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A B S T R A C T   

We introduce two thermodynamics models of solid-liquid phase equilibrium of a binary system in the presence of 
(a) a chemical reaction in the liquid involving only one of the binary components and, (b) strain-inducing 
epitaxial conditions on the solid in addition to the chemical reaction in the liquid. These models show the ex
istence of the counter intuitive behavior that epitaxy may promote recrystallization of the solid in spite of the 
reaction driving dissolution. The conditions for this recrystallization behavior are determined by the value of the 
epitaxial lattice matching composition, the temperature and the overall composition of the binary solid-liquid 
system.   

1. Introduction 

Inoculation is a powerful strategy for microstructure control in 
traditional and emerging processing of structural alloys. Inoculation 
suppresses columnar grain growth during solidification resulting in a 
refined equiaxed microstructure with corresponding superior and uni
form properties. Inoculation is introduced either through master alloys 
(in casting) [1] or inoculant particulate (in casting and metal additive 
manufacturing) [2,3]. In metal additive manufacturing, oxide, carbide 
or boride particles have been explored for incorporating into the 
metal-alloy powders [4–6]. These particles either directly promote 
heterogeneous nucleation of the solid from the melt or form thin layers 
of compounds that initiate a solidification (peritectic) reaction [1]. Both 
mechanisms may lead to epitaxial solidification on a solid substrate [7]. 
Understanding the process of solidification in casting of multicompo
nent alloys and especially in additive manufacturing is a major challenge 
as a large number of physical and chemical phenomena are at play at 
various length and time scales [8]. One of the major challenges is to 
account for the coupling between thermal, chemical, and mechanical 
effects acting on phases during solidification [9]. Specifically, epitaxial 
stresses arising from epitaxial solidification may play a significant role 
[10] in both casting and additive manufacturing processes. In parallel to 
solidification, chemical reactions such as oxidation may take place in the 
melt [11]. In additive manufacturing involving rapid solidification, 

thermal stresses may further complicate the thermodynamics (and ki
netics) of the process. The seminal work of Larché and Cahn on the 
development of a thermodynamics of stressed solids [12–14] offers a 
framework for shedding light on the interplay between solid-liquid 
phase equilibria in the presence of mechanical stress. While solidifica
tion, especially in additive manufacturing, involves strongly nonequi
librium processes, thermodynamics may still play a crucial role in the 
prediction of the materials behavior during processing. In this paper, we 
investigate two thermodynamic model systems. The first model (model 
I) addresses the solid-liquid phase equilibrium of a binary system under 
hydrostatic pressure in the presence of a chemical reaction occurring in 
the liquid. The chemical process involves a third species dissolved in the 
liquid that reacts with only one of the components of the binary liquid. 
This model may therefore be used to understand the interplay between 
solid-liquid phase equilibrium of metallic alloys and oxygen dissolved in 
the melt as it combines chemically with the most reactive alloy 
component to form an oxide. The chemical reaction is shown to modify 
the composition of the solid in equilibrium with the reactive liquid. 
Furthermore, it is shown that a reactive species in the liquid will reduce 
the total amount of solid, i.e., result in dissolution. The second model 
(model II) extends the first one by considering the additional effect of 
epitaxial stress, i.e., solidification on a substrate. Here, the phenomenon 
of epitaxy is associated with a composition dependent elastic energy. 
This energy depends on the solid composition that results in lattice 
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matching with the substrate. Epitaxy is shown to lead to deviations of 
the solid and liquid compositions from their equilibrium values under 
hydrostatic pressure conditions. In particular, the solid composition 
deviates toward the lattice matching composition to reduce the elastic 
energy. Furthermore, in addition to a compositional change, we show 
that under some circumstances, the interplay between epitaxy and the 
chemical reaction in the liquid, results in recrystallization, that is, an 
increase in the amount of solid compared to the hydrostatic value. 
Recrystallization occurs under specific conditions of lattice match 
composition, temperature and overall alloy composition. This work 
serves a proof of existence of solid-liquid phase equilibrium conditions 
such that epitaxial stress may counteract the dissolution of the solid due 
to chemical reactivity in the liquid by promoting recrystallization. 

2. Model I: thermodynamic equilibrium between solid and 
liquid alloys with a chemical reaction in the liquid 

Consider a composite thermodynamic system composed of a solid (S) 
and liquid (L). The solid is a binary solid solution (constituents 1 and 2). 
The liquid is composed of the species 1 and 2 but also contains a third 
species, 3, which can react chemically with species 1 to form a new 
species (1̂3). This system is illustrated in Fig. 1. The chemical compo
sitions of the two phases are defined by the number of moles, NS

1 and NS
2, 

and NL
1, NL

2, NL
3, and NL

1̂3. 
The composite is in thermal and mechanical contact with a thermal 

reservoir and a pressure reservoir which maintain temperature (T) and 
pressure (P) constant. The chemical in the liquid is given by the stoi
chiometric reaction: 

1l + 3l⇌1̂3l (1) 

In Eq. (1), the subscript reinforces the fact that the reaction is taking 
place in the liquid. We choose a 1:1:1 stoichiometry for the sake of 
algebraic simplicity. This choice ought not affect the conceptual con
clusions of our models. The following derivations can be generalized to 
reactions of any stoichiometry by introducing appropriate stoichio
metric coefficients. 

The conservation of species 2 states that: 

NS
2 + NL

2 = N2 (2)  

where N2 is a constant. In differential form, conservation of two reduces 
to 

dNL
2 = −dNS

2 (3) 

For species 1, we define the number of moles of 1 in the liquid as 
arising from two sources, namely the phase equilibrium between the 
solid and liquid, indicated by φ, and the chemical reaction in the liquid, 
indicated by r: NL

1 = NL(φ)

1 + NL(r)
1 . 

Conservation of species 1 in the composite system is written as 

NS
1 + NL(φ)

1 + NL(r)

1 + NL
1̂3 = N1 (4) 

The two quantities identified by the upper scripts φ and r refer to 
moles of species 1 in the liquid due to the phase equilibrium and the 

reaction. These two quantities can vary independently. So conservation 
of species 1 is written in differential form as: 

dNS
1 = −dNL(φ)

1 (5)  

and 

dNL(r)

1 = dNL
3 = −dNL

1̂3 (6) 

Eq. (5) is a statement of the conservation of species between solid 
and liquid. Eq. (6) states the conservation of species 1 and 3 involved in 
the chemical reaction. Eq. (6) is written for the 1:1:1 stoichiometry for 
simplicity but can be generalized for any reaction by inserting appro
priate stoichiometric coefficients without loss of linear character of the 
expression. 

Since temperature and pressure are constant (in all equations that 
follow we drop any dependency on T and P), we use a Gibbs free energy 
representation of the composite system, Gc: 

Gc = GS(
NS

1 , NS
2

)
+ GL

(
NL(φ)

1 , NL(r)

1 , NL
2 , NL

3 , NL
1̂3

)
(7) 

The conditions for equilibrium are obtained by finding a minimum of 
Gc with respect to the independent variables. 

The differential form of the Gibbs free energy is given by 

Using Eqs. (3), (5) and (6) to express Eq. (8) in terms of the inde
pendent differentials dNS

1, dNS
2 and dNL

3 and setting dGc = 0, one obtains 
the conditions for phase and chemical equilibrium: 

∂GS

∂NS
2

=
∂GL

∂NS
2

(9a)  

∂GS

∂NS
1

=
∂GL

∂NL(φ)

1

(9b)  

∂GL

∂NL(r)

1

+
∂GL

∂NL
3

−
∂GL

∂NL
1̂3

= 0 (9c) 

In Eqs. (9a)–(9c), for the sake of simplifying the notation, we have 
dropped the reference to the species that are kept constant. The differ
entials in Eqs. (9) are effectively chemical potentials. Since the chemical 
potential of species 1 in the liquid does not differentiate about the origin 
of the variation in the concentration of species 1, we can replace in Eqs. 

Fig. 1. Schematic representation of the two-phase solid-liquid compos
ite system. 

dGc =

(
∂GS

∂NS
1

)

NS
2

dNS
1 +

(
∂GS

∂NS
2

)

NS
1

dNS
2 +

(
∂GL

∂NL(φ)

1

)

NL(r)

1 ,NL
2 ,NL

3 ,NL
1̂3

dNL(φ)

1 +

(
∂GL

∂NL(r)

1

)

NL(φ)

1 ,NL
2 ,NL

3 ,NL
1̂3

dNL(r)

1 +

(
∂GL

∂NL
2

)

NL(φ)

1 ,NL(r)

1 ,NL
3 ,NL

1̂3

dNL
2 +

(
∂GL

∂NL
3

)

NL(φ)

1 ,NL(r)

1 ,NL
2 ,NL

1̂3

dNL
3 +

(
∂GL

∂NL
1̂3

)

NL(φ)

1 ,NL(r)

1 ,NL
2 ,NL

3

dNL
1̂3

(8)   

A.C. Deymier et al.                                                                                                                                                                                                                             



Acta Materialia 259 (2023) 119299

3

(9b) and (9c), ∂GL

∂NL(φ)

1
, ∂GL

∂NL(r)
1 

by ∂GL

∂NL
1
. For the sake of simplicity, we choose 

chemical potential equations of states for ideal mixtures: 

∂GI

∂NI
i

= μI
i = μ0I

i + RTlnXI
i (10)  

with I = S, L and i = 1,2,3, 1̂3. μ0I
i are the chemical potentials of the pure 

species i in phase I in the standard state. XI
i are mole fractions. This 

choice implies complete solubility in the solid and liquid phases. 
The thermodynamic problem to solve is now the following: we start 

from phase equilibrium without the chemical reactions. We denote by 
NL(0)

3 the initial concentration in reactive species 3. Initially, the number 
of moles NL(0)

1̂3
= 0, and NL(r)

1 = 0. We define δ as a measure of the 
advancement of the chemical reaction. As the reaction proceeds, 

NL
3 = NL(0)

3 − δ (11a)  

NL
1̂3 = 0 + δ (11b)  

NL
1 = NL(φ)

1 + NL(r)

1 = NL(φ)

1 + 0 − δ (11c) 

To find the equilibrium state, we have to solve for the value of the 5 
quantities NS

2, NL
2, NS

1, NL(φ)

1 and δ. We have 3 conditions for equilibrium, 
Eqs. (9a)–9c) and two conditions of conservation of species, namely Eqs. 
(2) and (4). These five equations combined with the equations of state 
((10) are sufficient to solve for the equilibrium state. To simplify the 
notation we redefine the variable NL(φ)

1 = φ1 and the initial mole number 
NL(0)

3 = n3. With this change in notation and Eqs. (11a)–(11c), the mole 
fractions for the different species in the two phases in Eq. (10) take the 
form: 

XS
1 =

NS
1

NS
1 + NS

2
(12a)  

XS
2 =

NS
2

NS
1 + NS

2
(12b)  

XL
1 =

φ1 − δ
φ1 − δ + NL

2 + n3
(12c)  

XL
2 =

NL
2

φ1 − δ + NL
2 + n3

(12d)  

XL
3 =

n3 − δ
φ1 − δ + NL

2 + n3
(12e)  

XL
1̂3 =

δ
φ1 − δ + NL

2 + n3
(12e) 

Using the equations of state, the conditions for equilibrium (9a) and 
(9b) become 

RTln
XS

2

XL
2

= μ0L
2 − μ0S

2 (13a)  

RTln
XS

1

XL
1

= μ0L
1 − μ0S

1 (13b) 

Since the right-hand sides of Eqs. (13a) and (13b) represent differ
ences in molar Gibbs free energies of the pure solid and liquids at the 
temperature T, they can be approximated in terms of temperature, 
melting point, T(i)

m , and latent heat of fusion, Li, of pure species, i = 1,2, 
using standard thermodynamics approaches. For instance, at the melting 
point of the pure substance 1, μ0L

1 (T(1)
m ) = μ0S

1 (T(1)
m ). Expressing the molar 

Gibbs free energies in terms of molar enthalpy and entropy, we get 
h0L

1 (T(1)
m ) − T(1)

m s0L
1 (T(1)

m ) = h0S
1 (T(1)

m ) − T(1)
m s0S

1 (T(1)
m ) or h0L

1 (T(1)
m ) − h0S

1 (T(1)
m )

= T(1)
m [s0L

1 (T(1)
m ) − s0S

1 (T(1)
m )]. At the temperature, T, the right-hand side of 

Eq. (13b) is μ0L
1 (T) − μ0S

1 (T)= (h0L
1 (T) − h0S

1 (T)) − T[s0L
1 (T) − s0S

1 (T)]. 
Assuming that the difference in enthalpies and in entropy are not too 
sensitive to temperature, this later relation can be approximated by 
μ0L

1 (T) − μ0S
1 (T)=(h0L

1 (T(1)
m ) − h0S

1 (T(1)
m )) − T[s0L

1 (T(1)
m ) − s0S

1 (T(1)
m )]. Replac

ing the difference in entropy by the difference in enthalpy divided by the 

melting temperature, yields μ0L
1 (T) − μ0S

1 (T)=(h0L
1 (T(1)

m ) − h0S
1 (T(1)

m ))

[

1 −

T
T(1)

m

]

. Note that the difference in enthalpy between the pure liquid and 

the solid at the melting temperature is the latent heat of fusion of species 
1, namely L1. Employing a similar argument for the pure species 2, the 
conditions for equilibrium (Eqs. (13a) and (13b)) become: 

XS
2 = E2XL

2 (14a)  

XS
1 = E1XL

1 (14b)  

where Ei = e
Li

(

1− T
T(i)
m

)/

RT
. We note that if T(1)

m > T(2)
m , then 

L1

(

1 − T
T(1)

m

)〉

0 and L2

(

1 − T
T(2)

m

)〈

0, leading to E1 > 1 and E2 < 1. 

Similarly, if T(1)
m < T(2)

m , E1 < 1 and E2 > 1. 
The condition for equilibrium (9c), takes the familiar form: 

K = e(μ0L
1 +μ0L

3 −μ0L
1̂3)/RT

=
XL

1̂3

XL
1 XL

3
(14c)  

where K is the reaction constant for the chemical reaction (1). 
Inserting the conservation Eq. (2), NL

2 = N2 − NS
2 and (4) expressed in 

terms of φ1 and δ namely, φ1 = N1 − NS
1, into the conditions for equi

librium (14a)–(14c) yields three equations which can be used to solve 
for the three unknowns NS

1, NS
2, and δ. These three equations take the 

form: 

N2 − Y2

N1 + N2 − Y1 − Y2
= E2

Y2

Y1 + Y2 + Y3
(15a)  

N1 − Y1

N1 + N2 − Y1 − Y2
= E1

Y1 + Y3 − n3

Y1 + Y2 + Y3
(15b)  

K =
(n3 − Y3)(Y1 + Y2 + Y3)

(Y1 + Y3 − n3)Y3
(15c)  

where we have made the change in variables, Y1 = φ1 = N1 − NS
1, Y2 =

NL
2 = N2 − NS

2 and Y3 = n3 − δ. 
After a significant number of algebraic steps, we have eliminated the 

variable Y3 and obtained two equations in Y1 and Y2: 

−
n3 + (1 − E2)Y2

1 − E1
=

E2

E1
Y2

(N1 − Y1)

(N2 − Y2)
(16a)  

(1 − E1)Y1 + (1 − E2)Y2 + E1n3

[

(1 − E1)
f (Y2)

K + E1f (Y2)
+ 1

]

= 0 (16b) 

In Eq. (16b) we have defined 

f (Y2) = 1 −
E2(1 − E1)

E1

Y2

n3 + (1 − E2)Y2
(17) 

Finally, eliminating Y1, we obtain a single equation in Y2 alone: 

−
N2 − Y2

1 − f (Y2)
= N1 +

(1 − E2)

(1 − E1)
Y2 + E1n3

[
1

(1 − E1)
+

f (Y2)

K + E1f (Y2)

]

(18) 

We are now seeking an approximate solution to Eq. (18) by assuming 
that n3 is small. That is, the initial number of moles of reactive species 3 
in the liquid is small. Using Taylor expansions, we approximate the 
function f(Y2) in the limit of small n3 by: 
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f (Y2) ∼ 1 −
E2

E1

(1 − E1)

(1 − E2)

[

1 −
n3

(1 − E2)Y2

]

(19) 

Inserting this approximate function into Eq. (18) and making addi
tional use of Taylor expansions, Eq. (18) can be linearized in n3: 

N1E2(1 − E1) + N2E1(1 − E2)

E2(1 − E1)

+ n3E1

{
E1(1 − E2) − E2(1 − E1)

E1[(K + E1)(1 − E2) − E2(1 − E1)]
+

1
(1 − E1)

(

1 −
1
E2

)}

+
(1 − E2)

(1 − E1)

(E2 − E1)

E2
Y2 + n3

N2E1

E2(1 − E1)

1
Y2

= 0 (20) 

We note that when n3 = 0, i.e., there is no chemical reaction, Eq. 
(20) gives the solution 

Y (0)

2 = −
E1

(E2 − E1)

[

N1
E2(1 − E1)

E1(1 − E2)
+ N2

]

(21) 

We can further linearize Eq. (20) by assuming that the quantity Y2 =

Y(0)

2 + ΔY2. The change ΔY2 is therefore considered to be small since n3 

is small. Making use of Taylor expansions to first order, Eq. (20) enables 
us to get the expression: 

If we further assume that the reaction constant, K, is large the first 
term in the square bracket on the right-hand side of Eq. (22) can be 
neglected. This is the case if the chemical reaction favors the formation 
of species 1̂3. Eq. (22) simplifies to 

ΔY2
(1 − E2)

(1 − E1)

(E2 − E1)

E2
∼ −n3

E1

E2(1 − E1)

(

E2 − 1 +
N2

Y(0)

2

)

(23) 

We now consider two cases. Case I corresponds to E1 > 1 and E2 < 1 
and Case II corresponds to E1 < 1 and E2 > 1. Furthermore, we note that 
since Y(0)

2 = N2 − NS(0)

2 , the quantity N2

Y(0)

2 
is greater than one. 

In case I, the quantity V =
(1−E2)

(1−E1)

(E2−E1)

E2
> 0 and W = E1

E2(1−E1)

(

E2 −

1 + N2

Y(0)

2

)〈

0, Eq. (23) results in ΔY2 > 0. In case II, V < 0 and W > 0 so 

ΔY2 > 0 as well. This result means that Y2 > Y(0)

2 in both cases. Since Y2 

= N2 − NS
2 and Y(0)

2 = N2 − NS(0)

2 , we must have NS
2 < NS(0)

2 . The chem
ical reaction involving species 1, reduces the number of moles of species 
2 in the solid in both cases. 

The question that remains concerns the number of moles of species 1 
in the solid in the presence of the chemical reaction in the liquid. Eqs. 
(16a) and (17) can be combined to give: 

N1 − Y1 = −
N2 − Y2

1 − f (Y2)
(24) 

To zeroth order in n3, Eq. (24) yields: 

NS
1 ∼ −

E1(1 − E2)

E2(1 − E1)
NS

2 (25) 

In both cases I and II, E1(1−E2)

E2(1−E1)
is negative, leading to NS

1 to be pro
portional to NS

2. A decrease in NS
2 due to the chemical reaction results 

also in a decrease in NS
1. The total number of moles of solid NS = NS

1 +NS
2 

is reduced due to the chemical reaction. In other words, the chemical 

reaction in the liquid involving species 1 promotes the dissolution of the 
entire solid. 

In summary, we can understand the behavior of model I, by 
considering first the solid-liquid phase equilibrium without chemical 
reaction. There are two contributions to the total free energy of the 
composite system. Both are related to the free energy of mixing of 
chemical species in the solid and in the liquid. Solid-liquid phase equi

librium is achieved by minimizing the sum of these two contributions. 
Finding the equilibrium compositions of the solid and liquid at a given 
temperature is equivalent to the usual common tangent construction. 
Turning on the chemical reaction, one effectively adds to the composite 
free energy a free energy of reaction. Finding the equilibrium states 
requires minimization of the sum of three contributions: solid and liquid 
free energies of mixing and the reaction free energy. This later contri
bution displaces the equilibrium composition of the liquid and subse
quently the composition of the solid. A large reaction constant, K, 
dissolves the solid. 

3. Model II: thermodynamic equilibrium between a solid alloy 
growing epitaxially on a substrate and a liquid alloy with a 
chemically reactive species 

The system is similar to that introduced in Section 2 but now the solid 
is forming epitaxially on a substrate (see Fig. 2). 

Since the lattice parameter of the crystalline solid depends on the 
solid composition, we assume that there exists a solid mole fraction, XC, 
for which the lattice matches that of the substrate. For all other com
positions, the epitaxial condition imposes deformation of the solid. The 
epitaxial lattice matching condition, therefore, introduces a source of 
elastic energy in the composite system. Considering a linear relation 
between the lattice spacing in the solid alloy as a function of mole 
fraction, the epitaxial strain will be proportional to the quantity, XS

2 −

XC. One could equivalently use compositions in terms of species 1. The 
elastic energy is subsequently given by a quadratic function of the strain 
leading to an epitaxial energy of the form: 

ES = ANS(
XS

2 − XC
)2

, (26)  

where NS = NS
1 + NS

2 is the total number of moles of solid (which is not 
constrained). 

The first parenthesis in Eq. (26) indicates that the elastic energy 
scales as the amount of solid alloy. The positive quantity A is related to 

Fig. 2. Schematic representation of the two-phase solid-liquid composite sys
tem with the solid forming epitaxially on a substrate. 

ΔY2
(1 − E2)

(1 − E1)

(E2 − E1)

E2
∼ −n3

[
E1(1 − E2) − E2(1 − E1)

[(K + E1)(1 − E2) − E2(1 − E1)]
+

E1

E2(1 − E1)

(

E2 − 1 +
N2

Y (0)

2

)]

(22)   
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the elastic coefficient of the solid. We make the simplifying assumption 
that the elastic coefficients and subsequently A are independent of the 
solid composition. Eq. (26) is inspired by models of liquid-phase epitaxy 
developed to investigate the effect of epitaxial stress on solid-liquid 
equilibria [15,16]. Eq. (26) can be understood as follows. A solid free 
from any mechanical constraint which composition XS

2 differs from the 
epitaxial lattice matching composition XC, would exhibit, within a linear 
approximation, a chemical strain described by the tensor: εc = η(XS

2 −

XC)I, where I is the identity matrix.This strain is measured with respect 
to the lattice spacing at the composition XC. The linear coefficient η is the 
chemical expansion coefficient of the solid. Epitaxial match of the lattice 
parameters of the film and substrate can be achieved by applying a 
two-dimensional stress on to the film. This plane stress should 
compensate the chemical expansion and is related to εc by: 

σ11 = (λ + 2μ)
(

− εc
11

)
+ λ

(
− εc

22

)

σ22 = λ
(

− εc
11

)
+ (λ + 2μ)

(
− εc

22

)

σ12 = σ21 = 0  

where λ and μ are the Lamé coefficients of the solid assumed to be 
isotropic for simplicity. The strain elastic energy per unit volume of solid 
involves sums of the square of σ11, σ22 and cross terms σ11σ22 which will 
all be proportional to (XS

2 − XC)
2. Dividing by the molar volume of the 

solid and multiplying by the total number of moles of solid, NS
1 + NS

2, 
gives the total elastic energy of the solid or Eq. (25). Following the 
original formulation by Larché and Cahn [12], we consider elastic ef
fects to be the dominant non-chemical energy contribution controlling 
the amount of solid in equilibrium with the liquid. The interfacial energy 
may also play a role; however, the epitaxial condition implies that the 
interfacial energy is at its minimum. Furthermore, the interfacial energy 
contribution is confined to the interfacial regions, while the elastic en
ergy acts in the bulk. 

This additional energy affects the functional form of the chemical 
potentials of species 1 and 2 in the solid. 

μS
2 =

∂
(
GS + ES

)

∂NS
2

= μ0S
2 + RTlnXS

2 + A
(
XS

2 − XC
)2

+ 2A
(
XS

2 − XC
)
XS

1 (27a)  

μS
1 =

∂
(
GS + ES

)

∂NS
1

= μ0S
1 + RTlnXS

1 + A
(
XS

2 − XC
)2

− 2A
(
XS

2 − XC
)
XS

2 (27b) 

Here, the mole fractions are pertinent variables. For the epitaxial 
system, the conditions for equilibrium (9a) and (9b) become: 

RTln
XS

2

XL
2

+ A
(
XS

2 − XC
)2

+ 2A
(
XS

2 − XC
)
XS

1 = E2 (28a)  

RTln
XS

1

XL
1

+ A
(
XS

2 − XC
)2

− 2A
(
XS

2 − XC
)
XS

2 = E1 (28b) 

In writing Eq. (28) similarly to Section 2 we have approximated the 
difference in molar Gibbs free energy of the pure substances in their 
standard state in terms of temperature, the latent heat of fusion and the 
melting point. 

To advance further, we are now assuming that the epitaxial elastic 
energy affects the mole fractions of the species 1 and 2 in the solid and 
the liquid only slightly. That is, we use the equilibrium state under hy
drostatic pressure investigated in Section 2 as a reference. With this, we 
write: 

XS
1 = XoS

1 + δXS
1, XS

2 = XoS
2 + δXS

2, XL
1 = XoL

1 + δXL
1, and XL

2 = XoL
2 +

δXL
2. The quantities, XoI

i are the equilibrium mole fraction of species i in 
phase I, in the presence of the chemical reaction in the liquid but in 
absence of epitaxial elastic energy (i.e., under hydrostatic pressure). The 
δXI

i that represent the change in mole fraction of i as a result of epitaxy 
are hypothesized to be small. Inserting these expressions in Eqs. (28), 

linearizing the ln functions using Taylor expansions and realizing that 

the terms RTln X0S
2

X0L
i

= Ei, the conditions for equilibrium reduce to: 

δXS
2

XoS
2

−
δXL

2

XoL
2

+ A
(
XoS

2 + δXS
2 − XC

)2
+ 2A

(
XoS

2 + δXS
2 − XC

)(
XoS

1 − δXS
2

)
= 0

(29a)  

−
δXS

2

XoS
1

+
δXL

2

XoL
1

+ A
(
XoS

2 + δXS
2 − XC

)2
− 2A

(
XoS

2 + δXS
2 − XC

)(
XoS

2 + δXS
2

)
= 0

(29b) 

To write Eqs. (29) we have also used the property of mole fractions 
XS

1 = 1 − XS
2 and XL

1 = 1 − XL
2 leading to δXS

1 = −δXS
2 and δXL

1 = − δXL
2. 

Note that we have here two equations and two unknowns δXS
2 and 

δXL
2. We do not need to use the condition for equilibrium relative to the 

chemical reaction in the liquid at this time. Since Eq. (29) give only 
variations in mole fractions, we will use the third condition for equi
librium to extract values of the number of moles in the solid under 
epitaxial conditions. 

Eliminating δXL
2 between Eq. (29) give the quadratic equation in δXS

2: 

−
(
XoL

1 + XoL
2

)(
δXS

2

)2
+

[
1
A

(
XoL

2

XoS
2

−
XoL

1

XoS
1

)

− 2
(
XoL

1 XoS
2 − XoL

2 XoS
1

)
]

δXS
2

+
(
XoS

2 − XC
)[(

XoS
2 − XC

)
− 2

(
XoL

1 XoS
2 − XoL

2 XoS
1

)]

= 0 (30) 

To first order for small δXS
2, the quadratic term is neglected and after 

some algebraic manipulations we get 

δXS
2 ∼ −AXoS

2

(
1 − XoS

2

)(
XoS

2 − XC
)
[

XoS
2 − XC

XoS
2 − XoL

2
− 2

]

(31) 

Establishing that XC = XoS
2 ± α, that is, XC is either on the left (- sign) 

or right (+ sign) side of XoS
2 with a small deviation α. The square bracket 

is always negative and the sign of δXS
2 is determined by the sign of −

(XoS
2 − XC). If XC is to the right of XoS

2 , then δXS
2 > 0. If XC is to the left of 

XoS
2 , then δXS

2 < 0. In both cases, minimization of the epitaxial elastic 
energy pushes the equilibrium mole fraction away from the hydrostatic 
pressure value and toward the composition XC. This result is consistent 
with other studies of the effect of epitaxy of semi-conductor alloys [15, 
16]. 

Using Eqs. (29b) and (31), we find 

δXL
2 ∼ A

XoL
2

(
1 − XoS

2

)

XoS
2 − XoL

2

(
XoS

2 − XC
)2 (32) 

So irrespectively of the sign of XoS
2 − XC, δXL

2 has always the same 
sign. 

We recall that the hydrostatic pressure compositions XoS
2 and XoL

2 are 
those derived in the presence of chemical reaction in the liquid. So far, 
we have focused on the effect of epitaxy on the mole fraction in the solid. 
The question that arises is that of the effect of epitaxy on the number of 
moles of species 1 and 2 in the solid and the overall amount of solid. 

Let us denote by NoS
1 , NoS

2 , NoL
1 , NoL

2 , the number of moles of species 1 
and 2 in the solid and liquid in equilibrium in the presence of the 
chemical reaction under hydrostatic pressure. Let us also define the 
number of moles of species i = 1 or 2 in the phase I = S,L (liquid with 
chemical reaction) when the solid is subjected to epitaxial conditions by: 

NeI
i = NoI

i + δNeI
i (33) 

δNeI
i is the change in the number of moles of i in I due to epitaxy. We 

can write: 

XS
2 = XoS

2 + δXS
2 =

NoS
2 + δNeS

2

NoS
1 + δNeS

1 + NoS
2 + δNeS

2 

Again using Taylor expansion for small variations in the number of 
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moles due to epitaxy, leads to a relationship between δXS
2 and δNeS

1 and 
δNeS

2 , that is: 

δXS
2 =

NoS
1 NoS

2
(
NoS

1 + NoS
2

)2

(
δNeS

2

NoS
2

−
δNeS

1

NoS
1

)

(34a) 

Similarly, we find for the liquid 

δXL
2 =

NoL
1 NoL

2
(
NoL

1 + NoL
2

)2

(
δNeL

2

NoL
2

−
δNeL

1

NoL
1

)

(34b) 

We now have four unknowns δNeS
1 , δNeS

2 , δNeL
1 , δNeL

2 . Conservation of 
the number of species 2 implies δNeS

2 = −δNeL
2 which reduces the number 

of unknowns to three: δNeS
1 , δNeS

2 , and δNeL
1 . 

We also express the advancement of the chemical reaction when the 
solid is under epitaxial conditions in terms of the advancement of the 
reaction under hydrostatic pressure as follows: 

δe = δo + dδ where dδ is the variation in the reaction advancement δ. 
Extension of Eq. (11c) to the case of an epitaxial solid yield NeL

1 = φe
1 −δe 

with φe
1 = N1 − NeS

1 . Similarly to the definition of epitaxial quantities in 
terms of hydrostatic quantities, we write φe

1 = φo
1 + dφ1. These relations 

can be used to show that dδ = − (δNeL1 + δNeS
1 ). 

In addition to Eqs. (31) and (32), we can use the condition for 
chemical equilibrium given by Eq. (15c) but expressing in the case of an 
epitaxial solid: 

K =
(n3 − Y3)(Y1 + Y2 + Y3)

(Y1 + Y3 − n3)Y3
=

δe(N1 − NeS
1 + N2 − NeS

2 + n3 − δe)

(
N1 − NeS

1 − δe)
(n3 − δe)

(35) 

Expressing all epitaxial quantities in Eq. (35) in terms of hydrostatic 
quantities and their corresponding variations and using again Taylor 
expansions to first order, Eq. (35) becomes: 

K =
δo(

N1 − NoS
1 + N2 − NoS

2 + n3 − δo)

(
N1 − NoS

1 − δo)
(n3 − δo)

(1 − B + C) (36)  

where 

B ∼
δo(

δNeS
2 − δNeL

1

)
+

(
δNeL

1 + δNeS
1

)[
N1 − NoS

1 + N2 − NoS
2 + n3 − δo]

δo[
N1 − NoS

1 + N2 − NoS
2 + n3 − δo]

(37)  

C ∼
δNeS

1 (n3 − δo) −
(
δNeL

1 + δNeS
1

)(
N1 − NoS

1

)

(
N1 − NoS

1
)
(n3 − δo)

(38) 

Since under hydrostatic pressure, we have K =
δo(N1−NoS

1 +N2−NoS
2 +n3−δo)

(N1−NoS
1 −δo)(n3−δo)

, 

Eq. (36) reduces to the condition C = B. This condition involves δNeS
1 , 

δNeS
2 , and δNeL

1 and serves as our third equation. 
This condition is reformulated as 

δNeS
1

[
1

N1 − NoS
1

−
n3

δo(n3 − δo)

]

+ δNeL
1

[
1

N1 − NoS
1 + N2 − NoS

2 + n3 − δo −
n3

δo(n3 − δo)

]

= δNeS
2

1
N1 − NoS

1 + N2 − NoS
2 + n3 − δo (39) 

In the limit of small concentration of species 3, n3, and subsequently 
small advancement of the reaction under hydrostatic conditions, δo, Eq. 
(39) is approximated by retaining only the large term n3

δo(n3−δo)
in the 

square brackets. Eq. (39) simplifies to 

δNeS
1 + δNeL

1 = δNeS
2

−δo(n3 − δo)

n3
(
N1 − NoS

1 + N2 − NoS
2

) (40) 

Combining Eqs. (31), (32), (34) and (40) yields: 

δNeS
2

[
NoS

1

NoS
2

−
NoL

1

NoL
2

+
δo(n3 − δo)

n3
(
N1 − NoS

1 + N2 − NoS
2 + n3 − δo)

]

=

(
NoS

1 + NoS
2

)2

NoS
2

δXS
2 +

(
NoL

1 + NoL
2

)2

NoL
2

δXL
2 (41) 

The second term on the right-hand side of this equation is always 
positive since δXL

2 > 0 (see Eq. (34b). The first term can be either posi
tive or negative depending on the sign of δXS

2 (see Eq. (34a). It is 
definitively positive when XC > XoS

2 . In that case the right hand-side of 
Eq. (41) is positive. We therefore need to address the sign of the square 
bracket on the left-hand side of (41). The third term in the bracket is 

positive since δo cannot exceed n3. We rewrite the first two terms NoS
1

NoS
2

−

NoL
1

NoL
2

=
NoS

1 N2−NoS
2 N1+δoNoS

2
NoS

2 (N2−NoS
2 )

using conservation of species relations. This quan

tity is positive if NoS
1 N2 − NoS

2 N1 > 0, or NoS
1

NoS
2

> N1
N2

. Using Eq. (25) for the 

hydrostatic case, the inequality becomes −
E1(1−E2)

E2(1−E1)
> N1

N2
. Introducing the 

overall composition of the composite system in terms of a mole fraction 
X = N2

N1+N2
, the inequality becomes − E1(1−E2)

E2(1−E1)
> 1−X

X . Note that the left term 
in that inequality is always positive. The adjustable parameters to ach
ieve physically realistic conditions that satisfy this inequality are X and 
temperature T which determines the values of E1 and E2 (see Fig. 3). 
Figure 3 indicate that there is a wide range of values for these param
eters that leads to an increase in δNeS

2 . 
The inequalities XC > XoS

2 and −
E1(1−E2)

E2(1−E1)
> 1−X

X enable us to make a 
statement about the existence of conditions for δNeS

2 > 0. δNeS
2 > 0 

means that the solid forming epitaxially leads to an increase in the 
number of moles of species 2 in the solid compared to the hydrostatic 
pressure case. 

We finally consider the effect of epitaxy on δNeS
1 . Combining Eqs. 

(34b) and (40) gives 

δNeS
1 =

(
NoL

1 + NoL
2

)2

NoL
2

δXL
2 + δNeS

2

[
NoL

1

NoL
2

−
δo(n3 − δo)

n3
(
N1 − NoS

1 + N2 − NoS
2

)

]

(42) 

In the limit of small n3 and δo, the term inside the square bracket is 
positive. Since δXL

2 is always positive, when the inequalities XC > XoS
2 and 

−
E1(1−E2)

E2(1−E1)
> 1−X

X are satisfied, then δNeS
2 > 0 and subsequently δNeS

1 > 0. 
The epitaxial condition leads to an increase in the number of moles of 

species 1 and 2 in the solid and therefore an increase in the amount of 
solid compared to the hydrostatic case. While the chemical reaction in 
the liquid state decreases the amount of solid that can form at 

Fig. 3. Physically realistic conditions that satisfy the relation −
E1(1−E2)

E2(1−E1)
= 1−X

X . 
Here we have chosen E1 < 1 and E2 > 1 corresponding to pure substances with 
melting points T(1)

m < T(2)
m . 

A.C. Deymier et al.                                                                                                                                                                                                                             



Acta Materialia 259 (2023) 119299

7

equilibrium, i.e., lead to dissolution of the solid, epitaxy can counteract 
this effect and lead to recrystallization. 

This observation can be rationalized as follows. The equilibrium 
state of the composite system with chemical reaction in the liquid and 
with epitaxial strain energy is found by minimizing the total free energy. 
This free energy is now the sum of solid and liquid free energies of 
mixing, free energy of reaction and elastic energy. By changing its molar 
fraction composition, XS

2 toward XC, the solid reduces the quadratic term 
in the elastic energy Eq. (26), namely, (XS

2 − XC)
2. However, by 

increasing the amount of solid, the composite system may attempt to 
approach the low free energy associated with the equilibrium of the 
composite system without chemical reaction. More solid increases the 
elastic energy by increasing the term (NS

1 +NS
2) in Eq. (26). However, the 

increase in this linear term is more easily compensated by the faster 
decreasing quadratic term (XS

2 − XC)
2. 

4. Summary and conclusion 

The thermodynamic analysis of models of solid-liquid phase equi
librium of a binary system in the presence of (a) a chemical reaction in 
the liquid involving only one of the binary components and, (b) epitaxial 
conditions on the solid in addition to the chemical reaction in the liquid, 
leads to the counter intuitive observation that epitaxy may promote 
recrystallization of the solid in spite of the reaction driving dissolution. 
As expected, the composition of the epitaxial solid deviates, from its 
hydrostatic pressure counterpart, toward the lattice matching compo
sition. However, the models demonstrate the existence of solid-liquid 
phase equilibrium conditions such that epitaxial stress may counter 
act the dissolution of the solid due to chemical reactivity. These condi
tions are determined by the value of the lattice matching composition, 
the temperature and the overall composition of the binary solid-liquid 
system. These models were presented in the context of powder bed 
fusion additive manufacturing of metallic alloys, however, they are 
readily applicable to other multicomponent materials systems involving 
equilibrium between a solid phase and a liquid phase with chemical 
reactivity in the liquid. The effect of internal epitaxial strain/stress (i.e., 
composition dependent elastic energy) on dissolution/recrystallization 
reported here may also be extended to externally applied strain/stress 
provided the elastic constants of the solid are composition dependent. 
This may be the case in the dissolution and recrystallization of minerals 
in biological tissues such as bone in the presence of stress and chemical 
reaction in physiological fluids [17]. Further, the developed models are 
equally applicable to understanding the melt-recrystallization process of 
multicomponent geo-materials [18] and aqueous altering of planetary 
minerals [19], where the role of non-hydrostatic stresses when coupled 
with chemical reactivity can significantly affect the equilibrium 
composition and phase stability of the minerals. To the best of our 
knowledge, thermodynamic models that are used to interpret the pro
cessing conditions that underlie the formation of these minerals, do not 

account for the interplay of epitaxial stresses and chemical reactivity, 
and the ready extension of the developed models can enable new in
sights as well as better constraints on processing of geo and planetary 
materials. 
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[15] F.C. Larché, J.W. Cahn, Stress effects on III–V solid-liquid equilibria, J. Appl. Phys. 
62 (1987) 1232. 
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