














ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze

of the sparse matrix by the given factor 𝑐 , so that each column
partition has width 𝑤 . For each column partition, we collect the
rows with length 𝑙 that satisfy 2𝑖−1 < 𝑙 ≤ 2𝑖 to bucket 𝑖 , and we pad
the length of these rows to 2𝑖 ; each bucket then forms a sub-matrix
with the ELL format. Figure 11 shows a special case, hyb(2, 2).

For bucket 𝑖 of each column partition, we group each 2𝑘−𝑖 rows
and map them to a unique thread block in GPUs. The number of
non-zero elements in 𝐴 that are processed by each thread block
is 2𝑘 , which is implemented with TVM’s split and bind primi-
tives. We use the schedule proposed in GE-SpMM [49] for each
sub-matrix for the remaining dimensions. The column partition in
our design is intended to improve cache locality; when processing
column partition 𝑗 , only 𝐵 [ 𝑗𝑤 : ( 𝑗 + 1)𝑤] would be accessed for 𝐵.
Featgraph [47] proposes to apply column partitions for SpMM on
CPUs; however, it does not extend the idea to GPUs. Our bucketing
technique was designed to achieve compile-time load balancing.
In practice, we searches for the best 𝑐 over {1, 2, 4, 8, 16} and let
𝑘 =

⌈

log2
𝑛𝑛𝑧
𝑛

⌉

, which generally works well.
We evaluate the SpMM written in SparseTIR with and without

the proposed ℎ𝑦𝑏 format on real-world GNN datasets for both V100
and RTX3070. We measure the geometric mean speedup of dif-
ferent SpMM implementations against cuSPARSE for feature size
𝑑 ∈ {32, 64, 128, 256, 512}. Figure 13 shows our results. The Sparse-
TIR kernel on ℎ𝑦𝑏 format obtains a 1.22-2.34x speedup on V100
and a 1.20-1.91x speedup on RTX 3070 compared to cuSPARSE. We
also achieve consistently better performance than state-of-the-art
open source sparse libraries dgSPARSE and Sputnik, and TACO
scheduled kernels [79]. Though TACO also explores compile-time
load balancing, it does not support caching the partially aggregated
result in registers, which is critical to GPU performance, and the ir-
regularity of the CSR format limits the application of loop unrolling.
SparseTIR perform these optimizations in stage II schedules.

Importance of composable formats. We evaluate the SparseTIR
kernel without format decomposition (see SparseTIR(no-hyb) in
the figure). Results suggest that the SparseTIR kernel without for-
mat decomposition and per-format scheduling performs generally
worse: ogbn-arxiv is a citation network graph whose degrees obey
power-law distribution, and our designed format can perform sig-
nificantly better because of more efficient load balancing. Notably,
though padded zeros in our proposed composable format slightly
increase FLOPs as shown in Table 1, the runtime of SparseTIR gen-
erated kernels on composable format is still faster because of better
scheduling. The degree distribution of the ogbn-proteins graph is
centralized, and the benefit of using a hybrid format is compensated
for the extra overhead introduced by padding. To evaluate the effect
of column partitioning, we fix the feature size to 128 and measure
several kernel metrics generated by SparseTIR on a Reddit dataset
under a different column partition setting. Figure 12 shows the re-
sults; L1 and L2’s cache hit rates improve as we increase the number
of column partitions. However, more partitions will increase the
required memory transactions of the kernel because we will need
to update the results matrix 𝑐 times if the number of partitions is
𝑐 . As a result, the benefit of column partitioning saturates as we
increase the number of partitions.

4.2.2 SDDMM. SDDMM can be formulated as the following:

 0

 20

 40

 60

 80

 100

1 2 4 8 16
 20

 30

 40

 50

 60

 70

C
a
c
h

e
 H

it
 R

a
te

 %

K
e
rn

e
l 

d
u

ra
ti

o
n

 (
m

s)

#Column Partitions

L1-hit-rate

31.5% 32.8%
35.8%

37.7% 39.4%

L2-hit-rate

24.8%
29.8%

50.5%

73.3%

88.8%

Duration

64.6ms

53.3ms

40.6ms

30.6ms
27.3ms

Figure 12: The kernel duration and L1/L2 hit-rate of Sparse-

TIR SpMM kernels under different column partitions.

𝐵𝑖, 𝑗 =

𝑑
∑︁

𝑘=1

𝐴𝑖, 𝑗𝑋𝑖,𝑘𝑌𝑘,𝑗 ,

where 𝐴 and 𝐵 are two sparse matrices that share a sparse struc-
ture, 𝑋,𝑌 are dense matrices, and 𝑑 is the feature size. In SDDMM,
the computation per (𝑖, 𝑗) is independent, and the workload per
position is the same, so we need not worry about load balancing
issues if we parallelize the computation by each non-zero (𝑖, 𝑗). The
sparse_fuse schedule primitive in stage I introduced in Section
3.2.2 helps us iterate over non-zero (𝑖, 𝑗) directly instead of first
iterating over 𝑖 and then iterating over non-zero 𝑗 for each 𝑖 .

PRedS [106] is the state-of-the-art open-source SDDMM imple-
mentation, which optimizes SDDMM in two ways. First, it uses
vectorized load/store intrinsics in CUDA, such as float4/float2,
which improves memory throughput. Second, it performs the re-
duction in two stages: (1) intra-group reduction, which computes
the reduction inside each group independently, and (2) inter-group
reduction, which summarizes the reduction result per group. We for-
mulate the optimization in PRedS as composable transformations in
SparseTIR with vectorize and rfactor [84] schedule primitives
at stage II, and we generalize the parameters, such as group size,
vector length and number of workloads per thread block, as tunable
parameters.

Figure 14 shows the geometric mean speedup of different SD-
DMM implementations vs our baseline for feature size 𝑑 ∈ {32, 64,
128, 256, 512}. We do not use composable formats in SDDMM. The
baseline we select is DGL’s SDDMM implementation, which uses
the optimization proposed in Featgraph [47]. cuSPARSE and Sput-
nik’s SDDMM implementations are not optimized for highly sparse
matrices such as graphs and thus achieve very low performance. We
obtain generally better performance than dgSPARSE [28], which
implements the PRedS [106] algorithm, because of the parame-
terized scheduling space. SparseTIR significantly outperforms the
DGL baseline and the TACO scheduled kernel because these im-
plementations do not include two-stage reduction and vectorized
load/store.

Importance of composable transformations. The provenance graph
data structure in TACO does not support multiple branches, thus
we cannot perform schedules such as rfactor at this level. The
composable transformation design of SparseTIR enables us to apply
such schedules at lower stages.

667



SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0

 0.5

 1

 1.5

 2

 2.5

 3

Cora Citeseer Pubmed PPI ogbn-arxiv ogbn-proteins Reddit

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Dataset

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.5

1.7

1.2
1.0

0.7

1.3

1.0

1.3

1.4

1.2

1.1 1.0

1.3

0.9

0.4 0.4
0.5 0.4

0.8

0.5
0.6

1.2

1.5 1.5

1.1

0.4

1.3

0.8

2.3
2.3

1.6

1.2

1.4
1.3

1.5

cuSPARSE
Sputnik
dgSPARSE

TACO
SparseTIR(no-hyb)
SparseTIR(hyb)

V100

Cora Citeseer Pubmed PPI ogbn-arxiv ogbn-proteins Reddit

 

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.6
1.7

1.4

1.1

0.9

1.7

0.8

1.2
1.3 1.3

1.1 1.0

1.4

0.80.8 0.8

1.1

0.6

1.1

0.6
0.7

1.1

1.4

1.6

1.1

0.6

1.6

0.7

1.9
1.8

1.6

1.2
1.3

1.5
1.6

RTX3070

Figure 13: Normalized speedup against cuSPARSE for SpMM. SparseTIR consistently outperforms vendor libraries and TACO.

Comparing SparseTIR(no-hyb) and SparseTIR(hyb) demonstrates the importance of format composability.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Cora Citeseer Pubmed PPI ogbn-arxiv ogbn-proteins Reddit

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Dataset

0.2 0.2
0.0 0.0 0.0

0.1 0.1
0.2 0.1

0.0 0.0 0.0

0.2
0.1

1.0 1.0 1.0 1.0 1.0 1.0 1.01.0 0.9

1.1

1.5

0.9

1.6
1.4

1.3
1.2

1.6

2.0

1.1

1.9
1.7

0.3 0.3

0.4

0.8
0.7

1.0 1.0

1.5
1.4

1.5

2.3

1.6

2.1

1.9

cuSPARSE
Sputnik
dgl
dgSPARSE-csr

dgSPARSE-coo
TACO
SparseTIR

V100

Cora Citeseer Pubmed PPI ogbn-arxiv ogbn-proteins Reddit

 

0.3 0.2

0.0 0.1 0.0
0.1 0.0

0.4
0.3

0.1 0.1
0.0

0.5

0.2

1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.1 1.1 1.1

1.5

0.9

1.3 1.3
1.4 1.3 1.3

2.5

1.0

1.9

1.7

0.6 0.7

0.9

1.1

0.8

1.1 1.1

1.4
1.3 1.4

2.8

1.3

2.0

1.7

RTX3070

Figure 14: Normalized speedup against Featgraph for SDDMM. SparseTIR beats the state-of-the-art vendor library dgSPARSE

on average by parametrizing scheduling space.

4.2.3 End-to-endGraphSAGE Training. Wealso integrate SparseTIR-
generated SpMM operators in the GraphSAGE [39] model written
in PyTorch and compare the end-to-end speedup to DGL. Figure 15
shows that we obtain a 1.18-1.52x speedup on V100 and a 1.08-1.47x
speedup on RTX 3070 7.

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

Cora

Citeseer

Pubmed

PPI

ogbn-arxiv

Reddit

V100

Dataset

Normalized Speedup against DGL

1.52

1.49

1.51

1.18

1.12

1.39

Cora

Citeseer

Pubmed

PPI

ogbn-arxiv

RTX3070

1.47

1.34

1.19

1.08

1.14

Figure 15: Normalized speedup of PyTorch+SparseTIR

against DGL on end-to-end GraphSAGE training.

7Reddit result is not reported on RTX 3070 because of Out-Of-Memory issue.

4.3 Sparsity in Transformers

Sparsity in Transformers comes from (1) sparse attentions [6, 15, 20],
and (2) sparsity in network weights after pruning [55, 76]. We
evaluate SparseTIR generated kernel in both cases8.

4.3.1 Sparse Attention. Sparse transformers reduce the complexity
of Transformers by making the attention matrix sparse. The key
operator in Sparse Transformers is still SpMM and SDDMM, but un-
like GNNs whose sparse matrices are provided by graph structures,
the sparse matrices used in sparse attentions are mostly manually
designed and have a block-sparse pattern to better utilize tensor
cores in modern GPUs. We select two examples: Longformer [6]
and Pixelated Butterfly Transformer [15], whose sparse structures
are band matrix and butterfly matrix [65], respectively. We imple-
ment the batched-SpMM and batched-SDDMM operators for both
CSR and BSR formats. For BSR operators, we use the tensorize
primitive during stage II IR schedules to use tensorized instructions
in CUDA. Figure 16 shows different implementations’ speedup
against Triton’s [89] block-sparse operator. We fix the matrix size
to 4096 × 4096, batch(head) size to 12, band size to 256, and feature
size per head to 64. Results show that SparseTIR-BSR obtains a
1.05-1.59x speedup on multi-head SpMM and a 1.50-2.98x speedup
on multi-head SDDMM.

8In this section, we use half-precision data type for all operators to use Tensor Cores.

668





SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

 0.125

 0.25

 0.5

 1

 2

 4

 8

2
-7

2
-6

2
-5

2
-4

2
-3N

o
rm

al
iz

ed
 S

p
ee

d
u
p
(x

)

Density %

V100

2
-7

2
-6

2
-5

2
-4

2
-3

 

SparseTIR(SR-BCRS)
SparseTIR(BSR)

cuSPARSE
cuBLAS

RTX 3070

2
-7

2
-6

2
-5

2
-4

2
-3

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

SR-BCRS(8,32)
BSR(32)

New Format Density

Figure 19: Normalized speedup aginst cuBLAS for operators

extracted from unstructured pruned transformers, and the

weight density in new format vs original weight.

Table 2: Statistics of Heterogeneous Graphs used in RGCN.

Graph #nodes #edges #etypes %padding

AIFB [72] 7,262 48,810 45 17.9
MUTAG [72] 27,163 148,100 46 8.0
BGS [72] 94,806 672,884 96 4.3
ogbl-biokg [45] 93,773 4,762,678 51 4.2
AM [72] 1,885,136 5,668,682 96 10.8

𝑌𝑖,𝑙 =

𝑅
∑︁

𝑟=1

𝑛
∑︁

𝑗=1

𝑑𝑖𝑛
∑︁

𝑘=1

𝐴𝑟,𝑖, 𝑗𝑋 𝑗,𝑘𝑊𝑟,𝑘,𝑙 ,

where 𝐴 is a 3D sparse matrix, whose leading dimension size is
𝑅, denoting number of relations. For each relation, the last two
dimensions of 𝐴 form a unique 2D sparse matrix. 𝑋 is a 2D feature
matrix and𝑊 is a 3Dweight matrix whose leading dimension size is
also𝑅. For each relation, the last two dimensions of𝑊 form a unique
2D dense weight matrix. The scheduling for the RGMS operator is
complicated because we need to consider (1) load balancing and
(2) the utilization of Tensor Cores. Until now, no sparse library
implements this kernel.

4.4.1 Relational Graph Convolution Network. RGCN [77] is a gen-
eralization of GCN model to heterogeneous graphs (graphs with
multiple relations/edge types). The operator used in RGCN is RGMS,
where 𝐴𝑟 refers to the adjacency matrix corresponding to sub-
graph whose edge type is 𝑟 , and𝑊𝑖 refers to the weight matrix
corresponding to edge type 𝑟 . Table 2 introduces the characteristics
of heterogeneous graphs used in RGCN evaluation; in the table,
#etypes refers to the number of edge types (also known as łrela-
tionsž) in the heterogeneous graph, %padding refers to the ratio of
padded zero elements after we transform the original sparse matrix
with composable formats. Existing GNN libraries implement RGMS
operator in a two-stage approach:

𝑇𝑟, 𝑗,𝑙 =

𝑑𝑖𝑛
∑︁

𝑘=1

𝑋 𝑗,𝑘𝑊𝑟,𝑘,𝑙 , (9)

𝑌𝑖,𝑙 =

𝑅
∑︁

𝑟=1

𝑛
∑︁

𝑗=1

𝐴𝑟,𝑖, 𝑗𝑇𝑟,𝑗,𝑙 , (10)

where the first stage fuses gathering and matrix multiplication,
and the second stage performs scattering. Such implementation

materializes the intermediate result 𝑇 on HBM, which incurs a lot
of GPU memory consumption. In SparseTIR we fuses the two stage
into a single operator: we generalize the ℎ𝑦𝑏 format proposed in
Figure 11 to 3-dimensional so that 2D sparse matrix corresponding
to each relation is decomposed to ℎ𝑦𝑏 (1, 5) formats. Figure 21 ex-
plain the scheduling of RGMS operator on 3D ℎ𝑦𝑏 in SparseTIR: for
each ELL matrix 𝐴𝑟𝑘 (𝑟 refers to edge type and 𝑘 refers to bucket
index), we pin its corresponding weight matrix𝑊 𝑟 in SRAM and
gather related rows of 𝑋 from HBM to SRAM, then perform partial
matrix multiplication with Tensor Cores and scatter results to 𝑌 .
Note that the matrix multiplication and intra-group scatter are all
performed inside SRAM. Such design reduces the overhead of data
copy between SRAM and HBM for intermediate matrix 𝑇 . We eval-
uate end-to-end RGCN inference (feature size: 32) and Figure 20
shows results: SparseTIR(ℎ𝑦𝑏+TC) can significantly improve previ-
ous state-of-the-art GNN compiler Graphiler [103] by 4.2-40.2x in
different settings. By comparing SparseTIR(naive), SparseTIR(ℎ𝑦𝑏)
and SparseTIR(ℎ𝑦𝑏+TC) we show that both composable formats and
composable transformations (which enables Tensorization) matter:
even though ℎ𝑦𝑏 increases FLOPs by padding zeros (as shown in
Table 2), it still makes the kernel faster by 2-4.4x because of bet-
ter load-balancing. SparseTIR’s generated fused kernel can also
greatly reduce GPU memory footprint because we do not explicitly
stores 𝑇 in HBM, with fragments of 𝑇 consumed immediately af-
ter produced in SRAM. SparseTIR(ℎ𝑦𝑏+TC) consumes more GPU
memory than SparseTIR(naive) and SparseTIR(ℎ𝑦𝑏) because of the
half-precision/single-precision data type conversion.

4.4.2 Sparse Convolution. Sparse Convolution [23] is widely used
in 3D cloud point data. We found that the Sparse Convolution
operator is a special form of RGMS, and Figure 22 illustrates the
equivalence: each relative offset inside the convolution kernel can
be viewed as a relation in RGMS. For each relation, the mapping
between non-zero elements in feature map of previous layer to non-
zero elements in feature of next layer forms a bipartite graph which
can be viewed as a 2D sparse matrix whose number of non-zero
elements per row is no greater than 1.

We extract all of the Sparse Convolution operators in Minkowsk-
iNet [23] on SemanticKitti dataset [5] for benchmark, and evalu-
ate SparseTIR’s RGMS kernel12. Figure 23 shows our normalized
speedup against state-of-the-art TorchSparse [86] library. Unlike the
SparseTIR’s schedule in Figure 21, TorchSparse does not fuse Gather-
Matmul-Scatter on chip. Instead, it explicit materializes 𝑇 and uses
coarse-grained cuBLAS operators rather than Tensor-Core level
instructions for matrix multiplication13. SparseTIR’s RGMS can
outperform TorchSparse for most of the operators because of less
HBM/SRAM data exchange as mentioned before. However, for large
channel size (> 128), SparseTIR’s RGMS cannot beat TorchSparse
because matrix multiplication overhead become dominant (The
FLOPs of Matmul is quadratic to channel size while the FLOPs of
Gather and Scatter is linear to channel size) and cuBLAS is better
optimized than SparseTIR’s RGMS for large channel.

12We don’t need to use composable formats for Sparse Convolution because the sparse
matrix for each relation is already an 𝐸𝐿𝐿 (1) .
13It’s not necessary to use adaptive matrix multiplication grouping when using fine-
grained Tensor-Core instructions.

670





SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

data structure and a kernel description. TACO [21, 53, 54] proposes
sparse format abstractions and a merge lattices-based code genera-
tion routine. Senanayake et al. [79] propose a sparse-iteration space
transformation framework for scheduling sparse operators. Chou
et al. [22] introduce an approach for generating efficient kernels
for sparse format conversion. Henry et al. [41] generalize TACO to
sparse array programming. The format abstraction and IR design
of SparseTIR are insipred by TACO and earlier work, with a focus
on Deep Learning operators. Sympiler [18] builds a symbolic in-
spector to analyze sparse structure at compile-time and generates
efficient code. Parsy [19] generalize the idea to support paralleliza-
tion. SPF [83] proposes a inspector-executor framework compatible
with polyhedral transformations. Mohammadi et al. [62] proposes
data dependence simplication algorithm for compiler generated
inspectors. Like composable formats in SparseTIR, these compilers
can utilize sparse structures for acceleration. Taichi [46] decou-
ple data structure and kernel description for physics simulation
programming; its compiler optimizations focus on spatial sparse
data, unsuitable for DL. Tiramisu [4] supports automatic selection
of dense/sparse kernels at computational graph-level. However, it
lacks tensor-level sparse code generation. COMET [88] and MLIR
Sparse Dialect [7] are two MLIR dialects that explore composable
IR design for sparse tensor algebra. Both treat sparse tensors with
format annotation as first-class members in the IR; however, neither
considers decomposable formats. CoRA [33] proposes a compiler
infrastructure for ragged tensors [26]: a special form of sparse ten-
sors. The operation splitting in CoRA is a special case of format
decomposition in SparseTIR. SparTA [110] proposes abstractions for
model sparsity; its annotation is still dense and thus not applicable
to highly sparse matrices used in GNNs. SparseLNR [29] proposes
branched iteration graph to support factoring reductions and loop-
fusion for sparse tensor algebra, these schedules can be formulated
as stage-I schedules in SparseTIR as we support branches in the IR.

GNN systems and compilers. PyG [36] and DGL [96] propose pro-
gramming interfaces for the programming message-passing [38]
modules in GNN models. Both frameworks use vendor libraries
and handwritten operators to accelerate specific message-passing
patterns. Featgraph [47] optimizes generic GNN operators with
TVM. However, it fails to support more operators because TVM
lacks sparsity support. FusedMM [71] fuses SDDMM and SpMM
operators, thus accelerating GNN training and saving GPUmemory
footprint. FusedMM can be described and optimized in SparseTIR.
Seastar [102] and Graphiler [103] compile user-defined message-
passing functions to their intermediate representations (IR) and
then optimize the IR and emit template-based, target-specific code:
these templates still have limited expressiveness and cannot con-
sider a wide range of the optimization space. SparseTIR could serve
as a backend for these GNN compilers. GNNAdvisor [100] proposes
a CUDA template for GNN computations and uses graph character-
istics to guide the performance tuning of GNN training. QGTC [99]
and TC-GNN [98] explore accelerating GNNs with TensorCores.
Notably, the łcondensingž technique proposed in TC-GNN is equiv-
alent to SpMM on SR-BCRS format as shown in Section 4.3.2. The
contribution of these papers is orthogonal to SparseTIR.

Sparse kernel optimizations. Merge-SpMM [104], ASpT [43], GE-
SpMM [49], Sputnik [37] and DA-SpMM [25] explore different

schedule spaces for SpMM optimization on GPUs. We carefully
examined the optimizations suggested in theses papers and pro-
pose a composable abstraction to unify them. OSKI [94] is a library
for auto-tuning sparse operators, with a focus on optimizing op-
erators on cache-based, super-scalar architectures such as CPUs.
However, OSKI do not support customizing sparse operators.

Sparse format optimizations. Pichon et al. [67] propose to reorder
rows and columns in 2D sparse matrices to increase the block
granularity of sparse matrices. Li et al. [57] study the problem of
reordering sparse matrices to improve cache locality of operators on
them. Mehrabi et al. [61] and Wang et al. [100] propose to reorder
rows and columns of sparse matrices to accelerate SpMM on GPUs.
These algorithms can act as pre-processing steps in SparseTIR to
discover efficient composable formats.

Hardware-efficient algorithms. There have been a growing trend
of sparsity in Deep Learning [42]. To make better use of underly-
ing hardware, researchers propose pruning algorithms with block-
sparsity [55] and bank-sparsity [14, 112] to utilize acceleration units
in GPUs, and ES-SpMM [59] for load balancing. SparseTIR’s com-
posable abstractions can help researchers explore more complex
sparse patterns with ideal performance on modern hardware.

6 FUTUREWORK

Automatic scheduling. SparseTIR still requires users to specify
schedule templates like they do for the first-generation of Halide
and TVM. The Halide auto-scheduler [1], FlexTensor [111], An-
sor [109] and Meta-scheduler [80] have been proposed to auto-
matically generate schedule templates for dense tensor compilers.
We expect these techniques would also prove helpful for sparse
compilation. Searching for the optimal schedule is time consuming,
Ahrens et al. [3] propose an asymptotic cost model for sparse tensor
algebra to narrow the schedule space of sparse kernels, which could
also benefit our work.

Automatic format decomposition. In this paper we explore only
manually designed format decomposition rules. We leave automatic
format selection [11, 12] and decomposition for future work.

Dynamic sparsity. Some models [32, 68, 81] exhibit dynamic
sparsity, where the position of non-zero elements changes overtime
thus searching for best schedule for eachmatrix become impractical.
DietCode [108] proposes shape-generic search space, micro-kernel
based cost model and a lightweight dispatcher to dispatch kernel
at runtime, the idea is also applicable to sparse tensor programs.

Integration with graph-level IR. SparseTIR models only tensor-
level sparsity, we plan to extend the sparse attributes in SparseTIR
to graph-level IRs like XLA [27] and Relay [73].

7 CONCLUSION

We introduce SparseTIR, a composable abstraction for sparse oper-
ators in deep learning. Its key innovation is the use of composable
formats and composable transformations, and together they form
the parameter search space for performance tuning. Evaluations
on generic sparse deep learning show that SparseTIR achieves sig-
nificant performance improvements over existing vendor libraries
and frameworks.

672



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze

ACKNOWLEDGMENTS

We thank all anonymous ASPLOS reviewers for their constructive
comments. We thank Siyuan Feng, Bohan Hou and Wuwei Lin for
discussions on tensorization and IR design, Sandy Kaplan for help
on paper writing, Zhijian Liu for providing Sparse Convolution
benchmarks, Joel Emer, Yuwei Hu, Jie Liu, Steven S. Lyubomirsky,
Fredrik Kjolstad, Ye Tian, Zhiqiang Xie, and Zhongyuan Zhao for
feedbacks on the paper. This work was supported in part by the
Center for Intelligent Storage and Processing in Memory (CRISP), a
Semiconductor Research Corporation (SRC) program co-sponsored
by DARPA. It was also supported by the Real Time Machine Learn-
ing (RTML) NSF and DARPA program, and the NSF award CCF-
1518703, CNS-2211882. The opinions and conclusions in this paper
do not reflect the views of these funding agencies.

A PROGRAMMING INTERFACE FOR
COMPOSABLE FORMATS

This section further explains the programming interface for com-
posable formats and the format decomposition pass introduced in
ğ3.2.1, SparseTIR provide two APIs for composable formats:

FormatRewriteRule is a class for a sparse format rewriting
rule description, its input include: the name of format rewrite
rule, the sparse buffer to rewrite, a SparseTIR description of
new format, the mapping from original axes to new axes,
and the index mapping 𝑓 and inverse index mapping 𝑓 −1

between original sparse buffer𝐴 and the transformed sparse
buffer 𝐴′: 𝐴[I] = 𝐴′[𝑓 (I)], 𝐴[𝑓 −1 (I’)] = 𝐴′[I’], both 𝑓 and
𝑓 −1 need to be affine maps written in Python’s lambda func-
tions.

decompose_format is a function that accepts a list of format
rewrite rules and an SparseTIR program as input and per-
forms the format decomposition pass on the given SparseTIR
program.

Below is an example illustrating how to use the twoAPIs to compose
ELL(2) and BSR(2) rewrite rules and perform format decomposi-
tion in Figure 5:

@T.prim_func

def spmm(

a: T.handle , b: T.handle , c: T.handle ,

indptr: T.handle , indices: T.handle ,

m: T.int32 , n: T.int32 , nnz: T.int32 , feat_size: T.int32

) -> None:

I = T.dense_fixed(m, idtype="int32")

J = T.sparse_variable(

I, (n, nnz), (indptr , indices), idtype="int32")

J_ = T.dense_fixed(n, idtype="int32")

K = T.dense_fixed(feat_size , idtype="int32")

A = T.match_sparse_buffer(a, (I, J), "float32")

B = T.match_sparse_buffer(b, (J_ , K), "float32")

C = T.match_sparse_buffer(c, (I, K), "float32")

with T.sp_iter ([I, J, K], "SRS", "csrmm") as [i, j, k]:

with T.init():

C[i, k] = 0.0

C[i, k] = C[i, k] + A[i, j] * B[j, k]

def BSR(block_size: int):

# block_size: the block size in BSR format.

@T.prim_func

def bsr_desc(

a: T.handle ,

indptr: T.handle , indices: T.handle ,

m: T.int32 , n: T.int32 , nnz: T.int32

) -> None:

IO = T.dense_fixed(m, idtype="int32")

JO = T.sparse_variable(

IO , (n, nnz), (indptr , indices), idtype="int32")

II = T.dense_fixed(block_size , idtype="int32")

JI = T.dense_fixed(block_size , idtype="int32")

A = T.match_sparse_buffer(a, (IO , JO , II , JI), "float32")

pass

return FormatRewriteRule(

"bsr_{}".format(str(block_size)),

bsr_desc ,

["A"], ["I", "J"], ["IO", "JO", "II", "JI"],

{"I": ["IO", "II"], "J": ["JO", "JI"]},

lambda i, j:

return (i // block_size , j // block_size ,

i % block_size , j % block_size)

lambda io , jo , ii , ji:

return io * block_size + ii , jo * block_size + ji

)

def ELL(nnz_cols: int):

# nnz_cols: number of non-zero columns per row in ELL format.

@T.prim_func

def ell(

a: T.handle ,

indices: T.handle ,

m: T.int32 , n: T.int32 ,

) -> None:

I2 = T.dense_fixed(m, idtype="int32")

J2 = T.sparse_fixed(

I2 , (n, nnz_cols), indices , idtype="int32")

A = T.match_sparse_buffer(a, (I2 , J2), "float32")

pass

return FormatRewriteRule(

"ell_".format(str(nnz_cols)),

ell_desc ,

["A"], ["I", "J"], ["I2", "J2"],

{"I": ["I2"], "J": ["J2"]},

lambda i, j: return i, j

lambda i2 , j2: return i2 , j2

)

composable_format = [BSR (2), ELL (2)]

spmm_hybrid = decompose_format(spmm , composable_format)

where the prefix T is used to prevent name conflicts with keywords
in Python. Note that format conversion is a special case of format
decomposition where we only put one FormatRewriteRule in the
list of composable formats.

B ARTIFACT APPENDIX

B.1 Abstract

This artifact includes scripts and dependencies for reproducing
all experiments in the paper. We require a host with x86_64 CPU
and NVIDIA GPUs with Turing or later architectures to run the
artifact. The SparseTIR compiler is a submodule in the artifact,
which is implemented in C++ and Python. The benchmarking is
mainly written in Python. We modify the source code of some old
dependencies to make sure they are compatible with the software
version specified in the Dockerfile. We provide a docker image
for users to run benchmarks inside the container, and scripts to
generate tables and figures for comparison.

B.2 Artifact Checklist
• Data set: OGB, SemanticKITTI, DGL built-in datasets.
• Run-time environment: NVIDIA Container Toolkit.
• Hardware: NVIDIA GPUs with Turing/Ampere/Hopper architec-
ture.

• Execution: All kernels being profiled are executed in GPUs, some
data pre-processing are performed on CPUs.

• Metrics: Execution time, GPU memory footprint.
• Output: Execution time/GPU memory usage tables, and figures.

673



SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

• Experiments: SpMM, SDDMM, GraphSAGE end-to-end training,
Sparse Transformer operators, 3D Sparse Convolution, Relational
Graph Convolutional Networks inference.

• How much disk space required (approximately)?: 55GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 2 hour for building docker container.
• How much time is needed to complete experiments (approxi-

mately)?: 10 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: The SparseTIR-artifact is
distributed under The MIT license and the SparseTIR compiler is
released under the Apache License, v2.0.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7643745

B.3 Description

B.3.1 How to Access. The artifact [105] is available on Github:
https://github.com/uwsampl/sparsetir-artifact and Zenodo: https:
//doi.org/10.5281/zenodo.7643745. Which includes the installation
scripts for all dependencies and benchmark scripts to reproduce
results. The SparseTIR compiler, which is available at https://github.
com/uwsampl/sparsetir, has been incorporated as a submodule of
the artifact.

B.3.2 Hardware Dependencies. We conduct experiments on two
machines, one with NVIDIA RTX 3070 GPU and another with
NVIDIA Tesla V100 GPU, both of them are equipped with x86_64
CPUs. Other NVIDIA GPUs with Turing, Ampere, or Hopper ar-
chitecture should also work. A GPU with memory greater than
or equal to 16GB is enough to reproduce all results, otherwise,
users might encounter an Out-Of-Memory issue for relatively large
datasets like Reddit on end-to-end GraphSAGE training.

B.3.3 Software Dependencies. We create a Docker image for this ar-
tifact, enabling users to run all experiments on a platform that meets
the installation requirements of the NVIDIA Container Toolkit.

B.3.4 Datasets. For GNN-related experiments, we use Open Graph
Benchmark [45] and built-in datasets provided by DGL [96], for
Sparse Convolution, we use SemanticKITTI dataset [5], for Pruned-
BERT, we use models publicly available in HuggingFace [101].

B.4 Installation

To install the artifact, users can either clone the repository and
build the artifact by themselves:

git clone https :// github.com/uwsampl/

sparsetir -artifact.git --recursive

cd sparsetir -artifact

docker build -t sparsetir .

or pull the pre-built image we provided from the docker hub (only
compatible with Ampere NVIDIA GPU architecture):

docker image pull expye/sparestir -ae:

latest

docker tag expye/sparsetir -ae:latest

sparsetir

B.5 Experiment Workflow

We provide a run.sh script under each folder, and user can run
these scripts in docker container for corresponding benchmarks:

spmm contains scripts to reproduce SpMM experiments in
ğ4.2.1.

sddmm contains scripts to reproduce SDDMM experiments
in ğ4.2.2.

e2e contains scripts to reproduce GraphSAGE end-to-end train-
ing experiments in ğ4.2.3.

sparse-attention contains scripts to reproduce Sparse Trans-
former operator experiments in ğ4.3.1.

pruned-bert contains scripts to reproduce PrunedBERT ex-
periments in ğ4.3.2 and ğ4.3.2.

rgcn contains scripts to reproduce RGCN inference end-to-end
experiments in figure ğ4.4.1.

sparse-conv contains scripts to reproduce Sparse Convolution
operator experiments in ğ4.4.2.

The scripts will produce logging files containing the profiling
results including average execution time and GPU memory usage,
and figures plotted in the same style as the paper. We also provide
a run-all.sh script under the root directory for running all exper-
iments in a single command, which would take around 10 hours to
finish on a GPU like RTX 3080. We use cudaEvent APIs to profile
CUDA kernels. During profiling, we discard the samples for the
first 10 runs as warm-up steps and repeat for 100 cycles.

B.6 Evaluation and Expected Results

The specific running time and speedup differ on different platforms
but we expect the results users reproduced should roughly match
the numbers reported in the paper. (see Figures 13, 14, 15, 16, 17,
19, 20 and 23).

B.7 Experiment Customization

Artifact users can customize the benchmark scripts to use other
datasets, for GNN operator or end-to-end training/inference bench-
marks, users can create their own datasets as DGLGraph class (the
graph data structure used in DGL). For the sparse convolution
benchmark, users need to convert the customized point cloud
dataset to SparseTensor class introduced in TorchSparse. For the
network pruning benchmark, user can convert their own pruned
weights to scipy sparse matrix.

B.8 Notes

Many previous work do not flush L2 cache when profiling CUDA
kernels, which results in incorrect measurement especially for
łsmallž operators, because the data accessed in the previous run
would reside in L2 cache thus reducing the memory latency in the
next run if they are accessed before being replaced. In this artifact
we provide an option for the user to determine whether to enable
L2 or not: if the environment variable FLUSH_L2 is set to ON, we
enable L2 flush for all benchmarks, and if FLUSH_L2 is set to OFFwe
will disable L2 flush. All experiment results reported in this paper
are obtained with FLUSH_L2=ON.

674



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze

REFERENCES
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to optimize halide with tree
search and random programs. ACM Trans. Graph. 38, 4 (2019), 121:1ś121:12.
https://doi.org/10.1145/3306346.3322967

[2] Nawaaz Ahmed, Nikolay Mateev, Keshav Pingali, and Paul Stodghill. 2000. A
Framework for Sparse Matrix Code Synthesis from High-level Specifications.
In Proceedings Supercomputing 2000, November 4-10, 2000, Dallas, Texas, USA.
IEEE Computer Society, CD-ROM, Jed Donnelley (Ed.). IEEE Computer Society,
58. https://doi.org/10.1109/SC.2000.10033

[3] Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling
for Sparse Tensor Algebra with an Asymptotic Cost Model. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 269ś285. https://doi.org/10.1145/
3519939.3523442

[4] Riyadh Baghdadi, Abdelkader Nadir Debbagh, Kamel Abdous, Fatima-Zohra
Benhamida, Alex Renda, Jonathan Elliott Frankle, Michael Carbin, and Saman P.
Amarasinghe. 2020. TIRAMISU: A Polyhedral Compiler for Dense and Sparse
Deep Learning. CoRR abs/2005.04091 (2020). arXiv:2005.04091 https://arxiv.
org/abs/2005.04091

[5] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J.
Gall. 2019. SemanticKITTI: A Dataset for Semantic Scene Understanding of
LiDAR Sequences. In Proc. of the IEEE/CVF International Conf. on Computer
Vision (ICCV).

[6] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The
Long-Document Transformer. CoRR abs/2004.05150 (2020). arXiv:2004.05150
https://arxiv.org/abs/2004.05150

[7] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia
Zheng, and Fredrik Kjolstad. 2022. Compiler Support for Sparse Tensor Com-
putations in MLIR. ACM Trans. Archit. Code Optim. 19, 4, Article 50 (sep 2022),
25 pages. https://doi.org/10.1145/3544559

[8] A.J.C. Bik and H.A.G. Wijshoff. 1995. Advanced Compiler Optimizations for
Sparse Computations. J. Parallel and Distrib. Comput. 31, 1 (1995), 14ś24. https:
//doi.org/10.1006/jpdc.1995.1141

[9] Aart J. C. Bik. 1996. Compiler Support for Sparse Matrix Computations. Ph. D.
Dissertation.

[10] Aart J. C. Bik and Harry A. G. Wijshoff. 1993. Compilation Techniques for
Sparse Matrix Computations. In Proceedings of the 7th international conference
on Supercomputing, ICS 1993, Tokyo, Japan, July 20-22, 1993, Yoichi Muraoka
(Ed.). ACM, 416ś424. https://doi.org/10.1145/165939.166023

[11] Aart J. C. Bik and Harry A. G. Wijshoff. 1994. Nonzero Structure Analysis. In
Proceedings of the 8th International Conference on Supercomputing (Manchester,
England) (ICS ’94). Association for Computing Machinery, New York, NY, USA,
226ś235. https://doi.org/10.1145/181181.181538

[12] Aart J. C. Bik and Harry A. G.Wijshoff. 1996. Automatic Data Structure Selection
and Transformation for Sparse Matrix Computations. IEEE Trans. Parallel
Distributed Syst. 7, 2 (1996), 109ś126. https://doi.org/10.1109/71.485501

[13] Aydin Buluç and John R. Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In 22nd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, Miami, Florida USA, April 14-18, 2008. IEEE,
1ś11. https://doi.org/10.1109/IPDPS.2008.4536313

[14] Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao, Lanshun Nie, Dechen
Zhan, Yunxin Liu, Ming Wu, and Lintao Zhang. 2019. Efficient and Effective
Sparse LSTM on FPGA with Bank-Balanced Sparsity. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery, New
York, NY, USA, 63ś72. https://doi.org/10.1145/3289602.3293898

[15] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and
Christopher Ré. 2022. Pixelated Butterfly: Simple and Efficient Sparse training
for Neural Network Models. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.
https://openreview.net/forum?id=Nfl-iXa-y7R

[16] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578ś
594. https://www.usenix.org/conference/osdi18/presentation/chen

[17] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 3393ś3404.

[18] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri
Dehnavi. 2017. Sympiler: transforming sparse matrix codes by decoupling

symbolic analysis. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO,
USA, November 12 - 17, 2017, Bernd Mohr and Padma Raghavan (Eds.). ACM, 13.
https://doi.org/10.1145/3126908.3126936

[19] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri
Dehnavi. 2018. ParSy: inspection and transformation of sparse matrix compu-
tations for parallelism. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX,
USA, November 11-16, 2018. IEEE / ACM, 62:1ś62:15. http://dl.acm.org/citation.
cfm?id=3291739

[20] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generat-
ing Long Sequences with Sparse Transformers. CoRR abs/1904.10509 (2019).
arXiv:1904.10509 http://arxiv.org/abs/1904.10509

[21] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Ab-
straction for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2,
OOPSLA, Article 123 (oct 2018), 30 pages. https://doi.org/10.1145/3276493

[22] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020. Automatic Gen-
eration of Efficient Sparse Tensor Format Conversion Routines. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 823ś838. https://doi.org/10.1145/3385412.3385963

[23] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 3075ś3084.

[24] NVIDIA Corporation. 2022. cuSPARSE :: CUDA Toolkit Documentation v11.7.1.
https://docs.nvidia.com/cuda/cusparse/index.html.

[25] Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui Zhang, Yufei
Ding, Yuan Xie, Huazhong Yang, and Yu Wang. 2022. Heuristic Adaptability to
Input Dynamics for SpMM on GPUs. In Proceedings of the 59th ACM/IEEE Design
Automation Conference (San Francisco, California) (DAC ’22). Association for
Computing Machinery, New York, NY, USA, 595ś600. https://doi.org/10.1145/
3489517.3530508

[26] Tensorflow Developers. 2018. Ragged tensors | TensorFlow Core. https://www.
tensorflow.org/guide/ragged_tensor.

[27] Tensorflow Developers. 2018. XLA: Optimizing Compiler for Machine Learning
| TensorFlow. https://www.tensorflow.org/xla.

[28] dgSPARSE team. 2021. dgSPARSE Library. https://github.com/dgSPARSE/
dgSPARSE-Library.

[29] Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, andMilind Kulkarni.
2022. SparseLNR: Accelerating Sparse Tensor Computations Using Loop Nest
Restructuring. In Proceedings of the 36th ACM International Conference on Super-
computing (Virtual Event) (ICS ’22). Association for Computing Machinery, New
York, NY, USA, Article 15, 14 pages. https://doi.org/10.1145/3524059.3532386

[30] Iain S. Duff. 1987. The Use of Vector and Parallel Computers in the Solution
of Large Sparse Linear Equations. Birkhäuser Boston, Boston, MA, 331ś348.
https://doi.org/10.1007/978-1-4684-6754-3_20

[31] Iain S Duff, Albert M Erisman, and John K Reid. 1986. Direct Methods for Sparse
Matrices. Oxford University Press, Inc., USA.

[32] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1ś39. http://jmlr.org/papers/v23/21-
0998.html

[33] Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, and Todd C. Mowry. 2022. The
CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding.
In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and
I. Stoica (Eds.).

[34] Siyuan Feng, BohanHou, Hongyi Jin,Wuwei Lin, Junru Shao, Ruihang Lai, Zihao
Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, and Tianqi Chen. 2023. TensorIR: An
Abstraction for Automatic Tensorized Program Optimization. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 804ś817.
https://doi.org/10.1145/3575693.3576933

[35] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019.
Hypergraph Neural Networks. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019. AAAI Press, 3558ś3565. https://doi.org/10.1609/aaai.v33i01.
33013558

[36] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs
and Manifolds.

[37] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC ’20). IEEE Press, Article 17, 14 pages.

675



SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[38] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70 (Sydney,
NSW, Australia) (ICML’17). JMLR.org, 1263ś1272.

[39] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California,
USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 1025ś1035.

[40] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua
Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1510.00149

[41] Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman
Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of Sparse Array Pro-
gramming Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 128 (oct 2021),
29 pages. https://doi.org/10.1145/3485505

[42] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
2021. Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks. J. Mach. Learn. Res. 22 (2021), 241:1ś241:124.
http://jmlr.org/papers/v22/21-0366.html

[43] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P. Sa-
dayappan. 2019. Adaptive Sparse Tiling for Sparse Matrix Multiplication. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(Washington, District of Columbia) (PPoPP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 300ś314. https://doi.org/10.1145/3293883.3295712

[44] E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Papa-
chiou, M. K. Samartzis, E. A. Vavalis, Ko Yang Wang, and S. Weerawarana. 1990.
//ELLPACK: A Numerical Simulation Programming Environment for Parallel
MIMD Machines. SIGARCH Comput. Archit. News 18, 3b (jun 1990), 96ś107.
https://doi.org/10.1145/255129.255144

[45] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Bench-
mark: Datasets for Machine Learning on Graphs. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

[46] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo
Durand. 2019. Taichi: A Language for High-Performance Computation on
Spatially Sparse Data Structures. ACM Trans. Graph. 38, 6, Article 201 (nov
2019), 16 pages. https://doi.org/10.1145/3355089.3356506

[47] Yuwei Hu, Zihao Ye, MinjieWang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. 2020. FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Atlanta,
Georgia) (SC ’20). IEEE Press, Article 71, 13 pages.

[48] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. InWWW ’20: TheWeb Conference 2020, Taipei, Taiwan, April
20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen
(Eds.). ACM / IW3C2, 2704ś2710. https://doi.org/10.1145/3366423.3380027

[49] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM:
General-Purpose SparseMatrix-MatrixMultiplication onGPUs for GraphNeural
Networks. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE
Press, Article 72, 12 pages.

[50] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Au-
tomatic Generation of Graph Substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 47ś62.
https://doi.org/10.1145/3341301.3359630

[51] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter

Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th An-
nual International Symposium on Computer Architecture, ISCA 2017, Toronto, ON,
Canada, June 24-28, 2017. ACM, 1ś12. https://doi.org/10.1145/3079856.3080246

[52] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[53] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019.
Tensor Algebra Compilation with Workspaces. (2019), 180ś192. http://dl.acm.
org/citation.cfm?id=3314872.3314894

[54] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. 2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1,
OOPSLA, Article 77 (oct 2017), 29 pages. https://doi.org/10.1145/3133901

[55] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. 2021. Block
Pruning For Faster Transformers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic, 10619ś10629.
https://doi.org/10.18653/v1/2021.emnlp-main.829

[56] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Automatic
Horizontal Fusion for GPU Kernels. In Proceedings of the 20th IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (Virtual Event, Republic
of Korea) (CGO ’22). IEEE Press, 14ś27. https://doi.org/10.1109/CGO53902.2022.
9741270

[57] Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In Proceedings
of the ACM International Conference on Supercomputing (Phoenix, Arizona)
(ICS ’19). Association for Computing Machinery, New York, NY, USA, 227ś237.
https://doi.org/10.1145/3330345.3330366

[58] Shigang Li, Kazuki Osawa, and Torsten Hoefler. 2022. Efficient Quantized
Sparse Matrix Operations on Tensor Cores. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Dallas, Texas) (SC ’22). IEEE Press, Article 37, 15 pages.

[59] Chien-Yu Lin, Liang Luo, and Luis Ceze. 2021. Accelerating SpMM Kernel with
Cache-First Edge Sampling for Graph Neural Networks. CoRR abs/2104.10716
(2021). arXiv:2104.10716 https://arxiv.org/abs/2104.10716

[60] Nikolay Mateev, Keshav Pingali, Paul Stodghill, and Vladimir Kotlyar. 2000.
Next-generation generic programming and its application to sparse matrix com-
putations. In Proceedings of the 14th international conference on Supercomputing,
ICS 2000, Santa Fe, NM, USA, May 8-11, 2000, John Reynders and Alexander V.
Veidenbaum (Eds.). ACM, 88ś99. https://doi.org/10.1145/335231.335240

[61] Atefeh Mehrabi, Donghyuk Lee, Niladrish Chatterjee, Daniel J. Sorin, Ben-
jamin C. Lee, and Mike O’Connor. 2021. Learning Sparse Matrix Row Permuta-
tions for Efficient SpMM on GPUArchitectures. In IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2021, Stony Brook, NY,
USA, March 28-30, 2021. IEEE, 48ś58. https://doi.org/10.1109/ISPASS51385.2021.
00016

[62] Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C. Davis,
Mary W. Hall, Maryam Mehri Dehnavi, Payal Nandy, Catherine Olschanowsky,
Anand Venkat, and Michelle Mills Strout. 2019. Sparse computation data de-
pendence simplification for efficient compiler-generated inspectors. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 594ś609. https:
//doi.org/10.1145/3314221.3314646

[63] Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong,
and P. Sadayappan. 2018. Sampled Dense Matrix Multiplication for High-
Performance Machine Learning. In 2018 IEEE 25th International Conference
on High Performance Computing (HiPC). 32ś41. https://doi.org/10.1109/HiPC.
2018.00013

[64] Thomas C. Oppe and David R. Kincaid. 1987. The performance of ITPACK
on vector computers for solving large sparse linear systems arising in sam-
ple oil reseervoir simulation problems. Communications in Applied Numer-
ical Methods 3, 1 (1987), 23ś29. https://doi.org/10.1002/cnm.1630030106
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1630030106

[65] Douglass Stott Parker. 1995. Random butterfly transformations with applications
in computational linear algebra. UCLA Computer Science Department.

[66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024ś8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

676



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze

[67] Gregoire Pichon, Mathieu Faverge, Pierre Ramet, and Jean Roman. 2017. Re-
ordering Strategy for Blocking Optimization in Sparse Linear Solvers. SIAM J.
Matrix Anal. Appl. 38, 1 (2017), 226ś248. https://doi.org/10.1137/16M1062454
arXiv:https://doi.org/10.1137/16M1062454

[68] Jeff Pool. 2020. Accelerating Sparsity in the NVIDIA Ampere Archi-
tecture. https://developer.download.nvidia.com/video/gputechconf/gtc/
2020/presentations/s22085-accelerating-sparsity-in-the-nvidia-ampere-
architecture%E2%80%8B.pdf.

[69] William W. Pugh and Tatiana Shpeisman. 1998. SIPR: A New Framework
for Generating Efficient Code for Sparse Matrix Computations. In Languages
and Compilers for Parallel Computing, 11th International Workshop, LCPC’98,
Chapel Hill, NC, USA, August 7-9, 1998, Proceedings (Lecture Notes in Computer
Science, Vol. 1656), Siddhartha Chatterjee, Jan F. Prins, Larry Carter, Jeanne
Ferrante, Zhiyuan Li, David C. Sehr, and Pen-Chung Yew (Eds.). Springer, 213ś
229. https://doi.org/10.1007/3-540-48319-5_14

[70] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13).
Association for Computing Machinery, New York, NY, USA, 519ś530. https:
//doi.org/10.1145/2491956.2462176

[71] Md. Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021. FusedMM:
A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Net-
works. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 256ś266. https://doi.org/10.1109/IPDPS49936.2021.00034

[72] Petar Ristoski, Gerben Klaas Dirk de Vries, and Heiko Paulheim. 2016. A Collec-
tion of Benchmark Datasets for Systematic Evaluations of Machine Learning on
the Semantic Web. In The Semantic Web ś ISWC 2016, Paul Groth, Elena Simperl,
Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck, and
Yolanda Gil (Eds.). Springer International Publishing, Cham, 186ś194.

[73] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame,
Tianqi Chen, and Zachary Tatlock. 2018. Relay: A New IR for Machine Learning
Frameworks. In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (Philadelphia, PA, USA) (MAPL
2018). Association for Computing Machinery, New York, NY, USA, 58ś68. https:
//doi.org/10.1145/3211346.3211348

[74] Youcef Saad. 1989. Krylov Subspace Methods on Supercomputers. SIAM J.
Sci. Statist. Comput. 10, 6 (1989), 1200ś1232. https://doi.org/10.1137/0910073
arXiv:https://doi.org/10.1137/0910073

[75] Youcef Saad. 1990. SPARSKIT: A basic tool kit for sparse matrix computations.
Technical Report.

[76] Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. Movement Pruning:
Adaptive Sparsity by Fine-Tuning. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 20378ś20389. https://proceedings.neurips.cc/
paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf

[77] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph
Convolutional Networks. In The Semantic Web - 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings (Lecture Notes
in Computer Science, Vol. 10843), Aldo Gangemi, Roberto Navigli, Maria-Esther
Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and Mehwish
Alam (Eds.). Springer, 593ś607. https://doi.org/10.1007/978-3-319-93417-4_38

[78] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher,
and Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag.
29, 3 (2008), 93ś106. https://doi.org/10.1609/aimag.v29i3.2157

[79] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen
Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. 2020. A Sparse
Iteration Space Transformation Framework for Sparse Tensor Algebra. Proc.
ACM Program. Lang. 4, OOPSLA, Article 158 (Nov. 2020), 30 pages. https:
//doi.org/10.1145/3428226

[80] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin,
Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi Chen. 2022. Tensor
Program Optimization with Probabilistic Programs. https://doi.org/10.48550/
ARXIV.2205.13603

[81] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,
Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
B1ckMDqlg

[82] Shaden Smith and George Karypis. 2015. Tensor-Matrix Products with a Com-
pressed Sparse Tensor. In Proceedings of the 5th Workshop on Irregular Ap-
plications: Architectures and Algorithms (Austin, Texas) (IA<sup>3</sup> ’15).
Association for Computing Machinery, New York, NY, USA, Article 5, 7 pages.
https://doi.org/10.1145/2833179.2833183

[83] Michelle Mills Strout, Mary W. Hall, and Catherine Olschanowsky. 2018. The
Sparse Polyhedral Framework: Composing Compiler-Generated Inspector-
Executor Code. Proc. IEEE 106, 11 (2018), 1921ś1934. https://doi.org/10.1109/
JPROC.2018.2857721

[84] Patricia Suriana, Andrew Adams, and Shoaib Kamil. 2017. Parallel Associative
Reductions in Halide. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization (Austin, USA) (CGO ’17). IEEE Press, 281ś291.

[85] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. Efficient
Processing of Deep Neural Networks. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S01004ED1V01Y202004CAC050

[86] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. 2022.
TorchSparse: Efficient Point Cloud Inference Engine. In Proceedings of
Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu
(Eds.), Vol. 4. 302ś315. https://proceedings.mlsys.org/paper/2022/file/
6512bd43d9caa6e02c990b0a82652dca-Paper.pdf

[87] Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan,
and Chen Zhang. 2022. FreeTensor: A Free-Form DSL with Holistic Optimiza-
tions for Irregular Tensor Programs. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New
York, NY, USA, 872ś887. https://doi.org/10.1145/3519939.3523448

[88] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor. 2021. A
High Performance Sparse Tensor Algebra Compiler in MLIR. In 2021 IEEE/ACM
7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC). 27ś38.
https://doi.org/10.1109/LLVMHPC54804.2021.00009

[89] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermediate Lan-
guage and Compiler for Tiled Neural Network Computations. Association for
Computing Machinery, New York, NY, USA, 10ś19. https://doi.org/10.1145/
3315508.3329973

[90] Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravishankar,
Thomas Raoux, Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Ca-
ballero, Stephan Herhut, Stella Laurenzo, and Albert Cohen. 2022. Composable
andModular Code Generation inMLIR: A Structured and Retargetable Approach
to Tensor Compiler Construction. CoRR abs/2202.03293 (2022). arXiv:2202.03293
https://arxiv.org/abs/2202.03293

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000ś6010.

[92] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations. https://openreview.net/forum?id=
rJXMpikCZ

[93] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261ś272. https://doi.org/10.1038/s41592-019-0686-2

[94] Richard Vuduc, James W Demmel, and Katherine A Yelick. 2005. OSKI: A library
of automatically tuned sparse matrix kernels. Journal of Physics: Conference
Series 16 (jan 2005), 521ś530. https://doi.org/10.1088/1742-6596/16/1/071

[95] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167ś188.

[96] MinjieWang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[97] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu,
Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo
Baeza-Yates, and Leila Zia (Eds.). ACM, 2022ś2032. https://doi.org/10.1145/
3308558.3313562

[98] Yuke Wang, Boyuan Feng, and Yufei Ding. 2021. TC-GNN: Accelerating Sparse
Graph Neural Network Computation Via Dense Tensor Core on GPUs. CoRR
abs/2112.02052 (2021). arXiv:2112.02052 https://arxiv.org/abs/2112.02052

[99] Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: Accelerating Quantized
Graph Neural Networks via GPU Tensor Core. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Seoul,

677



SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New
York, NY, USA, 107ś119. https://doi.org/10.1145/3503221.3508408

[100] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 515ś531. https:
//www.usenix.org/conference/osdi21/presentation/wang-yuke

[101] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Nat-
ural Language Processing. CoRR abs/1910.03771 (2019). arXiv:1910.03771
http://arxiv.org/abs/1910.03771

[102] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chengguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: vertex-centric programming for graph
neural networks. In EuroSys ’21: Sixteenth European Conference on Computer
Systems, Online Event, United Kingdom, April 26-28, 2021, Antonio Barbalace,
Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.). ACM, 359ś375.
https://doi.org/10.1145/3447786.3456247

[103] Zhiqiang Xie, MinjieWang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler:
Optimizing Graph Neural Networks with Message Passing Data Flow Graph.
In Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and
C. Wu (Eds.), Vol. 4. 515ś528. https://proceedings.mlsys.org/paper/2022/file/
a87ff679a2f3e71d9181a67b7542122c-Paper.pdf

[104] Carl Yang, Aydin Buluç, and John D. Owens. 2018. Design Principles for Sparse
Matrix Multiplication on the GPU. In Euro-Par 2018: Parallel Processing - 24th
International Conference on Parallel and Distributed Computing, Turin, Italy,
August 27-31, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11014),
Marco Aldinucci, Luca Padovani, and Massimo Torquati (Eds.). Springer, 672ś
687. https://doi.org/10.1007/978-3-319-96983-1_48

[105] Zihao Ye and Ruihang Lai. 2023. uwsampl/sparsetir-artifact: v1.3. (Feb 2023).
https://doi.org/10.5281/zenodo.7643745

[106] Zhongming Yu, Guohao Dai, Guyue Huang, YuWang, and Huazhong Yang. 2021.
Exploiting Online Locality and Reduction Parallelism for Sampled Dense Matrix
Multiplication on GPUs. In 39th IEEE International Conference on Computer
Design, ICCD 2021, Storrs, CT, USA, October 24-27, 2021. IEEE, 567ś574. https:
//doi.org/10.1109/ICCD53106.2021.00092

[107] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng,
Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. 2021.

AKG: Automatic Kernel Generation for Neural Processing Units Using Poly-
hedral Transformations. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation (Virtual,
Canada) (PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 1233ś1248. https://doi.org/10.1145/3453483.3454106

[108] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm,
Yizhi Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady Pekhimenko.
2022. DietCode: Automatic Optimization for Dynamic Tensor Programs. In
Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and
C. Wu (Eds.), Vol. 4. 848ś863. https://proceedings.mlsys.org/paper/2022/file/
fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

[109] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 863ś879. https://www.usenix.
org/conference/osdi20/presentation/zheng

[110] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuqing Yang, Fan Yang,
Yang Wang, Mao Yang, and Lidong Zhou. 2022. SparTA: Deep-Learning Model
Sparsity via Tensor-with-Sparsity-Attribute. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22). USENIX Association, Carls-
bad, CA, 213ś232. https://www.usenix.org/conference/osdi22/presentation/
zheng-ningxin

[111] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-
Tensor: An Automatic Schedule Exploration and Optimization Framework for
Tensor Computation on Heterogeneous System. In ASPLOS ’20: Architectural
Support for Programming Languages and Operating Systems, Lausanne, Switzer-
land, March 16-20, 2020, James R. Larus, Luis Ceze, and Karin Strauss (Eds.).
ACM, 859ś873. https://doi.org/10.1145/3373376.3378508

[112] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan,
Wenxiu Sun, and Hongsheng Li. 2021. Learning N: M Fine-grained Struc-
tured Sparse Neural Networks From Scratch. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=K9bw7vqp_s

Received 2022-07-07; revised 2022-11-03; accepted 2023-01-19

678


	Abstract
	1 Introduction
	2 System Overview
	3 Our Approach
	3.1 Language Constructs
	3.2 Stage I: Coordinate Space Computation
	3.3 Stage II: Position Space Computation
	3.4 Stage III: Loop-Level IR
	3.5 Target-Specific Code Generation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Graph Neural Networks
	4.3 Sparsity in Transformers
	4.4 Relational Gather-Matmul-Scatter

	5 Related Work
	6 Future Work
	7 Conclusion
	Acknowledgments
	A Programming Interface for Composable Formats
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact Checklist
	B.3 Description
	B.4 Installation
	B.5 Experiment Workflow
	B.6 Evaluation and Expected Results
	B.7 Experiment Customization
	B.8 Notes

	References

