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of the sparse matrix by the given factor 𝑐 , so that each column
partition has width 𝑤 . For each column partition, we collect the
rows with length 𝑙 that satisfy 2𝑖−1 < 𝑙 ≤ 2𝑖 to bucket 𝑖 , and we pad
the length of these rows to 2𝑖 ; each bucket then forms a sub-matrix
with the ELL format. Figure 11 shows a special case, hyb(2, 2).

For bucket 𝑖 of each column partition, we group each 2𝑘−𝑖 rows
and map them to a unique thread block in GPUs. The number of
non-zero elements in 𝐴 that are processed by each thread block
is 2𝑘 , which is implemented with TVM’s split and bind primi-
tives. We use the schedule proposed in GE-SpMM [49] for each
sub-matrix for the remaining dimensions. The column partition in
our design is intended to improve cache locality; when processing
column partition 𝑗 , only 𝐵 [ 𝑗𝑤 : ( 𝑗 + 1)𝑤] would be accessed for 𝐵.
Featgraph [47] proposes to apply column partitions for SpMM on
CPUs; however, it does not extend the idea to GPUs. Our bucketing
technique was designed to achieve compile-time load balancing.
In practice, we searches for the best 𝑐 over {1, 2, 4, 8, 16} and let
𝑘 =

⌈

log2
𝑛𝑛𝑧
𝑛

⌉

, which generally works well.
We evaluate the SpMM written in SparseTIR with and without

the proposed ℎ𝑦𝑏 format on real-world GNN datasets for both V100
and RTX3070. We measure the geometric mean speedup of dif-
ferent SpMM implementations against cuSPARSE for feature size
𝑑 ∈ {32, 64, 128, 256, 512}. Figure 13 shows our results. The Sparse-
TIR kernel on ℎ𝑦𝑏 format obtains a 1.22-2.34x speedup on V100
and a 1.20-1.91x speedup on RTX 3070 compared to cuSPARSE. We
also achieve consistently better performance than state-of-the-art
open source sparse libraries dgSPARSE and Sputnik, and TACO
scheduled kernels [79]. Though TACO also explores compile-time
load balancing, it does not support caching the partially aggregated
result in registers, which is critical to GPU performance, and the ir-
regularity of the CSR format limits the application of loop unrolling.
SparseTIR perform these optimizations in stage II schedules.

Importance of composable formats. We evaluate the SparseTIR
kernel without format decomposition (see SparseTIR(no-hyb) in
the figure). Results suggest that the SparseTIR kernel without for-
mat decomposition and per-format scheduling performs generally
worse: ogbn-arxiv is a citation network graph whose degrees obey
power-law distribution, and our designed format can perform sig-
nificantly better because of more efficient load balancing. Notably,
though padded zeros in our proposed composable format slightly
increase FLOPs as shown in Table 1, the runtime of SparseTIR gen-
erated kernels on composable format is still faster because of better
scheduling. The degree distribution of the ogbn-proteins graph is
centralized, and the benefit of using a hybrid format is compensated
for the extra overhead introduced by padding. To evaluate the effect
of column partitioning, we fix the feature size to 128 and measure
several kernel metrics generated by SparseTIR on a Reddit dataset
under a different column partition setting. Figure 12 shows the re-
sults; L1 and L2’s cache hit rates improve as we increase the number
of column partitions. However, more partitions will increase the
required memory transactions of the kernel because we will need
to update the results matrix 𝑐 times if the number of partitions is
𝑐 . As a result, the benefit of column partitioning saturates as we
increase the number of partitions.

4.2.2 SDDMM. SDDMM can be formulated as the following:
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TIR SpMM kernels under different column partitions.

𝐵𝑖, 𝑗 =

𝑑
∑︁

𝑘=1

𝐴𝑖, 𝑗𝑋𝑖,𝑘𝑌𝑘,𝑗 ,

where 𝐴 and 𝐵 are two sparse matrices that share a sparse struc-
ture, 𝑋,𝑌 are dense matrices, and 𝑑 is the feature size. In SDDMM,
the computation per (𝑖, 𝑗) is independent, and the workload per
position is the same, so we need not worry about load balancing
issues if we parallelize the computation by each non-zero (𝑖, 𝑗). The
sparse_fuse schedule primitive in stage I introduced in Section
3.2.2 helps us iterate over non-zero (𝑖, 𝑗) directly instead of first
iterating over 𝑖 and then iterating over non-zero 𝑗 for each 𝑖 .

PRedS [106] is the state-of-the-art open-source SDDMM imple-
mentation, which optimizes SDDMM in two ways. First, it uses
vectorized load/store intrinsics in CUDA, such as float4/float2,
which improves memory throughput. Second, it performs the re-
duction in two stages: (1) intra-group reduction, which computes
the reduction inside each group independently, and (2) inter-group
reduction, which summarizes the reduction result per group. We for-
mulate the optimization in PRedS as composable transformations in
SparseTIR with vectorize and rfactor [84] schedule primitives
at stage II, and we generalize the parameters, such as group size,
vector length and number of workloads per thread block, as tunable
parameters.

Figure 14 shows the geometric mean speedup of different SD-
DMM implementations vs our baseline for feature size 𝑑 ∈ {32, 64,
128, 256, 512}. We do not use composable formats in SDDMM. The
baseline we select is DGL’s SDDMM implementation, which uses
the optimization proposed in Featgraph [47]. cuSPARSE and Sput-
nik’s SDDMM implementations are not optimized for highly sparse
matrices such as graphs and thus achieve very low performance. We
obtain generally better performance than dgSPARSE [28], which
implements the PRedS [106] algorithm, because of the parame-
terized scheduling space. SparseTIR significantly outperforms the
DGL baseline and the TACO scheduled kernel because these im-
plementations do not include two-stage reduction and vectorized
load/store.

Importance of composable transformations. The provenance graph
data structure in TACO does not support multiple branches, thus
we cannot perform schedules such as rfactor at this level. The
composable transformation design of SparseTIR enables us to apply
such schedules at lower stages.
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Figure 13: Normalized speedup against cuSPARSE for SpMM. SparseTIR consistently outperforms vendor libraries and TACO.

Comparing SparseTIR(no-hyb) and SparseTIR(hyb) demonstrates the importance of format composability.
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Figure 14: Normalized speedup against Featgraph for SDDMM. SparseTIR beats the state-of-the-art vendor library dgSPARSE

on average by parametrizing scheduling space.

4.2.3 End-to-endGraphSAGE Training. Wealso integrate SparseTIR-
generated SpMM operators in the GraphSAGE [39] model written
in PyTorch and compare the end-to-end speedup to DGL. Figure 15
shows that we obtain a 1.18-1.52x speedup on V100 and a 1.08-1.47x
speedup on RTX 3070 7.
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Figure 15: Normalized speedup of PyTorch+SparseTIR

against DGL on end-to-end GraphSAGE training.

7Reddit result is not reported on RTX 3070 because of Out-Of-Memory issue.

4.3 Sparsity in Transformers

Sparsity in Transformers comes from (1) sparse attentions [6, 15, 20],
and (2) sparsity in network weights after pruning [55, 76]. We
evaluate SparseTIR generated kernel in both cases8.

4.3.1 Sparse Attention. Sparse transformers reduce the complexity
of Transformers by making the attention matrix sparse. The key
operator in Sparse Transformers is still SpMM and SDDMM, but un-
like GNNs whose sparse matrices are provided by graph structures,
the sparse matrices used in sparse attentions are mostly manually
designed and have a block-sparse pattern to better utilize tensor
cores in modern GPUs. We select two examples: Longformer [6]
and Pixelated Butterfly Transformer [15], whose sparse structures
are band matrix and butterfly matrix [65], respectively. We imple-
ment the batched-SpMM and batched-SDDMM operators for both
CSR and BSR formats. For BSR operators, we use the tensorize
primitive during stage II IR schedules to use tensorized instructions
in CUDA. Figure 16 shows different implementations’ speedup
against Triton’s [89] block-sparse operator. We fix the matrix size
to 4096 × 4096, batch(head) size to 12, band size to 256, and feature
size per head to 64. Results show that SparseTIR-BSR obtains a
1.05-1.59x speedup on multi-head SpMM and a 1.50-2.98x speedup
on multi-head SDDMM.

8In this section, we use half-precision data type for all operators to use Tensor Cores.
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Table 2: Statistics of Heterogeneous Graphs used in RGCN.

Graph #nodes #edges #etypes %padding

AIFB [72] 7,262 48,810 45 17.9
MUTAG [72] 27,163 148,100 46 8.0
BGS [72] 94,806 672,884 96 4.3
ogbl-biokg [45] 93,773 4,762,678 51 4.2
AM [72] 1,885,136 5,668,682 96 10.8

𝑌𝑖,𝑙 =

𝑅
∑︁

𝑟=1

𝑛
∑︁

𝑗=1

𝑑𝑖𝑛
∑︁

𝑘=1

𝐴𝑟,𝑖, 𝑗𝑋 𝑗,𝑘𝑊𝑟,𝑘,𝑙 ,

where 𝐴 is a 3D sparse matrix, whose leading dimension size is
𝑅, denoting number of relations. For each relation, the last two
dimensions of 𝐴 form a unique 2D sparse matrix. 𝑋 is a 2D feature
matrix and𝑊 is a 3Dweight matrix whose leading dimension size is
also𝑅. For each relation, the last two dimensions of𝑊 form a unique
2D dense weight matrix. The scheduling for the RGMS operator is
complicated because we need to consider (1) load balancing and
(2) the utilization of Tensor Cores. Until now, no sparse library
implements this kernel.

4.4.1 Relational Graph Convolution Network. RGCN [77] is a gen-
eralization of GCN model to heterogeneous graphs (graphs with
multiple relations/edge types). The operator used in RGCN is RGMS,
where 𝐴𝑟 refers to the adjacency matrix corresponding to sub-
graph whose edge type is 𝑟 , and𝑊𝑖 refers to the weight matrix
corresponding to edge type 𝑟 . Table 2 introduces the characteristics
of heterogeneous graphs used in RGCN evaluation; in the table,
#etypes refers to the number of edge types (also known as łrela-
tionsž) in the heterogeneous graph, %padding refers to the ratio of
padded zero elements after we transform the original sparse matrix
with composable formats. Existing GNN libraries implement RGMS
operator in a two-stage approach:

𝑇𝑟, 𝑗,𝑙 =

𝑑𝑖𝑛
∑︁

𝑘=1

𝑋 𝑗,𝑘𝑊𝑟,𝑘,𝑙 , (9)

𝑌𝑖,𝑙 =

𝑅
∑︁

𝑟=1

𝑛
∑︁

𝑗=1

𝐴𝑟,𝑖, 𝑗𝑇𝑟,𝑗,𝑙 , (10)

where the first stage fuses gathering and matrix multiplication,
and the second stage performs scattering. Such implementation

materializes the intermediate result 𝑇 on HBM, which incurs a lot
of GPU memory consumption. In SparseTIR we fuses the two stage
into a single operator: we generalize the ℎ𝑦𝑏 format proposed in
Figure 11 to 3-dimensional so that 2D sparse matrix corresponding
to each relation is decomposed to ℎ𝑦𝑏 (1, 5) formats. Figure 21 ex-
plain the scheduling of RGMS operator on 3D ℎ𝑦𝑏 in SparseTIR: for
each ELL matrix 𝐴𝑟𝑘 (𝑟 refers to edge type and 𝑘 refers to bucket
index), we pin its corresponding weight matrix𝑊 𝑟 in SRAM and
gather related rows of 𝑋 from HBM to SRAM, then perform partial
matrix multiplication with Tensor Cores and scatter results to 𝑌 .
Note that the matrix multiplication and intra-group scatter are all
performed inside SRAM. Such design reduces the overhead of data
copy between SRAM and HBM for intermediate matrix 𝑇 . We eval-
uate end-to-end RGCN inference (feature size: 32) and Figure 20
shows results: SparseTIR(ℎ𝑦𝑏+TC) can significantly improve previ-
ous state-of-the-art GNN compiler Graphiler [103] by 4.2-40.2x in
different settings. By comparing SparseTIR(naive), SparseTIR(ℎ𝑦𝑏)
and SparseTIR(ℎ𝑦𝑏+TC) we show that both composable formats and
composable transformations (which enables Tensorization) matter:
even though ℎ𝑦𝑏 increases FLOPs by padding zeros (as shown in
Table 2), it still makes the kernel faster by 2-4.4x because of bet-
ter load-balancing. SparseTIR’s generated fused kernel can also
greatly reduce GPU memory footprint because we do not explicitly
stores 𝑇 in HBM, with fragments of 𝑇 consumed immediately af-
ter produced in SRAM. SparseTIR(ℎ𝑦𝑏+TC) consumes more GPU
memory than SparseTIR(naive) and SparseTIR(ℎ𝑦𝑏) because of the
half-precision/single-precision data type conversion.

4.4.2 Sparse Convolution. Sparse Convolution [23] is widely used
in 3D cloud point data. We found that the Sparse Convolution
operator is a special form of RGMS, and Figure 22 illustrates the
equivalence: each relative offset inside the convolution kernel can
be viewed as a relation in RGMS. For each relation, the mapping
between non-zero elements in feature map of previous layer to non-
zero elements in feature of next layer forms a bipartite graph which
can be viewed as a 2D sparse matrix whose number of non-zero
elements per row is no greater than 1.

We extract all of the Sparse Convolution operators in Minkowsk-
iNet [23] on SemanticKitti dataset [5] for benchmark, and evalu-
ate SparseTIR’s RGMS kernel12. Figure 23 shows our normalized
speedup against state-of-the-art TorchSparse [86] library. Unlike the
SparseTIR’s schedule in Figure 21, TorchSparse does not fuse Gather-
Matmul-Scatter on chip. Instead, it explicit materializes 𝑇 and uses
coarse-grained cuBLAS operators rather than Tensor-Core level
instructions for matrix multiplication13. SparseTIR’s RGMS can
outperform TorchSparse for most of the operators because of less
HBM/SRAM data exchange as mentioned before. However, for large
channel size (> 128), SparseTIR’s RGMS cannot beat TorchSparse
because matrix multiplication overhead become dominant (The
FLOPs of Matmul is quadratic to channel size while the FLOPs of
Gather and Scatter is linear to channel size) and cuBLAS is better
optimized than SparseTIR’s RGMS for large channel.

12We don’t need to use composable formats for Sparse Convolution because the sparse
matrix for each relation is already an 𝐸𝐿𝐿 (1) .
13It’s not necessary to use adaptive matrix multiplication grouping when using fine-
grained Tensor-Core instructions.
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data structure and a kernel description. TACO [21, 53, 54] proposes
sparse format abstractions and a merge lattices-based code genera-
tion routine. Senanayake et al. [79] propose a sparse-iteration space
transformation framework for scheduling sparse operators. Chou
et al. [22] introduce an approach for generating efficient kernels
for sparse format conversion. Henry et al. [41] generalize TACO to
sparse array programming. The format abstraction and IR design
of SparseTIR are insipred by TACO and earlier work, with a focus
on Deep Learning operators. Sympiler [18] builds a symbolic in-
spector to analyze sparse structure at compile-time and generates
efficient code. Parsy [19] generalize the idea to support paralleliza-
tion. SPF [83] proposes a inspector-executor framework compatible
with polyhedral transformations. Mohammadi et al. [62] proposes
data dependence simplication algorithm for compiler generated
inspectors. Like composable formats in SparseTIR, these compilers
can utilize sparse structures for acceleration. Taichi [46] decou-
ple data structure and kernel description for physics simulation
programming; its compiler optimizations focus on spatial sparse
data, unsuitable for DL. Tiramisu [4] supports automatic selection
of dense/sparse kernels at computational graph-level. However, it
lacks tensor-level sparse code generation. COMET [88] and MLIR
Sparse Dialect [7] are two MLIR dialects that explore composable
IR design for sparse tensor algebra. Both treat sparse tensors with
format annotation as first-class members in the IR; however, neither
considers decomposable formats. CoRA [33] proposes a compiler
infrastructure for ragged tensors [26]: a special form of sparse ten-
sors. The operation splitting in CoRA is a special case of format
decomposition in SparseTIR. SparTA [110] proposes abstractions for
model sparsity; its annotation is still dense and thus not applicable
to highly sparse matrices used in GNNs. SparseLNR [29] proposes
branched iteration graph to support factoring reductions and loop-
fusion for sparse tensor algebra, these schedules can be formulated
as stage-I schedules in SparseTIR as we support branches in the IR.

GNN systems and compilers. PyG [36] and DGL [96] propose pro-
gramming interfaces for the programming message-passing [38]
modules in GNN models. Both frameworks use vendor libraries
and handwritten operators to accelerate specific message-passing
patterns. Featgraph [47] optimizes generic GNN operators with
TVM. However, it fails to support more operators because TVM
lacks sparsity support. FusedMM [71] fuses SDDMM and SpMM
operators, thus accelerating GNN training and saving GPUmemory
footprint. FusedMM can be described and optimized in SparseTIR.
Seastar [102] and Graphiler [103] compile user-defined message-
passing functions to their intermediate representations (IR) and
then optimize the IR and emit template-based, target-specific code:
these templates still have limited expressiveness and cannot con-
sider a wide range of the optimization space. SparseTIR could serve
as a backend for these GNN compilers. GNNAdvisor [100] proposes
a CUDA template for GNN computations and uses graph character-
istics to guide the performance tuning of GNN training. QGTC [99]
and TC-GNN [98] explore accelerating GNNs with TensorCores.
Notably, the łcondensingž technique proposed in TC-GNN is equiv-
alent to SpMM on SR-BCRS format as shown in Section 4.3.2. The
contribution of these papers is orthogonal to SparseTIR.

Sparse kernel optimizations. Merge-SpMM [104], ASpT [43], GE-
SpMM [49], Sputnik [37] and DA-SpMM [25] explore different

schedule spaces for SpMM optimization on GPUs. We carefully
examined the optimizations suggested in theses papers and pro-
pose a composable abstraction to unify them. OSKI [94] is a library
for auto-tuning sparse operators, with a focus on optimizing op-
erators on cache-based, super-scalar architectures such as CPUs.
However, OSKI do not support customizing sparse operators.

Sparse format optimizations. Pichon et al. [67] propose to reorder
rows and columns in 2D sparse matrices to increase the block
granularity of sparse matrices. Li et al. [57] study the problem of
reordering sparse matrices to improve cache locality of operators on
them. Mehrabi et al. [61] and Wang et al. [100] propose to reorder
rows and columns of sparse matrices to accelerate SpMM on GPUs.
These algorithms can act as pre-processing steps in SparseTIR to
discover efficient composable formats.

Hardware-efficient algorithms. There have been a growing trend
of sparsity in Deep Learning [42]. To make better use of underly-
ing hardware, researchers propose pruning algorithms with block-
sparsity [55] and bank-sparsity [14, 112] to utilize acceleration units
in GPUs, and ES-SpMM [59] for load balancing. SparseTIR’s com-
posable abstractions can help researchers explore more complex
sparse patterns with ideal performance on modern hardware.

6 FUTUREWORK

Automatic scheduling. SparseTIR still requires users to specify
schedule templates like they do for the first-generation of Halide
and TVM. The Halide auto-scheduler [1], FlexTensor [111], An-
sor [109] and Meta-scheduler [80] have been proposed to auto-
matically generate schedule templates for dense tensor compilers.
We expect these techniques would also prove helpful for sparse
compilation. Searching for the optimal schedule is time consuming,
Ahrens et al. [3] propose an asymptotic cost model for sparse tensor
algebra to narrow the schedule space of sparse kernels, which could
also benefit our work.

Automatic format decomposition. In this paper we explore only
manually designed format decomposition rules. We leave automatic
format selection [11, 12] and decomposition for future work.

Dynamic sparsity. Some models [32, 68, 81] exhibit dynamic
sparsity, where the position of non-zero elements changes overtime
thus searching for best schedule for eachmatrix become impractical.
DietCode [108] proposes shape-generic search space, micro-kernel
based cost model and a lightweight dispatcher to dispatch kernel
at runtime, the idea is also applicable to sparse tensor programs.

Integration with graph-level IR. SparseTIR models only tensor-
level sparsity, we plan to extend the sparse attributes in SparseTIR
to graph-level IRs like XLA [27] and Relay [73].

7 CONCLUSION

We introduce SparseTIR, a composable abstraction for sparse oper-
ators in deep learning. Its key innovation is the use of composable
formats and composable transformations, and together they form
the parameter search space for performance tuning. Evaluations
on generic sparse deep learning show that SparseTIR achieves sig-
nificant performance improvements over existing vendor libraries
and frameworks.
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A PROGRAMMING INTERFACE FOR
COMPOSABLE FORMATS

This section further explains the programming interface for com-
posable formats and the format decomposition pass introduced in
ğ3.2.1, SparseTIR provide two APIs for composable formats:

FormatRewriteRule is a class for a sparse format rewriting
rule description, its input include: the name of format rewrite
rule, the sparse buffer to rewrite, a SparseTIR description of
new format, the mapping from original axes to new axes,
and the index mapping 𝑓 and inverse index mapping 𝑓 −1

between original sparse buffer𝐴 and the transformed sparse
buffer 𝐴′: 𝐴[I] = 𝐴′[𝑓 (I)], 𝐴[𝑓 −1 (I’)] = 𝐴′[I’], both 𝑓 and
𝑓 −1 need to be affine maps written in Python’s lambda func-
tions.

decompose_format is a function that accepts a list of format
rewrite rules and an SparseTIR program as input and per-
forms the format decomposition pass on the given SparseTIR
program.

Below is an example illustrating how to use the twoAPIs to compose
ELL(2) and BSR(2) rewrite rules and perform format decomposi-
tion in Figure 5:

@T.prim_func

def spmm(

a: T.handle , b: T.handle , c: T.handle ,

indptr: T.handle , indices: T.handle ,

m: T.int32 , n: T.int32 , nnz: T.int32 , feat_size: T.int32

) -> None:

I = T.dense_fixed(m, idtype="int32")

J = T.sparse_variable(

I, (n, nnz), (indptr , indices), idtype="int32")

J_ = T.dense_fixed(n, idtype="int32")

K = T.dense_fixed(feat_size , idtype="int32")

A = T.match_sparse_buffer(a, (I, J), "float32")

B = T.match_sparse_buffer(b, (J_ , K), "float32")

C = T.match_sparse_buffer(c, (I, K), "float32")

with T.sp_iter ([I, J, K], "SRS", "csrmm") as [i, j, k]:

with T.init():

C[i, k] = 0.0

C[i, k] = C[i, k] + A[i, j] * B[j, k]

def BSR(block_size: int):

# block_size: the block size in BSR format.

@T.prim_func

def bsr_desc(

a: T.handle ,

indptr: T.handle , indices: T.handle ,

m: T.int32 , n: T.int32 , nnz: T.int32

) -> None:

IO = T.dense_fixed(m, idtype="int32")

JO = T.sparse_variable(

IO , (n, nnz), (indptr , indices), idtype="int32")

II = T.dense_fixed(block_size , idtype="int32")

JI = T.dense_fixed(block_size , idtype="int32")

A = T.match_sparse_buffer(a, (IO , JO , II , JI), "float32")

pass

return FormatRewriteRule(

"bsr_{}".format(str(block_size)),

bsr_desc ,

["A"], ["I", "J"], ["IO", "JO", "II", "JI"],

{"I": ["IO", "II"], "J": ["JO", "JI"]},

lambda i, j:

return (i // block_size , j // block_size ,

i % block_size , j % block_size)

lambda io , jo , ii , ji:

return io * block_size + ii , jo * block_size + ji

)

def ELL(nnz_cols: int):

# nnz_cols: number of non-zero columns per row in ELL format.

@T.prim_func

def ell(

a: T.handle ,

indices: T.handle ,

m: T.int32 , n: T.int32 ,

) -> None:

I2 = T.dense_fixed(m, idtype="int32")

J2 = T.sparse_fixed(

I2 , (n, nnz_cols), indices , idtype="int32")

A = T.match_sparse_buffer(a, (I2 , J2), "float32")

pass

return FormatRewriteRule(

"ell_".format(str(nnz_cols)),

ell_desc ,

["A"], ["I", "J"], ["I2", "J2"],

{"I": ["I2"], "J": ["J2"]},

lambda i, j: return i, j

lambda i2 , j2: return i2 , j2

)

composable_format = [BSR (2), ELL (2)]

spmm_hybrid = decompose_format(spmm , composable_format)

where the prefix T is used to prevent name conflicts with keywords
in Python. Note that format conversion is a special case of format
decomposition where we only put one FormatRewriteRule in the
list of composable formats.

B ARTIFACT APPENDIX

B.1 Abstract

This artifact includes scripts and dependencies for reproducing
all experiments in the paper. We require a host with x86_64 CPU
and NVIDIA GPUs with Turing or later architectures to run the
artifact. The SparseTIR compiler is a submodule in the artifact,
which is implemented in C++ and Python. The benchmarking is
mainly written in Python. We modify the source code of some old
dependencies to make sure they are compatible with the software
version specified in the Dockerfile. We provide a docker image
for users to run benchmarks inside the container, and scripts to
generate tables and figures for comparison.

B.2 Artifact Checklist
• Data set: OGB, SemanticKITTI, DGL built-in datasets.
• Run-time environment: NVIDIA Container Toolkit.
• Hardware: NVIDIA GPUs with Turing/Ampere/Hopper architec-
ture.

• Execution: All kernels being profiled are executed in GPUs, some
data pre-processing are performed on CPUs.

• Metrics: Execution time, GPU memory footprint.
• Output: Execution time/GPU memory usage tables, and figures.
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• Experiments: SpMM, SDDMM, GraphSAGE end-to-end training,
Sparse Transformer operators, 3D Sparse Convolution, Relational
Graph Convolutional Networks inference.

• How much disk space required (approximately)?: 55GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 2 hour for building docker container.
• How much time is needed to complete experiments (approxi-

mately)?: 10 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: The SparseTIR-artifact is
distributed under The MIT license and the SparseTIR compiler is
released under the Apache License, v2.0.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7643745

B.3 Description

B.3.1 How to Access. The artifact [105] is available on Github:
https://github.com/uwsampl/sparsetir-artifact and Zenodo: https:
//doi.org/10.5281/zenodo.7643745. Which includes the installation
scripts for all dependencies and benchmark scripts to reproduce
results. The SparseTIR compiler, which is available at https://github.
com/uwsampl/sparsetir, has been incorporated as a submodule of
the artifact.

B.3.2 Hardware Dependencies. We conduct experiments on two
machines, one with NVIDIA RTX 3070 GPU and another with
NVIDIA Tesla V100 GPU, both of them are equipped with x86_64
CPUs. Other NVIDIA GPUs with Turing, Ampere, or Hopper ar-
chitecture should also work. A GPU with memory greater than
or equal to 16GB is enough to reproduce all results, otherwise,
users might encounter an Out-Of-Memory issue for relatively large
datasets like Reddit on end-to-end GraphSAGE training.

B.3.3 Software Dependencies. We create a Docker image for this ar-
tifact, enabling users to run all experiments on a platform that meets
the installation requirements of the NVIDIA Container Toolkit.

B.3.4 Datasets. For GNN-related experiments, we use Open Graph
Benchmark [45] and built-in datasets provided by DGL [96], for
Sparse Convolution, we use SemanticKITTI dataset [5], for Pruned-
BERT, we use models publicly available in HuggingFace [101].

B.4 Installation

To install the artifact, users can either clone the repository and
build the artifact by themselves:

git clone https :// github.com/uwsampl/

sparsetir -artifact.git --recursive

cd sparsetir -artifact

docker build -t sparsetir .

or pull the pre-built image we provided from the docker hub (only
compatible with Ampere NVIDIA GPU architecture):

docker image pull expye/sparestir -ae:

latest

docker tag expye/sparsetir -ae:latest

sparsetir

B.5 Experiment Workflow

We provide a run.sh script under each folder, and user can run
these scripts in docker container for corresponding benchmarks:

spmm contains scripts to reproduce SpMM experiments in
ğ4.2.1.

sddmm contains scripts to reproduce SDDMM experiments
in ğ4.2.2.

e2e contains scripts to reproduce GraphSAGE end-to-end train-
ing experiments in ğ4.2.3.

sparse-attention contains scripts to reproduce Sparse Trans-
former operator experiments in ğ4.3.1.

pruned-bert contains scripts to reproduce PrunedBERT ex-
periments in ğ4.3.2 and ğ4.3.2.

rgcn contains scripts to reproduce RGCN inference end-to-end
experiments in figure ğ4.4.1.

sparse-conv contains scripts to reproduce Sparse Convolution
operator experiments in ğ4.4.2.

The scripts will produce logging files containing the profiling
results including average execution time and GPU memory usage,
and figures plotted in the same style as the paper. We also provide
a run-all.sh script under the root directory for running all exper-
iments in a single command, which would take around 10 hours to
finish on a GPU like RTX 3080. We use cudaEvent APIs to profile
CUDA kernels. During profiling, we discard the samples for the
first 10 runs as warm-up steps and repeat for 100 cycles.

B.6 Evaluation and Expected Results

The specific running time and speedup differ on different platforms
but we expect the results users reproduced should roughly match
the numbers reported in the paper. (see Figures 13, 14, 15, 16, 17,
19, 20 and 23).

B.7 Experiment Customization

Artifact users can customize the benchmark scripts to use other
datasets, for GNN operator or end-to-end training/inference bench-
marks, users can create their own datasets as DGLGraph class (the
graph data structure used in DGL). For the sparse convolution
benchmark, users need to convert the customized point cloud
dataset to SparseTensor class introduced in TorchSparse. For the
network pruning benchmark, user can convert their own pruned
weights to scipy sparse matrix.

B.8 Notes

Many previous work do not flush L2 cache when profiling CUDA
kernels, which results in incorrect measurement especially for
łsmallž operators, because the data accessed in the previous run
would reside in L2 cache thus reducing the memory latency in the
next run if they are accessed before being replaced. In this artifact
we provide an option for the user to determine whether to enable
L2 or not: if the environment variable FLUSH_L2 is set to ON, we
enable L2 flush for all benchmarks, and if FLUSH_L2 is set to OFFwe
will disable L2 flush. All experiment results reported in this paper
are obtained with FLUSH_L2=ON.
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