L))

Check for
Updates

SparseTIR: Composable Abstractions for Sparse Compilation in
Deep Learning

Zihao Ye"
University of Washington
Seattle, WA, USA

Junru Shao
OctoML
Seattle, WA, USA

Ruihang Lai®
Carnegie Mellon University
Pittsburgh, PA, USA

zhye@cs.washington.edu

Tiangi Chen*
Carnegie Mellon University
Pittsburgh, PA, USA
tqchen@cmu.edu

ABSTRACT

Sparse tensors are rapidly becoming critical components of modern
deep learning workloads. However, developing high-performance
sparse operators can be difficult and tedious, and existing vendor
libraries cannot satisfy the escalating demands from new operators.
Sparse tensor compilers simplify the development of operators,
but efficient sparse compilation for deep learning remains chal-
lenging because a single sparse format cannot maximize hardware
efficiency, and single-shot compilers cannot keep up with latest
hardware and system advances. In this paper, we observe that the
key to addressing both these challenges is to leverage composable
formats and composable transformations. We propose SparseTIR,
a sparse tensor compilation abstraction that offers composable
formats and composable transformations for deep learning work-
loads. SparseTIR constructs a search space over these composable
components for performance tuning. With these improvements,
SparseTIR obtains consistent performance speedups vs vendor li-
braries on GPUs for single operators: 1.20-2.34x for GNN operators,
1.05-2.98x for sparse attention operators, and 0.56-7.45x for sparse
convolution operators. SparseTIR also accelerates end-to-end GNNs
by 1.08-1.52x for GraphSAGE training, and 4.20-40.18x for RGCN
inference.

CCS CONCEPTS

« Software and its engineering — Domain specific languages.

KEYWORDS

Sparse Computation, Tensor Compilers, Code Generation and Opti-
mizations, Scheduling, Vectorization, Tensor Cores, Kernel Fusion

“Part of this work was done during internship at OctoML.
TPart of this work was done at Shanghai Jiao Tong University.
*Also with OctoML.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582047

660

ruihangl@cs.cmu.edu

jshao@octoml.ai

Luis Ceze*
University of Washington
Seattle, WA, USA
luisceze@cs.washington.edu

ACM Reference Format:

Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. Sparse-
TIR: Composable Abstractions for Sparse Compilation in Deep Learning. In
Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 3 (ASPLOS
’23), March 25-29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,
19 pages. https://doi.org/10.1145/3582016.3582047

1 INTRODUCTION

Sparsity is becoming ubiquitous in deep learning due to the appli-
cation of deep learning to graphs and the need for more efficient
backbone models. Graph neural networks (GNNs) [39, 52, 92] have
made substantial progress in modeling relations in social networks,
proteins, point clouds, etc., using highly sparse matrices. Sparse
transformers [6, 15, 20] reduce both the time and space complexity
of transformers [91] by making the attention mask sparse using
manually designed and moderately sparse matrices. Network Prun-
ing [40, 55, 76] prunes the network weight to sparse matrix to
reduce model size, the pruned weights are moderately sparse and
stored in various formats depending on the pruning algorithm.

Existing libraries, such as cuSPARSE [24], dgSPARSE [28], Sput-
nik [37] and Intel MKL [95], support only a few sparse operators. As
such, they fail to accelerate rapidly evolving emerging workloads
such as GNNs on heterogeneous graphs [48, 77, 97] and hyper-
graphs [35]. Manually optimizing sparse operators can be difficult
and tedious. Sparse matrices are stored in compressed formats, and
programmers must write manual code to compress or decompress
coordinates to access non-zero elements. Furthermore, the com-
pressed sparse formats vary, and operators designed for one format
cannot generalize to others. Therefore, we need a more scalable and
efficient approach to developing optimized sparse operators.

Sparse tensor compilers, such as MT1 [9] and TACO [54], greatly
simplify the development of sparse operators by decoupling format
specification and format-agnostic computation descriptions. How-
ever, applying sparse compilation to deep learning must overcome
two major challenges. First, modern deep learning workloads are
quite diverse, making them hard to fit into a single sparse format
pattern provided by existing solutions. Second, harware backend are
evolving and becoming heterogenous, making it hard for single-shot
compilers to keep up with the latest hardware and system advances.

Our key observation is that we can resolve all challenges by
introducing two forms of composability:

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

threads threads

Tensor
Cores

Aell

Absr

|

Hoo oo
oo

oo
s % {

Y = AcsrX —> Y = AbsrX + AeIIX

L

Single Format Composable Formats

Figure 1: Format composability enables us to leverage multi-
ple formats for different parts in sparse pattern we face in
deep learning, and maximize the use of underlying hardware
resources.

Format composability. We propose to go beyond the single for-
mat option provided by most existing solutions to composable
formats (Figure 1) that store different parts of a sparse matrix in
the different formats that best fit their local patterns. The com-
pilation process decomposes the original computations into sub-
computation routines to enable efficient executions on each local
pattern that better match the characteristics of the corresponding
deep learning workloads.

Transformation composability. We reconfigure the single-shot
sparse tensor program compilation process into a composable set
of program transformations. Additionally, we enable a design that
incorporates existing loop-level abstractions in dense tensor com-
pilers. This design lets us define our own transformations for sparse
data while reusing hardware-specific optimizations (such as ten-
sorization and GPU mapping) from existing solutions, increasing
our overall efficiency to incorporate advances in hardware back-
ends.

Combining both forms of composability, we propose SparseTIR,
an abstraction that generates efficient sparse operators for deep
learning. Our contributions include the following.

e We propose an intermediate representation (IR) with com-
posable formats and composable transformations to accelerate
sparse operators by decomposing formats and specifying
schedules.

e We build a performance-tuning system that searches over
the parameter space of possible composable formats and
composable transformations.

e We evaluate SparseTIR generated kernels on several impor-
tant sparse deep learning workloads.

SparseTIR offers consistent speedup for single operators relative
to vendor libraries on GPUs: 1.20-2.34x for GNN operators and

661

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

1.05-2.98x for sparse transformer operators. SparseTIR also acceler-
ates end-to-end GNNs by 1.08-1.52x for GraphSAGE [39] training
and by 4.20-40.18x for RGCN [77] inference, 0.56-7.45x for Sparse
Convolution [23] operators.

2 SYSTEM OVERVIEW

This section provides an overview of SparseTIR. Figure 2 summa-
rizes our overall design and compares it with existing approaches.
The figure’s left side shows the design of most existing sparse tensor
compilers [79]. Their inputs are (1) tensor expressions, (2) format
annotations/specifications that allow only a single format for each
matrix, and (3) user-defined schedules. Schedules are applied to
high-level IRs such as provenance graph, and then lowered to tar-
get device code; we refer to such compilation flow as single-shot
compilation. These high-level IRs do not reflect low-level informa-
tion such as loop structures, memory access regions, and branches.
However, optimizations such as tensorization' requires loop-level
AST matching and replacement, which is not exposed in high-level
IR. Though tensor compilers such as Halide [70] and TVM [16]
implement schedule primitives and code generation on multiple
backends, it is difficult to re-use these infrastructures in previous
sparse compilers because of the discrepancy of provenance graph
and loop-level IR of existing tensor compilers.

SparseTIR builds on top of these previous approaches and intro-
duces a design that enables composable formats and composable
transformations. It contains three IR stages. The first stage presents
computation in coordinate space, where we describe sparse tensor
computations; like in previous work, we decouple format specifica-
tion and computations. Unlike a single-shot sparse compiler that
accepts a single format for each sparse tensor, SparseTIR lets users
specify composable formats. The second stage characterizes com-
putation in position space, where the position refers to the index
of non-zero elements in the compressed sparse data structure. The
concepts of “coordinates” and “positions” were first proposed in
Vivienne et al. [85] and then used in Senanayake et al. [79]. The last
stage of SparseTIR is a loop-level IR in existing tensor compilers,
such as TVM [16], AKG [107] and the affine dialect in MLIR [90].
We design two passes on the IR, namely, sparse iteration lowering
and sparse buffer lowering, to transform code from stage I to stage
1T and stage II to stage III, respectively.

Instead of single-shot compilation, all schedules in SparseTIR
are performed as composable program transformations (which do
not change the stage of the IR) on the IR instantly. The composable
design lets user transform the IR step-by-step and stage-by-stage.
To manipulate the coordinate space computation in stage I IR, we
can define new schedules as composable transformations applied
to the stage I (i.e., stage I schedules). For stages compatible with
target loop-level IR, we can apply schedules defined for backend
tensor compilers (i.e., stage II/TII schedules). Notably, format de-
composition can also be formulated as a program transformation
at stage I (see §3.2.1).

SparseTIR constructs a joint search space of composable for-
mats and composable transformations for performance tuning of
sparse operators. Users can customize the parameterized search

1We use this term to describe rewriting the program to use Matrix-Multiply Units such
as Tensor Cores in GPU and MXU in TPU.

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

Target
| Code |

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Single Composable Formats
Format \
l Do
:H Oog oo ——» Sparse Iteration Lowering pass (section 3.3.1)
oo —| I: E‘j E ——»» Sparse Buffer Lowering pass (section 3.4.1)
H] ——> Program transformations
IH I:‘:I BSR(2) ELL(2) - . .
Format —> Target specific code generation (section 3.5)
CSR Decomposition
(section 3.2.1) J
Tenso_r Formgt Schedules
Expression Annotation
Stage | Stage Il Stage Ill
Coordinate-Space Position-Space » Loo —b%sed R .| CUDA/LLVM
Computation Computation (sepction 3.4) ” code

(section 3.2) (section 3.3) '

Single-Shot : , .,

c ilati : Stage | Stage Il
Y ompilation : Schedules Schedules
: __ (section3.2.2)) __ (section 3.3.2))

Composable
Transformations

Single-Shot
Sparse Compilers

SparseTIR

Figure 2: Single-shot sparse compilers vs SparseTIR. The composable formats and composable transformations enable us to
create optimizations that fit into broader range of deep learning workloads and leverage more advances in hardware backends.

space by specifying format and schedule templates based on their
domain-specific knowledge about the operator and sparse tensor
characteristics. When the sparse structure is present at compile-
time, we can search for the best formats and schedules that achieve
optimal runtime performance in advance. Though the compilation
might take some time due to the large search space, the overhead
can be amortized because the compiled operator will be re-used
many times during training or inference for a fixed sparse structure
(as is typical in deep learning).

The rest of the paper is organized as follows. We introduce the
SparseTIR design of each stage and compiler passes in Section 3. In
Section 4 we evaluate our system in real world sparse deep learning
workloads. Section 5 positions SparseTIR relative to related work.
Finally, we discuss future work in Section 6 and conclude our work
in Section 7.

3 OUR APPROACH

In this section, we introduce the language constructs in SparseTIR,
then describe each compilation stage and transformations in the
order they appeared in the flow.

3.1 Language Constructs

The SparseTIR language has three major components: axes, sparse
buffers and sparse iterations.

Axes. An axis is a data structure that defines sparse iteration
spaces, which generalize the idea of abstraction levels in previous
work [21]. Each axis in SparseTIR has two orthogonal attributes,
dense/sparse and fixed/variable, denoting whether the index of
non-zero elements in the axis is contiguous or not and whether the

662

Axis declarations

I = dense_fixed(m, "int32")

J = sparse_variable(I, (n, nnz),\
(j_indptr, j_indices), "int32")

J_ = dense_fixed(n, "int32")

K = dense_fixed(feat_size, "int32")

Sparse buffer declarations

A = match_sparse_buffer(a, (I, J), "float32")
B = match_sparse buffer(b, (J_, K), "float32")
C = match_sparse_buffer(c, (I, K), "float32")

Sparse iteration declarations
with sp_iter([I, J, K], "SRS", "spmm") as [i, j,
with init():
Cc[i, k] = 0.0
c[i, k] = c[i, k] + A[i, j1 * B[], k]

k]:

Figure 3: Language constructs in the SpMM operator. Users
specify axis dependencies and metadata to create axes. The
match_sparse_buffer defines sparse buffers and binds them
to pointers to their value, and sp_iter creates a sparse it-
eration structure, where “S” and “R” indicate whether the
iterator is for spatial or reduction purposes, “spmm” is the
name of the sparse iteration as a reference for scheduling.

number of non-zero elements in the axis is fixed or not. Variable
axes are associated with a indptr (short for “index pointer”) field
that points to the address of the indices pointer array; sparse axes
are associated with an indices field that points to the address of
the indices array. Each axis has a parent field that directs to the axis
it depends on; a dense-fixed axis has no dependency, and its parent
field is always set to none. Axis metadata includes its indices’ data

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

type, maximum length, number of accumulated non-zeros in this
dimension (if variable), and number of non-zeros per row in this
dimension (if fixed).

Sparse buffers. A sparse buffer is SparseTIR’s data structure for a
sparse matrix. We use defined axes to compose the format specifica-
tion of sparse matrices. We split sparse structure-related auxiliary
data and values: axes store auxiliary data, and sparse buffers store
only values. Such design lets Two sparse buffers can re-use auxiliary
data if they share the sparse layout. Figure 4 shows the decoupled
storage of sparse buffers/axes in the SpMM (Sparse-Dense Matrix
Multiplication) operator. The composition of axes is expressive
to describe various sparse formats, including Compressed Sparse
Row/Column (CSR/CSC) format [31], Block Compressed Sparse
Row (BSR) format [75], Diagonal Format (DIA) [74], ELLPACK
(ELL) format [30, 44, 64], Ragged Tensor [26], Compressed Sparse
Fiber (CSF) [82] etc, please refer to Duff et al. [31] for an overview
of sparse formats.

J
Axes sparse,variable]
length: 4
I nnz: 6 K
dense, fixed Parent: | dense, fixed dense, fixed
length: 3 indptr length: 4 length: 2
Parent: None indices Parent: None Parent: None
T T T
A B C
Sparse
Bpff Axes: (I,J) | [Axes: (J', K)| [Axes: (I, K)
ufters value value value

v ’ ¥
[1[2]2]1[s]s]|[o]a]2]1]1}-1[1]o][2]o]3]0]7]3]

K
J 01 K
1 g0 21 2(0
Sparse I |2 2|1 1|-1 I|3]0
Tensors 3 1 1[0 7(3

Figure 4: Internal storage of axes and sparse buffers in SpMM:
Cik = AijBji. Sparse buffers store their axes’ composition and
pointers to their value; axes store dense/sparse and fixed/vari-
able attributes, metadata, their dependent axes, and pointers
to indices and indptr arrays.

Sparse iterations. Sparse iterations generates iterators over the

space composed of a sparse axes array and a body containing state-
ments describing tensor computations and orchestrating data move-
ments. Notably, unlike TACO [54] which only allows the iterator
variables to be used as indices to access sparse data structures (e.g.
A[i, j] where i and j are iterator variables), SparseTIR supports
affine indices (e.g. ALi * m + j, k])and non-affine indices such
as integer values loaded from another buffer (e.g. Bleid[i], j *
n + kJ). This enhances the capabilities of the SparseTIR, allowing
for more complex operations such as convolution. SparseTIR en-
ables multiple sparse iterations within a single program and even
allows for nested sparse iterations within the body of another iter-
ation, enabling branching and decomposing computation.

663

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

Figure 3 shows how to define these constructs in SparseTIR for
the SpMM operator.? In SparseTIR, axes are used to construct both
sparse buffers and sparse iterations. This design lets us iterate over
a sparse iteration space that is not bound to any sparse buffers.

3.2 Stage I: Coordinate Space Computation

In the first stage of SparseTIR, we define sparse computations within
sparse iterations, where we iterate over non-zero elements and ac-
cess sparse buffers in coordinate space. During this stage, we are
able to define program transformations, such as format decomposi-
tion and sparse iteration fusion, that manipulate the three types of
constructs in SparseTIR.

3.2.1 Format Decomposition. Format decomposition is a transfor-
mation that decomposes computations for composable formats
(introduced in Section 1). The transformation accepts a list of for-
mat descriptions and rewrites the IR according to these formats.
Figure 5 shows the generated IR for the Sparse Matrix-Matrix multi-
plication (SpMM) operation after decomposing the computation in
the CSR format to a computation in the BSR format, with block size
2 and an ELL format with 2 non-zero columns per row. In addition
to SpMM computations on the new formats, another two sparse
iterations that copy data from original to new formats are gener-
ated, as well. When the sparse matrix to decompose is stationary,
we can perform data copying at pre-processing step to avoid the
overhead of run-time format conversion.

The information used to create new sparse buffers: indptr_bsr,
indices_bsr and indices_ell need to be pre-computed and spec-
ified by user as input arguments. Each format decomposition rule in
SparseTIR needs to be registered as a function F : (x,i) — (x',i’),
where x, i refers to original SparseTIR program and indices/index
pointer information, and x’, i’ are transformed ones. Figure 5 de-
scribes the IR transformation from x to x’, and the conversion
between i to i’ need to be implemented by user manually. We have
wrapped all format decomposition rules used in this paper as stan-
dard APIs, for new composable formats, user can use existing sparse
libraries such as Scipy [93] to ease the implementation of indices in-
ference. SparseTIR leaves the flexibility of integrating with existing
systems such as Chou et al. [22] for automatic indices inference.

3.2.2 Stage | Schedules. We define two schedule primitives at stage
1, sparse_reorder and sparse_fuse:

Sparse reorder. The order of sparse axes in the sparse iteration
influences the order of generated loops in stage II. This primitive
enables manipulation of the order of sparse axes.

Sparse fuse. This schedule primitive fuses several iterators in a
given sparse iteration into one. It is helpful when we want a single
loop rather two nested loops that iterate over all non-zero elements,
such as in the SDDMM [63].

Figure 6 shows how stage I schedules transform the IR.

3.3 Stage II: Position Space Computation
In the second stage, SparseTIR introduces loop structures and re-

moves the sparse iteration constructs and restructuring them as

2The SparseTIR has round-trip compatibility with Python, and this paper presents
only its Python form.

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

Stage | IR of SpMM operator (Figure 3)

Apgr: BSR(2) Aen: ELL(2)

_] oO

Hoo
oo oo
:HDDB:j L & EI

Generated new axes and sparse buffers
Generated axes for BSR(2)

A: csr

Decompose A to Apgr and Aen
with rule [BSR(2), ELL(2)]

I0 = dense_fixed(m_bsr, "int32")
II = dense_fixed(2, "int32")
JO = sparse_variable(IO, (n_bsr, nnz_bsr),

(indptr_bsr, indices_bsr),
JI = dense_fixed(2, "int32")
Generated axes for ELL(2)
I2 = dense_fixed(m_ell, "int32")

"int32")

J2 = sparse_fixed(I2, (n_ell, 2), indices_ell, "int32")

Generated sparse buffers

A_bsr = match_sparse_buffer(a_bsr, [IO, JO, II, JI], "float32")
A_ell = match_sparse_buffer(a_ell, [I2, J2], "float32")

Generated sparse iterations

Generated sparse iteration for copying data to BSR(2)
with sp_iter([IO, II, JO, JI], "SSSS", "copy bsr_2") as [
oi, ii, jo, 3jil:
A_bsr[io, jo, ii, ji] = A[io * 2 + ii, jo * 2 + ji]
Generated sparse iteration for copying data to ELL(2)
with sp_iter([I2, J2], "SS", "copy_ell 2") as [i, j]:
A ell[i, j] = A[i, j]
Generated sparse iteration for BSR(2)
with sp_iter([IO, II, JO, JI, K], "SSSSR",
io, ii, jo, ji, k]:
with init():
Clio * 2 + ii, k] = 0.0
Clio * 2 + ii, k] = C[io * 2 + ii, k] +\
A _bsr[io, jo, ii, ji] * B[jo * 2 + ji,
Generated sparse iteration for ELL(2)
with sp_iter([I2, J2, K], "SRS", "spmm_ell_2") as [i, j, k]:
with init():
cli, k] =
k] = c[i,

"spmm_bsr_2") as [

k]

0.0

cli, k] + A_ell[i, j] * B[j, k]

Figure 5: Format decomposition for SpMM Stage I IR in Figure
3. New axes and sparse buffers are created for decomposed
formats BSR and ELL. New sparse iterations are generated to
copy data from original to new formats and for computations
on these new formats.

Stage | IR
with sp_iter([I, J, K], "SRsS", "spmm") as [i, j, k]:

Stage | IR (after reorder)

1
1
1
1
1
sparse_reorder([K, I, J]) \L !
1
1
1
1with sp_iter([X, I, J], "SSR", "spmm") as [k, i, j]: 1

e y

] Stage | IR (after reorder)]

: with sp_iter([X, I, J], "RSS", "sddmm") as [k, i, j]: 1

1

1 e 1
SDDMM: sparse_fuse([I, J1) ¢ 1
1

+fuse : Stage | IR (after iteration fusion) 1
1with sp_iter([K, fuse(I, J)], "RSS", "sddmm") as [k, i, j]: :

1 oo 1

Figure 6: Stage I schedules sequentially applied to stage I IR.

nested loops. To achieve this, we extend TensorIR [34] with sparse
buffer support as our stage II IR. Unlike in stage I where we access
sparse buffers in coordinate space, in stage II access sparse buffers
in position space, with the “position” referring to an element’s non-
zero index. The difference between coordinate and position applies
to “sparse” dimensions: if the coordinate of the first 4 non-zero
elements in a sparse row A is {1, 3, 9, 10}, the position of coordinate
9 is 2 (assuming the index is 0-based), and we use A[9] to access

664

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

the element in coordinate space and A[2] to access the element in
position space.

3.3.1 Sparse lteration Lowering. This pass transforms stage I IR to
stage II IR. It consists of the following 5 steps.

Step 1: Auxiliary buffer materialization. Pointers to the indices
pointer array and indices array are specified as arguments when
creating axes. In stage II we need to declare these auxiliary buffers
explicitly to access their value when determining loop range and
translating coordinates. Figure 7 shows how the materialization
works. In addition to auxiliary buffers, we also create hints that
indicate the domain of buffer values; these are used for integer set
analysis in stage II when performing schedules.

Stage | IR
I = dense_fixed(m, "int32")
J = sparse_variable(I, (n, nnz), (j_indptr, j_indices), "int32")
Stage Il IR
I = dense_fixed(m, "int32")
J = sparse_variable(I, (n, nnz), (j_indptr, j_indices), "int32")
J_dense = dense_variable(I, (n, nnz), j_indptr, "int32")
J_indptr = match_sparse_buffer(j_indptr, (I,), "int32")
J_indices = match_sparse_buffer(j_indices, (I, J_dense), "int32")

assume_buffer_domain(J_indptr, [0, nnz])
assume_buffer_domain(J_indices, [0, n1])

Figure 7: Example of auxiliary buffer materialization. Sparse
buffers storing auxiliary information are created.

Step 2: Nested loop generation. This step restructures sparse iter-
ations in stage I as nested loops in stage II: we emit one loop per
axis in the sparse iteration. The generated loops start from 0, and
the extent is determined by whether the axis is fixed or variable.
They are separated by TensorIR’s block constructs, which establish
boundaries to prevent cross-block loop reordering. Additionally,
We add a block inside the innermost generated loop and place
the body of original sparse iterations inside of it. Figure 8 shows
the emitted nested loop structures of different sparse iterations. In
the first case, the loops I and J cannot not be reordered in stage
1I because they are separated by a block; in the second case, we
fuse I, J and emit only one loop (ij). Currently SparseTIR do not
support emitting co-iterations like TACO [54].

Step 3: Coordinate translation. This step rewrites the indices used
to access sparse buffers from coordinate space to non-zero position
space to bridge the semantic gap between stages I and II. See Figure

9 for an example. Suppose {Algiter) }?ﬁl is the array of axes used

in sparse iterations, {vl.(c) }f\’:I 1 is the array of iterator variables in

coordinate space (before translation) and {VEP) }f‘i | is the array of
loop variables in position space (after translation). For a sparse
buffer access to be translated, suppose the buffer is composed of
Aj(.bUffer) }ﬁV: ” and the indices can be viewed as an array of
I(Coord) } N_
J Jj=

axes {

functions { , that maps iterator varibles to indices (for

buffer access B[x + y, z] within the sparse iteration where v(¢) =
{x,y, z}, its indices functions 1(coord) should be {(x, Y,z) — x +
Yy, (x,y,z) — z}). The coordinate translation can be formulated as
an iterative algorithm:

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

Sparse iteration in Stage |

with sp_iter([X, I, J], "SSR",
spmm body

"spmm") as [k, i,

for k in range(k):
for ij in range(nnz):
with block("sddmm 0"):

v |
' '
H H
: ;
SpMM . § '
wlo i Generated nested loop in Stage Il 1
. \for k in range(k): 1
fusion \ for i in range(m): 4
L with block("spmm_0"): d

' for j in range(J_indptr[i + 1], J_indptr[i]):
b with block("spmm_1"): 4
i # spmm body :
T Sparse iteration in Stage 1T :
\with sp_iter([X, fuse(I, J)], "RSS", "sddmm") as [k, i, j]:!
sppmm: ¥ P :
H H
wo Generated nested loop in Stage Il 1
fusion | H
H H
H '
1 H
' 1

body

Figure 8: Nested loop generation in sparse iteration lowering,.
Without fusion, we emit one loop per axis in the sparse iter-
ation; With fusion of i and j, we only emit one loop ij over
the fused iteration space.

Stage | IR

with sp_iter([I, J, K], "SRs",

with init():
c[i, k] = O.

c[i, k] = c[i,

"spmnm") as [i, j, k]:

0
k] + A[i, 31 * B[], k]

|
Stage Il IR
for i in range(m):
with block("spmm0"):
for j in range(0, J_indptr[i + 1] - J_indptr[i]):
for k in range(feat_size):
with block("spmmi"):
with init():
cfi, k] = 0.0
cfi, k] = c[i, k] + A[i, j] * B[J_indices[i, j], k]

Figure 9: Translation from coordinate space to position space
for SpMM operator.

P ; i—1
pi 2 fH AP G pH LI e em)) (@)
where c refers the coordinate array corresponding to v(P) after
translation from position space, f and f(~1 are decompress (posi-
tion to coordinate) and compress (coordinate to position) functions:
ci A f(A(iter), {C}i_l’ VI(P)) (2)
A;: D(ense)

A;: S(parse))

. A X
f(Abex) = { A;_indices[c[anc(A,)], x]

X Iﬁj:l)
find(A;_indices[p[anc(A, j)],:],x) A;:S,

4
where the “find” function in the later case of equation 4 refers to
searching a given value in sorted array, SparseTIR emits a binary
search block to search for the index of x in sorted indices array.
The “anc” function collects the indices of ancestor(including self)
axes of A; from its root in axes dependency tree, and p[anc(A, j)]
gathers values from p by ancestors’ indices:

[i]
[anc(A, j) : i]

ﬂ*MAané{

A; is root

Aj = parent(A;).)

anc(A,i) = {

665

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

Step 5: Read/Write Region Analysis. The buffer read/write region
information is necessary for TensorIR’s block construct. We per-
form a buffer region analysis pass to collect buffer access informa-
tion and takes the union of all read/write regions accessed inside
each block and annotate them as block attributes.

3.3.2 Stage Il Schedules. The stage II schedules are responsible for
manipulating loops (fuse/reorder/split), moving data across the
memory hierarchy (cache_read/cache_write), binding loops to
physical/logical threads to parallelize them, and using vector/tensor
instructions in hardware (vectorize/tensorize). As a dialect of
TensorlR, we fully support TVM schedule primitives * at stage II.

3.4 Stage III: Loop-Level IR

Stage Il removes all SparseTIR constructs. It keeps only the nested
loop structures whose body includes statements that operate on
flattened buffers. This stage should be compatible with loop-level
IR in existing tensor compilers. We select TensorIR [34] in Apache
TVM [16] as stage III IR to make efficient use of NVIDIA’s Tensor
Cores, as it fully supports tensorization.

3.4.1 Sparse Buffer Lowering. Sparse buffer lowering removes all
axes, flattens all multi-dimensional sparse buffers to 1-dimension,
and rewrites memory access to these buffers. Suppose the original
sparse buffer A is composed of axes {A;}}",. For memory access
Alx1, ..., xp], the overall offset after flattening is computed by:

n

Z is_leaf(A;) X offset(i) X stride(i + 1),

i=1
where is_leaf(A;) means that if axis A; has no dependence in

(6)

{A; };?:i +1» offset and stride are defined as:
offset(i) £ Xj is_root(A;) @)
A;_indptr[offset(j)] +x; Aj = parent(A;)
1 i>n
stride(i) 2 {nnz(Tree(A;)) X stride(i + 1) is_root(A;) (8)

stride(i + 1) otherwise,

where nnz(Tree(A;)) refers to the number of non-zero elements
of the sparse iteration space composed by the tree with A; as its
root. Figure 10 shows an example of sparse buffer lowering: sparse
buffers A, B, C are flattened. The buffer access A[j, j]| is translated

to A[J_indptr[i] + j] by equation 6.

3.5 Target-Specific Code Generation

SparseTIR re-uses the backend provided by existing tensor com-
pilers for target-specific code generation. SparseTIR emits mul-
tiple CUDA kernels for composable formats, which incur extra
kernel-launching overhead on the GPU. We insert a horizontal
fusion [33, 56] pass to the TVM backend to reduce this overhead.

4 EVALUATION

We now study how composable formats and composable trans-
formations help optimize sparse deep learning workloads in both
single-operator and end-to-end settings. In summary, compared

Shttps://tvm.apache.org/docs/reference/api/python/tirhtml#tvm.tir.Schedule

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

Stage Il IR

loop structures
with block("spmml"):
with init():
c[i, k] = 0.0

Ccli, k] = c[i, k] + A[i, j] * B[J_indices[i, jI, k]

Stage Il IR

loop structures
with block("spmmi"):
with init():
C[i * feat_size + k] = 0.0
C[i * feat_size + k] = C[i * feat_size + k]
A[J_indptr[i] + j] * B[J_indices[J_indptr[i] + j] * feat_size + k]

Figure 10: Sparse buffer lowering: sparse constructs are
totally removed, and memory accesses are flattened to 1-
dimension.

to vendor libraries, SparseTIR obtains a 1.20-2.34x speedup on
GNN operators and a 1.05-2.98x speedup on sparse attention op-
erators. When used in an end-to-end setting, SparseTIR obtains
a 1.08-1.52x speedup on end-to-end GraphSAGE training and a
4.20-40.18x speedup on end-to-end RGCN inference, 0.56-7.44x on
Sparse Convolution operators.

4.1 Experiment Setup

Environment. We evaluate all experiments under two different
GPU environments: NVIDIA RTX 3070 and NVIDIA Tesla V100.

Baselines. cuSPARSE [24] is NVIDIAs official library for sparse
tensor algebra, which includes high-performance implementation
of common sparse operators. dgSPARSE [28] is a collection of state-
of-the-art sparse kernel implementations for GNNs, which includes
GE-SpMM [49], DA-SpMM [25] and PRedS [106]. PyG [36] and
DGL [96] are two open-source frameworks that support GNN
training and inference. Sputnik [37] is a library for sparsity in
Deep Learning. Neither dgSPARSE nor Sputnik uses Tensor Cores.
TACO [54] is an open-source sparse tensor compiler. Triton [89] is
a tiling-based IR for programming neural networks, and we use its
block sparse operator implementation. TorchSparse [86] is a library
for point cloud processing, with state-of-the-art sparse convolution
implementation.

For SpMM, we select the TACO-generated operator, cuSPARSE
11.7, and dgSPARSE 0.1 as baselines. For SDDMM, we select the
TACO-generated operator, cuSPARSE, dgSPARSE and DGL 0.9.1’s
implementation as baselines. The DGL’s SDDMM implementation
uses the optimizations proposed in FeatGraph [47]. For end-to-end
GNN training, we compare a GraphSAGE model written in PyTorch
1.12 [66] that integrates a SparseTIR-tuned kernel with DGL. For
RGCN, we select the Graphiler [103], DGL 0.9.1 and PyG 2.2.0 im-
plementations as our baseline.* For sparse transformers, we select
Triton®’s block-sparse kernel as our baseline. For sparse convolu-
tion, we select TorchSparse © for comparison. The computation
results of all SparseTIR generated kernels have been compared with
existing frameworks/libraries to confirm numerical accuracy.

4Both DGL and PyG provide several different official implementations of RGCN; we
select the best performing among them.

®Main branch until commit 0e8590

®Main branch until commit 2caf084

666

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 1: Statistics of Graphs used in GNN experiments.

Graph #nodes #edges %padding
cora [78] 2,708 10,556 15.9
citeseer [78] 3,327 9,228 13.0
pubmed [78] 19,717 88,651 23.1
ppi [39] 44,906 1,271,274 229
ogbn-arxiv [45] 169,343 1,166,243 17.5
ogbn-proteins [45] 132,534 39,561,252 21.6
reddit [39] 232,965 114,615,892 28.6

4.2 Graph Neural Networks

In this section, we evaluate the performance of SparseTIR on GNN
workloads. SpMM and SDDMM [63] are two of the most generic
operators in GNNs. Table 1 describes the characteristics of graphs
used in our evaluation; on the table, %padding refers to the ratio of
padded zero elements after we transform the original sparse matrix
to composable formats.

4.2.1 SpMM. SpMM is the most generic sparse operator in deep
learning, which can be formulated as:

n
Yik = ZAi,jX ks
=1

where A is a sparse matrix and X, Y are dense matrices. A high-
performing SpMM kernel on a GPU requires efficient memory
access patterns and load balancing [104]. Runtime load balancing,
well studied in SpMM acceleration literature, always incurs runtime
overhead. The composable format and composable transformation
can help generate kernels that achieve compile-time load balancing
and better cache utilization.

Partition 1 Partition 2

Sub-matrix 1 Sub-matrix 4
O O O j ELL(1)
O ELL(1)
| | EE . Sub-matrix 5
q D Sub-matrix 2 ELLQ)
5] o o ELL(2)
moem P Sub-maix
Sub-matrix 3 ELL(4)
I:‘ ELL submatrix with row length I < 1 ELL(4) _
D ELL submatrix with row length 1 < I < 2
[ELL submatrix with row length 2 < I < 4

Figure 11: Example of hyb(2, 2): the original matrix is decom-
posed to 6 ELLPACK sub-matrices; elements in partition 1
are stored in sub-matrix 1-3, and elements in partition 2 are
stored in sub-matrices 4-6.

We design a parameterized composable format hyb(c, k) for
sparse matrix A with two parameters ¢ and k. We partition columns

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

of the sparse matrix by the given factor c, so that each column
partition has width w. For each column partition, we collect the
rows with length [that satisfy 21 < [< 2! to bucket i, and we pad
the length of these rows to 21 each bucket then forms a sub-matrix
with the ELL format. Figure 11 shows a special case, hyb(2, 2).

For bucket i of each column partition, we group each 2k rows
and map them to a unique thread block in GPUs. The number of
non-zero elements in A that are processed by each thread block
is 2% which is implemented with TVM’s split and bind primi-
tives. We use the schedule proposed in GE-SpMM [49] for each
sub-matrix for the remaining dimensions. The column partition in
our design is intended to improve cache locality; when processing
column partition j, only B[jw : (j + 1)w] would be accessed for B.
Featgraph [47] proposes to apply column partitions for SpMM on
CPUs; however, it does not extend the idea to GPUs. Our bucketing
technique was designed to achieve compile-time load balancing.
In practice, we searches for the best ¢ over {1,2,4,8,16} and let
k = [log, 222, which generally works well.

We evaluate the SpMM written in SparseTIR with and without
the proposed hyb format on real-world GNN datasets for both V100
and RTX3070. We measure the geometric mean speedup of dif-
ferent SpMM implementations against cuSPARSE for feature size
d € {32, 64,128, 256,512} Figure 13 shows our results. The Sparse-
TIR kernel on hyb format obtains a 1.22-2.34x speedup on V100
and a 1.20-1.91x speedup on RTX 3070 compared to cuSPARSE. We
also achieve consistently better performance than state-of-the-art
open source sparse libraries dgSPARSE and Sputnik, and TACO
scheduled kernels [79]. Though TACO also explores compile-time
load balancing, it does not support caching the partially aggregated
result in registers, which is critical to GPU performance, and the ir-
regularity of the CSR format limits the application of loop unrolling.
SparseTIR perform these optimizations in stage II schedules.

Importance of composable formats. We evaluate the SparseTIR
kernel without format decomposition (see SparseTIR(no-hyb) in
the figure). Results suggest that the SparseTIR kernel without for-
mat decomposition and per-format scheduling performs generally
worse: ogbn-arxiv is a citation network graph whose degrees obey
power-law distribution, and our designed format can perform sig-
nificantly better because of more efficient load balancing. Notably,
though padded zeros in our proposed composable format slightly
increase FLOPs as shown in Table 1, the runtime of SparseTIR gen-
erated kernels on composable format is still faster because of better
scheduling. The degree distribution of the ogbn-proteins graph is
centralized, and the benefit of using a hybrid format is compensated
for the extra overhead introduced by padding. To evaluate the effect
of column partitioning, we fix the feature size to 128 and measure
several kernel metrics generated by SparseTIR on a Reddit dataset
under a different column partition setting. Figure 12 shows the re-
sults; L1 and L2’s cache hit rates improve as we increase the number
of column partitions. However, more partitions will increase the
required memory transactions of the kernel because we will need
to update the results matrix c¢ times if the number of partitions is
c. As a result, the benefit of column partitioning saturates as we
increase the number of partitions.

4.2.2 SDDMM. SDDMM can be formulated as the following:

667

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

Cache Hit Rate %

Kernel duration (ms)

1 2 4 8
#Column Partitions

16

Figure 12: The kernel duration and L1/L2 hit-rate of Sparse-
TIR SpMM kernels under different column partitions.

d
Bij= > AijXikVes
k=1

where A and B are two sparse matrices that share a sparse struc-
ture, X, Y are dense matrices, and d is the feature size. In SDDMM,
the computation per (i, j) is independent, and the workload per
position is the same, so we need not worry about load balancing
issues if we parallelize the computation by each non-zero (i, j). The
sparse_fuse schedule primitive in stage I introduced in Section
3.2.2 helps us iterate over non-zero (i, j) directly instead of first
iterating over i and then iterating over non-zero j for each i.

PRedS [106] is the state-of-the-art open-source SDDMM imple-
mentation, which optimizes SDDMM in two ways. First, it uses
vectorized load/store intrinsics in CUDA, such as float4/float2,
which improves memory throughput. Second, it performs the re-
duction in two stages: (1) intra-group reduction, which computes
the reduction inside each group independently, and (2) inter-group
reduction, which summarizes the reduction result per group. We for-
mulate the optimization in PRedS as composable transformations in
SparseTIR with vectorize and rfactor [84] schedule primitives
at stage II, and we generalize the parameters, such as group size,
vector length and number of workloads per thread block, as tunable
parameters.

Figure 14 shows the geometric mean speedup of different SD-
DMM implementations vs our baseline for feature size d € {32, 64,
128, 256,512}. We do not use composable formats in SDDMM. The
baseline we select is DGL’s SDDMM implementation, which uses
the optimization proposed in Featgraph [47]. cuSPARSE and Sput-
nik’s SDDMM implementations are not optimized for highly sparse
matrices such as graphs and thus achieve very low performance. We
obtain generally better performance than dgSPARSE [28], which
implements the PRedS [106] algorithm, because of the parame-
terized scheduling space. SparseTIR significantly outperforms the
DGL baseline and the TACO scheduled kernel because these im-
plementations do not include two-stage reduction and vectorized
load/store.

Importance of composable transformations. The provenance graph
data structure in TACO does not support multiple branches, thus
we cannot perform schedules such as rfactor at this level. The
composable transformation design of SparseTIR enables us to apply
such schedules at lower stages.

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

V100

— cuSPARSE
=== Sputnik

TACO
— SparseTIR(no-hyb)

RTX3070

—= dgSPARSE

ez SparseTIR(hyb)

Normalized Speedup

Citeseer Pubmed ogbn-arxiv ogbn-proteins

Figure 13: Normalized speedup against cuSPARSE for SpMM.

Reddit

Cora Citeseer Pubmed ogbn-arxiv ogbn-proteins Reddit

Dataset

SparseTIR consistently outperforms vendor libraries and TACO.

Comparing SparseTIR(no-hyb) and SparseTIR(hyb) demonstrates the importance of format composability.

35
mmmm CcuSPARSE — dgSPARSE-coo
3 - V100 === Sputnik TACO RTX307Q_H
— dgl EzEEzd SparseTIR
2.5 —— dgSPARSE-csr
21
2

Normalized Speedup

Citeseer Pubmed PPI ogbn-arxiv ogbn-proteins

Reddit
Dataset

Citeseer Pubmed PPI ogbn-arxiv ogbn-proteins Reddit

Figure 14: Normalized speedup against Featgraph for SDDMM. SparseTIR beats the state-of-the-art vendor library dgSPARSE

on average by parametrizing scheduling space.

4.2.3 End-to-end GraphSAGE Training. We also integrate SparseTIR-
generated SpMM operators in the GraphSAGE [39] model written
in PyTorch and compare the end-to-end speedup to DGL. Figure 15
shows that we obtain a 1.18-1.52x speedup on V100 and a 1.08-1.47x
speedup on RTX 3070 7.

Normalized Speedup against DGL

Cora

PPI
ogbn-arxiv E
Reddi

Cora
Citeseer B
Pubmed

PPI E

ogbn-arxiv g

Figure 15: Normalized speedup of PyTorch+SparseTIR
against DGL on end-to-end GraphSAGE training.

"Reddit result is not reported on RTX 3070 because of Out-Of-Memory issue.

4.3 Sparsity in Transformers

Sparsity in Transformers comes from (1) sparse attentions [6, 15, 20],
and (2) sparsity in network weights after pruning [55, 76]. We
evaluate SparseTIR generated kernel in both cases®.

4.3.1 Sparse Attention. Sparse transformers reduce the complexity
of Transformers by making the attention matrix sparse. The key
operator in Sparse Transformers is still SpMM and SDDMM, but un-
like GNNs whose sparse matrices are provided by graph structures,
the sparse matrices used in sparse attentions are mostly manually
designed and have a block-sparse pattern to better utilize tensor
cores in modern GPUs. We select two examples: Longformer [6]
and Pixelated Butterfly Transformer [15], whose sparse structures
are band matrix and butterfly matrix [65], respectively. We imple-
ment the batched-SpMM and batched-SDDMM operators for both
CSR and BSR formats. For BSR operators, we use the tensorize
primitive during stage II IR schedules to use tensorized instructions
in CUDA. Figure 16 shows different implementations’ speedup
against Triton’s [89] block-sparse operator. We fix the matrix size
to 4096 X 4096, batch(head) size to 12, band size to 256, and feature
size per head to 64. Results show that SparseTIR-BSR obtains a
1.05-1.59x speedup on multi-head SpMM and a 1.50-2.98x speedup
on multi-head SDDMM.

81n this section, we use half-precision data type for all operators to use Tensor Cores.

668

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Multi-Head SpMM Multi-Head SDDMM
V100 RTX3070 V100 RTX 3070
[Triton C——1 SparseTIR-CSR =2 SparseTIR-BSR emzzm

s 2 s -

02|

Normalized Speedup

0.04

Y !
B
e

A%
Sparse Pattern

Figure 16: Normalized speedup against Triton on sparse trans-
former operators.

4.3.2 Sparse Weight (Network Pruning). Network pruning [40] is
another source of sparsity in Transformers. Pruning can signifi-
cantly reduce the number of model parameters at the cost of neg-
ligible performance (accuracy) loss by making the weights sparse.
PruneBERT [55, 76] applies pruning to Transformers, and we eval-
uate SparseTIR’s performance on PruneBERT in both structured
pruning and unstructured pruning settings.

Structured Pruning. Structured Pruning prunes groups of weights
together at the channel or block level to speed up execution. Block
pruning [55] is an example of structured pruning on Transformers
where network weights are pruned to block-sparse format, the
operator used in block-pruned Transformer is SpMM. We extract
all SpMM operators in a block-pruned model® with block size 32
and average weight sparsity 93% for the benchmark. We fix the
batch size to 1 and the sequence length to 512. Figure 17 shows the
performance of SparseTIR kernels, Triton’s BSRMM, and cuBLAS
on these operators. The block sparse weights in the block-pruned
model have many all-zero rows, and we propose to use doubly-
compressed BSR (DBSR, inspired by doubly compressed sparse row
(DCSR) format [13]) format to skip zero rows. The results show
that SparseTIR kernel on DBSR format can consistently outperform
SparseTIR kernel on BSR format, and achieve better with Triton’s
BSRMM implementation.

= 3 V100 RTX 3070
& SparseTIR(BSR) o
S 16 SparseTIR(DBSR) « 3
8 s L Triton P LY
& X B e g CUBLAS —— : . o S
L H . o .
3 S s S Poteal,
N 2+ %9 “pebece F $ 20 33 .5
=] | Ll o . XL n.'.:"'-
= ok ot 3k
S 05
Z PRI SR S D S C I S XA L SR S R R
Density %

Figure 17: Normalized speedup against cuBLAS for operators
extracted from block-pruned transformers. The X-axis refers
to the weight density in the SpMM operator, and Y-axis refers
to the normalized Speedup against cuBLAS implementation
which uses a dense matrix for sparse weight.

https://huggingface.co/madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1

669

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

Unstructured Pruning. Unstructured pruning does not pose any
constraints on the format of pruned weights, and the pruned weight
matrices are typically stored in CSR format. Unstructured pruned
model is known to be hard to optimize because of irregular compu-
tation, and directly converting them to BSR format would introduce
too much fragmentation inside blocks. We use the SR-BCRS format
proposed in Magicube [58] to alleviate the issue. Figure 18 explains
how to represent SR-BCRS(#, g) and corresponding SpMM sched-
ules in SparseTIR: the matrix is firstly divided into many ¢ X 1 tiles,
and we omit tiles whose elements are all zero. The non-zero tiles
inside the same rows are grouped by a factor of g, and we pad the
tailing groups with zero tiles. Sparse matrices in SR-BCRS format
can be composed by 4 axes in SparseTIR. When performing SpMM
on SR-BCRS, we can load a group of tiles in A and corresponding
rows in X to local registers and use Tensor Cores in GPU (or Matrix-
Multiply Units(MXU) in TPU [51], equivalently) to compute their
multiplication results, these schedules can be described as cache
-read/write and tensorize primitives at stage-II in SparseTIR.
Compared to BSR, the SR-BCRS format greatly reduces intra-block
fragmentation: the non-zero ratio lower bound in SR-BCRS(¢, g) is
1/t, while BSR with block size b has a lower bound of 1/b2.

A A’ SR-BCRS(4, 4)
3 3 |_|z|‘ &1 oy [edst el fof 1o
[1] 0 of [H]e of2] [2] [o], =
B = o] E G B [E B4
E 0] o] [ols [ola] 7] [
of To| |2 0 =
B g ol G B § 9=*
o ofiofioilio
-1 1 -1 1 0 0
A'[io, jo, ji, i3] = Alio x t + i, ji Vol S
2] SRAM
0.1[0.3] - &
I0: dense_fixed(2) [ofz[-
JO: dense_variable(0.5[0.9] k 0.103'—2 .2) j0.8J0.4[1.4] 6 0.8[0.4]1.4] 6
0]3]- “20.5/0.9] 1 |12 -52.5/0.5 3 -5[2.5[0.50 3
IO, indptr) EEE 2 ﬁu—zlﬁm EEBE[EERE
JI: sparse_fixed(-5 [o.54 2] y-tloslorfos] Joos[s]1] | [o4fos3]1
y el 0.2[0.1] 0
JO, g, indices) [leslo Xouwp Youp Y
II: dense_fixed(t) X Tensor Cores

A':[10,J0,J1,11|

Figure 18: Conversion from unstructured sparse matrix to
SR-BCRS(t, g), and SpMM schedule on the it.

We extract all SpMM operators in a movement-pruned model'°
with average weight sparsity of 94% for benchmark. Figure 19 shows
the performance of SparseTIR on SR-BCRS(8,32)!!, BSR format
with block size 32, and vendor libraries cuBLAS and cuSPARSE’s
CSRMM. We set the batch size to 1 and the sequence length to 512.
We do not compare with Triton because it has no native implementa-
tion of SpMM on SR-BCRS. SparseTIR on SR-BCRS beats SparseTIR
on BSR in most of the settings except for density > 273, in which
case both transformed sparse matrices have a density close to 1.
cuSPARSE’s CSRMM can only beat cuBLAS’ GeMM when weight
density is extremely low (e.g., < 27°).

4.4 Relational Gather-Matmul-Scatter

Relational Gather-Matmul-Scatter (RGMS for short) is an emerging
sparse operator which can be expressed as follows:

Ohttps://huggingface.co/huggingface/prunebert-base-uncased-6-finepruned-w-
distil-squad
To use m8n32k16 MMA instructions in GPU.

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

= s V100 RTX 3070 New Format Density 20
£ SparseTIR(SR-BCRS) ©]
2 4t . SparseTIR(BSR) oo 40!
3 oo . DN CcuSPARSE L
2, 2000 2w, * 0T g g CUBLAS —— o 192
N 1 <. v’ P TIR X N .;' /;.‘ 53
] e DR Vo emedebual T 5
g stk ;::.;. Fine T AN o e 1o
E] 0.25 : e . S |.S'°SH BCRS(8,32)

.25 + t . - ! . 5
g 0.125 A h i) 1°
Z o 2T g6 5 g4 53 2T 6 y5 g4 5B 27 a6 95 ph 5B

Density %

Figure 19: Normalized speedup aginst cuBLAS for operators
extracted from unstructured pruned transformers, and the
weight density in new format vs original weight.

Table 2: Statistics of Heterogeneous Graphs used in RGCN.

Graph #nodes #edges #etypes %padding
AIFB [72] 7,262 48,810 45 17.9
MUTAG [72] 27,163 148,100 46 8.0

BGS [72] 94,806 672,884 96 4.3
ogbl-biokg [45] 93,773 4,762,678 51 4.2

AM [72] 1,885,136 5,668,682 96 10.8

R n din
Yy = Z Z Ari j Xk Wr k1

where A is a 3D sparse matrix, whose leading dimension size is
R, denoting number of relations. For each relation, the last two
dimensions of A form a unique 2D sparse matrix. X is a 2D feature
matrix and W is a 3D weight matrix whose leading dimension size is
also R. For each relation, the last two dimensions of W form a unique
2D dense weight matrix. The scheduling for the RGMS operator is
complicated because we need to consider (1) load balancing and
(2) the utilization of Tensor Cores. Until now, no sparse library
implements this kernel.

4.4.1 Relational Graph Convolution Network. RGCN [77] is a gen-
eralization of GCN model to heterogeneous graphs (graphs with
multiple relations/edge types). The operator used in RGCN is RGMS,
where A, refers to the adjacency matrix corresponding to sub-
graph whose edge type is r, and W; refers to the weight matrix
corresponding to edge type r. Table 2 introduces the characteristics
of heterogeneous graphs used in RGCN evaluation; in the table,
#etypes refers to the number of edge types (also known as “rela-
tions”) in the heterogeneous graph, %padding refers to the ratio of
padded zero elements after we transform the original sparse matrix
with composable formats. Existing GNN libraries implement RGMS
operator in a two-stage approach:

dln
Ty ji = ZX kW kD>)
k=1
R n
Yy = Z ZAr,i,jTr, il (10)

r=1 j=1
where the first stage fuses gathering and matrix multiplication,
and the second stage performs scattering. Such implementation

670

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

materializes the intermediate result T on HBM, which incurs a lot
of GPU memory consumption. In SparseTIR we fuses the two stage
into a single operator: we generalize the hyb format proposed in
Figure 11 to 3-dimensional so that 2D sparse matrix corresponding
to each relation is decomposed to hyb(1, 5) formats. Figure 21 ex-
plain the scheduling of RGMS operator on 3D hyb in SparseTIR: for
each ELL matrix A™® (r refers to edge type and k refers to bucket
index), we pin its corresponding weight matrix W” in SRAM and
gather related rows of X from HBM to SRAM, then perform partial
matrix multiplication with Tensor Cores and scatter results to Y.
Note that the matrix multiplication and intra-group scatter are all
performed inside SRAM. Such design reduces the overhead of data
copy between SRAM and HBM for intermediate matrix T. We eval-
uate end-to-end RGCN inference (feature size: 32) and Figure 20
shows results: SparseTIR(hyb+TC) can significantly improve previ-
ous state-of-the-art GNN compiler Graphiler [103] by 4.2-40.2x in
different settings. By comparing SparseTIR(naive), SparseTIR(hyb)
and SparseTIR(hyb+TC) we show that both composable formats and
composable transformations (which enables Tensorization) matter:
even though hyb increases FLOPs by padding zeros (as shown in
Table 2), it still makes the kernel faster by 2-4.4x because of bet-
ter load-balancing. SparseTIR’s generated fused kernel can also
greatly reduce GPU memory footprint because we do not explicitly
stores T in HBM, with fragments of T consumed immediately af-
ter produced in SRAM. SparseTIR(hyb+TC) consumes more GPU
memory than SparseTIR(naive) and SparseTIR(hyb) because of the
half-precision/single-precision data type conversion.

4.4.2 Sparse Convolution. Sparse Convolution [23] is widely used
in 3D cloud point data. We found that the Sparse Convolution
operator is a special form of RGMS, and Figure 22 illustrates the
equivalence: each relative offset inside the convolution kernel can
be viewed as a relation in RGMS. For each relation, the mapping
between non-zero elements in feature map of previous layer to non-
zero elements in feature of next layer forms a bipartite graph which
can be viewed as a 2D sparse matrix whose number of non-zero
elements per row is no greater than 1.

We extract all of the Sparse Convolution operators in Minkowsk-
iNet [23] on SemanticKitti dataset [5] for benchmark, and evalu-
ate SparseTIR’s RGMS kernel!?. Figure 23 shows our normalized
speedup against state-of-the-art TorchSparse [86] library. Unlike the
SparseTIR’s schedule in Figure 21, TorchSparse does not fuse Gather-
Matmul-Scatter on chip. Instead, it explicit materializes T and uses
coarse-grained cuBLAS operators rather than Tensor-Core level
instructions for matrix multiplication!®. SparseTIR’s RGMS can
outperform TorchSparse for most of the operators because of less
HBM/SRAM data exchange as mentioned before. However, for large
channel size (> 128), SparseTIR’s RGMS cannot beat TorchSparse
because matrix multiplication overhead become dominant (The
FLOPs of Matmul is quadratic to channel size while the FLOPs of
Gather and Scatter is linear to channel size) and cuBLAS is better
optimized than SparseTIR’s RGMS for large channel.

12We don’t need to use composable formats for Sparse Convolution because the sparse
matrix for each relation is already an ELL(1).

131t’s not necessary to use adaptive matrix multiplication grouping when using fine-
grained Tensor-Core instructions.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

——1 Graphiler

SparseTIR(naive) C— SparseTIR(hyb)

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

ez SparseTIR(hyb+TC)

100

Normalized Speedup(x)

MUTAG BGS ogbn biokg AM

RTX3070

AIFB MUTAG BGS ogbn biokg AM

GPU Memory Footprint(GB

AIFB MUTAG BGS ogbn- blokg AM

Dataset

Figure 20: Normalized RGCN inference speedup against Graphiler and GPU Memory Footprint. SparseTIR(hyb+TC) uses
schedule proposed in Figure 21, SparseTIR(hyb) uses composable format but use CUDA Cores instead of Tensor Cores for
on-chip Matrix Multiplication, SparseTIR(naive) uses neither composable formats nor Tensor Cores.

Tensor Cores

X W(n) =

e+ are)

&

B.S1
X
X3
M Xg

Co o
o ath

Had

Tensor Cores ot

(m) I
=W G

I

n
Relation n

Tensor Cores

x| W (™) |=

Tensor Cores

x| W ©)

B

Tensor Cores

x| W (0 |=

e

agr |}
o

e |

A

0
Relation 0

Matmul Scatter!

Figure 21: Schedule of RGMS operator in SparseTIR. Com-
posable formats hyb are used for load balancing,.

RELATED WORK

Tensor and deep learning compilers. Halide [70] and TVM [16, 17]
are tensor compilers that decouple kernel description and sched-
ules for dense computation. XLA [27] and Relay [73] proposed
computational-graph-level abstractions for deep learning, where
we can apply optimizations such as kernel fusion and graph sub-
stitution [50]. However, these compilers have limited support for
representing and optimizing sparse operators, impeding the wider
deployment of sparse deep learning workloads such as GNNs. Ten-
sorlR [34] is TVM’s new tensor-level programming abstraction for
automatic tensorization. Triton [89] is an intermediate language
that offers tile-level operations and optimizations, FreeTensor [87] is
a compiler for irregular tensor programs with loop-based program-
ming model. These IRs could serve as stage-III IR for SparseTIR.

5

671

elation 0 bes W
ffset -1,-1)
xlw1
Relatlon 1
Offset: (0, -1) =T T
ay
j/v/\ x| x| xows [xs
/‘
E x1Wa | xiWs | xoWs | xoWr
* xawy | X7
sz: xaWy | xsW1 | xsWs
' xaWy x:W: xsWa | xsWs
Relation 7 oW
ffset: (O, 1) a3
Relation 8
Offset: (1, 1)
b1 W

Figure 22: Equivalence of RGMS and Sparse Convolution,
each relative offset inside the convolution kernel forms a
relation in RGMS. The equivalence also holds in 3D setting.

—_
\g g V100 RTX 3070

2 : . SparseTIR(TC) »

8 4 . TorchSparse

= .

w .
R e o o e

N : s ! s . 848 .

= g . R
E o5 =

2 32 64 128 256 32 64 128 256

Square root of Cin * Cout

Figure 23: Normalized speedup against TorchSparse for
Sparse Convolution. The X-axis refers to square root of input
channel and output channel: v/C;,,C,,;, and the Y-axis refers
to speedup against TorchSparse.

Sparse compilers. MT1 [8-12], SIPR [69], Ironman [60] and Ahmed
et al. [2] introduces the idea of compiling kernels for a given sparse

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

data structure and a kernel description. TACO [21, 53, 54] proposes
sparse format abstractions and a merge lattices-based code genera-
tion routine. Senanayake et al. [79] propose a sparse-iteration space
transformation framework for scheduling sparse operators. Chou
et al. [22] introduce an approach for generating efficient kernels
for sparse format conversion. Henry et al. [41] generalize TACO to
sparse array programming. The format abstraction and IR design
of SparseTIR are insipred by TACO and earlier work, with a focus
on Deep Learning operators. Sympiler [18] builds a symbolic in-
spector to analyze sparse structure at compile-time and generates
efficient code. Parsy [19] generalize the idea to support paralleliza-
tion. SPF [83] proposes a inspector-executor framework compatible
with polyhedral transformations. Mohammadi et al. [62] proposes
data dependence simplication algorithm for compiler generated
inspectors. Like composable formats in SparseTIR, these compilers
can utilize sparse structures for acceleration. Taichi [46] decou-
ple data structure and kernel description for physics simulation
programming; its compiler optimizations focus on spatial sparse
data, unsuitable for DL. Tiramisu [4] supports automatic selection
of dense/sparse kernels at computational graph-level. However, it
lacks tensor-level sparse code generation. COMET [88] and MLIR
Sparse Dialect [7] are two MLIR dialects that explore composable
IR design for sparse tensor algebra. Both treat sparse tensors with
format annotation as first-class members in the IR; however, neither
considers decomposable formats. CoRA [33] proposes a compiler
infrastructure for ragged tensors [26]: a special form of sparse ten-
sors. The operation splitting in CoRA is a special case of format
decomposition in SparseTIR. SparTA [110] proposes abstractions for
model sparsity; its annotation is still dense and thus not applicable
to highly sparse matrices used in GNNs. SparseLNR [29] proposes
branched iteration graph to support factoring reductions and loop-
fusion for sparse tensor algebra, these schedules can be formulated
as stage-I schedules in SparseTIR as we support branches in the IR.

GNN systems and compilers. PyG [36] and DGL [96] propose pro-
gramming interfaces for the programming message-passing [38]
modules in GNN models. Both frameworks use vendor libraries
and handwritten operators to accelerate specific message-passing
patterns. Featgraph [47] optimizes generic GNN operators with
TVM. However, it fails to support more operators because TVM
lacks sparsity support. FusedMM [71] fuses SDDMM and SpMM
operators, thus accelerating GNN training and saving GPU memory
footprint. FusedMM can be described and optimized in SparseTIR.
Seastar [102] and Graphiler [103] compile user-defined message-
passing functions to their intermediate representations (IR) and
then optimize the IR and emit template-based, target-specific code:
these templates still have limited expressiveness and cannot con-
sider a wide range of the optimization space. SparseTIR could serve
as a backend for these GNN compilers. GNNAdvisor [100] proposes
a CUDA template for GNN computations and uses graph character-
istics to guide the performance tuning of GNN training. QGTC [99]
and TC-GNN [98] explore accelerating GNNs with TensorCores.
Notably, the “condensing” technique proposed in TC-GNN is equiv-
alent to SpMM on SR-BCRS format as shown in Section 4.3.2. The
contribution of these papers is orthogonal to SparseTIR.

Sparse kernel optimizations. Merge-SpMM [104], ASpT [43], GE-
SpMM [49], Sputnik [37] and DA-SpMM [25] explore different

672

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

schedule spaces for SpMM optimization on GPUs. We carefully
examined the optimizations suggested in theses papers and pro-
pose a composable abstraction to unify them. OSKI [94] is a library
for auto-tuning sparse operators, with a focus on optimizing op-
erators on cache-based, super-scalar architectures such as CPUs.
However, OSKI do not support customizing sparse operators.

Sparse format optimizations. Pichon et al. [67] propose to reorder
rows and columns in 2D sparse matrices to increase the block
granularity of sparse matrices. Li et al. [57] study the problem of
reordering sparse matrices to improve cache locality of operators on
them. Mehrabi et al. [61] and Wang et al. [100] propose to reorder
rows and columns of sparse matrices to accelerate Sp)MM on GPUs.
These algorithms can act as pre-processing steps in SparseTIR to
discover efficient composable formats.

Hardware-efficient algorithms. There have been a growing trend
of sparsity in Deep Learning [42]. To make better use of underly-
ing hardware, researchers propose pruning algorithms with block-
sparsity [55] and bank-sparsity [14, 112] to utilize acceleration units
in GPUs, and ES-SpMM [59] for load balancing. SparseTIR’s com-
posable abstractions can help researchers explore more complex
sparse patterns with ideal performance on modern hardware.

6 FUTURE WORK

Automatic scheduling. SparseTIR still requires users to specify
schedule templates like they do for the first-generation of Halide
and TVM. The Halide auto-scheduler [1], FlexTensor [111], An-
sor [109] and Meta-scheduler [80] have been proposed to auto-
matically generate schedule templates for dense tensor compilers.
We expect these techniques would also prove helpful for sparse
compilation. Searching for the optimal schedule is time consuming,
Abhrens et al. [3] propose an asymptotic cost model for sparse tensor
algebra to narrow the schedule space of sparse kernels, which could
also benefit our work.

Automatic format decomposition. In this paper we explore only
manually designed format decomposition rules. We leave automatic
format selection [11, 12] and decomposition for future work.

Dynamic sparsity. Some models [32, 68, 81] exhibit dynamic
sparsity, where the position of non-zero elements changes overtime
thus searching for best schedule for each matrix become impractical.
DietCode [108] proposes shape-generic search space, micro-kernel
based cost model and a lightweight dispatcher to dispatch kernel
at runtime, the idea is also applicable to sparse tensor programs.

Integration with graph-level IR. SparseTIR models only tensor-
level sparsity, we plan to extend the sparse attributes in SparseTIR
to graph-level IRs like XLA [27] and Relay [73].

7 CONCLUSION

We introduce SparseTIR, a composable abstraction for sparse oper-
ators in deep learning. Its key innovation is the use of composable
formats and composable transformations, and together they form
the parameter search space for performance tuning. Evaluations
on generic sparse deep learning show that SparseTIR achieves sig-
nificant performance improvements over existing vendor libraries
and frameworks.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

ACKNOWLEDGMENTS

We thank all anonymous ASPLOS reviewers for their constructive
comments. We thank Siyuan Feng, Bohan Hou and Wuwei Lin for
discussions on tensorization and IR design, Sandy Kaplan for help
on paper writing, Zhijian Liu for providing Sparse Convolution
benchmarks, Joel Emer, Yuwei Hu, Jie Liu, Steven S. Lyubomirsky,
Fredrik Kjolstad, Ye Tian, Zhiqiang Xie, and Zhongyuan Zhao for
feedbacks on the paper. This work was supported in part by the
Center for Intelligent Storage and Processing in Memory (CRISP), a
Semiconductor Research Corporation (SRC) program co-sponsored
by DARPA. It was also supported by the Real Time Machine Learn-
ing (RTML) NSF and DARPA program, and the NSF award CCF-
1518703, CNS-2211882. The opinions and conclusions in this paper
do not reflect the views of these funding agencies.

A PROGRAMMING INTERFACE FOR
COMPOSABLE FORMATS

This section further explains the programming interface for com-
posable formats and the format decomposition pass introduced in
§3.2.1, SparseTIR provide two APIs for composable formats:

FormatRewriteRule is a class for a sparse format rewriting
rule description, its input include: the name of format rewrite
rule, the sparse buffer to rewrite, a SparseTIR description of
new format, the mapping from original axes to new axes,
and the index mapping f and inverse index mapping f~!
between original sparse buffer A and the transformed sparse
buffer A’: A[I] = A’[f(D], A[f~1()] = A’[I’], both f and
7! need to be affine maps written in Python’s lambda func-
tions.

decompose_format is a function that accepts a list of format
rewrite rules and an SparseTIR program as input and per-
forms the format decomposition pass on the given SparseTIR
program.

Below is an example illustrating how to use the two APIs to compose
ELL(2) and BSR(2) rewrite rules and perform format decomposi-
tion in Figure 5:

@T.prim_func

def spmm(

a: T.handle, b: T.handle, c: T.handle,

indptr: T.handle, indices: T.handle,

m: T.int32, n: T.int32, nnz: T.int32, feat_size: T.int32
) -> None:

I = T.dense_fixed(m, idtype="int32")

J = T.sparse_variable(

I, (n, nnz), (indptr, indices), idtype="int32")
J_ = T.dense_fixed(n, idtype="int32")
K = T.dense_fixed(feat_size, idtype="int32")
A = T.match_sparse_buffer(a, (I, J), "float32")
B = T.match_sparse_buffer(b, (J_, K), "float32")
C = T.match_sparse_buffer(c, (I, K), "float32")
with T.sp_iter([I, J, K], "SRS", "csrmm") as [i, j, kI:
with T.init():
Cli, k1 = 0.0
CLi, k] = CCi, k] + A[i, j1 x B[j, kI

BSR(block_size: int):
block_size: the block size in BSR format.
@T.prim_func
def bsr_desc(
a: T.handle,
indptr: T.handle, indices:
m: T.int32, n: T.int32, nnz:
) -> None:
I0 T.dense_fixed(m, idtype="int32")
Jo T.sparse_variable(

T.handle,
T.int32

673

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

I0, (n, nnz), (indptr, indices), idtype="int32")
II = T.dense_fixed(block_size, idtype="int32")
JI = T.dense_fixed(block_size, idtype="int32")
A = T.match_sparse_buffer(a, (IO, JO, II, JI), "float32")
pass
return FormatRewriteRule (
"bsr_{}".format(str(block_size)),
bsr_desc,
c'a*1, "1, "J"1, C"10", "JO", "II", "JI"],
{'". "1o0", "11"1, "J": ["J0", "JI"1},
lambda i, j:

return (i // block_size, j // block_size,
i % block_size, j % block_size)
lambda io, jo, ii, ji:
return io * block_size + ii, jo * block_size + ji

)

ELL(nnz_cols: int):
nnz_cols: number of non-zero columns per row in ELL format.
Q@T.prim_func

def ell(
a: T.handle,
indices: T.handle,
m: T.int32, n: T.int32,
) -> None:
I2 = T.dense_fixed(m, idtype="int32")

J2 = T.sparse_fixed(
I2, (n, nnz_cols), indices, idtype="int32")
A = T.match_sparse_buffer(a, (I2, J2), "float32")

pass

return FormatRewriteRule (
"ell_".format(str(nnz_cols)),

ell_desc,

["A"], ["I", "J"1, ["I2", "J2"7,
(UT": ["12"7, "IU: [t12"1)
lambda i, j: return i, j

lambda i2, j2: return i2, j2

)

composable_format = [BSR(2), ELL(2)]

spmm_hybrid = decompose_format (spmm, composable_format)

where the prefix T is used to prevent name conflicts with keywords
in Python. Note that format conversion is a special case of format
decomposition where we only put one FormatRewriteRule in the
list of composable formats.

B ARTIFACT APPENDIX
B.1 Abstract

This artifact includes scripts and dependencies for reproducing
all experiments in the paper. We require a host with x86_64 CPU
and NVIDIA GPUs with Turing or later architectures to run the
artifact. The SparseTIR compiler is a submodule in the artifact,
which is implemented in C++ and Python. The benchmarking is
mainly written in Python. We modify the source code of some old
dependencies to make sure they are compatible with the software
version specified in the Dockerfile. We provide a docker image
for users to run benchmarks inside the container, and scripts to
generate tables and figures for comparison.

Artifact Checklist

e Data set: OGB, SemanticKITTI DGL built-in datasets.

e Run-time environment: NVIDIA Container Toolkit.

e Hardware: NVIDIA GPUs with Turing/Ampere/Hopper architec-
ture.

o Execution: All kernels being profiled are executed in GPUs, some

data pre-processing are performed on CPUs.

Metrics: Execution time, GPU memory footprint.

e Output: Execution time/GPU memory usage tables, and figures.

B.2

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

e Experiments: SpMM, SDDMM, GraphSAGE end-to-end training,

Sparse Transformer operators, 3D Sparse Convolution, Relational

Graph Convolutional Networks inference.

How much disk space required (approximately)?: 55GB.

How much time is needed to prepare workflow (approxi-

mately)?: 2 hour for building docker container.

e How much time is needed to complete experiments (approxi-
mately)?: 10 hours.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: The SparseTIR-artifact is

distributed under The MIT license and the SparseTIR compiler is

released under the Apache License, v2.0.

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7643745

B.3 Description

B.3.1 How to Access. The artifact [105] is available on Github:
https://github.com/uwsampl/sparsetir-artifact and Zenodo: https:
//doi.org/10.5281/zenodo.7643745. Which includes the installation
scripts for all dependencies and benchmark scripts to reproduce
results. The SparseTIR compiler, which is available at https://github.
com/uwsampl/sparsetir, has been incorporated as a submodule of
the artifact.

B.3.2 Hardware Dependencies. We conduct experiments on two
machines, one with NVIDIA RTX 3070 GPU and another with
NVIDIA Tesla V100 GPU, both of them are equipped with x86_64
CPUs. Other NVIDIA GPUs with Turing, Ampere, or Hopper ar-
chitecture should also work. A GPU with memory greater than
or equal to 16GB is enough to reproduce all results, otherwise,
users might encounter an Out-Of-Memory issue for relatively large
datasets like Reddit on end-to-end GraphSAGE training.

B.3.3 Software Dependencies. We create a Docker image for this ar-
tifact, enabling users to run all experiments on a platform that meets
the installation requirements of the NVIDIA Container Toolkit.

B.3.4 Datasets. For GNN-related experiments, we use Open Graph
Benchmark [45] and built-in datasets provided by DGL [96], for
Sparse Convolution, we use SemanticKITTI dataset [5], for Pruned-
BERT, we use models publicly available in HuggingFace [101].

B.4 Installation

To install the artifact, users can either clone the repository and
build the artifact by themselves:

git clone https://github.com/uwsampl/
sparsetir-artifact.git --recursive

cd sparsetir-artifact

docker build -t sparsetir

or pull the pre-built image we provided from the docker hub (only
compatible with Ampere NVIDIA GPU architecture):

docker image pull expye/sparestir-ae:
latest

docker tag expye/sparsetir-ae:latest
sparsetir

674

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

B.5 Experiment Workflow

We provide a run. sh script under each folder, and user can run
these scripts in docker container for corresponding benchmarks:

spmm contains scripts to reproduce SpMM experiments in
§4.2.1.

sddmm contains scripts to reproduce SDDMM experiments
in §4.2.2.

e2e contains scripts to reproduce GraphSAGE end-to-end train-
ing experiments in §4.2.3.

sparse-attention contains scripts to reproduce Sparse Trans-
former operator experiments in §4.3.1.

pruned-bert contains scripts to reproduce PrunedBERT ex-
periments in §4.3.2 and §4.3.2.

rgen contains scripts to reproduce RGCN inference end-to-end
experiments in figure §4.4.1.

sparse-conv contains scripts to reproduce Sparse Convolution
operator experiments in §4.4.2.

The scripts will produce logging files containing the profiling
results including average execution time and GPU memory usage,
and figures plotted in the same style as the paper. We also provide
a run-all.sh script under the root directory for running all exper-
iments in a single command, which would take around 10 hours to
finish on a GPU like RTX 3080. We use cudaEvent APIs to profile
CUDA kernels. During profiling, we discard the samples for the
first 10 runs as warm-up steps and repeat for 100 cycles.

B.6 Evaluation and Expected Results

The specific running time and speedup differ on different platforms
but we expect the results users reproduced should roughly match
the numbers reported in the paper. (see Figures 13, 14, 15, 16, 17,
19, 20 and 23).

B.7 Experiment Customization

Artifact users can customize the benchmark scripts to use other
datasets, for GNN operator or end-to-end training/inference bench-
marks, users can create their own datasets as DGLGraph class (the
graph data structure used in DGL). For the sparse convolution
benchmark, users need to convert the customized point cloud
dataset to SparseTensor class introduced in TorchSparse. For the
network pruning benchmark, user can convert their own pruned
weights to scipy sparse matrix.

B.8 Notes

Many previous work do not flush L2 cache when profiling CUDA
kernels, which results in incorrect measurement especially for
“small” operators, because the data accessed in the previous run
would reside in L2 cache thus reducing the memory latency in the
next run if they are accessed before being replaced. In this artifact
we provide an option for the user to determine whether to enable
L2 or not: if the environment variable FLUSH_L2 is set to ON, we
enable L2 flush for all benchmarks, and if FLUSH_L?2 is set to OFF we
will disable L2 flush. All experiment results reported in this paper
are obtained with FLUSH_L2=0N.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

REFERENCES

(]

5

=

[4

[5

=

7

(8]

[9

[10

—
_

[12

(13

[14

(15

(16

-
)

[18

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to optimize halide with tree
search and random programs. ACM Trans. Graph. 38, 4 (2019), 121:1-121:12.
https://doi.org/10.1145/3306346.3322967

Nawaaz Ahmed, Nikolay Mateev, Keshav Pingali, and Paul Stodghill. 2000. A
Framework for Sparse Matrix Code Synthesis from High-level Specifications.
In Proceedings Supercomputing 2000, November 4-10, 2000, Dallas, Texas, USA.
IEEE Computer Society, CD-ROM, Jed Donnelley (Ed.). IEEE Computer Society,
58. https://doi.org/10.1109/SC.2000.10033

Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling
for Sparse Tensor Algebra with an Asymptotic Cost Model. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 269-285. https://doi.org/10.1145/
3519939.3523442

Riyadh Baghdadi, Abdelkader Nadir Debbagh, Kamel Abdous, Fatima-Zohra
Benhamida, Alex Renda, Jonathan Elliott Frankle, Michael Carbin, and Saman P.
Amarasinghe. 2020. TIRAMISU: A Polyhedral Compiler for Dense and Sparse
Deep Learning. CoRR abs/2005.04091 (2020). arXiv:2005.04091 https://arxiv.
org/abs/2005.04091

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J.
Gall. 2019. SemanticKITTI: A Dataset for Semantic Scene Understanding of
LiDAR Sequences. In Proc. of the IEEE/CVF International Conf. on Computer
Vision (ICCV).

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The
Long-Document Transformer. CoRR abs/2004.05150 (2020). arXiv:2004.05150
https://arxiv.org/abs/2004.05150

Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia
Zheng, and Fredrik Kjolstad. 2022. Compiler Support for Sparse Tensor Com-
putations in MLIR. ACM Trans. Archit. Code Optim. 19, 4, Article 50 (sep 2022),
25 pages. https://doi.org/10.1145/3544559

AJ.C. Bik and H.A.G. Wijshoff. 1995. Advanced Compiler Optimizations for
Sparse Computations. . Parallel and Distrib. Comput. 31, 1 (1995), 14-24. https:
//doi.org/10.1006/jpdc.1995.1141

Aart J. C. Bik. 1996. Compiler Support for Sparse Matrix Computations. Ph.D.
Dissertation.

Aart J. C. Bik and Harry A. G. Wijshoff. 1993. Compilation Techniques for
Sparse Matrix Computations. In Proceedings of the 7th international conference
on Supercomputing, ICS 1993, Tokyo, Japan, July 20-22, 1993, Yoichi Muraoka
(Ed.). ACM, 416-424. https://doi.org/10.1145/165939.166023

Aart J. C. Bik and Harry A. G. Wijshoff. 1994. Nonzero Structure Analysis. In
Proceedings of the 8th International Conference on Supercomputing (Manchester,
England) (ICS °94). Association for Computing Machinery, New York, NY, USA,
226-235. https://doi.org/10.1145/181181.181538

Aart]. C. Bik and Harry A. G. Wijshoff. 1996. Automatic Data Structure Selection
and Transformation for Sparse Matrix Computations. IEEE Trans. Parallel
Distributed Syst. 7, 2 (1996), 109-126. https://doi.org/10.1109/71.485501

Aydin Bulug and John R. Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In 22nd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, Miami, Florida USA, April 14-18, 2008. IEEE,
1-11. https://doi.org/10.1109/IPDPS.2008.4536313

Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao, Lanshun Nie, Dechen
Zhan, Yunxin Liu, Ming Wu, and Lintao Zhang. 2019. Efficient and Effective
Sparse LSTM on FPGA with Bank-Balanced Sparsity. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery, New
York, NY, USA, 63-72. https://doi.org/10.1145/3289602.3293898

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and
Christopher Ré. 2022. Pixelated Butterfly: Simple and Efficient Sparse training
for Neural Network Models. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.
https://openreview.net/forum?id=Nfl-iXa-y7R

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578-
594. https://www.usenix.org/conference/osdi18/presentation/chen

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 3393-3404.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri
Dehnavi. 2017. Sympiler: transforming sparse matrix codes by decoupling

675

[19

[20

[21

[22

[23

[24

[25

[26]

[27

[28

[29

[30]

[31

[32

[33

[34

[35]

[36

[37

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

symbolic analysis. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO,
USA, November 12 - 17, 2017, Bernd Mohr and Padma Raghavan (Eds.). ACM, 13.
https://doi.org/10.1145/3126908.3126936

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri
Dehnavi. 2018. ParSy: inspection and transformation of sparse matrix compu-
tations for parallelism. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX,
USA, November 11-16, 2018. IEEE / ACM, 62:1-62:15. http://dl.acm.org/citation.
cfm?id=3291739

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generat-
ing Long Sequences with Sparse Transformers. CoRR abs/1904.10509 (2019).
arXiv:1904.10509 http://arxiv.org/abs/1904.10509

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Ab-
straction for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2,
OOPSLA, Article 123 (oct 2018), 30 pages. https://doi.org/10.1145/3276493
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020. Automatic Gen-
eration of Efficient Sparse Tensor Format Conversion Routines. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 823-838. https://doi.org/10.1145/3385412.3385963
Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 3075-3084.
NVIDIA Corporation. 2022. cuSPARSE :: CUDA Toolkit Documentation v11.7.1.
https://docs.nvidia.com/cuda/cusparse/index.html.

Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui Zhang, Yufei
Ding, Yuan Xie, Huazhong Yang, and Yu Wang. 2022. Heuristic Adaptability to
Input Dynamics for Sp)MM on GPUs. In Proceedings of the 59th ACM/IEEE Design
Automation Conference (San Francisco, California) (DAC ’22). Association for
Computing Machinery, New York, NY, USA, 595-600. https://doi.org/10.1145/
3489517.3530508

Tensorflow Developers. 2018. Ragged tensors | TensorFlow Core. https://www.
tensorflow.org/guide/ragged_tensor.

Tensorflow Developers. 2018. XLA: Optimizing Compiler for Machine Learning
| TensorFlow. https://www.tensorflow.org/xla.

dgSPARSE team. 2021. dgSPARSE Library. https://github.com/dgSPARSE/
dgSPARSE-Library.

Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, and Milind Kulkarni.
2022. SparseLNR: Accelerating Sparse Tensor Computations Using Loop Nest
Restructuring. In Proceedings of the 36th ACM International Conference on Super-
computing (Virtual Event) (ICS °22). Association for Computing Machinery, New
York, NY, USA, Article 15, 14 pages. https://doi.org/10.1145/3524059.3532386
Tain S. Duff. 1987. The Use of Vector and Parallel Computers in the Solution
of Large Sparse Linear Equations. Birkhduser Boston, Boston, MA, 331-348.
https://doi.org/10.1007/978- 1-4684-6754-3_20

Tain S Duff, Albert M Erisman, and John K Reid. 1986. Direct Methods for Sparse
Matrices. Oxford University Press, Inc., USA.

William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. Journal
of Machine Learning Research 23,120 (2022), 1-39. http://jmlr.org/papers/v23/21-
0998.html

Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, and Todd C. Mowry. 2022. The
CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding.
In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and
1. Stoica (Eds.).

Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao
Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, and Tiangi Chen. 2023. TensorIR: An
Abstraction for Automatic Tensorized Program Optimization. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 804-817.
https://doi.org/10.1145/3575693.3576933

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019.
Hypergraph Neural Networks. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019. AAAI Press, 3558-3565. https://doi.org/10.1609/aaai.v33i01.
33013558

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs
and Manifolds.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC "20). IEEE Press, Article 17, 14 pages.

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

[38] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

[39

(40

(41

[42

[43

[45

[47

[48

[49

(50

(51

]

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70 (Sydney,
NSW, Australia) (ICML’17). JMLR.org, 1263-1272.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California,
USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 1025-1035.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua
Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1510.00149

Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman
Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of Sparse Array Pro-
gramming Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 128 (oct 2021),
29 pages. https://doi.org/10.1145/3485505

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
2021. Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks. J. Mach. Learn. Res. 22 (2021), 241:1-241:124.
http://jmlr.org/papers/v22/21-0366.html

Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P. Sa-
dayappan. 2019. Adaptive Sparse Tiling for Sparse Matrix Multiplication. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(Washington, District of Columbia) (PPoPP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 300-314. https://doi.org/10.1145/3293883.3295712
E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Papa-
chiou, M. K. Samartzis, E. A. Vavalis, Ko Yang Wang, and S. Weerawarana. 1990.
//ELLPACK: A Numerical Simulation Programming Environment for Parallel
MIMD Machines. SIGARCH Comput. Archit. News 18, 3b (jun 1990), 96-107.
https://doi.org/10.1145/255129.255144

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Bench-
mark: Datasets for Machine Learning on Graphs. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5¢c5b72b2e7d3527cfc84fd0- Abstract.html

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo
Durand. 2019. Taichi: A Language for High-Performance Computation on
Spatially Sparse Data Structures. ACM Trans. Graph. 38, 6, Article 201 (nov
2019), 16 pages. https://doi.org/10.1145/3355089.3356506

Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. 2020. FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Atlanta,
Georgia) (SC °20). IEEE Press, Article 71, 13 pages.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In WWW °20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen
(Eds.). ACM / IW3C2, 2704-2710. https://doi.org/10.1145/3366423.3380027
Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM:
General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural
Networks. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Atlanta, Georgia) (SC °20). IEEE
Press, Article 72, 12 pages.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Au-
tomatic Generation of Graph Substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 47-62.
https://doi.org/10.1145/3341301.3359630

Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter

676

[52

[53

[54

[55

[56]

[57

[58

[59

[60

[61

[62

[63

[64

[65

[66]

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th An-
nual International Symposium on Computer Architecture, ISCA 2017, Toronto, ON,
Canada, June 24-28, 2017. ACM, 1-12. https://doi.org/10.1145/3079856.3080246
Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019.
Tensor Algebra Compilation with Workspaces. (2019), 180-192. http://dLacm.
org/citation.cfm?id=3314872.3314894

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. 2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1,
OOPSLA, Article 77 (oct 2017), 29 pages. https://doi.org/10.1145/3133901
Francois Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. 2021. Block
Pruning For Faster Transformers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic, 10619-10629.
https://doi.org/10.18653/v1/2021.emnlp-main.829

Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Automatic
Horizontal Fusion for GPU Kernels. In Proceedings of the 20th IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (Virtual Event, Republic
of Korea) (CGO ’22). IEEE Press, 14-27. https://doi.org/10.1109/CG053902.2022.
9741270

Jiajia Li, Bora Ugar, Umit V. Catalyiirek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In Proceedings
of the ACM International Conference on Supercomputing (Phoenix, Arizona)
(ICS °19). Association for Computing Machinery, New York, NY, USA, 227-237.
https://doi.org/10.1145/3330345.3330366

Shigang Li, Kazuki Osawa, and Torsten Hoefler. 2022. Efficient Quantized
Sparse Matrix Operations on Tensor Cores. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Dallas, Texas) (SC °22). IEEE Press, Article 37, 15 pages.

Chien-Yu Lin, Liang Luo, and Luis Ceze. 2021. Accelerating SpMM Kernel with
Cache-First Edge Sampling for Graph Neural Networks. CoRR abs/2104.10716
(2021). arXiv:2104.10716 https://arxiv.org/abs/2104.10716

Nikolay Mateev, Keshav Pingali, Paul Stodghill, and Vladimir Kotlyar. 2000.
Next-generation generic programming and its application to sparse matrix com-
putations. In Proceedings of the 14th international conference on Supercomputing,
ICS 2000, Santa Fe, NM, USA, May 8-11, 2000, John Reynders and Alexander V.
Veidenbaum (Eds.). ACM, 88-99. https://doi.org/10.1145/335231.335240
Atefeh Mehrabi, Donghyuk Lee, Niladrish Chatterjee, Daniel J. Sorin, Ben-
jamin C. Lee, and Mike O’Connor. 2021. Learning Sparse Matrix Row Permuta-
tions for Efficient SpMM on GPU Architectures. In IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2021, Stony Brook, NY,
USA, March 28-30, 2021. IEEE, 48-58. https://doi.org/10.1109/ISPASS51385.2021.
00016

Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C. Davis,
Mary W. Hall, Maryam Mehri Dehnavi, Payal Nandy, Catherine Olschanowsky,
Anand Venkat, and Michelle Mills Strout. 2019. Sparse computation data de-
pendence simplification for efficient compiler-generated inspectors. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 594-609. https:
//doi.org/10.1145/3314221.3314646

Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong,
and P. Sadayappan. 2018. Sampled Dense Matrix Multiplication for High-
Performance Machine Learning. In 2018 IEEE 25th International Conference
on High Performance Computing (HiPC). 32-41. https://doi.org/10.1109/HiPC.
2018.00013

Thomas C. Oppe and David R. Kincaid. 1987. The performance of ITPACK
on vector computers for solving large sparse linear systems arising in sam-
ple oil reseervoir simulation problems. Communications in Applied Numer-
ical Methods 3, 1 (1987), 23-29. https://doi.org/10.1002/cnm.1630030106
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1630030106
Douglass Stott Parker. 1995. Random butterfly transformations with applications
in computational linear algebra. UCLA Computer Science Department.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024-8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740- Abstract.html

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[67] Gregoire Pichon, Mathieu Faverge, Pierre Ramet, and Jean Roman. 2017. Re-

ordering Strategy for Blocking Optimization in Sparse Linear Solvers. SIAM .
Matrix Anal. Appl. 38, 1 (2017), 226-248. https://doi.org/10.1137/16M1062454
arXiv:https://doi.org/10.1137/16M 1062454

[68] Jeff Pool. 2020. Accelerating Sparsity in the NVIDIA Ampere Archi-

tecture. https://developer.download.nvidia.com/video/gputechconf/gtc/
2020/presentations/s22085-accelerating- sparsity-in-the-nvidia-ampere-
architecture%E2%80%8B.pdf.

William W. Pugh and Tatiana Shpeisman. 1998. SIPR: A New Framework
for Generating Efficient Code for Sparse Matrix Computations. In Languages
and Compilers for Parallel Computing, 11th International Workshop, LCPC’98,
Chapel Hill, NC, USA, August 7-9, 1998, Proceedings (Lecture Notes in Computer
Science, Vol. 1656), Siddhartha Chatterjee, Jan F. Prins, Larry Carter, Jeanne
Ferrante, Zhiyuan Li, David C. Sehr, and Pen-Chung Yew (Eds.). Springer, 213—
229. https://doi.org/10.1007/3-540-48319-5_14

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13).
Association for Computing Machinery, New York, NY, USA, 519-530. https:
//doi.org/10.1145/2491956.2462176

Md. Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021. FusedMM:
A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Net-
works. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 256-266. https://doi.org/10.1109/IPDPS49936.2021.00034

Petar Ristoski, Gerben Klaas Dirk de Vries, and Heiko Paulheim. 2016. A Collec-
tion of Benchmark Datasets for Systematic Evaluations of Machine Learning on
the Semantic Web. In The Semantic Web — ISWC 2016, Paul Groth, Elena Simperl,
Alasdair Gray, Marta Sabou, Markus Krotzsch, Freddy Lecue, Fabian Flock, and
Yolanda Gil (Eds.). Springer International Publishing, Cham, 186-194.

Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame,
Tiangi Chen, and Zachary Tatlock. 2018. Relay: A New IR for Machine Learning
Frameworks. In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (Philadelphia, PA, USA) (MAPL
2018). Association for Computing Machinery, New York, NY, USA, 58-68. https:
//doi.org/10.1145/3211346.3211348

Youcef Saad. 1989. Krylov Subspace Methods on Supercomputers. SIAM 7.
Sci. Statist. Comput. 10, 6 (1989), 1200-1232. https://doi.org/10.1137/0910073
arXiv:https://doi.org/10.1137/0910073

Youcef Saad. 1990. SPARSKIT: A basic tool kit for sparse matrix computations.
Technical Report.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. Movement Pruning:
Adaptive Sparsity by Fine-Tuning. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 20378-20389. https://proceedings.neurips.cc/
paper/2020/file/eael15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph
Convolutional Networks. In The Semantic Web - 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings (Lecture Notes
in Computer Science, Vol. 10843), Aldo Gangemi, Roberto Navigli, Maria-Esther
Vidal, Pascal Hitzler, Raphaél Troncy, Laura Hollink, Anna Tordai, and Mehwish
Alam (Eds.). Springer, 593-607. https://doi.org/10.1007/978-3-319-93417-4_38
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher,
and Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag.
29, 3 (2008), 93-106. https://doi.org/10.1609/aimag.v29i3.2157

Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen
Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. 2020. A Sparse
Iteration Space Transformation Framework for Sparse Tensor Algebra. Proc.
ACM Program. Lang. 4, OOPSLA, Article 158 (Nov. 2020), 30 pages. https:
//doi.org/10.1145/3428226

[80] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin,

Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tiangi Chen. 2022. Tensor
Program Optimization with Probabilistic Programs. https://doi.org/10.48550/
ARXIV.2205.13603

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,
Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
B1ckMDqlg

Shaden Smith and George Karypis. 2015. Tensor-Matrix Products with a Com-
pressed Sparse Tensor. In Proceedings of the 5th Workshop on Irregular Ap-
plications: Architectures and Algorithms (Austin, Texas) ([A³ '15).
Association for Computing Machinery, New York, NY, USA, Article 5, 7 pages.
https://doi.org/10.1145/2833179.2833183

Zihao Ye, Ruihang Lai, Junru Shao, Tiangi Chen, and Luis Ceze

[83] Michelle Mills Strout, Mary W. Hall, and Catherine Olschanowsky. 2018. The

Sparse Polyhedral Framework: Composing Compiler-Generated Inspector-
Executor Code. Proc. IEEE 106, 11 (2018), 1921-1934. https://doi.org/10.1109/
JPROC.2018.2857721

Patricia Suriana, Andrew Adams, and Shoaib Kamil. 2017. Parallel Associative
Reductions in Halide. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization (Austin, USA) (CGO ’17). IEEE Press, 281-291.
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. Efficient
Processing of Deep Neural Networks. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S01004ED1V01Y202004CAC050

Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. 2022.
TorchSparse: Efficient Point Cloud Inference Engine. In Proceedings of
Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu
(Eds.), Vol. 4. 302-315. https://proceedings.mlsys.org/paper/2022/file/
6512bd43d9caa6e02c990b0ad2652dca-Paper.pdf

Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhenhao Yuan,
and Chen Zhang. 2022. FreeTensor: A Free-Form DSL with Holistic Optimiza-
tions for Irregular Tensor Programs. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New
York, NY, USA, 872-887. https://doi.org/10.1145/3519939.3523448

Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor. 2021. A
High Performance Sparse Tensor Algebra Compiler in MLIR. In 2021 IEEE/ACM
7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC). 27-38.
https://doi.org/10.1109/LLVMHPC54804.2021.00009

Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermediate Lan-
guage and Compiler for Tiled Neural Network Computations. Association for
Computing Machinery, New York, NY, USA, 10-19. https://doi.org/10.1145/
3315508.3329973

Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravishankar,
Thomas Raoux, Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Ca-
ballero, Stephan Herhut, Stella Laurenzo, and Albert Cohen. 2022. Composable
and Modular Code Generation in MLIR: A Structured and Retargetable Approach
to Tensor Compiler Construction. CoRR abs/2202.03293 (2022). arXiv:2202.03293
https://arxiv.org/abs/2202.03293

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000-6010.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations. https://openreview.net/forum?id=
rJXMpikCZ

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261-272. https://doi.org/10.1038/s41592-019-0686-2

Richard Vuduc, James W Demmel, and Katherine A Yelick. 2005. OSKI: A library
of automatically tuned sparse matrix kernels. Journal of Physics: Conference
Series 16 (jan 2005), 521-530. https://doi.org/10.1088/1742-6596/16/1/071
Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™., Springer, 167-188.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu,
Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo
Baeza-Yates, and Leila Zia (Eds.). ACM, 2022-2032. https://doi.org/10.1145/
3308558.3313562

Yuke Wang, Boyuan Feng, and Yufei Ding. 2021. TC-GNN: Accelerating Sparse
Graph Neural Network Computation Via Dense Tensor Core on GPUs. CoRR
abs/2112.02052 (2021). arXiv:2112.02052 https://arxiv.org/abs/2112.02052

Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: Accelerating Quantized
Graph Neural Networks via GPU Tensor Core. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Seoul,

SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning

Republic of Korea) (PPoPP °22). Association for Computing Machinery, New

York, NY, USA, 107-119. https://doi.org/10.1145/3503221.3508408
[100

Design and Implementation (OSDI 21). USENIX Association, 515-531.
//www.usenix.org/conference/osdi21/presentation/wang-yuke
[101

http://arxiv.org/abs/1910.03771
[102

https://doi.org/10.1145/3447786.3456247
[103

a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
[104

687. https://doi.org/lOA1007/978-3-319—96983- 1.48
[105

https://doi.org/10.5281/zenodo.7643745
[106

//doi.org/10.1109/ICCD53106.2021.00092
[107

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. In 15th USENIX Symposium on Operating Systems

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Nat-
ural Language Processing. CoRR abs/1910.03771 (2019). arXiv:1910.03771

Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chengguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: vertex-centric programming for graph
neural networks. In EuroSys 21: Sixteenth European Conference on Computer
Systems, Online Event, United Kingdom, April 26-28, 2021, Antonio Barbalace,
Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.). ACM, 359-375.

Zhigiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler:
Optimizing Graph Neural Networks with Message Passing Data Flow Graph.
In Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and
C. Wu (Eds.), Vol. 4. 515-528. https://proceedings.mlsys.org/paper/2022/file/

Carl Yang, Aydin Bulug, and John D. Owens. 2018. Design Principles for Sparse
Matrix Multiplication on the GPU. In Euro-Par 2018: Parallel Processing - 24th
International Conference on Parallel and Distributed Computing, Turin, Italy,
August 27-31, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11014),
Marco Aldinucci, Luca Padovani, and Massimo Torquati (Eds.). Springer, 672—

Zihao Ye and Ruihang Lai. 2023. uwsampl/sparsetir-artifact: v1.3. (Feb 2023).

Zhongming Yu, Guohao Dai, Guyue Huang, Yu Wang, and Huazhong Yang. 2021.
Exploiting Online Locality and Reduction Parallelism for Sampled Dense Matrix
Multiplication on GPUs. In 39th IEEE International Conference on Computer
Design, ICCD 2021, Storrs, CT, USA, October 24-27, 2021. IEEE, 567-574. https:

Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng,
Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. 2021.

678

[108

[109

[110

[111

[112

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

AKG: Automatic Kernel Generation for Neural Processing Units Using Poly-
hedral Transformations. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation (Virtual,
Canada) (PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 1233-1248. https://doi.org/10.1145/3453483.3454106

Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm,
Yizhi Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady Pekhimenko.
2022. DietCode: Automatic Optimization for Dynamic Tensor Programs. In
Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and
C. Wu (Eds.), Vol. 4. 848-863. https://proceedings.mlsys.org/paper/2022/file/
fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 863-879. https://www.usenix.
org/conference/osdi20/presentation/zheng

Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuging Yang, Fan Yang,
Yang Wang, Mao Yang, and Lidong Zhou. 2022. SparTA: Deep-Learning Model
Sparsity via Tensor-with-Sparsity-Attribute. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22). USENIX Association, Carls-
bad, CA, 213-232. https://www.usenix.org/conference/osdi22/presentation/
zheng-ningxin

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-
Tensor: An Automatic Schedule Exploration and Optimization Framework for
Tensor Computation on Heterogeneous System. In ASPLOS °20: Architectural
Support for Programming Languages and Operating Systems, Lausanne, Switzer-
land, March 16-20, 2020, James R. Larus, Luis Ceze, and Karin Strauss (Eds.).
ACM, 859-873. https://doi.org/10.1145/3373376.3378508

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan,
Wenxiu Sun, and Hongsheng Li. 2021. Learning N: M Fine-grained Struc-
tured Sparse Neural Networks From Scratch. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=K9bw7vqp_s

Received 2022-07-07; revised 2022-11-03; accepted 2023-01-19

	Abstract
	1 Introduction
	2 System Overview
	3 Our Approach
	3.1 Language Constructs
	3.2 Stage I: Coordinate Space Computation
	3.3 Stage II: Position Space Computation
	3.4 Stage III: Loop-Level IR
	3.5 Target-Specific Code Generation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Graph Neural Networks
	4.3 Sparsity in Transformers
	4.4 Relational Gather-Matmul-Scatter

	5 Related Work
	6 Future Work
	7 Conclusion
	Acknowledgments
	A Programming Interface for Composable Formats
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact Checklist
	B.3 Description
	B.4 Installation
	B.5 Experiment Workflow
	B.6 Evaluation and Expected Results
	B.7 Experiment Customization
	B.8 Notes

	References

