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Abstract—Online recommender systems have proven to have
ubiquitous applications in various domains. To provide accurate
recommendations in real time it is imperative to constantly train
and deploy models with the latest data samples. This retraining
involves adjusting the model weights by incorporating newly-
arrived streaming data into the model to bridge the accuracy
gap. To provision resources for the retraining, typically the
compute is hosted on VMs, however, due to the dynamic nature
of the data arrival patterns, stateless functions would be an
ideal alternative over VMs, as they can instantaneously scale
on demand. However, it is non-trivial to statically configure
the stateless functions because the model retraining exhibits
varying resource needs during different phases of retraining.
Therefore, it is crucial to dynamically configure the functions
to meet the resource requirements, while bridging the accuracy
gap. In this paper, we propose Sandpiper, an adaptive framework
that leverages stateless functions to deliver accurate predictions
at low cost for online recommender systems. The three main
ideas in Sandpiper are (i) we design a data-drift monitor that
automatically triggers model retraining at required time intervals
to bridge the accuracy gap due to incoming data drifts; (ii) we
develop an online configuration model that selects the appropriate
function configurations while maintaining the model serving
accuracy within the latency and cost budget; and (iii) we
propose a dynamic synchronization policy for stateless functions
to speed up the distributed model retraining leading to cloud
cost minimization. A prototype implementation on AWS shows
that Sandpiper maintains the average accuracy above 90 %, while
3.8 less expensive than the traditional VM-based schemes.

Index Terms—Serverless, Systems-for-ML, Continual Learning

I. INTRODUCTION

Online machine learning (ML) has transformed the way
recommendations are delivered especially in the areas such as
cybersecurity, e-commerce, e-health, media analytics, etc,. The
majority of these ML algorithms are deployed in a dynamic
setting, where the streaming data trend continuously changes
over time [1], and as a result, these models need to be
continuously updated with the new data. The impact of serving
recommendations using an inaccurate model can lead to severe
performance and cost implications [2]. Continuous updates
through online learning provide these models the power to
adapt to the changes in user preferences or data patterns,
also referred to as data drifts. These drifts require model
retraining to incorporate the fresh data samples. Therefore,
online learning systems incorporate the training data samples
at regular intervals, where the frequency of retraining is
critical in serving high-quality recommendations. Typically the
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frequency of data drifts was in the order of days, with the
recent advancements in data integration and the velocity of
data in ML training. The increase in the new data generated
in turn leads to frequent changes in user preferences and data
trends, thus demanding much more frequent retraining of the
models used in recommender systems, compared to the past.

Model serving of these recommender systems are usually
hosted on a public cloud such as AWS. A key challenge
lies in resource procurement and provisioning adapting to
the dynamic nature of model retraining without affecting
the model quality. Therefore, these retraining tasks have to
meet tighter deadlines to bridge the accuracy gap. Often,
to guarantee the service level objectives (SLO) of these
tasks to meet the retraining deadline, compute resources are
over-provisioned, especially in the case of Infrastructure-as-a-
Service (IaaS or VMs) [3], leading to substantial wastage in
resources and massive provisioning costs. This motivates the
primary proposition of our work: In contrast to VMs, can the
serverless functions help alleviate the over-provisioning costs?

The resource requirements for incremental model training
with data drifts are significantly lower than that of offline
training [4]. This inherent nature of resource requirements
when combined with the relatively smaller datasets only
requires light-weight model updates, which in turn make
these online retraining tasks a naturally convincing fit to the
serverless function-based computing model. Depending on the
data arrival trends and drifts the resource requirements for
these model updates are unpredictable and too slow to react
to auto-scaling of VMs leading to variable training latencies.
While prior works [3], [5] propose schemes to determine the
frequency of training, they are limited to using VMs, which
are slow in reacting to the actual resource requirement along
with huge retraining costs.

Although stateless functions have been exploited for deploy-
ing traditional ML training [6], there are several unexplored
challenges in the context of instant retraining for recom-
mender systems. First, along with designing each training
epoch as a stateless workflow, it is necessary to examine the
accuracy trade-offs, ML-retraining update latency, and cost-
effectiveness for varying data arrival trends. The recommender
accuracy depends on the time to trigger retraining, whereas
the retraining latency and cost depend on the number of cloud
functions invocations. Second, different online algorithms have
distinct scaling characteristics. For example, applications that
execute topic modeling [7] and matrix factorization [8] have
different scaling behaviors based on the number of topics

Authorized licensed use limited to: Penn State University. Downloaded on September 14,2023 at 02:22:31 UTC from IEEE Xplore. Restrictions apply.



modeled and incoming users, respectively. T
challenges collectively instigates the centi
work: how to solve the complex optimi
designing low-cost stateless training, with
low latency for time-varying resource dema.
we design Sandpiper which leverages serv
develop a cost-efficient online continuous l¢

Sandpiper adopts a four-pronged appr¢
optimization problem. First, it uses a da
automatically trigger model retraining in
recommender accuracy. Second, it integrati
formance model in its core design, whic
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turn, depend on five cloud task configuration parameters (mini-
batch size, number of epochs, function memory, arrival rate,
and synchronization ratio) for each retraining epoch. We judi-
ciously consider these configuration parameters in a cohesive
fashion towards designing and implementing Sandpiper. Third,
it models it as an online optimization problem, which leverages
Gaussian Process (GP-OPT) approach to effectively predict the
task completion times. Finally, to reduce the synchronization
overheads caused by straggler workers, Sandpiper employs a
novel selective synchronization policy, under which the sys-
tem will continue to launch worker functions for subsequent
epochs with partial updates, leading to faster convergence. Our
extensive evaluations on AWS Lambda platform reveal that
Sandpiper performs model updates 3.8x quicker and 1.7x
cheaper than IaaS-based recommender systems.

II. BACKGROUND AND MOTIVATION

We start with providing a brief overview of online continual
learning, followed by a detailed analysis of its performance to
motivate the need for Sandpiper.

A. Continuous Leaning-Based Frameworks

Online ML models take input from a series of data and serve
recommendations on them. The accuracy of the model serving
the requests depends on how quickly the model learns and
adapts to the dynamic data arrival patterns S; = {s1, 2, ..8;}
in real-time. Therefore, the model is continuously retrained by
adjusting the weights with freshly arrived data samples, with
the primary objective of minimizing the loss function, where
the loss function is defined as the error in prediction. The loss
function ¢4 at time (¢4 1) for a series of X data samples
arrived at time ¢ is given by 1:

X
Gre1 <= [(Dr,51) <= Z (P1,5¢) - (D
minimize
Continuous learning and model serving system enables re-
training by incorporating fresh updates to the online model.
As seen in Figure 1, the data from various client-ends @
arrive at an API gateway, which serves as a front end to the
continuous learning ML models. The API gateway @ performs

auxiliary functions such as data schema and format conversion
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Fig. 1: Continuous learning system deployed across various public
cloud offerings such as VMs and Serverless.
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based on the training requirements. Subsequently, the data
updates are stored in a data-store, while the model serving
agent triggers @ the appropriate ML retraining service. This
retraining is performed on a public cloud setting @ where
the continuously-updated model can be simultaneously used
to serve inference requests from different users. The inference
requests from the trained model are served back to the user @.

The continuous model training could be performed either on
IaaS-based stateful platforms or stateless compute offerings
such as AWS Lambda [9]. IaaS provides the infrastructure
in the form of VMs or containers by multiplexing them
over physical machines. In contrast, the serverless architecture
provides the abstraction of stateless functions packaged in
their own runtime and programming language environment.
However, stateless functions offer a unique proposition of
being event-driven and pay-as-you-go model, which is directly
relevant for online retraining since the model retrains on a
discreet set of events such as data drifts. There have been a
handful of studies in the past evaluating the cost and resource
efficiency of leveraging serverless offerings [10] when com-
pared to traditional IaaS offerings. The fundamental difference
in resource usage efficiency and cost is due to the fact that an
external auto-scaling policy provisions for resource capacity in
the case of IaaS, whereas serverless functions are event-driven.

B. Characterizing Online Learning Models

We studied four popular online machine learning models
used in three different applications (Table I), to understand the
resource consumption footprints in continuous model training
for cost-efficient deployment on public clouds.

Model Dataset Framework Application

LDA [11] Meme [12] Mallet [13] Topic Modeling
SGD (Fact) Movielens [14]  sklearn [15] Movie Recommendation
Mat (ALS) Movielens [14]  sklearn [15] Movie Recommendation

Logistic Reg Boston [16] sklearn [15]  Housing Value Prediction

TABLE I: Candidate ML models used for continuous training.

Towards this, we start with a base model trained by batching
the first five minutes of data updates and gradually retraining
on further data updates based on a Poisson distribution, which
is representative of production web server data arrivals. We
profile four online ML models listed in Table I for different
runtime utilization metrics such as cost, CPU, memory, disk,
and network consumption. Serverless functions are configured
and billed based on their compute and memory requirements.
Latent Dirichlet Allocation (LDA) performs online topic mod-
eling on web page contents crawled over the internet using the
memetracker dataset [12]. We used the Mallet tool to persist
intermediate models and perform constant model retraining to
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Fig. 2: Accuracy loss due to drifts in case of Online ML models not being
continuously updated/retrained for period of 1hr.

(b) Log Regression

maintain high accuracy. On the other hand, we analyzed matrix
factorization based on Alternating Least Squares (ALS) and
Stochastic Gradient Descent (SGD), which serve recommen-
dations of movies to the users based on the reviews from the
Movielens dataset [14].

Figure 2 plots the accuracy loss due to model decay in case
of dense and sparse data arrivals for a period of 1 hour. The
data arrivals are statically generated using Poisson distribution,
where sparse is data arrival of less than 150 data samples per
second while the dense arrivals range from 150 to 400 data
samples per second. The accuracy loss is measured by the
gap in recommendation quality from a stale model compared
to a constantly retrained model in which the data arrivals are
incorporated through constant retraining. Different machine
learning models decay over time at different rates due to
the gradient staleness caused by fresh updates. Models like
MF and LDA are very sensitive to these updates as shown
in Figure 2c — in the case of LDA, it can get up to 60%
drop in accuracy due to the lack of continuous retraining.
On the other hand, logistic regression suffers less than 10%
accuracy drop due to this stateless nature as the retraining
happens on discreet data samples. Therefore, the accuracy of
a recommender system for some models is heavily reliant
on monitoring these drifts and incorporating the fresh data
samples in real-time.

Why do drifts occur? Online models need to be constantly
updated by incorporating fresh data points. The frequency at
which the model needs retraining is determined by drop in
recommender accuracy due to model decay. The two reasons
why a model can decay are data drift and concept drift. In
the case of data drifts, the pattern of data rapidly changes
with time potentially introducing previously unseen trends,
thus resulting in loss of accuracy and demanding to retrain.
Note that there is no impact on previously labeled data with
changes to the weights. On the other hand, with concept
drift, the existing model’s interpretation of the data itself
changes with time, which can be addressed by either changing
the model architecture or using multiple models like model
ensembling [17]. This is orthogonal to retraining the same
model over time. Out of these two, data drifts are more
predominant in production systems and in this work, we focus
on adaptive exclusively retraining for data drifts.

Further, for retraining, it is important to bridge the data
drifts in real-time as it plays a crucial factor in determining the
recommender accuracy. In some cases like matrix factorization
using SGD, these drifts cannot be bridged using serial re-
training, thereby requiring a parameter-server style distributed
retraining. The runtime system should be able to learn the
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actual resource requirements for model retraining to pick a
configuration that can satisfy both the retraining latency and
the deployment cost while maintaining the overall accuracy.

III. PRELUDE TO SANDPIPER
A. Comparing Cost of Retraining

We analyze the cost of retraining using data updates mod-
eled after prominent traces such as Wikipedia [18], Twit-
ter [19], Berkeley [20], and WITS [21]. This aids in better
understanding of the model decay rate with respect to the real-
world data update frequency.

1) Trace Analysis. We consider a two hour portion

of data updates of these traces for our studies.
The breakdown of DUPS is given in Table II
Trace Min  Max Avg As shown in Figure 3, the
WITS 90 2335 42345  WITS and Twitter traces
ey 0 0 455 (Figure Je and 30) hve
Wiki 218 331 27968 large variations in peaks

compared to the Wiki and
Berkeley traces (Figure 3a
and 3b). The data updates
arrive every second over the entire trace duration. These
traces exhibit highly dynamic loads resembling the data arrival
scenario in the case of production recommender systems.
Some portions of the Twitter trace have recurring patterns (e.g.,
minute of the hour), whereas the WITS trace contains unpre-
dictable load spikes (e.g., flash-crowd scenario). To demon-
strate the cost difference between the stateful and stateless
offerings, we run retraining loops for the learning models listed
in Table I. In the case of VMs, we use c5.large on-demand
instance and for Lambdas we configure the function memory
size to be 512Mb in serverless-static. However, in the case of
serverless-dynamic, we vary the function memory based on
the size of the data update. Based on the arrivals rates from
the datacenter traces shown in Figure 3, we launch retraining
tasks to avoid model quality deterioration. Also, for VMs, we
conservatively ignore the provisioning latencies.

2) Cost of IaaS vs Serverless. We plot the cost for retraining
in Figure 4 for the different traces. Serverless functions are
billed based on memory-requirement of the function over
time. In general, across all the four models, naively using the
serverless functions with fixed memory (3GB) is always more
expensive than the VMs of same size. For example, in the
case of Figure 4c, to run SGD on AWS Lambda function
is 18% expensive than running on VM. This is due to the
fact that the cost per GB-s is high in the case of Lambda
when it is statically provisioned when compared to VMs.
However, if these Lambda functions are right-sized in terms
of memory, they turn out to be 10-40% cheaper compared
to VMs. This trend is common across all trace-based model
retraining. Therefore, it is important to right-size the Lambda
functions for cost efficiency.

B. On-Demand Distributed ML-Retraining

TABLE II: Breakdown of data up-
dates per second (DUPS).

Besides cost, the online models pose a strict deadline (QoS)
requirement for their retraining jobs. For instance, a retraining
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Fig. 4: Cost to retrain online-ML models across different cloud offerings based on data updates from traces.

worker function set should lead to model convergence within
tens of seconds. This is due to the fact that the delays in
retraining would serve inaccurate recommendations. Hence,
depending on the volume of data arrivals, these machine
learning models need to be trained in a distributed fashion.
Further, in the case of distributed learners the model the
straggler workers can result in increased retraining latency due
to the synchronization delays cascading as SLO violations.
Therefore, it is important to address this issues through an
appropriate synchronization policy across distributed learners.

Typically, depending on the size of the data sample s;, the
framework decides to launch retraining tasks by breaking s; in
to X minibatches and repeat the training for multiple epochs
till the loss function is minimized. In the case of distributed
retraining, each worker function works on its mini-batch of
data and performs updates on the model parameters for that
portion of its mini-batch. The next round of worker function
set is launched only after all the worker functions of the
previous epoch finish their model parameter sync.

Limitations of Fully Synchronous Models: Due to the
unique demands of our problem space, we need to explore
every factor that impacts the latency of model retraining. The
time per epoch grows with the number of learners due to
straggling learners that slow down randomly. To understand
this, we take an example in the case of distributed stochastic
gradient descent (DSGD), where the synchronization between
epochs can be done in multiple ways, as seen in Figure 5.
Parameter Server, as shown in Figure Sa, waits for all learners
to push gradients before it updates the model parameters and
launches the workers for the subsequent epoch leading to long
tail latency due to straggling workers. On the other hand, an
asynchronous policy could be adopted as shown in recent
works [22], trading off stale parameters for faster training
time as it leads to convergence faster, as can be observed in
Figure 5b. However, aggressively launching workers with stale
weights can impact the recommender accuracy.

Advantages of Selective Synchronous: Recent studies [23]
have found that a balance can be struck between the syn-
chronous and asynchronous policies by selecting the minimum
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Fig. 5: Distributed SGD synchronization policies (lighter shade denotes
that the updates from that worker function are ignored while launching
the subsequent training epoch).

number of workers to finish before launching the subsequent
epoch as seen from Figure 5c. The client waits for the first
x worker functions to finish out of X before launching the
subsequent epoch say . However, the remaining 1—« straggler
workers’ update would be taken into account in f+/ epoch.
As given in Equation 2, the model ¢; ; learns and adapts to
the dynamic data arrival patterns S; ; in real time where s;
samples arrived at time t. The workers pushed till worker j
and (¢, 7) gives the worker index in a particular epoch when
the t-th learner last pushed to PS, such that t is less than j.
We refer to this scheme as selective synchronous.

1 K
Prt1 <= Or — P Z F(Drtg)r 8(t.))- 2
n=1

IV. SANDPIPER DESIGN AND INTEGRATION

We design a novel runtime system, called Sandpiper, that in-
corporates selective synchronization technique combined with
serverless functions, discussed in the above section. Sandpiper
(1) takes in data updates, (ii) detects accuracy losses due to
drifts, (iii) selects the cloud function configuration dynamically
based on the loss in recommender quality (accuracy), and (iv)
bridges them through retraining in real-time within a given
cost-budget. The key components of Sandpiper design are
explained in detail in the following subsections.

A. Architectural Overview

Sandpiper enables online ML models to remain up to
date with minimal overheads. As shown in Figure 6 @, the
initial model metrics are aggregated from the cloud for every
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heartbeat interval to determine if there is a drop in accuracy
due to data drift. Sandpiper uses an adaptive windowing
technique (ADWIN) to detect the drifts to trigger retraining.
This can be either run on a local client or on a VM. Once a
drift that is more than the preset threshold has been detected,
Sandpiper launches its performance model which has GP-
OPT at its core to identify the optimum cloud configuration
vector @. Subsequently, the retraining cloud tasks are launched
based on the selected cloud configuration @ through function
launcher @ via public cloud APIs.

In Sandpiper, instead of having a dedicated stateful pa-
rameter server, we leverage the global block store such as
AWS 83 to share common paths to push and pull the updated
gradients. The model related metrics are pulled by the client
from S3 before launching the workers for the subsequent
retraining epoch. Depending on the size and arrival rate of the
data updates s;, Sandpiper launches single-threaded or multi-
threaded retraining through the function launcher. For the
distributed function launch, Sandpiper uses the optimization
function between subsequent epochs to pick the right cloud
configuration in order to minimize the retraining time and
training loss.

Algorithm 1 Optimum configuration selection.

Require:
Price(x): cost per GB-s
Initial Conﬁg Vector:cvy < K, Batchs, Frm, LRt lambda >
Tmax : maximum run time of epoch
Search Vector: < cul ,cug e CUn
Ensure:
Optimal Function Config Vector: cvg
: Initial configuration cv: to run the first epoch
: Observe the metrics LA, Reg:
: repeat forepocht=2,3, - - -
: Select the config vector cv; from Search Vector based on observed
metrics;
Use the function configuration cv: to launch workers;
: until Reach the stop condition (Loss < 0.01);

el b =

AR

B. Configuration Selection

The goal of the Sandpiper is to pick an optimal function
configuration that satisfies the retraining latency (L) for a
given budget. The notations used in our formulation are given
in Table III. Initially, the model begins with a configuration
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vector, as shown in Algorithm 1. The worker functions are
launched with the initial cloud configuration and the observed
latency is fed into the performance model. This is used to
estimate the confidence interval of the latency for candidate
configuration vectors. The worker functions can be launched
using different configuration types by varying the parameters
shown in Table III. For instance, a worker function set is
configured with batch size, selective cut off ratio, and learning
rate for that epoch. Besides configuring the worker function
set, the users have certain flexibility to configure resource
types such as the VM size (IaaS) or size of memory in the
case of serverless functions (Lambda).

In order to limit the search space, an online real-time
configuration selection tool is needed. We use an adaptable
ML-based model to configure resources for the chosen appli-
cation execution mode. Using an online learning algorithm,
we can directly capture the model uncertainty due to the
vast search space. We leverage Gaussian-Process [24] based
optimization function (GP-OPT) as it provides the feasible set
of configurations as a distribution, rather than just one value as
the prediction. Further, the GP-OPT policy quickly minimizes
regrets (Regret in this context is defined as the loss in reward
(cost) for not selecting the expected configuration), compared
to other prediction models [25]. An abstract configuration
model for minimizing the total cost (T_cost) is expressed as:

T _cost = L(cw;) - U(cve), such that L(cvy) < Laraz, (3)

where, at a given time-step ¢, (i) cv; is the cloud configuration
vector, (ii) L(cv;) is the observed latency for the chosen con-
figuration, (iii) U(cv¢) is the cost of the chosen configuration
per unit time as specified by the provider, and (iv) L 4, is the
target latency for the application. cv; captures all resource spe-
cific metrics such as the VM-instance type, memory capacity,
#compute cores, cost-per-hour, etc. (obtained from sub-thrust
3.1.2). For serverless functions, cv; will also include function
execution time and memory allocated.

The GP-OPT will choose a configuration in the Search
Vector that yields the minimum total cost by minimizing the
total run time of the worker function set. Since the latency
to retrain for an epoch is not known in advance, we need to
have multiple test runs before we can identify the candidates
for the search vector. Therefore, we run experiments with
multiple configuration vector combinations that could yield
better retraining times. However, it is not possible to exhaust
all the combinations of configuration types since there can be
multiple variations of the parameters in the search vector. To
speed up the search for the candidate configuration, we need to
design a pruning scheme that can find out the optimal worker
set configuration within a reasonable number of runs.

1) Pruning using Gaussian Process To narrow down the
candidate configuration list, we use Gaussian Process to select
the candidate configuration vector. After every epoch, the
candidate configuration that yields the maximum reward prob-
abilities is further exploited to optimize for the OPT function.
Before every epoch, we select a worker set configuration cv
and the functions are launched, while the latency to retrain
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Notation = Parameter Range
L Latency to retrain 1-100sec
A Accuracy of the Online Model 90-100%
c Cost for the retraining (Budget)  30-120$
K Selective Sync Cutoff 1-K
Batchs Mini batch size 1-Max_learners
F Function memory size 1Mb-3Gb [26]
Arr data arrival rate per sec 10-6978 (Table II)

e Total number of epochs 1-N (loss;0.001)

Memy Memory utilization at epoch t
LRy Learning rate at epoch t
Losst Training loss at epoch t
At Number of Functions at epoch t
Regy Regret at epoch t
cv’ Optimal Configuration Vector
cv¥ Candidate Configuration Vector

TABLE llI: Notations & Parameters for cloud configuration.
parameter (L) is observed for the candidate configuration. This

parameter is perturbed with a random noise that follows a
Gaussian distribution. Based on the current observation and
understanding, we select the next round of function configu-
ration cvy41. This is repeated until the end of the algorithm,
which is either the maximum tolerable latency Lj;,, or the
target loss value of the worker functions reaching model
convergence, e.g., Loss < 0.01.

We need to maximize the reward function and minimize the
optimization function (OPT). In other words, the Sandpiper’s
model should maximize the job completion rate of the online
retraining jobs while minimizing the OPT from predicting the
optimum candidate configuration. The latency to run model
retraining during an epoch is given by L; therefore, its job
completion ratio is inverse of the time taken for the retraining
(1/L). We model the OPT in Equation 4 as follows:

OPT% «
X Z L(cvy) Z L{cv*y) - clevty)’

where X is the total number runs, cv’ is the optimal config-
uration vector, and cv* is the selected function configuration
for the test run. L and c are the latency to retrain and the cost
associated with retraining, respectively.

To summarize, the core intention of GP-OPT is to minimize
the optimization function while increasing the job completion
ratio. This depends on the balance between the exploration
and exploitation of different configuration vectors. A good
candidate recommendation system should balance between the
exploration and the exploitation. Therefore, the GP-OPT func-
tion, by combining the OPT function and the Gaussian process
model, can strike the right balance between the candidate
selection exploitation and exploration.

“4)

c(cvy)

V. EVALUATION METHODOLOGY

We have implemented Sandpiper on Python with AWS
client APIs to launch retraining on AWS Lambda and EC2
VMs using MXnet Gluon API. Our prototype implementation
consists of four parts: (1) the worker function and parameter
server code encapsulating MXNet ML libraries; (2) the local
client built with AWS SDK to invoke and manage both VMs
and Lambda functions; (3) Sandpiper layer, which monitors
the model accuracy and detects data drifts; and (4) The
performance model to find out the optimal function launch

428

configuration using GP-OPT.

Offline Profiling: We evaluated our backend ML models
to characterize their resource consumption footprint in terms
of compute, memory, I/O, and disk, as it is necessary to
know the bounds on a single invocation of the serverless
instance. Our model serving agent launches the serverless
invocations adhering to these resource quotas. This is usually
determined by two factors — first, the size of the batch/mini-
batch data during model retraining, and second, the dominant
resource consumption in terms of memory, I/O and compute
for different models. Both the factors need to be considered
for leveraging the benefits of serverless functions.

A. Stateless Model Training

We modified the training loops of ML models listed in
Table I to make them stateless by persisting the intermediate
model for inference in AWS S3, while the new data updates
train on top of the intermediate models, instead of starting
from scratch. Since our ML models are built using two
different frameworks, namely, Sklearn and Mallet, we use two
different mechanisms to enable model persistence. In the case
of Sklearn, we use pickle library to serialize and deserialize
the model weights for persistence, and we selectively fit partial
functions to perform retraining on top of an existing model.
Retraining in the case of Mallet is performed by extracting the
compressed topic model through input state argument via the
topic trainer. Further, this model is pulled from the data-store
when required to perform retraining.

B. Evaluation Metrics and Policies

We deploy both single-threaded and parameter-server based
training models to evaluate for key metrics such as perfor-
mance in terms of retraining time, accuracy when compared to
base-model, and cost of deploying the continuous retraining on
public clouds using serverless functions. We measure the train-
ing time, and calculate the total cost when training completes
(converges). All the experiments are conducted in (i) Amazon
EC2, where we use c5.large on-demand instances (16 vCPUs,
32 GB memory and 5 Gbps link) at 39 cents/hr, and (ii) AWS
Lambda. While calculating costs, we ignore the monthly AWS
Lambda free quotas. As a head-to-head comparison, we enable
auto-scaling in case of VMs to aggressively scaledown VMs
based on the data arrivals to cut costs to be competitive with
lambda functions.

We evaluate the Sandpiper’s GP-OPT based recommenda-
tion system and compare it with two other retraining policies,
namely, best-effort and cost-aware. Best-effort is the most-
accurate policy such that it triggers retraining for every time
instant a fresh data arrives. Simultaneously worker functions
are launched to initiate every retraining. However, it can lead
to increased cost due to the number of worker-functions de-
ployed. In contrast, the cost-aware scheme is modeled similar
to a recent work [3], which launches the retraining updates by
diligently batching the data. In order to do so, the cost-aware
policy employs a threshold-based update policy.
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VI. RESULTS AND ANALYSIS
A. Retraining Speedup

We plot the average retraining time reported by the worker
functions to incorporate the data updates generated by produc-
tion traces. In Figure 7, we compare Sandpiper against two al-
ternate retraining policies, namely, cost-aware and best-effort.
The best-effort policy is targeted to incorporate data updates as
soon as they arrive without batching or waiting. Therefore, the
model is retrained continuously launching worker functions
to incorporate the freshly arrived data. On the other hand,
the cost-aware policy batches the incoming data samples by
trading off accuracy by delaying the data updates. We batch the
data updates for every S-minute interval, and trigger retraining
in the case of the cost-aware scheme.

In Figure 7a, we plot the retraining time for the Berkeley
trace updates. It can be observed from these results that the
best effort retraining policy performs retraining by up to 25-
28% faster by incorporating data updates into the model. This
is due to the fact that the best effort policy triggers retraining
for incoming data sample without any data aggregation; as a
result, these individual updates take lesser time when com-
pared to Sandpiper. On the other hand, Sandpiper performs
61% better than the cost-aware policy. Since Sandpiper is
able to detect the accuracy drifts in the data dynamically,
it optimizes for accuracy and cost without exceeding the
cutoff threshold for maximum latency. We pick this threshold
depending on the arrival rate of the data updates. Typically,
the cutoff threshold of maximum latency Lj;,, is twice the
average latency of the best effort policy. Similarly, in the case
of the wiki trace shown in Figure 7b and the Twitter trace
shown in Figure 7d, Sandpiper launches retraining jobs that
finish 35-40% faster when compared to the cost-aware policy.

On the other hand, in the case of the WITS trace shown
in Figure 7c, Sandpiper performs almost the same as the
best effort and slightly better than the cost-aware. This is
because, the WITS trace has a high peak-to-median ratio of
DUPS compared to other traces, and as a result, none of the
dynamic policies could optimize for latency without trading
off accuracy. Therefore, Sandpiper performs similar to the
best effort by launching more retraining functions to bridge
the wide gap in accuracy.

B. Cost vs Accuracy Comparison

We plot the public cloud cost of running Sandpiper to retrain
through DSGD for data updates in case of the WITS trace. The
other traces also show a similar trend, which is in proportion
to the peak-to-median ratio of data updates. We compare
Sandpiper along with other continuous training policies such
as best-effort, cost aware, VM (IaaS), and VM-Autoscaler. As
shown in Figure 8, compared to the EC2-based VM cluster,
Sandpiper maintains the model accuracy at 90% for 3.8x
lesser cost (green region), on average. This cost saving is due
to the nature of burstiness in the WITS trace, where the peak-
to-median ratio is high requiring over-provisioning of VMs
in case of peak data update arrivals to meet the retraining
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deadline. This provisioning leads to inherent resource wastage
and under-utilization. Enabling aggressive auto-scaling for VM
provisioning could reduce the cost by 43% as the VMs are
scaled down aggressively avoiding resource wastage. However
it is still 3.2 expensive when compared to GP-OPT policy
of Sandpiper to maintain an average model accuracy of 90%.
We do not use transient VM provisioning since the VM
revocations would violate the deadline while loosing the model
state as they could be in the order of tens of seconds.
Sandpiper’s GP-OPT diligently adjusts its parameters such
as batch size, learning rate, and number of worker functions
launched for every retraining epoch based on the reward to
minimize the optimization function. This dynamic worker
function launches minimize the wasted computations, leading
to model convergence in case of retraining at a cheaper cost.
intain the
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Fig. 9: Training loss of DSGD

worker functions in case of dif-
ferent sync policies inside Sand-
piper. For brevity, we only plot till
one of the schemes converged.
(worker function training loss <
0.001 for 5 consecutive epochs).

the effectiveness of the select-
sync policy when compared
to other fully-synchronous or
asynchronous schemes. How-
ever, picking the right number

of workers to synchronize for a given epoch is crucial for
both accuracy and retraining latency. Therefore, we leverage
the GP-OPT’s dynamic policy (adaptive) to select the right
ratio which minimizes the job completion time. We evaluate
the effectiveness of this adaptive select-sync and compare with
other static selection and asynchronous policies.

Towards this, we plot two metrics in Figure 9 — retraining
loss and time taken to converge. The time elapsed is measured
spanning from the beginning of training to model convergence.
Convergence is reached when the retraining loss is below the
target value for at least five consecutive epochs. We compare
the select sync adaptive scheme against several asynchronous
static and adaptive schemes. It can be observed from the results
that Sandpiper significantly improves the retraining time by
minimizing the retraining loss by up to 6 x when compared to
the nearest adaptive scheme which uses asynchronous scheme
to synchronize the candidate workers.

VII. RELATED WORK

The concept of continuous learning has been widely adopted
from stream processing frameworks such as Spark stream-
ing [27] and Flink. The fundamental factors that influence
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Fig. 8: Cost and accuracy tradeoff for the WITS trace.

stream processing are similar to our problem and include
throughput, latency, and processing time of data. Similarly,
there have been commercially available open source frame-
works for ML model serving such as clipper [28]. In con-
trast, there have been few academic works such as Contin-
uum [3] that study online recommender systems at depth,
particularly on retraining efficiency. Such approaches are
specifically catered towards single-threaded retraining at a
static arrival setting. Continuum minimizes training costs by
delaying model updates and sacrificing accuracy. It does not
leverage automated drift detection to maintain model accuracy.
In addition, it does not leverage the stateless cloud offerings
and cannot scale efficiently in terms of cost. Furthermore,
to our knowledge, none of the prior works considers the
synchronization overheads in distributed training, to meet the
strict deadlines for retraining.

VIII. CONCLUSION

In this paper, we investigate the resource provisioning
challenges in terms of performance (latency), accuracy, and
cost associated with retraining in public clouds. Towards this,
we built Sandpiper, which is a run-time system based on the
serverless framework that supports continuous learning for
streaming applications. Sandpiper leverages an optimization
function to achieve a balance among model retraining time,
accuracy, and cost. It also monitors the accuracy drops due
to data drifts and minimizes the retraining cost by finding an
optimal job configuration in cloud. Our real-system evaluation
of Sandpiper on AWS cloud with production traces shows that
the GP-OPT policy used in Sandpiper can provide a near-
optimal cloud configuration on AWS Lambda in fewer than
50 runs from thousands of candidate choices, which in turn
translates to 3.8 savings in cost when compared to IaaS.
Furthermore, Sandpiper performs 5.7x faster model updates
when compared to accuracy-agnostic schemes.
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