintaining tissue
mechanical function. The application of mechanical
stress via exercise promotes bone mineralization via
cellular mechanotransduction and increased fluid
transport through the collagen matrix. However,
due to its complex composition and ability to
exchange ions with the surrounding body fluids,
bone mineral composition and crystallization is also
expected to respond to stress. Here, a combination
of data from materials simulations, namely density
functional theory and molecular dynamics, and
experimental studies were input into an equilibrium
thermodynamic model of bone apatite under stress
in an aqueous solution based on the theory of
thermochemical equilibrium of stressed solids.
The model indicated that increasing uniaxial
stress induced mineral crystallization. This was
accompanied by a decrease in calcium and carbonate
integration into the apatite solid. These results
suggest that weight-bearing exercises can increase
tissue mineralization via interactions between bone
mineral and body fluid independent of cell and matrix
behaviours, thus providing another mechanism by
which exercise can improve bone health.
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1. Introduction
Bone is a three phase composite constituted of a proteinaceous collagen matrix, nanocrystalline
carbonated apatite and aqueous body fluids [1]. Changes in the relative concentration and
organization of these different components cause significant modifications to bone mechanics.
For example, decreased mineral content leads to reduced bone modulus resulting in clinical
conditions such as rickets and osteomalacia [1–4]. Therefore, it is essential to understand how
bone mineralization and mineral content is regulated in the body.

Bone’s ability to increase its mineral content and mass in response to mechanical loads, also
known as Wolff’s Law [5], has been well established with Galileo describing this effect in 1638
[6]. This ability of bone to adapt to the mechanical environment has primarily been attributed
to cellular mechanotransduction. Specifically, it has been shown that osteocytes, dendritic cells
embedded in the bone matrix, respond to changes in fluid flow through the bone porosity
by increasing pro-osteoblastic signalling [7]. These signals recruit and activate bone-depositing
osteoblasts resulting in the deposition of greater quantities of more highly mineralized bone
tissue. This process has been shown to be in part responsible for the increase in bone density
in high-intensity athletes and conversely the bone loss seen in astronauts [8,9].

However, mineralization of bone has also been shown to be physiochemically controlled in
the absence of cellular activity. Many studies have shown that the chemistry of the protein
matrix enhances the nucleation and growth of bone mineral by reducing the energy barriers
to mineralization [10–13]. Further, recent investigations of the effects of fluid shear stress and
cyclic loading on collagen matrix mineralization, have shown that increased loading promoted
increased matrix mineralization due to improved fluid transport [14,15]. These results suggest
that, beyond the chemistry of the matrix, mechanical loading may play a central role in the
physiochemical mineralization of bone tissue.

Despite studies of the cellular and matrix mineralization responses to applied loads, little
work has been done examining how mechanical forces promote independent crystallization
and growth of bone apatite. Bone apatite is a unique calcium phosphate mineral that is highly
sensitive to substitutional exchanges in aqueous environments [16]. Specifically, bone apatite
contains approximately 6 wt% of carbonate substitutions for phosphate, which is concomitant
with an exchange of sodium for calcium to maintain charge balance [16]. These substitutions
have been shown to significantly affect the lattice structure, crystal size, solubilty and mechanics
of the nanocrystals [17,18]. This complex relationship between substitution, morphology and
mechanics has led us to hypothesize that loading may regulate bone mineral dissolution and
growth independent of cellular or matrix contributions.

Therefore, in this study we apply a combination of materials simulation, density functional
theory (DFT) and molecular dynamics (MD), and experimental data to identifying the con-
sequences of applied load on the dissolution/crystallization of bone apatite in aqueous solutions
using the theory of thermochemical equilibrium of solids under stress [19–21]. Our paper is
organized as follows. In §2a, we derive the specific conditions for equilibrium between a stressed
solid apatite in aqueous solution. Solving these conditions for the equilibrium state requires
the knowledge of the equations of states for electrochemical potential of the ionic species
in the solid and the solution (§2b). The equilibrium state of the stressed apatite in aqueous
solution is referenced to that of the solid/liquid system under hydrostatic pressure (§2c). An
approximate solution for the equilibrium state of the solid/liquid system is finally obtained (§2d)
by combining literature data from materials simulations and experiments with the linearized
theory of thermochemical equilibrium of the stressed solid.

2. Thermochemical equilibrium of solid apatite and water under stress
(a) Conditions for equilibrium
Apatite is a calcium phosphate mineral which can readily substitute sodium (Na+) for calcium
(Ca2+) ions and carbonate (CO2−

3 ) for phosphate (PO3−
4 ) ions. This solid is assumed to be in
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H2O
CO2

3
– (aq)

PO3
4
– (aq)

Figure 1. Schematic illustration of the model system. A solid apatite subsystem is separated from an aqueous solution by a
boundary that is movable, diathermal and permeable to all ionic chemical species. The outer boundary of the apatite/water
composite is rigid, iso-entropic and impermeable to all species.

thermal, mechanical and chemical contact with an aqueous solution of the same constitutive ions
(figure 1). We define the following compositional variables for the cationic and anionic species
in aqueous solution, CL

Na, CL
Ca, CL

C, CL
P. The upper script refers to a liquid solution. We use short-

hand notation for the lower indices, Na, Ca, C and P for Na+, Ca2+, CO2−
3 and PO3−

4 , respectively.
These compositions are defined in terms of number of moles per unit volume of solution. CL

H
also stands for the number of moles of water per unit volume of liquid. The ionic compositions
in the solid apatite are defined as C′ S

Na, C′ S
Ca, C′ S

C , C′ S
P where the upper script S stands for solid.

Since the solid may be subjected to mechanical stress (and therefore undergo strain), the prime
indicates that the number of moles is taken per unit volume of the solid in the reference state
for measuring the strain. All subsequent primed quantities will be per unit volume of reference
state for measuring strain. The thermodynamic fundamental equation of this composite system
is written in the energy representation as:

E =
∫

V′
dV′e′ S +

∫
VL

dVLeL, (2.1)

where the density of energy per unit volume in the reference state for measuring strain is given
by

e′ S = e′ S
(

s′S, ↔
ε , C′ S

Na , C′ S
Ca, C′ S

C , C′ S
P ,DS

)
, (2.2)

and the density of energy of the liquid solution is

eL = eL(sL, CL
Na , CL

Ca, CL
C, CL

P, CL
H,DL). (2.3)

In equations (2.2) and (2.3), s′ S and sL are densities of entropy and ↔
ε is the strain tensor

assuming small strain and linear elasticity. DS and DL are electric displacement which are
functions of the ionic compositions in the solid and liquid, respectively.

The equilibrium state of the apatite/aqueous solution composite system is found by
minimizing the total energy (equation (2.1)) with respect to the system’s degrees of freedom under

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ay
 2

02
3 



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220242

...............................................................

constraints. Conservation of number of moles of the different chemical species imposes:

νNa =
∫

V′
dV′C′ S

Na +
∫

VL
dVLCL

Na, (2.4a)

νCa =
∫

V′
dV′C′ S

Ca +
∫

VL
dVLCL

Ca, (2.4b)

νC =
∫

V′
dV′C′ S

C +
∫

VL
dVLCL

C, (2.4c)

νP =
∫

V′
dV′C′ S

P +
∫

VL
dVLCL

P (2.4d)

and νH =
∫

VL
dVLCL

H, (2.4e)

with νNa, νCa, νC, νP and νH constants.
Charge conservation states that

Q =
∫

V′
dV′e[1C′ S

Na + 2C′ S
Ca + (−2)C′ S

C + (−3)C′ S
P ]

+
∫

VL
dVL[1CL

Na + 2CL
Ca + (−2)CL

C + (−3)CL
P]. (2.5)

In equation (2.5), e is the absolute value of the charge of an electron.
Volume conservation associated with mechanical deformation of the solid but also dissolution

or recrystallization of the solid apatite is written as

(δu.nS)nSdA + δySnSdA = δyLnLdA. (2.6)

In equation (2.6), dA is an element of surface on the solid/liquid interface. We are not using
prime quantities for the element of surface of the solid since the solid that may dissolve or
recrystallize may do so under stressed (strained) conditions. δu.nS is the normal component of
the elastic displacement field δu, where nS is the outward normal to the solid/liquid interface.
δyS is the amount of dissolution or recrystallization along the solid normal. δyLnLdA is the change
in volume of the liquid due to elastic deformation and dissolution/recrystallization of the solid
apatite. Since the normal to the liquid/solid interface nL = −nS, the volume conservation reduces
to

δyS + δu.nS = −δyL. (2.7)

Entropy conservation imposes that the total entropy be constant, namely:

S =
∫

V′
dV′s′S +

∫
VL

dVLsL. (2.8)

Finally, in the apatite solid, Na+ and Ca2+ substitute for each other on a cation sublattice, such
that

C′ S
Na + C′ S

Ca = C′
+, (2.9a)

where C′+ is the density of cation sites in the apatite lattice per unit volume of reference state for
measuring strain.

In the apatite solid, CO2−
3 and PO3−

4 substitute for each other on an anion sublattice, such that

C′ S
C + C′ S

P = C′
−, (2.9b)

where C′− is the density of anion sites in the apatite lattice per unit volume of reference state
for measuring strain. Following Larché & Cahn [19,20] and Johnson & Schmalzried [21], we
employ the Lagrange multipliers method to minimize equation (2.1) with the above constraints.
We introduce the Lagrange multipliers μNa, μCa, μC, μP and μH for the constraints given by
equations (2.4(a–e)). We also introduce the multipler θ for entropy conservation (equation (2.8))
and the multiplier φc for the charge conservation.
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Variation with respect to the entropy densities leads to the conditions for thermal equilibrium:

∂e′S

∂s′S = ∂eL

∂sL = θ . (2.10)

In equation (2.10), the partial derivatives are taken at constant strain and compositions.
Thermal equilibrium is achieved when the temperature is uniform within the solid/liquid
composite system.

Again, following [19–21], the variation with respect to geometrical degrees of freedom, namely
strain and volume, using the constraint given by equation (2.7), lead to the bulk and interfacial
conditions for equilibrium.

Mechanical equilibrium inside the solid requires:

div′↔
σ = 0, (2.11)

where ↔
σ = ∂e′ S/∂

↔
ε is the stress tensor and div′ stands for the divergence expressed in a system of

coordinate relative to the reference state for measuring strain.
Mechanical equilibrium at the solid/liquid interface implies that the normal component of the

stress at the interface balances the pressure, P, in the liquid:

↔
σnS = −PnS. (2.12)

Further, the variation with respect to volume gives the condition for dissolution/recrystal-
lization:

jS = JL, (2.13a)

with

jS = eS − θsS − φce[1CS
Na + 2CS

Ca + (−2)CS
C + (−3)CS

P]

− μNaCS
Na − μCaCS

Ca − μCCS
C − μPCS

P (2.13b)

and

jL = eL − θsL − φce[1CL
Na + 2CL

Ca + (−2)CL
C + (−3)CL

P]

− μNaCL
Na − μCaCL

Ca − μCCL
C − μPCL

P − μHCL
H, (2.13c)

using Euler’s equation for a fluid, jL = −P. Equation (2.13a) simplifies to

jS = −P.

This is the condition for dissolution/recrystallization of the solid at the solid/liquid interface.
Note that this condition for equilibrium involves unprimed quantities in jS because the solid that
may dissolve or recrystallize may be subjected to stress (or strain). This condition can be converted
into densities per unit volume of reference state for measuring strain as follows:

j′ S = −P
(

1 + Tr↔
ε
)

. (2.14)

Here, Tr↔
ε stands for the trace of the strain tensor, i.e. the sum of the diagonal terms which

effectively represents the relative change in volume due to deformation per unit volume of
reference state for measuring strain.
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Finally, using the Lagrange multipliers method, the variations with respect to composition in
the solid and liquid is obtained as:

∫
V′

dV′
{

∂e′S

∂C′ S
Na

δC′ S
Na + ∂e′S

∂C′ S
Ca

δC′ S
Ca + ∂e′S

∂C′ S
C

δC′ S
C + ∂e′S

∂C′ S
P

δC′ S
P

− φce[1δC′ S
Na + 2δC′ S

Ca + (−2)δC′ S
C + (−3)δC′ S

P ]

−μNaδC′ S
Na − μCaδC′ S

Ca − μCδC′ S
C − μPδC′ S

P

}
+

∫
V′

dV′E.δDS

+
∫

VL
dVL

{
∂eL

∂CL
Na

δCL
Na + ∂eL

∂CL
Ca

δCL
Ca + ∂eL

∂CL
C

δCL
C

+ ∂eL

∂CL
P

δCL
P + ∂eL

∂CL
H

δCL
Hφce[1δCL

Na + 2δCL
Ca + (−2)δCL

C + (−3)δCL
P]

− μNaδCL
Na − μCaδCL

Ca − μCδCL
C−μPδCL

P − μHδCL
H

}
+

∫
VL

dVLE.δDL = 0. (2.15)

In equations (2.15), E is the electrostatic field. It is useful to define a scalar potential function,
φ such that, E= ∇φ. Using Gauss theorem and the divergence theorem, one can show that∫

V′
dV′E.δDS = −

∫
A′

dA′φSδDSnS +
∫

V′
dV′φSe[1δC′ S

Na + 2δC′ S
Ca + (−2)δC′ S

C + (−3)δC′ S
P ] (2.16a)

and ∫
VL

dVLE.δDL = −
∫

AL
dALφLδDLnL +

∫
VL

dVLφLe[1δCL
Na + 2δCL

Ca + (−2)δCL
C + (−3)δCL

P].

(2.16b)
A′ and AL are the areas of the solid/liquid interface (effectively the same). φS and φL are the
electrostatic potential inside the solid and the liquid regions, respectively.

Inserting equations (2.16a,b) into equation (2.15) and using nL = −nS yields a surface condition
for equilibrium stating that the normal components of the electric displacement are equal at the
interface:

(δDS − δDL)nS = 0. (2.17)

By using the lattice constraints (2.9a,b) reformulated in terms of variations in compositions,
namely: δC′ S

Na = −δC′ S
Ca and δC′ S

P = −δC′ S
C , to eliminate two dependent compositions in the solid,

we obtain the conditions for electrochemical chemical equilibrium of the cations by further
eliminating the Lagrange multipliers:

η′S
Ca − η′ S

Na = ηL
Ca − ηL

Na. (2.18)

In equation (2.18), we have defined the electrochemical potentials:

η′ S
Ca = ∂e′S

∂C′ S
Ca

+ φSe(2), (2.19a)

η′ S
Na = ∂e′S

∂C′ S
Na

+ φSe(1), (2.19b)

ηL
Ca = ∂eL

∂CL
Ca

+ φLe(2) (2.19c)

and ηL
Na = ∂eL

∂C′ S
Na

+ φLe(1). (2.19d)

Similarly, we obtain the conditions for electrochemical chemical equilibrium of the anions:

η′ S
C − η′ S

P = ηL
C − ηL

P. (2.20)
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In equation (2.18), we have defined the electrochemical potentials:

η′ S
C = ∂e′S

∂C′ S
C

+ φSe(−2), (2.21a)

η′ S
P = ∂e′S

∂C′ S
P

+ φSe(−3), (2.21b)

ηL
C = ∂eL

∂CL
C

+ φLe(−2) (2.21c)

and ηL
P = ∂eL

∂C′ S
P

+ φLe(−3). (2.21d)

The quantities, η′ S
Ca − η′ S

Na = MCa,Na and η′ S
C − η′ S

P = MC,P are electrochemical diffusion
potential. These quantities state, for instance, that change in the electrochemical potential of
calcium ions is accompanied by a change in electrochemical potential of sodium ions because of
the cation sublattice constraint. A similar statement is made about the anion sublattice constraint.

(b) Equations of state
Following [19–21], the equation of state giving the cation electrochemical diffusion potential as a
function of stress and independent composition, C′ S

Ca can be expressed relative to the hydrostatic
case as:

MCa,Na

(
↔
σ , C′ S

Ca

)
= MCa,Na(−Pδij, C

′S
Ca) − ξijδij(σij + Pδij) − 1

2

∂Sijkl

∂C′ S
Ca

σklσij + 1
2

P2 ∂Sijkl

∂C′ S
Ca

δklδij, (2.22)

where − Pδij is the hydrostatic stress (δij is the Kroenecker symbol). ξ ij is the chemical expansion
coefficient relating the chemical strain (expansion or contraction of the solid) to changes in the
independent composition C′ S

Ca. ∂Sijkl/∂C′ S
Ca is the change in the components of the compliance

tensor, Sijkl, of the solid with changes in independent composition C′ S
Ca. A similar equation of state

can be derived for the anion electrochemical diffusion potential:

MC,P

(
↔
σ , C

′S
C

)
= MC,P(−Pδij, C

′S
C ) − ζijδij(σij + Pδij) − 1

2

∂Sijkl

∂C
′S
C

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
C

δklδij. (2.23)

In equation (23), the chemical expansion coefficient for the anionic species is ζ ij. In equations
(2.22) and (2.23), we have used Einstein notation for summation over repeating indices.

We now assume simple ideal solid solutions for the cations and anions under hydrostatic
pressure such that

MCa,Na(−Pδij, C′ S
Ca) = η′ S

Ca(−Pδij, C′ S
Ca) − η′ S

Na(−Pδij, C′ S
Na) = μ0

Ca + Rθ lnC
′S
Ca

+ φSe(2) − (μ0
Na + Rθ lnC′ S

Na + φSe(1)) (2.24a)

and

MC,P(−Pδij, C′ S
C ) = η′ S

C (−Pδij, C′ S
C ) − η′ S

P (−Pδij, C′ S
P ) = μ0

C + Rθ lnC′ S
C

+ φSe(−2) − (μ0
P + Rθ lnC′ S

P + φSe(−3)). (2.24b)

In equations (2.24a,b), μ0
Ca, μ0

Na, μ0
C and μ0

P are chemical potentials of the ionic species in some
standard state under hydrostatic pressure. R is the ideal gas constant. We also recall the sublattice
constraints in equations (2.9a,b).

Similarly, we assume ideal solution behaviour for the liquid such that

ηL
Ca − ηL

Na = μ0L
Ca + Rθ lnCL

Ca + φLe(2) − (μ0L
Na + Rθ lnCL

Na + φLe(1)) (2.25a)

and
ηL

C − ηL
P = μ0L

C + Rθ lnCL
C + φLe(−2) − (μ0L

P + Rθ lnCL
P + φLe(−3)). (2.25b)
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(c) Using hydrostatic pressure as reference
Under hydrostatic stress the conditions for equilibrium (equations (2.18) and (2.20)) are rewritten

η̄′ S
Ca − η̄′ S

Na = η̄L
Ca − η̄L

Na (2.26)

and

η̄′ S
C − η̄′ S

P = η̄L
C − η̄L

P. (2.27)

In all subsequent equations, we use a bar as an accent above thermodynamic quantities under
hydrostatic pressure. Taking the difference between equations (2.18) and (2.26) as well as between
equations (2.20) and (2.27), and using the equations of state presented in §2b, we obtain the
conditions:

Rθ ln
C

′S
Ca

C̄
′S
Ca

C̄
′S
Na

C
′S
Na

+ (φS − φ̄S)e((2) − (1)) − ξijδij(σij + Pδij) − 1
2

δSijkl

δC′ S
Ca

σklσij

+ 1
2

P2 δSijkl

δC′ S
Ca

δklδij = Rθ ln
CL

Ca

C̄L
Ca

C̄S
Na

CL
Na

+ (φL − φ̄L)e((2) − (1)) (2.28a)

and

Rθ ln
C

′S
C

C̄
′S
C

C̄
′S
P

C
′S
P

+ (φS − φ̄S)e((−2) − (−3)) − ξijδij(σij + Pδij) − 1
2

δSijkl

δC′ S
C

σklσij

+ 1
2

P2 δSijkl

δC′ S
C

δklδij = Rθ ln
CL

C

C̄L
C

C̄L
P

CL
P

+ (φL − φ̄L)e((−2) − (−3)). (2.28b)

The condition for equilibrium with respect to dissolution/recrystallization (equation (2.14)):

j′S = e′S − θs′S − φce[1C′ S
Na + 2C′ S

Ca + (−2)C′ S
C + (−3)C′ S

P ]

− μNaC′ S
Na − μCaC′ S

Ca − μCC′ S
C − μPC′ S

P = −P
(

1 + Tr↔
ε
)

,

can be reformulated by eliminating the Lagrange multipliers as was done in §2a such that:

j
′S = f

′S − ηL
NaC

′S
Na − ηL

CaC
′S
Ca − ηL

CC
′S
C − ηL

PC
′S
P = −P

(
1 + Tr↔

ε
)

. (2.29)

Here, we have defined the density of Helmholtz free energy f ′ S = e′ S − θs′ S. Under hydrostatic
pressure, equation (2.29) takes the form:

j̄′ S = f̄ ′ S − η̄L
NaC̄′ S

Na − η̄L
CaC̄′ S

E − η̄L
CC̄′ S

C − η̄L
PC̄′ S

P = −P(1 + Tr
←→̄
ε ). (2.30)

Taking the difference between equations (2.29) and (2.30), using the sublattice constraints and
the equations of states from §2b, yields, after a number of algebraic manipulations:

[f ′S − η′S
Ca(−Pδij, C′ S

Ca)C′ S
Ca − η′ S

Na(−Pδij, C′ S
Ca)C′ S

Na − η′ S
C (−Pδij, C′ S

C )C′ S
C

−η′ S
P (−Pδij, C′ S

C )C′ S
P ] − [f̄ ′ S − η̄′ S

Ca(−Pδij, C̄′ S
Ca)C̄′ S

Ca − η̄′ S
Na(−Pδij, C̄′ S

Ca)C̄′ S
Na

−η̄′ S
C (−Pδij, C̄′ S

C )C̄′ S
C − η̄′ S

P (−Pδij, C̄′ S
C )C̄′ S

P ] + P
(

Tr↔
ε − Tr

←→̄
ε

)

=
[
−ξijδij(σij + Pδij) − 1

2

∂Sijkl

∂C′ S
Ca

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
Ca

δklδij

]
C′ S

Ca

+
[
−ζijδij(σij + Pδij) − 1

2

∂Sijkl

∂C
′S
C

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
C

δklδij

]
C′ S

C

+ C′+[ηL
Na − η̄L

Na − (η′ S
Na(−Pδij, C′ S

Ca) − η̄′ S
Na(−Pδij, C̄′ S

Ca))]

+ C′−[ηL
P − η̄L

P − (η′ S
P (−Pδij, C′ S

C ) − η̄′ S
P (−Pδij, C̄′ S

C ))]. (2.31)
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The difference between the square brackets on the right-hand side of equation (2.31) is
effectively the difference in elastic energy of the stressed and hydrostatic solid. In linear elasticity

and for an isotropic solid, it is equal to −ν/2Y
(

Tr↔
σ
)2 + (1 + ν/2Y)σijσij − (3(1 − 2ν)/2Y)P2, where

ν and Y are Poisson’s ratio and Young’s modulus. Note that this elastic energy is a density per
unit volume of the reference state for measuring strain. If the apatite solid considered here is a
polycrystalline aggregate, then the assumption of isotropic behaviour is justified. The quantity

P
(

Tr↔
ε − Tr

←→̄
ε

)
is the density of work done by the liquid on the solid as it deforms, it is given by:

(1 − 2ν/Y)PTr↔
σ+(3(1 − 2ν)/Y)P2.

Using the ideal solution equations of state, the last two terms of equation (2.31) reduce
to C′+[Rθ ln( CL

Na/C̄L
Na) ( C̄′ S

Na/C′ S
Na) + ((φL − φ̄L) − (φS − φ̄S))e(1)] + C′−[Rθ ln( CL

P/C̄L
P) ( C̄′ S

P /C′ S
P ) +

((φL − φ̄L) − (φS − φ̄S))e(−3)]. Imposing the continuity of the electrostatic potential across the
solid/liquid interface such that the electric field does not diverge at that interface, eliminates
the second term in each square bracket. The condition for dissolution/recrystallization simplifies
to:

− ν

2Y

(
Tr↔

σ
)2 + 1 + ν

2Y
σijσij − 3(1 − 2ν)

2Y
P2 + 1 − 2ν

Y
PTr↔

σ + 3(1 − 2ν)
Y

P2

=
[
−ξijδij(σij + Pδij) − 1

2

∂Sijkl

∂C
′S
Ca

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
Ca

δklδij

]
C′ S

Ca

+
[
−ζijδij(σij + Pδij) − 1

2

∂Sijkl

∂C
′S
C

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
C

δklδij

]
C′ S

C

+ C′+Rθ ln
CL

Na

C̄L
Na

C̄′ S
Na

C′ S
Na

+ C′−Rθ ln
CL

P

C̄L
P

C̄′ S
P

C′ S
P

. (2.32)

Recall that this condition is applied to the interface region between the solid and the liquid.

(d) Finding the equilibrium state
The ultimate problem in finding the equilibrium state of the apatite/water composite system
is to solve equations (2.28a,b) and (2.32) simultaneously with the constraints of conservation of
species and charge conservation as well as Poisson’s equations relating electrostatic potentials in
the solid and fluid to compositions (charges). We can simplify this complex problem by assuming
that the equilibrium compositions in the solid and liquid are uniform in their respective regions.
That is, we assume that there is no formation of a space charge distribution at the solid/liquid
interface. This assumption allows us to focus on solving for the equilibrium compositions at the
solid/liquid interface (which will be the same as the bulk composition). At the interface we have
seen that φL = φS and φ̄L = φ̄S. This enables us to simplify equations (2.28a,b) by eliminating the
terms involving the electrostatic potentials. The problem at hand reduces to solving equation
(2.32) with the reduced equations:

Rθ ln
C′ S

Ca

C̄′ S
Ca

C̄′ S
Na

C′ S
Na

− ξijδij(σij + Pδij) − 1
2

∂Sijkl

∂C
′S
Ca

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
Ca

δklδij = Rθ ln
CL

Ca

C̄L
Ca

C̄L
Na

CL
Na

(2.33a)

and

Rθ ln
C

′S
C

C̄
′S
C

C̄
′S
P

C
′S
P

− ζijδij(σij + Pδij) − 1
2

∂Sijkl

∂C
′S
C

σklσij + 1
2

P2 ∂Sijkl

∂C
′S
C

δklδij = Rθ ln
CL

C

C̄L
C

C̄L
P

CL
P

. (2.33b)

We linearize these equations by writing:

C′ S
Ca = C̄′ S

Ca + �′
Ca, (2.34a)

C′ S
Na = C̄′ S

Na − �′
Ca, (2.34b)
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liquid liquid
solid

–L –l +l +L

A

X

Figure 2. Schematic illustration of geometry of the model solid/liquid composite system. Periodic boundary conditions are
imposed in the direction X such that the system is effectively a torus. The area of the cross section of the torus is A. All external
boundaries are rigid.

C′ S
C = C̄′ S

C + �′
C (2.34c)

and C′ S
P = C̄′ S

P − �′
C, (2.34d)

�′
Ca and �′

C are the change in cation and anion compositions due to stress from the
compositions under hydrostatic conditions. In the limit of small variations in compositions, we
linearize the logarithms using Taylor expansions to first order:

ln
C′ S

Ca

C̄′ S
Ca

C̄′ S
Na

C′ S
Na

�̃′
Ca

(
1

C̄′ S
Ca

+ 1

C̄′ S
Na

)
(2.35a)

and

ln
C′ S

C

C̄′ S
C

C̄′ S
P

C′ S
P

�̃′
Ca

(
1

C̄′ S
C

+ 1

C̄′ S
P

)
. (2.35b)

We now define the geometry of the solid/liquid composite in order to linearize the logarithms
on the right-hand sides of equation (2.33a,b). Figure 2 illustrates the geometry of the composite
system.

The conservation of the number of moles of sodium ions under the assumption of uniform
compositions in the liquid and solid given by equation (2.4a) reduces to

υNa = 2l′AC′ S
Na + 2(L − l)ACL

Na,

where L and l are defined in figure 2.
Changing the solid units to quantities per unit volume of reference state for measuring strain

gives:
υNa = 2lACS

Na + 2(L − l)ACL
Na.

We therefore have:
υNa − 2lACS

Na
2(L − l)A

= CL
Na. (2.36a)

Similarly, under hydrostatic pressure, we have

υNa − 2l̄AC̄S
Na

2(L − l̄)A
= C̄L

Na. (2.36b)

We can obtain equivalent expressions for the calcium ion:

υCa − 2lACS
Ca

2(L − l)A
= CL

Ca (2.37a)

and
υCa − 2l̄AC̄S

Ca

2(L − l̄)A
= C̄L

Ca. (2.37b)
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Recognizing that 2l̄A = V̄S and 2(L − l̄)A = V̄L, defining l = l̄ + �l, and converting the
quantities per unit volume of stressed states into quantities per unit volume of reference state
for measuring strain through the multiplicative factor C′+/C+, we can approximate to first order:

ln
CL

Ca

C̄L
Ca

C̄L
Na

CL
E

∼ −2
�lA

V̄L

[
C̄S

Ca

C̄L
Ca

− C̄S
Na

C̄L
Na

]
− V̄S

V̄L

C+
C′+

�′
Ca

[
1

C̄L
Ca

+ 1

C̄L
Na

]
. (2.38)

Combining equation (2.38) and (2.35a) into equation (2.33a) yields:

�′
Ca

(
1

C̄′ S
Ca

+ 1

C̄′ S
Na

+ F
C+
C′+

[
1

C̄L
Ca

+ 1

C̄L
Na

])
+ X

Rθ
= − �l

L − l̄

[
C̄S

Ca

C̄L
Ca

− C̄S
Na

C̄L
Na

]
, (2.39a)

where X = −ξijδij(σij + Pδij) − 1/2(∂Sijkl/∂C′ S
Ca)σklσij + 1/2P2(∂Sijkl/∂C′ S

Ca)δklδij and V̄S/V̄L = F. We
have also used 1/L − l̄ = 2A/V̄L.

Similarly to the cationic condition for equilibrium, equation (2.33b) can be approximated by:

�′
C

(
1

C̄
′S
C

+ 1

C̄′ S
P

+ F
C−
C′−

[
1

C̄L
C

+ 1

C̄L
P

])
+ Z

Rθ
= − �l

L − l̄

[
C̄S

C

C̄L
C

− C̄S
P

C̄L
P

]
, (2.39b)

where Z = −ζijδij(σij + Pδij) − 1/2(∂Sijkl/∂C′ S
C )σklσij + 1/2P2(∂Sijkl/∂C′ S

C )δklδij.
The condition for dissolution/recrystallization (equation (2.32)) is also approximated by:

E − XC̄′ S
Ca − ZC̄′ S

C =
[

X + C′+Rθ
1

C̄′ S
Na

(
1 + F

C+
C′+

C̄′ S
Na

C̄L
Na

)]
�′

Ca

+
[

Z + C′−Rθ
1

C̄′ S
P

(
1 + F

C−
C′−

C̄′ S
P

C̄L
P

)]
�′

C

+ �L
L − l

Rθ

[
C′+

(
1 − C̄S

Na

C̄L
Na

)
+ C′−

(
1 − C̄S

P

C̄L
P

)]
, (2.39c)

where E = −(ν/2Y)
(

Tr↔
σ
)2 + (1 + ν/2Y)σijσij − (3(1 − 2ν)/2Y)P2 + (1 − 2ν/Y)PTr↔

σ + (3(1 − 2ν)/Y)

P2.
The linearized set of equations (2.39a,b,c) can now be further simplified by introducing the

partition coefficients under hydrostatic pressure: kCa = C̄S
Ca/C̄L

Ca, kNa = C̄S
Na/C̄L

Na, kC = C̄S
C/C̄L

C and
kP = C̄S

P/C̄L
P. We now have three equations and three unknowns: �′

Ca, �′
C and �l.

(e) Approximate solution
In this section, we use previously obtained experimental and computational data to solve
numerically for the equilibrium state of a solid apatite under stress with the aqueous solution.
First of all, we anticipate that the effect of substitution of Ca2+ by Na+ on the chemical
expansion and the elastic properties of the apatite will be significantly smaller than the effect
of exchange between the larger anions CO2−

3 and PO3−
4 . This allows us to neglect the term X in

the conditions for equilibrium. Furthermore, comparing lattice structures of apatites synthesized
with varying amounts of CO2−

3 , we have previously shown that a 15 wt% change of CO2−
3

content in apatite increases the c-axis and decreases the a-axis lattice spacing by less than 1.1%
using X-ray diffraction [17]. It allows us, for an apatite aggregate, to neglect the term involving
the chemical expansion coefficient ζ ij in the quantity Z. Therefore, Z−̃(1/2)(∂Sijkl/∂C′ S

C )σklσij +
1/2P2(∂Sijkl/∂C′ S

C )δklδij. To obtain information about the mineral mechanics as a function
of composition, we turn to literature studies using both computational and experimental
approaches. Using previously established parameters for stoichiometric hydroxyapatite [22–24],
models for carbonate substituted apatite have been developed via the gradual increase of CO2−

3
substitutions for PO3−

4 in the structure [17,25]. Elastic constants have then been calculated by
fitting Hooke’s Law for both stress–strain (Molecular Static) and energy-strain (DFT) relations
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for infinitesimal deformations [17,26–28]. Our study using these techniques to predict the effect
of CO2−

3 on the compliance of apatites showed that the addition of CO2−
3 to the lattice can

decrease the elastic moduli by nearly 50% [17]. These results were experimentally confirmed
using high-energy synchrotron X-ray diffraction in combination with applied fluid-mediated
hydrostatic loading showing a decrease in modulus from 127 GPa to 57 GPa [18]. Therefore,

Z ∼ − 1
2

∂Sijkl

∂C′S
C

σklσij + 1
2 P2 ∂Sijkl

∂C′S
C

δklδij. Finally, under our previous assumption of an isotropic solid, we

consider the application of a non-hydrostatic stress ↔
σ whose components are all zero but σ 11 = σ

where σ � P. Neglecting the hydrostatic pressure terms, we obtain E ∼ σ 2/2Y. Under the same
approximation, Z ∼ −(1/Y)(∂Y/∂C′ S

C )E .
Equation (2.39a) becomes:

�′
Ca−̃ �l

L − l̄

[kCa − kNa]
R1

, (2.40a)

where R1 = (1/C̄′ S
Ca + 1/C̄′ S

Na + F(C+/C′)[1/C̄L
Ca + 1/C̄L

Na]) > 0.
Equation (2.39b) takes the form:

�′
C =

(
− Z

Rθ
− �l

L − l̄
[kC − kP]

)
/R2, (2.40b)

where R2 = (1/C̄′ S
C + 1/C̄′ S

P + F(C−/C′−)[1/C̄L
C + 1/C̄L

P]) > 0.
By inserting equations (2.40a,b) into equation (2.39c), we can solve for �l/L − l̄ as a function

of the magnitude of the uniaxial stress σ . We have performed a numerical calculation by using
the following additional approximation: C+/C′+ = (C−/C′−)1̃ and experimental equilibrium data
under hydrostatic conditions and room temperature. To obtain information about the relative
concentrations of the moieties of interest in the liquid and solid, we turn to Moynahan et al. [29]
where small amounts (0.05 mg) of carbonated apatites containing biologically relevant levels of
CO2−

3 and Na+ substitutions were placed in solutions of water (10 ml) until equilibrium was
reached at approximately 72 h. Ionic concentrations in the liquid were calculated via Inductive
Plasma Coupled Optical Emission Spectroscopy. Ionic concentrations in the solid were calculated
from quantitative Raman spectroscopy measures of CO2−

3 and PO3−
4 in the apatites assuming a

crystal stoichiometry of Ca9.4Na 0.4(PO4)5.4(CO3)0.6(OH)1.8 as calculated for biomimetic apatites
in [17]. These measurements result in:

C̄L
Ca = 0.532 mol m−3, C̄L

Na = 1.755 mol m−3, C̄L
C = 0.010 mol m−3, C̄L

P = 0.331 mol m−3, C̄S
Ca =

28 900 mol m−3, C̄s
Na = 3450 mol m−3, C̄s

C = 5500 mol m−3 and C̄s
P = 15 200 mol m−3 with

V̄S = 1.61 × 10−8 m3 and L = 1 × 10−5 m3, with this kCa = 54 323, kNa = 1966, kC = 550 000 and
kP = 45 921.

Wingender et al. [18] have shown that Young’s modulus of near stoichiometric apatite is
Y∼ 100 GPa and that it drops by �Y ∼ −50 GPa for an increase in CO2−

3 of ∼20 wt% [17,18]. To
convert wt% into mol m−3, we use a molecular weight of CO2−

3 of 60 × 10−3 kg mole−1 and the
density of apatite under hydrostatic conditions of 3.17 g cm−3. A 20 wt% change in composition
corresponds to approximately 104 mole m−3. This enables us to estimate Z ∼ 5 × 10−5E . We also
choose the temperature to be θ = 300 K.

In figure 3, we report the relative change in thickness of the solid, measured by the quantity
�l/L − l̄ as a function of the applied uniaxial stress σ . The stress is varied between 0.5 and 4 GPa.
Counterintuitively, the thickness of the solid aggregate increases with increasing stress. Stress
induces recrystallization of the solid.

Furthermore, the recrystallization of the apatite is accompanied by a decrease in Ca2+ and
CO2−

3 contents relative to the hydrostatic composition (figure 4). The cation and anion lattice
constraints then impose an increase in sodium content as well as an increase in phosphate.

In equation (2.40a), since kCa is greater than kNa, the change �′
Ca will always vary inversely

with the thickness of the apatite solid. For �′
C (equation (2.40b)), since kC − kP > 0, the sign of the

variation in carbonate composition will depend on the sign and magnitude of Z/Rθ . Here, Z/Rθ

is negative but too small to change the sign of the variation in carbonate content.
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Figure 3. Relative thickness of the solid apatite in equilibriumwith an aqueous solution as a function of applied uniaxial stress.

–5

–4

–3

–2

–1

0
0 1 2 3 4

–6

–5

–4

–3

–2

–1

0
0 1 2

stress (GPa)
3 4

�'
C
a

C
'S

%
C
a

�'
C

C
'S

%
C

(a)

(b)

Figure 4. Change in (a) calcium and (b) carbonate content relative to the hydrostatic equilibrium compositions as functions of
stress.
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3. Discussion
Results presented in §2e elucidate the effects of applied load on the mineralization of hard
tissues such as bone. The recommendation that individuals engage in weight-bearing exercise
to promote bone growth and mineralization [30] have mainly centred on the idea of cellular
mechanotransduction. Only recently has physiochemical stimulation of mineralization, mostly
via increased fluid flow/transport in the collagen matrix, been suggested as a possible benefit
of exercise [14,15]. However, the results presented here show another layer of benefit, indicating
that applied stress during weight-bearing activities will simultaneously promote mineralization
via crystal growth irrespective of cellular and matrix contributions.

In this model, the bone mineral composition is shown to shift towards reduced calcium and
carbonate content with applied load. In terms of the classically reported Calcium to Phosphate
ratio (Ca/P), this would suggest a decrease in Ca/P with applied stress which has traditionally
been used to describe a decrease in mineral maturation [31,32]. Similarly, a drop in the carbonate
to phosphate ratio (CO3

2−/PO4
3−) has often been used by bone biologists as an indicator

of increased cellular remodelling [33,34]. However, the measurements presented here report
these compositional changes in response to applied load irrespective of cellular and maturation
behaviours. Therefore, it is important to understand the thermodynamics of bone mineral in
stressed environments like bone when considering the meaning or cause of compositional
changes.

4. Conclusion
The addition of previously established material simulation techniques, such as DFT and MD,
and experimental measurements into our apatite specific model of chemical equilibrium of
solids under stress enables the solving of complex biological problems which have until now
remained unaddressed. In this work, we examined the dissolution/recrystallization behaviour
of biomimetic apatite solids under stress in equilibrium with aqueous solutions. Our study has
shown that uniaxial applied stress promotes mineral crystallization. This counterintuitive result
points to another mechanism by which load bearing exercise promotes the mineralization of hard
tissues, such as bone, thus supporting current medical recommendations to use applied stresses
as a means of maintaining bone density with ageing, paralysis and space flight [35–39]. Future
work will look to experimentally validate this work as well as examine the synergy between
stress and chemical reactions relative to pH in the aqueous solution in controlling mineral
dissolution/crystallization.
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