Sia: Heterogeneity-aware, goodput-optimized
ML-cluster scheduling

Suhas Jayaram Subramanya
Carnegie Mellon University

Aurick Qiao

Petuum Inc.

Abstract

The Sia'scheduler efficiently assigns heterogeneous deep
learning (DL) cluster resources to elastic resource-adaptive
jobs. Although some recent schedulers address one aspect
or another (e.g., heterogeneity or resource-adaptivity), none
addresses all and most scale poorly to large clusters and/or
heavy workloads even without the full complexity of the
combined scheduling problem. Sia introduces a new sched-
uling formulation that can scale to the search-space sizes
and intentionally match jobs and their configurations to
GPU types and counts, while adapting to changes in clus-
ter load and job mix over time. Sia also introduces a low-
profiling-overhead approach to bootstrapping (for each new
job) throughput models used to evaluate possible resource
assignments, and it is the first cluster scheduler to support
elastic scaling of hybrid parallel jobs.

Extensive evaluations show that Sia outperforms state-of-
the-art schedulers. For example, even on relatively small 44-
to 64-GPU clusters with a mix of three GPU types, Sia reduces
average job completion time (JCT) by 30-93%, 99th percentile
JCT and makespan by 28-95%, and GPU hours used by 12—
55% for workloads derived from 3 real-world environments.
Additional experiments demonstrate that Sia scales to at least
2000-GPU clusters, provides improved fairness, and is not
over-sensitive to scheduler parameter settings.

CCS Concepts: » Theory of computation — Scheduling
algorithms; « Software and its engineering — Cloud
computing.

Keywords: cluster scheduling, resource allocation, deep learn-

ing training

“Work done while at Carnegie Mellon University
In Egyptian mythology, Sia is the god of perception/intelligence [1], not to
be confused with the popular music artist [2].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSP °23, October 23-26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613175

Daiyaan Arfeen
Carnegie Mellon University

Zhihao Jia

Carnegie Mellon University

Shouxu Lin*
Cornell University

Gregory R. Ganger

Carnegie Mellon University

ACM Reference Format:

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick
Qiao, Zhihao Jia, and Gregory R. Ganger. 2023. Sia: Heterogeneity-
aware, goodput-optimized ML-cluster scheduling. In ACM SIGOPS
29th Symposium on Operating Systems Principles (SOSP °23), October
23-26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3600006.3613175

1 Introduction

Sizable deep learning (DL) clusters, often shared by multiple
users training deep learning models for different problems,
have become data center staples. A scheduler is used to
assign cluster resources to submitted jobs. Increasingly, DL
clusters consist of a mix of GPU typesz, due to incremental
deployment over time and advances in GPU design.

Recent work provides powerful schedulers for DL clusters,
but none utilize heterogeneous DL clusters well. To help
explain why, we partition existing schedulers into two cate-
gories. Heterogeneity-aware schedulers [32, 40, 56] explicitly
consider differences among GPU types in the cluster, with
Gavel [40] as a state-of-the-art example, but existing options
only accommodate what we term rigid jobs. (“Rigid” jobs
must run with a user-specified number of GPUs, do not allow
elastic scaling, and do not adapt to resource assignments.)
Adaptivity-aware schedulers [43, 44, 50] explicitly consider
how non-rigid jobs would adapt to (e.g., batchsize adjust-
ments) and perform with different numbers of GPUs, with
Pollux [44] being a state-of-the-art example, but existing
options assume that the cluster’s GPUs are all the same type.

Figure 1 illustrates the resulting problem. When only one
degree of freedom (heterogeneous GPUs or adaptive jobs)
is present, a state-of-the-art scheduler for addressing it pro-
vides good performance. But when both are present, much
opportunity is lost (see 40-70% lower average JCTs in the
middle trio of bars) because existing schedulers do not con-
sider both. Worse, for more intense workloads the gaps grow
larger (e.g., see Figures 7 and 9), because these schedulers
scale poorly with contention (Gavel) and cluster size (Pollux).

Sia is a new scheduler designed for resource-adaptive DL
training jobs and heterogeneous resources, matching each
state-of-the-art for their category but outperforming them

2For conciseness, we will use "GPU" to refer to any accelerators used for DL
model processing generally, including both traditional GPUs and various
others like TPUs [25], FPGAs, and other ML accelerators [4, 22, 31].



6

5 4 B Pollux
Iy Bl Sia
— .
£ 47 s Gavel

Homogeneous
+Adaptivejobs

Heterogeneous
+Adaptivejobs

Heterogeneous
+RigidJobs

Figure 1. Scheduler comparison for three scenarios. [Left] For
resource-adaptive (non-rigid) jobs on a homogeneous cluster, the
left-most bars show that Pollux and Sia yield lower average job com-
pletion times (JCTs) than Gavel. [Right] For rigid jobs on a 3-GPU-
type heterogeneous cluster, on the right, Gavel and Sia outperform
Pollux. [Center] For non-rigid jobs and heterogeneous resources, in
the middle, Sia outperforms both state-of-the-art schedulers built
for only one of the two complexities. (The trace and cluster configu-
rations are detailed in Section 4; the heterogeneous cluster includes
some faster GPUs, causing JCTs to decrease for all schedulers.)

when both degrees of freedom are present. Conceptually,
in each scheduling round, Sia considers every possible as-
signment of GPUs (number and type) to current jobs, esti-
mates their aggregate “goodput™ (including any job resizing
costs), and selects the best cluster resource assignment for
the next period of time. This is challenging for two funda-
mental reasons: (1) the search space is huge, for a sizable
cluster, and much worse when there are multiple GPU types
and each job can use and adapt to any number of GPUs of any
type; (2) different DL jobs experience different performance
changes when comparing one GPU type to another, when
increasing the number of GPUs (i.e., one may scale better
than another), and when comparing scaling with one GPU
type to scaling with another (e.g., different GPU types can
have distinct compute-to-network-bandwidth ratios), and
yet profiling each DL job for all possible resource allocations
is prohibitively expensive.

Sia addresses these challenges with a new solver formula-
tion to deal with scale and a new approach to online learning
of per-job per-GPU-type throughput models. Sia’s new ILP
formulation, together with pragmatic search space reduc-
tions, allows it to efficiently find assignments of GPU types,
GPU counts, and batchsizes for all pending jobs even as
load and cluster size grow. Sia’s new approach to through-
put modeling (as a function of GPU type, GPU count and
batchsize) avoids extensive profiling, which could override
scheduling benefits. Instead, Sia bootstraps each new job’s
throughput model with profiles of just one minimum-sized*
configuration per GPU type, initially assumes simple scal-
ing/projection across as-yet-unknown configurations, and

%Goodput” [44] is a DL efficiency metric that combines sample-processing

throughput and statistical efficiency to reflect rate of training progress.
4For traditional data-parallel jobs, the minimum size is 1 GPU. For forms
of model-parallel (e.g., pipeline parallel [18, 39]), which we term “hybrid
parallel”, the submitter-specified number of GPUs will be the minimum.

dynamically refines the model as different configurations are
used for the job. Experiments confirm that Sia’s approach
yields good decisions with low profiling overhead.

Extensive evaluations with workloads derived from three
real cluster environments show Sia’s effectiveness, scala-
bility, and superiority to three state-of-the-art schedulers
(Pollux, Gavel, and Shockwave [61]), as well as others. Sia is
implemented as a plugin-compatible scheduler replacement
in the open-source AdaptDL framework [20], allowing us to
perform head-to-head comparisons with the public Pollux
implementation. Experiments with Sia, Pollux, and Gavel on
a 44-GPU 3-GPU-type cluster show that Sia provides 35%
and 50% lower average JCTs (avgJCT) than Pollux and Gavel,
respectively. Importantly, these experiments also re-validate
the simulator from [44], which we use for broader explo-
rations, including larger clusters than we can obtain and
more intense workloads. Indeed, we find that Sia’s advan-
tages grow with cluster load/contention, especially compared
to Gavel (up to 95% lower avgJCT) and Shockwave (up to
47% lower avg]CT), which treat all jobs as rigid.

Overall, the results show that, for adaptive jobs on a het-
erogenenous cluster, dynamically adapting job resource as-
signments (GPU type and count) is crucial and results in
Sia outperforming all three state-of-the-art schedulers on
all performance metrics considered: 30-93% lower average
JCT, 28-95% lower p99 JCT, 38-65% lower makespan, 12-60%
lower GPU hours used. Sia also outdoes the other schedulers
on fairness metrics [34, 61], including 64% lower worst-case
finish-time fairness and 99% lower unfair job fraction, even
though Shockwave was designed to provide fairness. Ad-
ditional results confirm Sia’s (1) ability to improve cluster
efficiency even when many jobs disallow changing of batch-
size or GPU count, (2) ability to schedule and elastically
scale Megatron[41]-style pipeline-model-parallel [18, 39]
jobs (scale-out using data-parallelism), (3) scheduler-runtime
scalability to sizable clusters (up to 2000 GPUs), (4) robust-
ness to scheduler-parameter defaults, and (5) minor penalty
for initially-crude bootstrapped throughput-models.

This paper makes five primary contributions: (1) it ex-
poses a gap in state-of-the-art schedulers that leaves a large
untapped opportunity; (2) it introduces a new scheduler (Sia)
with an ILP formulation that addresses the compounded
complexity of heterogeneous GPU types and job adaptivity;
(3) it shows that per-job per-GPU-type throughput models
can be bootstrapped from observing just a few mini-batches
up front and then quickly and effectively refined as the job
runs in Sia-optimized configurations; (4) it presents the first
cluster scheduler able to elastically scale hybrid parallel jobs;
(5) it shows that Sia matches state-of-the-art schedulers in
their target domains and significantly outperforms them in
the union of their domains’ complexities. Results also show
Sia’s scalability, fairness, and parameterization robustness.



2 DL cluster scheduling and related work

A deep learning (DL) training job trains a deep neural net-
work (DNN) model on a dataset in an iterative manner over
multiple epochs. In each epoch, and for each minibatch in
an epoch, an optimizer updates model parameters by mini-
mizing a loss function over the minibatch of samples. Since
the minibatch size is usually fixed for extended periods of
training (if not the entirety of training), most DL jobs take a
consistent and predictable [52] amount of time to complete
a minibatch. These jobs are also generally pre-emptible, as
one can checkpoint the state of the job (including the model
and optimizer states) after any minibatch and resume the job
from a checkpoint without losing much job progress. They
are also amenable to scaling as gradient computation can
be parallelized across multiple GPUs on a single node and
across multiple nodes[5, 9, 10, 23, 42, 48].

Although various parallelization strategies exist [18, 23,
39, 41, 49], most training jobs use synchronous data paral-
lelism (DP)—given a set of GPUs, each GPU receives a replica
of the model and computes gradients on a partition of the
minibatch, whose size is termed local batch size. After the
gradients from all the GPUs are reduced to a minibatch gra-
dient, such as by a collective all-reduce [42, 48], an optimizer
(e.g., SGD or Adam [27]) applies the gradient to generate
the updated model parameters on each GPU. How well a
given DL job scales depends on characteristics of the job
(e.g., compute intensity and number of model parameters),
the GPUs, and the inter-GPU network: for each minibatch,
the gradient computation phase is divided among the GPUs,
while the reduce phase synchronizes them. Prior work has
shown that job scalability can be modeled effectively with
relatively few measurements [43, 44].

Some DL jobs use forms of model parallelism, such as
pipeline model parallelism (PMP[18, 39]) or Tensor Model
Parallelism (TMP[41]), when the model being trained is too
large to fit in a single GPU’s memory. Powerful optimiz-
ers [39, 53, 60] exist for modeling performance of differ-
ent configurations and partitioning a model across GPUs
to maximize performance. Recently, some increase scale by
mixing multiple parallelism types—e.g., Megatron-LM[41]
mixes PMP and TMP at moderate scales and then employs
synchronous data-parallelism to scale out to 100s of nodes.

Elastic and resource-adaptive DL jobs. Data-parallel
DL jobs can be elastically re-sized over time, by checkpoint-
ing and then restarting on a different number of GPUs (with
a different division of each minibatch’s samples). Moreover,
aspects of how the job does its work can be adapted to as-
signed resources, if the job is designed to do so [44, 59]. For
example, the minibatch size can be adapted, such as by in-
creasing its size when using more GPUs in order to increase
the per-GPU compute for each minibatch and thereby in-
crease scalability. Different minibatch sizes do have different
statistical efficiency impacts, and the differences depend on

job characteristics, but this effect can also be measured and
modeled [36, 44].

Other DL jobs are usually submitted to a scheduler with
a predetermined configuration, and changing it usually re-
quires re-running the hybrid parallel optimizer. As discussed
above, however, they can also be scaled using a data-parallel
style by replicating the original configuration: for exam-
ple, a PMP job that requires 4 GPUs for model and selected
minibatch-size could use 8 GPUs and a doubled minibatch,
one for each 4-GPU instance of the original configuration [41].

Resource heterogeneity. There are many GPU types,
representing different product lines and generations pro-
duced by different vendors, and they naturally differ in GPU
memory size and in compute and communication perfor-
mance. It is common for a DL cluster to contain multiple
GPU types. In part, this occurs because many clusters are
deployed and grown over time, and the most cost-effective
option can be selected each time new hardware is purchased
and added. Looking ahead, the rapid development of new DL
accelerators [4, 22, 25, 31], including some targeting specific
DL models [58], will make having multiple “GPU types” a
design feature rather than a deployment consequence. Un-
surprisingly, a DL job may perform differently on different
GPU types, and it can also scale differently for different GPU
types (e.g., because the compute-to-network ratio changes).
In addition, as illustrated in Figure 2 different DL jobs can
experience different speedups and different scalability.

BERT on SQUAD ResNet on ImageNet 10 geepSpeechZ on CMU-ARCTIC

5
3 60
3 7.5
3 0
oo 5.0 — A100
2 20 RTX
& — / 25 — T4
2o ]

0 10 20 0 10 20

0 10 20
Number of GPUs

Figure 2. Scaling of goodput with number of GPUs for dif-
ferent GPU type and training job ( Table 2) combinations.
For each job type, goodput is shown relative to single-T4 goodput.

DL Cluster Schedulers. In practice, DLT jobs are sub-
mitted as requests to a shared cluster, and the scheduler
assigns resources to achieve cluster-wide goals. Many sched-
ulers only accommodate requests that specify a fixed num-
ber of GPUs, ignoring opportunities presented by elasticity,
resource-adaptivity, and heterogeneity. Others do address
some of these opportunities. Sia seeks to address them all.

2.1 Related work in DL cluster scheduling

To our knowledge, no prior scheduler optimizes assignments
for resource-adaptive jobs on a heterogeneous DL cluster.
This section groups prior schedulers by unaddressed aspects.

Scheduling for heterogenenous DL clusters (no
resource-adaptive jobs). Among DL schedulers that are
designed to handle heterogeneity within a cluster [8, 32, 40],
none adaptively tune the number of GPUs assigned nor
account for other potential adaptations made by DL jobs.



Instead, the user specifies a number of GPUs for each job
submitted.

Gavel[40] is the best-performing state-of-the-art hetero-
geneous DL cluster scheduler, using a fast linear-program
formulation that scales to large cluster sizes. However, Gavel
does not support job adaptivity, and only optimizes the as-
signed GPU type given the minibatch size and GPU count
specified by job submitter. This approach may lead to under-
utilization of newer, more powerful GPUs because of too-
small batch sizes. Also, when the cluster is congested, Gavel
time-shares resources between jobs, wasting GPU time on
checkpoint-restore operations.

Most importantly, extending Gavel to handle job adap-
tivity is non-trivial: Gavel expresses scheduling options us-
ing a throughput matrix populated with (job_id, GPU_type)
pairs. If one simply expands the throughput matrix to con-
tain entries for each adaptivity choice (job_id, GPU_type,
num_GPUs, minibatch_size), it leads to two problems — (1)
populating a non-trivial portion of this matrix will require
extensive per-job profiling, and (2) the resulting optimization
program is too large to be solved quickly.

Scheduling for elastic and resource-adaptive jobs (no
heterogeneity). Among DL schedulers that are designed
to tune for elastic and resource-adaptive jobs [19, 43, 44, 50,
57], none consider GPU heterogeneity—they assume that all
GPUs in the cluster are identical.

Pollux [44] is a state-of-the-art DL cluster scheduler for
elastic resource-adaptive jobs for homogeneous clusters. Pol-
lux uses per-job goodput models to assign both a number
of GPUs and a batchsize setting to each current job, and it
re-considers all assignments each scheduling cycle based on
updated job behavior and job queue information. By doing so,
it exploits elasticity to avoid unused or over-committed GPU
resources. Each job’s goodput model consists of two compo-
nent models: one for statistical efficiency (a rate of training
progress per sample, based on Gradient Noise Scale [36])
as a function of batchsize, and one for throughput (samples
processed per second) as a function of both GPU count and
batch-size. How each job scales with GPU count is learned by
scaling it up, measuring each count tried, and interpolating
for others. Pollux uses the per-job models with a genetic
algorithm to search the space of resource allocations (and
corresponding batchsizes) for all current jobs to maximize
aggregate cluster-wide goodput weighted by fairness. Un-
fortunately, Pollux’s no-pre-profiling throughput modeling
approach blocks consideration of GPU heterogeneity. Worse,
Pollux’s formulation of the scheduling problem as a genetic
optimization problem results in very poor cluster-size scal-
ing even for homogeneous clusters with 100s of GPUs, which
would only worsen with GPU heterogeneity.

This is because Pollux considers a very large number of
adaptivity choices: for each (job, GPU_count) pair, it consid-
ers every possibly way to place this job across all nodes. As a
result, the number of possible solutions is exponential in the

number of nodes and number of GPUs per node. For clusters
with 1000+ GPUs, it is too slow to respond to changes in
cluster as it takes tens of minutes for the genetic algorithm
to terminate (see Figure 9).

Scheduling for rigid jobs on homogeneous DL clus-
ters. Most existing DL schedulers require the submitter to
specify GPU count (and job configuration) for each job [15,
34, 61]. These schedulers do not adjust the number of GPUs
assigned based on current load or scalability/efficiency of
current jobs. They also do not consider GPU type differences,
instead assuming that all GPUs in the cluster are identical.
As such, these schedulers use DL cluster resources less effi-
ciently than schedulers from the two prior categories [40, 44].
As a recent example, Shockwave [61] improves performance
and fairness relative to prior schedulers in this category, and
we include it in our evaluations. Some batch-schedulers like
Kubeflow and Volcano can adjust GPU count to improve
GPU utilization, but do not co-adapt batch-size, GPU count
and type simultaneously.

Parallelism optimizers that are not cluster sched-
ulers. There are various optimizers (7, 23, 39, 53-55, 60] for
selecting an individual job’s configuration before acquiring
cloud resources for it or submitting it to a cluster scheduler.
Such optimizers are especially important and popular for
hybrid parallelism approaches. However, they cannot be con-
sidered cluster schedulers as they consider an individual job
in isolation, without considering cluster load or trade-offs
in assigning a particular resource to one job rather than an-
other. To our knowledge, no existing scheduler co-optimizes
non-data-parallel job configurations and cluster resource
assignments, even for homogeneous clusters.

3 Sia Design and Implementation

Sia is a pre-emptive, round-based scheduler that optimizes
allocations for a set of jobs to maximize cluster-wide goodput.
In each round, jobs receive bundles of resources (CPU, GPU
and network, like VMs in cloud) and Sia uses checkpoint-
restore preemption to optimize job adaptivity.

(1] Queue (4] oo (J,2 x &) o
s olicy acer
J B4 5]
) e O G (6]
; Adaptive
Goodput 9 Executors

Estimator | (7)== Ba

Figure 3. Lifecyle of a job under Sia. After a job is submitted,
it is profiled once on each GPU type for a few batchsizes. Upon
receiving an allocation, the job begins a cycle of continuous opti-
mization (steps 5-8) for the remainder of its life in the cluster. Policy
continuously optimizes allocations for the job, while Goodput Esti-
mator provides up-to-date performance and gradient statistics to
Policy to aid in decision making.



3.1 Sia components and job life cycle

Figure 3 illustrates the life-cycle for a job J under Sia. A user
submits a job J to Sia (D) and declares both the maximum
batchsize (max_bsz) and GPU count (max_ngpus) for execu-
tion. Sia then profiles throughput of J on a few batchsizes
using one GPU of each type(®). Goodput Estimator boot-
straps a throughput model for J on each GPU type using
the profiles. Goodput estimates for J on various resource
configurations are provided to the policy optimizer(®) for
informed scheduling. Job J stays in the queue (@) until Sia
allocates some GPUs to it and then enters a cycle where its
adaptivity is continuously optimized by Sia as follows.
Continuously optimized job adaptivity. Sia Policy uses
goodput estimates from each job’s Goodput Estimator and
finds an optimal partitioning of cluster resources among the
jobs in the cluster, giving job J, say, 2 GPUs of type

(® in Figure 3). (The Goodput Estimator combines Sia’s
throughput model with a statistical efficiency model bor-
rowed from Pollux [44].) Placer then determines the 2 GPUs
to assign to job J (©) given the current assignment of GPUs
to jobs and attempts to reduce unnecessary job migrations
due to resource de-fragmentation. Sia runs jobs on Adaptive
Executors that support (1) transparent checkpoint-restore
for low-overhead job pre-emption and resource scaling, (2)
batchsize adaptivity to maximize statistical efficiency, and
(3) frequent reporting of gradient and throughput statistics
for current allocation (default = 30 seconds). After J starts
running on Adaptive Executors, Goodput Estimator uses
J’s gradient and throughput statistics (reported by Adap-
tive Executors) to update the goodput model for J on GPU
type (@). In the next scheduling round, Sia Policy
queries the updated goodput estimates for J on all GPU
types (®) and completes the loop in the Sia architecture
(®—-O®—->@—®...), allowing us to continuously optimize
J’s goodput until its termination/completion.
Heterogeneous Execution. Sia transparently handles GPU
heterogeneity in number and capabilities - GPU memory
capacity, interconnect speeds, throughput are modeled in
the goodput estimator, and Adaptive Executors optimize for
goodput given a fixed set of resources. Gradient accumula-
tion is used if statistical efficiency dictates higher batchsize
than supported by GPU memory limits, with goodput opti-
mized over a larger range of per-GPU batchsizes for GPUs
with larger memories, fully exploiting whichever GPU type
for optimal job progress.

Job Scaling policy. Sia uses a simple scale-up policy — start
each job with exactly 1 GPU, and scale the job up by a maxi-
mum of 2X in each scheduling round. If a job requires a min-
imum of min_ngpus to start execution, Sia will respect this
minimum and ignores all allocations smaller than min_ngpus
for this job. Jobs may also be scaled down to a minimum of
min_ngpus to accommodate more jobs in the cluster (deter-
mined by the scheduling objective).

Decoupled allocation and placement. Given a set of het-
erogeneous resources to be partitioned among a set of jobs,
Sia decomposes the problem into two stages — (a) an Allo-
cation stage ((®) that determines the number and type of
resources to assign to each job, and (b) a Placement stage
(®) that determines the exact physical resources (and the
network topology) to satisfy allocations for all jobs. This
decoupling allows us to restrict the space of placements
for an allocation (there exist many placements for a given
allocation[51]). Sia uses three rules to obtain placement in
Placer: (a) partial node (fewer GPUs than max GPUs per node
requested) allocations must not be split across two nodes,
(b) whole node allocations must take whole nodes, and (c) if
there exists no placement satisfying (a) and (b) (resource frag-
mentation), evict some jobs and try again. Evictions resulting
from fragmentation are quite rare and often result in fewer
than 3 evictions at once. As we will see in Section 3.3, re-
stricting allocations to a particular set allows us to guarantee
a placement for all valid allocations output by Sia.

3.2 Bootstrapping of throughput models

A naive approach to constructing each job’s throughput
model (as a function of GPU count and batchsize) for every
GPU type would require profiling a variety of multi-GPU
allocations for each GPU type to collect compute and com-
munication times. This profiling overhead grows linearly
in both the number of GPU types and the number of nodes
of each GPU type. Sia takes a different approach, starting
with minimal profiling information and refining based on
observed allocations.

For each job, Sia learns one throughput model for each
GPU type and one statistical efficiency model for the job. Con-
sider a job J submitted to Sia running on a cluster with two

GPU types A and B. Let’s assume that J needsmin_GPU_count=>

1 GPUs per data-parallel worker. Sia first profiles J on one
GPU of each type (corresponding to (2)in Figure 3). Starting
from a minimum batchsize, Sia profiles increasingly larger
batch sizes till it hits GPU memory limits (typically 10 pro-
filed batchsizes per GPU type); altogether, the average per-
job profiling cost is < 20 GPU seconds per GPU type. This
gives us two crucial pieces of information: (1) compute times
for various combinations of GPU type and batchsizes, and (2)
comparison of compute times across GPU types. Importantly,
compute time is independent of GPU count increases (since
we scale via data-parallelism with all-reduce), this leaves
only the communication time to be predicted.

Sia initializes J’s throughput models for each GPU type
using their 1-GPU profiles. These throughput models are
used by Sia to place J on 1-GPU of some type, say A. Once
J starts running on a single A GPU, online profiling is used
to (a) learn a statistical efficiency model for J as a func-
tion of batch size, and (b) refine throughput model for J
on 1-GPU of A type. These throughput models, however,



cannot estimate communication time, so Sia makes a one-
time simplifying assumption to estimate J’s throughput on
2-GPUs of A: throughput of two data-parallel replicas is twice
the throughput of a single replica (i.e. perfect scaling with
zero communication time). Say Sia then assigns 2-GPUs of
type A to J. Using online profiling, Sia refines J’s through-
put model for A GPUs using the measured communication
times on a multi-GPU allocation. Sia can now use the refined
throughput model to estimate J’s throughput on multi-GPU
allocations on A GPUs as it accurately models both compute
and communication time. However, since J has not yet run
on a multi-GPU allocation on B GPUs, the throughput model
for B GPUs does not model communication time on B GPUs
as it was learned from initial profiling and cannot be used
to estimate J’s throughput on, say, 4-GPUs of B type. To
overcome this problem, Sia combines J’s learned through-
put model for A GPUs with the initially profiled single-GPU
throughputs for both A and B to obtain a crude bootstrapped
throughput model for B GPUs. In our example, J’s through-
put on N GPUs of B type is estimated with a bootstrapped
throughput model, est-xputpg, given by:

xputp(1
est-xputg(N) = p—B() * Xput 4 (N) (1)
xput 4 (1)
where igﬁtiﬁ; is the ratio of 1-GPU throughputs and xput 4 (N)

is the throughput for N GPUs of A type. This simple esti-
mator assumes that if we do not know the communication
time for B, the scaling of compute:communication ratio for
B is the same as A (which is known). In Section 5.7, we show
that bootstrapped throughput models are accurate enough
to guide Sia towards taking useful explorative steps.

We use est-xputy to estimate goodput for multi-GPU
allocations on B GPUs and if J runs with a multi-GPU allo-
cation on B GPUs, we can safely discard the bootstrapped
throughput model (from Equation (1)). This is because using
online profiling, Sia can refine xputp to accurately predict
communication time on B GPUs (which is now known), elimi-
nating the need for the crude bootstrapped model est-xputp.

3.3 Configurations

A configuration represents a bundle of resources (CPU, GPU,
Network, etc) and is similar to virtual machine sizes in the
cloud. Configurations can be represented as a 3-tuple — (n, r, t)
where n is the number of nodes containing a total of r re-
sources of type t. For example, (2, 16, T4) represents a con-
figuration with 2 nodes containing 16 T4 GPUs in total.

Sia’s Policy supports efficient job adaptivity by optimizing
for allocations over a small valid set of configurations de-
signed to simplify placement logic in Placer. This set can be
decomposed into two sets: a single-node allocation set which
contains allocations that do not cross a node boundary (i.e.
n = 1), and a multi-node set that contains allocations that
span node boundaries (i.e. n > 1). We provide a construction
of these sets below.

Consider a cluster with N physical nodes, containing R
GPUs of type X per node, the configuration set C is given
by a union of the single-node and multi-node sets —

C ={(1,2°X),(1,2,X),... (LR X)}U
{(2,2R X),...,(N,N-R X),n € N}
The single-node set constrains allocations to be powers of 2
within a node, and at most R, the number of GPUs within a
node. If R is not a power of 2, one can decompose R as a sum
of powers of 2, and model each physical node with R GPUs
as multiple virtual nodes with different GPU counts. The
multi-node set constrains all allocations to use all available
GPUs in a node (i.e. GPU count is a multiple of R). Using
these allocation and resource sets, we can rely on existing lit-
erature (Submesh Shape Covering theorem [60]) to guarantee
a placement for all valid allocations where no two distributed
jobs share any nodes. This is especially desirable because it
eliminates resource contention on the NICs which can cause
significant slowdown to all contending jobs [21, 44].

In a homogeneous cluster, Sia matches Pollux’s perfor-
mance (Table 4), despite optimizing over a smaller configura-
tion set. Pollux optimizes over the full space of (GPU count x
placement) choices for each job (O(NX)), while Sia restricts
the configuration set to a size of (N + log, R) for a clus-
ter with N nodes and R GPUs each. This suggests that our
restrictions do not significantly impact job runtimes. This
reduction in problem complexity allows Sia’s optimization
to scale to clusters with thousands of GPUs (see Section 5.6)
with practical runtimes.

«— single-node

«— multi-node

3.4 Scheduler objective

This section describes the Sia scheduler objective. We use a
running example where a heterogeneous cluster has 2 GPU
types - (a) one node with 2 GPUs of type A and (b) one node
with 4 GPUs of type B. Let J = {J1, o} be the set of jobs in
the scheduler queue, both of which require a minimum of 1
GPU to run.

Valid configurations. Using rules described in Section 3.3,
we construct the set of valid Sia configurations C. For the ex-

ample cluster, C = {(1,1,4),(1,2,A),(1,1,B),(1,2,B),(1,4,B)}.

Recall that if Sia assigns a configuration ¢ = (n,m,X) € C to
a job, the job runs with m GPUs of type X split across n nodes.
A job receives either no resources in a scheduling round, or
a set of resources identified by a valid configuration.

Goodput estimation. Sia uses one throughput model for
each (job, GPU_type) combination to model job and hard-
ware heterogeneity effectively. Sia optimizes for goodput
cluster-wide, so we use the per-job statistical efficiency mod-
els to derive goodput estimators, one for each (job, GPU_type)
combination. Let (fa, fg) and (g4, gs) be the goodput estima-
tors for jobs J; and J, and GPU types A, B, respectively. We
define a goodput matrix G of size |J| X |C|, where G;; is the
estimated goodput for job J; € J using resources defined by
configuration c; € C. For a given job J;, all values in that row



are comparable: G;; > G;; means configuration c; is better
than ¢y for the job J;. However, for a given configuration c;,
Gmj > Gyj does not derive that ], deserves to run in config-
uration c; over job J,. We apply a simple row-normalization
technique to make values in G comparable across jobs for
each configuration.
Normalized goodput matrix. For each job J; with mini-
mum required GPU count NIT"i”,
min Gij
Gjj « N« ———
min; Gi j

where min; G;; is the minimum of goodput values for the
job J; across all configurations in C. The result matrix G is
called a normalized goodput matrix.

Using the row-minimum values to normalize each row
in G provides two benefits. First, we can interpret G as a
utility-matrix for jobs J, with G;; capturing the utility of
configuration C; to job J;. Second, we can compare utilities
for a given configuration across job types. Choosing the
configuration with the highest value along a job’s row in G
makes the most progress for that job, and a configuration
is best used by the job with the highest value along the
configuration’s column in G.

Each new job adds a row to G, and the completion of a
job delete its respective row, which keeps G up to date with
goodputs only for active jobs. If a job’s statistical efficiency
changes, or its throughput model gets more refined, G is
updated to track the most recent values. For our running
example, Table 1 shows the normalized goodput matrix G.

| (1,,A) (1,24 (1,1,B) (1,2B) (1,4B)

B 1 2 3
Jo |l 2 1 2 3

Table 1. Normalized goodput matrix G. Boxed entries show
the allocation that maximizes sum of goodput for jobs Ji, J.

Scheduler objective. G represents the utility of the set of
configurations C to the set of jobs in J, and Sia selects the
(job, configuration) pairs that maximize the sum of normal-
ized goodputs for jobs in the chosen configurations. Each
configuration maps to a unique allocation and by constrain-
ing the number of allocated resources, a valid schedule can
be determined.

We define a binary matrix A with the same shape as G
where A;; = 1 if configuration c; is chosen for job J; and 0
otherwise. We formulate the problem of choosing the best
pairs (as outlined above) as the following optimization prob-

lem over A:
AR(e]
mj‘XZ; (Z;Aij Gy + A1-lAl) @)
i= j=
where ||0]|; denotes the £, norm of a vector v. This objective
is composed of two terms: a sum of normalized goodputs of
jobs in all chosen configurations, and a scheduler penalty
for not choosing any configuration for each job—no penalty

if some configuration is chosen for job J; (A;; = 1 for some
J» 80 ||Ai|l1 = 1), and a constant penalty —A otherwise. The
penalty A can also be thought of as an incentive to reduce
scheduler queue occupancy: if A is large, then Sia will allocate
at-least one GPU to each job in the cluster, if available.

We formulate the Sia scheduler objective as a (binary)
Integer Linear Program task with the binary matrix A as an
optimization variable and the following added constraints:

1. Each job chooses at-most one configuration: ||A4;||; < 1
2. Allocated number of GPUs does not exceed available
GPUs for each GPU type

Solving the optimization problem gives us a binary solution
matrix A that contains allocations for the next scheduling
round: a job J; receives no resources if ||A;||; = 0, otherwise
(there must exist an A;; = 1) it runs under configuration c;
for the next scheduling round. For the normalized goodput
matrix G shown in Table 1, optimizing Equation (2) gives
us the allocations : J; gets configuration (1,4, B) and J, gets
(1,2, A). The corresponding entries in G are each highlighted
with a box in Table 1.
Restart Factor. To prevent frequent job restarts which can
harm performance, a re-allocation factor, r;, is used to ad-
just the utilities in G for configurations that differ from the
currently allocated configuration for each job J;. This multi-
plicative factor models the expected goodput for such config-
urations by projecting the historical rate of restarts into the
future, and is necessary because the restarting cost for deep
learning jobs can be high (e.g., 25-250 seconds for the models
listed in Table 2). Consider a job J; with age T;, wasting S;
GPU seconds per restart operation and having restarted N;
times previously. The re-allocation factor r; for the job J; is
computed as follows:
poo B NS 3)
T + S

If job J; is currently running under a configuration ci, we
discount goodput values for all other configurations c; # cx
that require a restart by the restart factor: G;; « r; - G;j.
Without a restart factor, each tiny changes in G would result
in altering some jobs’ resources and additional checkpoint-
restore overheads. By applying a restart factor to only those
utility values in G that require restarting the job, Sia only
restarts jobs if not doing so results in a big reduction in
optimal value for its scheduling objective.
Balancing goodput with fairness. We provide a simple
knob to tune fairness of allocations in Sia — a parameter p that
can be used to manipulate the scale-free matrix G by raising
the elements to the power of p. If p < 0, we flip the sign of
the objective (i.e., minimize the original objective instead of
maximizing) to preserve its semantics. We investigate the
effect of p on Sia’s scheduler metrics in Section 5.7, showing
that it provides robust fairness with minimal negative impact
on efficiency metrics across a range of settings between -1.0
and 1.0. We use a default of -0.5. Sia’s full scheduler objective,



for p > 0, is as follows:
I 1Cl
mgx; (;AU (ri- Gyt + A= lAdlD) @)
Support for limited adaptivity. Sia supports executing
jobs with some adaptations disabled (batch size, GPU count
and/or type). Large batch sizes result in high throughput and
GPU utilization, but may result in a generalization gap for
the trained model([26, 37]): a phenomena where the final
model performs poorly on unseen samples. Sia supports
different types of jobs with varying degrees of adaptivity to
accommodate diverse reasons for limited adaptivity: strong-
scaling jobs run with a fixed batch size, but allow the GPU
count and type to be optimized, while rigid jobs run with a
fixed batch size and GPU count, only leaving GPU type to be
optimized. Both strong-scaling and rigid jobs preserve model
quality and training semantics by keeping batch size fixed,
but allow Sia to optimize job execution in a limited manner.
Given a fixed batch size, goodput is directly proportional
to throughput; so for strong-scaling jobs, Sia directly uses
throughput in place of goodput in Equation (4). For rigid
jobs, we add the following objective to Equation (4):
Rl Ny

mBax; (; B (ri - Tig)’ + A(1=1Byll)) (5
where Jg is the set of rigid jobs, Ny is the number of GPU
types, Tj4 is the goodput of job J; on GPU type g and r; is the
job’s restart count. We then update constraints for the ILP
to constrain total GPUs allocated for each GPU type across
all active jobs.

In a similar manner, with few changes to Equation (4)
and optimization program constraints, Sia’s flexible sched-
uling formulation can support scheduling custom resource
requests and jobs with user-defined parallelism tuned to a
specific GPU count, type and/or batch size.

Preemption and reservation. Sia assumes all jobs are
preemptive, but can also support a small number of non-
preemptive jobs in the cluster (as long as their aggregate de-
mand can be satisfied): for each non-preemptive job, we add a
constraint to Equation (4) to force the requested resources to
be allocated. This constraint ensures that the non-preemptive
jobs get allocated first, guaranteeing non-preemption in each
scheduling round. Reservations are implemented in a similar
manner.

Support for other parallelization techniques. In general,
Sia only requires that a job provide a goodput estimator that
can be evaluated on valid configurations.

This design allows Sia to support jobs with more advanced
parallelization strategies [39, 55, 60]. We extend Sia’s through-
put models to support jobs that use a combination of pipeline
[18, 39] and data parallelism, allowing Sia to schedule jobs
with multi-billion-parameter models.

These jobs employ a mix of data and pipeline parallelism [41]
where a pipeline parallel strategy partitions a large model
onto many GPUs, and data parallelism is used to scale up
training (see Section 5.3). Each model partition is mapped to
one or more GPUs, say P GPUs across all partitions. A job
with N data-parallel replicas uses exactly N X P GPUs. Given
a mini-batch size of M and micro-batch size of m, each replica
computes gradients locally using % micro-batches of size
m each across P GPUs. Then, N replicas of these pipelines
synchronize using a gradient all-reduce, thus finishing one
training iteration. The distinct compute and communication
phases [41] allow us to leverage Sia’s throughput models for
goodput estimation at various batch sizes. Since these jobs
scale as units of P GPUs each, we add additional terms to
our scheduling objective with the appropriate constraints
(similar to Equation (5)). We discuss adaptation for one such
hybrid-parallel model in more detail in Section 5.3.

Existing hybrid-parallel optimizers are time-consuming[38,
60], so we leave the problem of efficient elastic scaling with-
out fixing non-data-parallel degrees as future work.
Scheduling other workload types. Sia exploits charac-
teristics unique to deep learning training, but we believe it
could also handle other batch-processing workloads by using
a goodput estimator customized to each workload type. For
example, one can use Sia to schedule batch deep learning
inference jobs that run inference on a large dataset. Here,
throughput can be used as a proxy for goodput, yielding a
simple goodput estimator. For latency sensitive inference
jobs, one could use Sia to pick the right set of resources:
goodput=1 if a configuration can support inference within
the promised latency constraints and 0 otherwise.

3.5 Implementation

We implement Sia using the open-source AdaptDL frame-
work, replacing its scheduler and data-loader implementa-
tions with our own, as the PyTorch-based framework pro-
vides native support for dynamically adjusting batch-size
and number of GPUs for DL training jobs on Kubernetes-
managed GPU clusters. For a data-parallel DL training job,
we use AdaptDL data-loaders to vary batch-size during train-
ing, and use all-reduce to synchronize gradients across work-
ers. Sia Adaptive Executor continually profiles minibatch
runtimes and gradient statistics, periodically (default 30s),
optimizes goodput model parameters using these profiles
and communicates the new goodput model parameters to
Sia Policy. It also selects the batch-size that maximizes good-
put given allocated resources and scales the learning rate in
accordance with the selected batch size using a configurable
learning rate scaling rule. For models listed in Table 2, we
use the square-root learning-rate scaling rule[29] for models
using the AdamW [33] optimizer and AdaScale[24] scaling
rule for models with SGD optimizers.

Sia Policy runs as a Kubernetes service, and at the start
of each scheduling round, uses the latest goodput model



parameters for each job to optimize resource allocation us-
ing ( Equation (4)). We formulate Equation (4) as a Mixed-
Integer Linear Program using the GLPK_MI [35] solver from
the CVXPY package [13] and use the output solution to de-
termine job allocations.

Preemption with checkpoint-restore. If a DL training
job’s allocation changes, Sia preempts the job only after the
current minibatch has finished processing so there is no
communication in flight. First, Sia checkpoints the latest
model weights, data-loader (e.g., sampler and iterator states)
and optimizer states (e.g. gradient statistics for Adam[27])
to shared persistent storage and releases all GPUs allocated
to the job. Then, on the new resources, Sia launches one
Adaptive Executor per GPU, restores training state from the
checkpoint on disk, and resumes model training,.

Sia also uses the checkpoint-restore mechanism to recover
from worker failures. After every epoch, Sia checkpoints
model weights and optimizer states to disk, so if some work-
ers fail in the next epoch, model training can be resumed
from the last saved checkpoint on different resources.

4 Experimental Setup

We compare Sia with state-of-the-art schedulers in both ho-
mogeneous and heterogeneous clusters using workloads de-
rived from real-world environments. This section describes
the workloads, configurations and the schedulers used.

4.1 Workloads and Traces

We use traces derived from three production DL clusters,
using a common approach from recent work [40, 44, 61]. We
categorize each job in a trace based on its total GPU time:
Small (0-1 hrs), Medium (1-10 hrs), Large (10-100 hrs) and
Extra-large (XL, >100 hrs). We map each category into one
or more representative jobs as listed in Table 2. XXL models
are only used for hybrid-parallel experiments in Section 5.3.

Philly is from 100k jobs executed over two months in a

multi-tenant cluster with multiple GPU types at Microsoft [21].

Helios is from the Saturn cluster in the Helios cluster
traces [17]. The original traces contain 3.3M jobs recorded
over a six-month period in a heterogeneous cluster with over
6k GPUs. Compared to Philly, Helios jobs request more
GPUs and run for longer, resulting in a higher cluster load.

We derive ten traces for each workload by randomly sam-
pling the 8 busiest hours in the respective real-world trace
using an average job arrival rate of 20 jobs/hr, resulting in a
total of 160 jobs submitted over the 8-hour window.

newTrace is a more recent trace from a production system
for deep learning jobs that spans multiple clusters with thou-
sands of GPUs. Similar to the Microsoft Philly traces [21],
this production system allocates Virtual Machines (VMs) to
DL training jobs where each VM instance is provisioned a
pre-configured amount of CPU, GPU and memory resources.
Similar to other production environments, we observe a wide
range of resource requests exhibiting diurnal patterns with

bursts of resource requests coming by virtue of job submis-
sion scripts (e.g., hyper-parameter tuning). We sample 10
traces over a 48 hour period at an average arrival rate of 20
jobs/hr (total 960 jobs submitted in each trace).

The longer 48-hour newTrace traces are used to evaluate
a more realistic setting where congestion slowly builds up
in a cluster from long-running jobs over a long duration.
newTrace sees a significant variance in job arrival rates from
5 to 100 jobs/hr over the 48-hour job submission window
and gives us valuable insights into how schedulers can deal
with congestion and variance in cluster loads.

4.2 Hardware measurements and simulator

Most of our experiments use the discrete-time simulator
open-sourced [3] by authors of Pollux whose fidelity is ver-
ified by prior work [44] and our own measurements. We
added a Gavel implementation and the open-source Shock-
wave [61] to the simulator, as well as extended the original
version of Pollux to support heterogeneous clusters. The
simulator allows us to experiment on a range of cluster sizes
and hardware configurations.

We use four different types of GPUs in our experiments:
a cluster of 16 t4 instances [44] and three on-premise node
types (3x rtx, 2x a100, and 1x quad):

t4 — [Cloud] g4dn.12xlarge AWS EC2 instance with 4
NVIDIA T4 (16GB VRAM) GPUs.
rtx — [On-prem] commodity node with 8 NVIDIA RTX
2080Ti (11GB VRAM) GPUs and 50Gb/s Ethernet.
a100 — [On-prem] high-performance NVIDIA DGX-A100
node with 8 NVIDIA A100 (40GB VRAM) GPUs and
1.6Tb/s Infiniband.
quad - [On-prem] workstation node with 4 NVIDIA Quadro
RTX6000 (24GB VRAM) GPUs and 200 Gb/s Infiniband.

We were able to get a limited amount of dedicated time
with the on-prem nodes, which allowed for direct experi-
ments on a 44-GPU, 3-GPU-type cluster. The results (Sec-
tion 5.1) confirm Sia’s efficacy and the simulator’s fidelity.

The original simulator from [44] simulates checkpoint-
restore with the same constant delay for all jobs, which we
replaced with model-specific checkpoint-restore delays.

4.3 Evaluated settings

We compare schedulers in the following three settings:

e Physical: Physical cluster with 3 rtx, 2 a100, and 1 quad
nodes for a total of 44 GPUs. In Sec. 5.1, we compare Sia
with Pollux and Gavel.

e Homogeneous: Simulated cluster with 16 t4 nodes(64 GPUs).
In Sec. 5.2, we compare Sia to Pollux, a state-of-the-art
job-autoscaling scheduler for homogeneous clusters, and
inelastic schedulers Shockwave [61], Themis [34], and
Gavel [40].

e Heterogeneous: Simulated cluster with 6 t4, 3 rtx, and 2
a100 nodes (64 total GPUs). In Sec. 5.2, we compare Sia



Table 2. Models used in our evaluations.

Size Task Model Dataset Target Metric | Batch Sizes Optimizer
S Image Classification ResNet18 [16] CIFAR-10 [30] 94% Top-1 acc [128 - 4096] SGD
M Question-Answering BERT [12] SQuAD [46] 0.88 F1 score [12 - 384] AdamW [33]
Speech Recognition DeepSpeech? [6] CMU-ARCTIC [28] 25% word err [20 - 640] SGD
L Object Detection YOLOV3 [47] PASCAL-VOC [14] 85% mAP [8 -512] SGD
XL Image Classification ResNet50 [16] ImageNet-1k [11] 75% Top-1 acc (200, 12800] SGD
XXL LLM Finetuning 2.8B GPT [45] SQuAD 0.88 F1 score [48, 384] AdamW

with Pollux and Gavel, a state-of-the-art heterogeneity-
aware scheduler.

Tuning job hyper-parameters. Gavel lacks support to auto-
tune job parameters, so we manually tune the batch size and
requested number of GPUs for each job in our sampled traces
to ensure optimal performance. We follow the approach used
in [44] and optimize each job’s batch size and GPU count:
we search over (batch size, GPU count) combinations (GPU
count < 64 GPUs for Homogeneous, and < 16 GPUs for Phys-
ical and Heterogeneous settings) and randomly choose a com-
bination (bsz, GPU_count) such that the simulated runtime
using (bsz, GPU_count) is 50-80% of ideal speedup over the
runtime of a 1-GPU baseline with the optimal batch size.
We refer to these optimized job configurations as TunedJobs
(TJ) in our evaluations, even though real-world jobs may be
submitted with worse performing job parameters.

Fixing mixed-GPU allocations from Pollux: To make Pol-
lux work on our heterogeneous clusters, we present 8-GPU
nodes as 2 virtual 4-GPU nodes to eliminate heterogeneity
in node capacities. However, Pollux may still schedule a job
on more than one GPU type (not allowed in our setup). So,
we apply a simple heuristic: the GPU type with the most
GPUs is selected, and in case of a tie, the more powerful
GPU type is chosen (a100 > quad > rtx > t4). Although not
perfect, this heuristic enables fair comparisons to Pollux in
heterogeneous settings ( Section 5). Our paper’s focus is not
on designing the perfect heuristic.

Default parameters. Unless explicitly stated otherwise, all
experiments use the following parameters: p = —0.5,1 = 1.1
for Sia, p = —1 for Pollux (same as [44]), (10, 1e-1) for Shock-
wave (same as [61]. We choose a scheduler round duration
of 60s for Sia and Pollux, and choose 360s for Gavel, Themis
and Shockwave. We choose the max-sum-throughput sched-
uling policy [40] for Gavel as it results in the lowest average
JCT on Philly traces among the policies listed in [40]. We
investigate sensitivity of Sia to its parameters in Section 5.7.

5 Evaluation

This section evaluates Sia, showing that it outperforms state-
of-the-art cluster schedulers for both resource-adaptive and
rigid jobs running on both homogeneous and heterogeneous
resources. Results also show that Sia provides better finish-
time fairness, scales to large cluster sizes, and is not overly
sensitive to our default parameter settings.

5.1 Physical cluster experiments

We compare Sia with Pollux and Gavel in the 44-GPU physi-
cal cluster setting (Sec. 4.1) that consists of 3 rtx + 1 quad +
2 a100 nodes. We sample a smaller, single 3-hour trace with
30 jobs with a mix of all the models listed in Table 2 and
run all schedulers on the physical cluster. Owing to resource
availability constraints,” we run Sia, Gavel and Pollux four
times to account for any randomness in their schedules.

Figure 4 shows the results of our physical cluster experi-
ment side-by-side with those predicted by the simulator. On
the physical cluster, Sia provided lower average JCT than
Gavel or Pollux by 50% and 35-50%, respectively.

Figure 5 shows resource allocations for three jobs over
45 minutes, illustrating how Sia dynamically adjusts GPU
count and type. Rising congestion triggers Sia to scale down
and then move the ImageNet job (top) to rtx GPUs, leaving
the fastest (a100) GPUs for incoming CIFAR-10 jobs. Over
time, Sia scales up and refines throughput models for each
job (e.g. DeepSpeech?2 job in Figure 5) while adapting to
GPU type and count changes. When congestion decreases
sufficiently, Sia shifts ImageNet back to a100 and scales out
DeepSpeech?2 on rtx GPUs for better throughput.

Simulator fidelity. The simulator was found to have less
than 5% error in average JCT and Makespan for both Sia and
Gavel, validating its accuracy yet again. However, Pollux
performed significantly worse on the physical cluster than
predicted by the simulator, due in part to the modifications
we made to the simulator giving Pollux an advantage when
scheduling a single job over heterogeneous resources (Sec-
tion 4.3). The schedules produced by Pollux can have large
variations due to randomness in its optimization and its po-
tentially misguided job adaptivity (due to noisy throughput
estimators), resulting in bad worst-case scenarios. Addition-
ally, the heterogeneity of the underlying hardware mapped
to the virtual nodes that Pollux assumes are homogeneous
can also contribute to the variation.

5.2 Simulator experiments

Table 3 shows key performance metrics for Sia, Pollux, and
Gavel running on the heterogeneous cluster with traces de-
scribed in Section 4.1. Across all traces and evaluated metrics,
Sia outperforms heterogeneity-aware schedulers like Gavel

SUnlike profiling runs, our scheduler experiments require extended isolated
control over the entire collection of machines, blocking out all users for
which the machines were acquired.



Trace Policy JCT Makespan Avg. G.PU- Contention | Avg. job
Avg. | p99 hours/job Avg. | Max. | restarts
Sia 0.6h + 0.1 | 9.5h | 14.2 + 1.9h 4.0 £ 0.7 6.9 31 2.9
Philly Pollux 1.0+ 0.1h | 149h | 245+ 7.5h 56+ 1.1 7.2 42 5.8
Gavel+TJ | 1.9 +£0.3h | 30.0h | 33.8 = 8.6h 9.0 £6.3 9.9 56 5.7
Sia 0.7 = 0.1h | 10.9h | 14.9 + 1.7h 4.8 £ 0.7 7.4 32 3.4
Helios Pollux 1.0 £ 0.2h | 15.0h | 25.5 + 8.0h 59 +0.7 6.9 47 5.3
Gavel+TJ | 2.5+ 0.9h | 38.7h | 43.0 + 10.9h 12.1 £ 3.7 9.2 48 7.5
Sia 0.7+ 0.1h | 4.6h | 52.2 + 1.3h 3.0 £ 0.1 13 69 5.0
new-
T Pollux 1.5+ 0.2h | 10.3h | 62.3 +4.6h 34+0.2 22 85 5.4
Tace  Gavel+TJ | 11.3 = 3.0h | 98.1h | 110 + 21.5h | 6.4 + 1.1 96 | 243 45

Table 3. Comparison of Sia, Gavel, and Pollux in the Heterogeneous setting. TJ is short for TunedJobs, Contention is the number of

jobs contending for resources in the cluster.

1.00

-
o

v B Simulated
< 0.75
= 1.0 KA Real
5 0 0.50
o --- Simulation
203 0.25 R
I / — Real
0,00 +—
Pollux Sia Gavel 0.1 1 10

+Tunedjobs Job Completion Time (hrs)
Figure 4. (Left) AvgJCTs on the Physical testbed, and (Right)
CDF of job completion times for Sia predicted by the simula-
tor (Simulated) compared to a run on Physical testbed (Real).
Error bars represent the extreme values seen across 200 simulator
16 ResNet50 on ImageNet-1k H

:
\
§ : TRRRIRIIIIII M
ResNet18 on CIFARIO H
; ! B A100 B RTX Quadro
;
;
7

and 4 physical cluster runs.

2
XX
X
XX

RRRX

IS

Num GPUs

1
8 DeepSpeech2 on CMU-Arctic
4 i

ml A B E

¢ H_'_'_'_\‘_‘_"_\_._._._._._.._._

>

2o

<14 1.6 1.8 1.9 2.1

Time since start of experiment (hours)
Figure 5. Resource allocations for three jobs in the Sia phys-
ical cluster experiment, along with number of active jobs
in cluster. Colors indicate GPU type and whitespaces represent
checkpoint-restore delays caused by Sia’s scheduling decisions.

and job auto-scaling schedulers like Pollux. Sia reduces av-
erage JCT by 30-93% and 99th-percentile JCT (p99 JCT) by
28-95%, compared to Pollux and Gavel. In doing so, Sia is
also more resource efficient- it allocates 12-60% fewer GPU
hours per job compared to Pollux and Gavel.

Gavel+TunedJobs performs poorly compared to Sia for
two reasons: (1) time-sharing overheads reduce the useful
GPU time spent on training progress in a given round, and
(2) using a batch size that fits the smallest (in memory) GPU
leads to under-utilization of more powerful GPUs. Pollux
outperforms Gavel due to job adaptivity, but falls behind
Sia for two reasons: (1) it treats heterogeneous hardware as
homogeneous, failing to exploit performance heterogeneity,
and (2) it can output placements spanning more than one
GPU type; fixing them so they only span one GPU type forces
some GPUs into idling, but it is better than using a mix of
GPU types and running at speed of the slowest.

From Table 3, we see that Pollux restarts jobs twice as
often as Sia for moderately congested clusters (Philly and
Helios). This is because it optimizes job allocations in steps
of 1 GPU, while Sia only allocates configurations with steps
as large as an entire node (as defined in Section 3.3).
Congestion in newTrace. Compared to Philly and Helios
traces, newTrace contains bursts of up to 100 jobs/hr during
the busiest hour. Gavel struggles to handle these bursts, and
as congestion worsens, this problem compounds creating
a positive feedback loop: rising contention forces Gavel to
swap jobs in/out more frequently, wasting significant GPU
capacity on executing checkpoint-restore operations when
GPUs are already scarce. As a result, the average and p99
JCTs for Gavel degrade far worse compared to Sia and Pollux.
During peak congestion, Sia and Pollux both scale jobs down
to just 1-GPU per job, resulting in a smaller gap between
them. However, Sia’s heterogeneity-aware scheduling better
matches jobs to GPUs, improving cluster goodput over Pollux
even during congestion.

5.
o B A100
£ 47 == RTX
Z 3 =l T4
(O]
£ 21
2| Nl mmE

o oA EE

CIFAR-10 DeepSpeech2 BERT YOLOv3
Figure 6. (Min-normalized) GPU hours consumed per model
for Sia (S), Pollux (P), and Gavel (G) using Helios traces.

ImageNet

Matching jobs to GPU types. Figure 6 shows the aver-
age GPU hours used to train each model(Table 2) using He-
lios traces. Pollux is heterogeneity-unaware and has no dis-
tinct (job, GPU type) preferences, whereas Gavel and Sia
are heterogeneity-aware and strongly prefer certain GPU
types for particular models. Figure 6 shows that Sia allocates
BERT models almost exclusively to a100 GPUs, aggressively
exploiting the heterogeneity in model goodputs across GPU
types. Gavel’s time-sharing approach, however, forces BERT
jobs to rotate between a109, rtx, and t4GPUs, resulting
in less-efficient execution. Similarly, Sia prefers to use rtx



GPUs for DeepSpeech?2 and leaves the a100 GPUs free for
BERT models, achieving significant reduction in GPU hours
consumed per job compared to Gavel’s approach. On average,
YOLOv3 and DeepSpeech2 models consume about 5% more
GPU hours under Sia compared to heterogeneity-unaware
Pollux, as Pollux gives them more GPU time to jobs on faster
GPUs (out of randomness).

Workload Intensity. Figure 7 shows the average JCT as
a function of average arrival rate for each of our evaluated
schedulers. We sample jobs from Helios traces at various job
arrival rates and evaluate them in the Heterogeneous setting
with a fixed cluster of 64GPUs.

—¥— Pollux

avg JCT (hours)
w

10 20 30 40 50
Job Arrival Rate (jobs/hour)

Figure 7. Avg. JCT for Sia, Pollux, and Gavel for various job

arrival rates sampled using Helios traces.

Pollux and Sia outperform Gavel at larger arrival rates be-
cause they can scale down running jobs to use fewer GPUs
rather than having to time-share GPUs. Sia consistently out-
performs Pollux by 50-65% by aggressively matching jobs to
preferred GPU types. As jobs arrival rates increase, jobs wait
longer for resources, a problem that worsens with increasing
congestion. However, an 8-hour job submission window is
too short to observe these effects; on the 48-hour newTrace
( Table 3), Gavel sees about 7x more contention compared to
Sia (<2x on the 8-hour traces), adding evidence to our claim.

5.3 Adapting hybrid parallel jobs

We simulate training of a 2.8B GPT model that uses pipeline
model parallelism to scale to a few GPUs, and data-parallelism
with gradient all-reduce to scale to multiple nodes. We bor-
row statistical efficiency profiles from BERT (closest match)
to simulate a DL job finetuning the GPT model, and profile
compute times for micro-batches and all-reduce times for
different placements on a100@ and rtx GPUs to seed the sim-
ulator. Finally, we assume this job uses the commonly used
Gpipe schedule [18] internally for PMP. We use 2 and 8 stages
(1 per GPU) for a100 and rtx GPUs, respectively, to account
for the larger memories on a100 GPUs. Each data-parallel
replica runs 48 microbatches of size 1 each.

320
— Al100
RTX

1 2 3 4
Time since start of experiment (hours)

&
3

S
3

Throughput

=3

o
Active jobs Num G
ocu o

o 20 40 60 80 100 120
Number of GPUs

(Left) shows the hybrid-parallel GPT model’s throughput
scaling linearly with GPU count as computation dominates
communication for this model. (Right) shows Sia adaptation
decisions for this model in response to changing cluster con-
ditions. As expected, Sia scales the GPT model in response to

congestion: scaling it down around the 1hr mark and back up
around the 4-hr mark. Sia is the first cluster scheduler to sup-
port elastically scaling hybrid-parallel jobs on heterogeneous
resources; supporting additional adaptation dimensions for
PMP jobs is left to future work.

5.4 Attribution of primary benefits

We show the importance of having the scheduler directly ad-
dress each key aspect (resource heterogeneity and job adapt-
ability) by evaluating scenarios where only one is present.

Job adaptability, but not resource heterogeneity. We
compare Sia against Pollux[44], Shockwave[61], Themis[34],
and Gavel[40] using the Philly traces in a Homogeneous set-
ting. We use TunedJobs for Shockwave, Themis and Gavel
and re-tuned the job hyper-parameters to fully exploit the
64-GPU cluster. Table 4 (and the left-most bars in Figure 1)
shows average and 99th percentile (p99) job completion
times, average job makespan and average number of GPU
hours consumed to train a job.

Policy JCT Make- | GPU
Avg. | p99 | span hrs/job
Sia 1.9h | 18.1h | 21.4h 8.4h
Pollux[44] 2.0h | 193h | 21.7h 8.6h
Shockwave[61]+TJ | 3.6h | 32.8n | 350h | 12.5h
Themis[34]+ 1) 54h | 447h | 497h | 17.2h
Gavel[40]+TJ 43h | 37.1h | 44.3h 15.3h

Table 4. Comparison of Sia against state-of-the-art in the
Homogeneous setting. TJ is short for Tuned]Jobs.

Pollux was designed for this scenario, and Sia matches
it on all metrics, even outperforming Pollux as its ILP for-
mulation can guarantee a global optimum (Pollux’s genetic
algorithm does not). Sia had fewer restarts compared to Pol-
lux — 2.6 vs 5.1 restarts per job, so Sia wasted fewer GPU
hours on checkpoint-restore operations. Shockwave [61] is
the best inelastic scheduler as its objective optimizes for job
progress and finish-time-fairness while penalizing sched-
ules that result in large makespan. Themis (optimizing FTF)
and Gavel (optimizing cluster throughput) fall behind Shock-
wave on all metrics. Sia and Pollux both exploit adaptivity
and show a 50-70% improvement over the state-of-the-art
inelastic baselines in all metrics.

Resource heterogeneity, but not job adaptability. The
right-most bars in Figure 1 show average JCTs for the three
schedulers, but with every job being treated as rigid — it
must be run with the batch size and GPU count specified
in the trace. Said differently, auto-scaling and co-adaptive
batch size tuning is disabled for Sia and Pollux, evening the
playing field with Gavel that cannot exploit job adaptivity.
Even though Gavel was designed for this scenario, Sia out-
performs it by about 25%. This can be atttributed to the fact
that Sia explicitly optimizes for goodput (aka a max-sum-
goodput policy) while Gavel optimizes for cluster throughput
(max-sum-throughput policy). So, with inelastic jobs, Sia will



——Sia ——Pollux ——Gavel+Tunedjobs ——Shockwave+Tuned]obs

1
0.75 1 7 1
& 05 1
& o
0.25 1 1
0 : : :
0 1 2 4 1 10 100

FTF ratio (p) JCT (hrs)

Figure 8. CDF of (left) Finish-Time Fairness ratio p[34],
and (right) job completion times for Sia, Pollux, Gavel and
Shockwave using Helios traces in the heterogeneous setting.

always provides higher per-GPU goodput, resulting in better
performance over Gavel. Pollux also optimizes for sum of
goodput, but produces worse JCTs as it is blind to and cannot
exploit the GPU heterogeneity in the cluster.

5.5 Finish Time Fairness

Mabhajan et al. [34] propose finish-time fairness (FTF [34]) as
a metric that captures fairness of allocations to a job over its
lifetime in a cluster. Assume job J sees an average contention
(total number of jobs requesting resources) of Ny, and takes
Ts to complete. Finish-time fairness (FTF) ratio p for the job
J is defined as the ratio of a job’s completion time in a shared

cluster (T;) to its JCT in an isolated and fair-sized cluster

ngus
Naug ’

is the cluster size. We extend finish-time-fairness, defined
originally for homogeneous clusters [34], to heterogeneous
clusters as follows —

p=D,P(G=9)p ©)
G

where p, is the FTF ratio for GPU type g.P(G = g) is the
probability that a random GPU in the cluster is of type g,
given by Niial where Nj; is the number of GPUs of type g,
and Nyo;q; is sum of Ny across GPU types. p, is computed us-
ing the homogeneous-cluster definition [34] and only for the
N, GPUs of type g. If there exists only one GPU type, Equa-
tion (6) reduces to the homogeneous-cluster definition, pre-
serving the metric’s semantics. For heterogeneous clusters,
p can be interpreted as the expectation of the FTF ratio taken
over multiple GPU types.

p > 1 means unfair executions: job finishes faster in iso-
lation than using scheduler’s policy, while p < 1 means
sharing resources can improve job runtimes using idle GPUs.
A vertical CDF for p with all jobs having p < 1 means a per-
fectly finish-time-fair scheduler. We are interested in three
metrics: (a) worst FTF ratio [34, 61] across all jobs, (b) unfair
job fraction [61](fraction of jobs with p > 1), and (c) CDF(p).

Figure 8 (left) shows the CDF of finish-time-fairness ratios
for Sia, Pollux, Gavel and Shockwave using the Helios traces
in a heterogeneous-setting. From Figure 8, we see visually
that Sia is more fair (more vertical and <1) than Gavel, Pollux
or Shockwave. Indeed, Sia provides a worst FTF ratio of 1.2
and unfair fraction of <0.3%.

The worst FTF ratio for the other schedulers in Figure 8
are: Pollux=4.6, Gavel=27.8, Shockwave=3.3. Their unfair

(Tr), where the isolated cluster contains and Nypys

job fractions are 28%, 15% and 14%, respectively. Shockwave
does better than Gavel and Pollux, since it penalizes jobs
with high FTF ratios, trading worst FTF ratio for unfair job
fraction when compared to other schedulers. Sia achieves by
far the lowest unfair job fraction and worst FTF ratio.

Figure 8 shows job completion times for Gavel, Shockwave,
and Sia. Gavel and Shockwave prioritize either makespan or
long jobs, resulting in worse outcomes for short jobs during
periods of congestion. Sia adapts to prioritizing minimizing
average JCT or makespan based on congestion levels: scale
down long jobs during congestion to prioritize incoming
short jobs (reduces congestion) and scaling out long jobs
during reduced congestion to minimize makespan.

5.6 Policy overhead and scalability

In the 64-GPU Heterogeneous setting with Helios traces, Sia’s
policy optimization has a median and 95th percentile runtime
of 96ms and 426ms, respectively(insignificant overheads for
60s scheduling rounds). Pollux takes longer with median and
p95 times at 2.2s and 4.8s, respectively, indicating it may
not scale to larger cluster sizes. Gavel is significantly faster
with a median and p95 policy runtime of 13ms and 28ms,
respectively.

Figure 9 shows scheduling policy runtime as a function of
cluster size. Experiments are conducted using the Heteroge-
neous setting running Helios traces, scaled up to 2048 GPUs
(traces scaled accordingly). Sia scales well, with a single-
second runtime for policy optimization, enabling manage-
ment of large clusters with thousands of GPUs and many
GPU types. Pollux’s genetic algorithm runs significantly
slower ( 100x slower than Sia’s ILP formulation) and strug-
gles to find optimal solutions for large clusters due to an
explosion of search space complexity (even without consid-
ering the extra complexity induced by heterogeneity). Gavel
is much quicker, because it does not consider job-adaptation.

10004 —— Sia —¥— Pollux
1001 —+ Gavel+Tunedjobs.

Policy runtime (s)

101
1 L /
0.11 l—/—é/i/;’—/k—/l
64 128 256 512 1024 2048

Cluster size (#GPUs)
Figure 9. Median policy runtime for Sia, Pollux, and Gavel
for various cluster sizes using proportionally-sized Helios
traces. Error bars represent 25th and 75th percentiles.

5.7 Sia Parameter Sensitivity

Fairness parameter (p). Figure 10 shows scheduler metrics
for Sia, as a function of p computed using the Helios traces.

The impact of p on 99th percentile JCT is very evident as
Sia allocates more GPUs to jobs that can take advantage of
both scale and newer GPU types better (particularly BERT
and ImageNet training jobs). Since these jobs also tend to



run for a long duration, this drastically reduces their JCTs,
bringing down the p99 JCTs the expense of average JCT. This
also affects fairness of allocations and we notice that p = 1.0
has higher unfair job fraction (not shown here) compared
p = —0.5. We choose p = —0.5 since it performs the best
among all the p values we tested along the average JCT,
average makespan and finish-time-fairness metrics.

I

[N)
e
~
v

—— Avg. JCT
99pc. JCT
—+— Makespan

I

HA
o
1%
=}

Norm. Metric
o
N
w

:g;

Avg. JCT (hrs)

-1‘.0‘-0‘.8‘»0‘.6»0‘.4‘-0‘.2‘0.‘1‘0.‘3‘0.‘5‘0?7v019I
Value of p for Sia

Figure 10. (Left) Trend for average and 99th percentile JCTs,

and makespan for various values of p for Sia, and (Right)

Average JCT for Sia for different scheduling round durations.

30 60 120 180 240 300
Scheduling interval for Sia (s)

Scheduling round duration. We use a 60-second sched-
uling round duration for all our experiments. Increasing
round duration from 60s to 300s increased average JCT for
Sia by 333s (12%), while a shorter duration (30s) resulted in
a higher rate of re-allocations and worsened average JCT.
Sia’s policy optimization takes less than 1 second, even for
moderately sized clusters, and we choose a round duration
of 60s since it performed the best. There was no significant
change in p99 JCT or makespan observed.

2.5 1

N
n

11— avg. JCT

j 2.01
—+— avg. makespan

N
=]

1.5

norm. value
-

A

oy
o

0 20 40 0 8 10 0 20 40 e s 10
% of strong-scaling jobs % of rigid jobs
Figure 11. Average JCT and makespan for Sia on Philly
traces as a function of the % of jobs that support (Left) only

strong-scaling adaptivity, and (Right) no adaptivity (Rigid)

Fraction of jobs supporting adaptivity. Sia supports adapt-
ing batch size, GPU count, and GPU type. Figure 11 shows
the average JCT and makespan for Sia, normalized to all
AdaptiveJobs (0% constrainted), as we vary the percentage
of jobs with restrictions on which dimensions are adapted.
Strong-scaling adaptivity constrains a job to use a fixed (user-
supplied) batch size, but allows Sia to optimize the number
and type of GPUs allocated to this job. Rigid jobs constrain a
job to use a fixed batch size and fixed GPU count, but allow
Sia to optimize the GPU type allocated. From Figure 11, we
can conclude the following: (1) optimizing number of GPUs
in addition to the GPU type improves avg JCT by 56%, and
(2) additionally optimizing batch size (with number of GPUs
and GPU type) improves avg JCT by another 13%.
Profiling Overheads. Profiling jobs incurs overheads, and
profiling every possible configuration is impractical. Too
little profiling and Sia might produce sub-optimal schedules,

while too much profiling can waste cluster resources for mar-
ginal improvement in cluster efficiencies. To understand this
trade-off, we evaluate Sia on Helios traces in three settings:
(a) Oracle is an ideal set-

ting where Sia knows a E ' -

job’s throughput on any G

set of resources (a best-

case scenario for Sia) 0

(b) No Prof does not pro- Oracle  No Prof Bootstrap

file initially and adopts a profile-as-you-go approach, result-
ing in zero profiling overhead (but no initial info for Sia);
and (c) Bootstrap uses min-GPU profiles and extrapolates
throughput for yet-to-run configurations (see Section 3), re-
quiring ~0.1 GPU hrs of profiling for each job—a middle
ground between the extremes. Note that Oracle only serves
as a baseline to quantify the effectiveness of Sia’s bootstrap
approach; it is impractical in most clusters, as it would need
to profile 100s-1000s of placements across GPU types (1-10
GPU hrs/job).

Sia with Bootstrap performs 30% better than No Prof and
only 8% worse than Oracle, demonstrating the effectiveness
of its bootstrapping mechanisms for heterogeneity-aware job
adaptivity with minimal profiling overhead. We also found
that profiling two GPU counts per GPU type performed
worse that Sia’s minimized approach. Sia’s bootstrappping
also scales well: for a cluster with 20 GPU types, bootstrap-
ping adds <5% overhead to a job’s execution.

6 Conclusion

Sia efficiently schedules adaptive DL jobs on heterogeneous
resources, co-adapting each job’s assignment of GPU count,
GPU type, and batch size, resulting in increased DL clus-
ter performance. Experiments show 30-93% reductions in
average JCT, 28—-95% reductions in p99 JCT and makespan,
and 22-31% reductions in the unfair job fraction, when Sia
is compared to existing schedulers. As such, Sia provides a
critical component for emerging heterogeneous DL clusters.

7 Acknowledgements

We thank Amar Phanishayee, the anonymous SOSP review-
ers and our shepherd, Douglas Terry, for their insightful feed-
back and suggestions in improving the paper. We thank the
members and companies of the PDL Consortium (Amazon,
Google, Hitachi, Honda, IBM, Intel, Meta, Microsoft, Oracle,
Pure Storage, Salesforce, Samsung, Two Sigma, and Western
Digital) and VMware for their interest, insights, feedback,
and support. This work is supported in part by NSF Award
#2211882 and by the U.S. Army Research Office and the U.S.
Army Futures Command under Contract No. W911NF-20-D-
0002. The content of the information does not necessarily
reflect the position or the policy of the government and no
official endorsement should be inferred.



References
[1] Hu, Sia, and Heh. https://www.britannica.com/topic/Hu-Egyptian-

religion, 2022 (accessed December 10, 2022).

[2] Sia. https://en.wikipedia.org/wiki/Sia, 2022 (accessed December 10,

[10

[11

[12

[13

(14

[15

[16

—

—

—

—

[t

—

—

—

]

[

—

2022).

petuum/adaptdl.  https://github.com/petuum/adaptdl/tree/osdi21-
artifact, 2022 (accessed January 2022).

AWS Tranium. https://aws.amazon.com/machine-learning/trainium/,
2023 (accessed April 2023).

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI'16, USA, 2016. USENIX Association.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bali, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-
zaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. In International conference
on machine learning, pages 173-182. PMLR, 2016.

Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. Varuna: scalable, low-cost training of massive
deep learning models. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 472—-487, 2022.

Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, and Srinidhi Viswanatha. Balancing efficiency and
fairness in heterogeneous gpu clusters for deep learning. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys
’20.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. CoRR, 2015.

Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons,
and Eric P. Xing. Geeps: Scalable deep learning on distributed gpus
with a gpu-specialized parameter server. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys 16. Association
for Computing Machinery, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248-255.
Teee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis,
Minnesota, 2019. Association for Computational Linguistics.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded
modeling language for convex optimization. The Journal of Machine
Learning Research, 17(1):2909-2913, 2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303-338, 2010.
Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Honggiang Liu, and Chuanxiong Guo. Tiresias:
A GPU cluster manager for distributed deep learning. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19), pages 485-500, Boston, MA, February 2019. USENIX Association.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]

[32]

[33]

[34]

2016.

Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei
Zhang. Characterization and prediction of deep learning workloads
in large-scale gpu datacenters. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1-15, 2021.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. GPipe: Efficient Training of Giant
Neural Networks Using Pipeline Parallelism. 2019.

Changho Hwang, Taechyun Kim, Sunghyun Kim, Jinwoo Shin, and
KyoungSoo Park. Elastic resource sharing for distributed deep learn-
ing. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 721-739, 2021.

Petuum Inc. petuum/adaptdl: Resource-adaptive cluster scheduler for
deep learning training., April 2021.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. Analysis of {Large-Scale } { Multi-
Tenant}{GPU} clusters for {DNN} training workloads. In 2019
USENIX Annual Technical Conference (USENLX ATC 19), pages 947-
960, 2019.

Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza.
Dissecting the graphcore ipu architecture via microbenchmarking.
arXiv preprint arXiv:1912.03413, 2019.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model
parallelism for deep neural networks. Proceedings of Machine Learning
and Systems, 1:1-13, 2019.

Tyler Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. AdaS-
cale SGD: A user-friendly algorithm for distributed training. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 4911-4920. PMLR, 13-18 Jul 2020.
Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor pro-
cessing unit. In Proceedings of the 44th annual international symposium
on computer architecture, pages 1-12, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

John Kominek and Alan W Black. The cmu arctic speech databases.
In Fifth ISCA workshop on speech synthesis, 2004.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Technical report, 2009.

Gary Lauterbach. The path to successful wafer-scale integration: The
cerebras story. IEEE Micro, 41(6):52-57, 2021.

Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. Allox:
Compute allocation in hybrid clusters. EuroSys ’20. Association for
Computing Machinery, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regulariza-
tion. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
Themis: Fair and efficient { GPU} cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pages 289-304, 2020.



(35]
(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

(46

—

(47]
(48]

(49]

(50]

Andrew Makhorin. Glpk (gnu linear programming kit). http://www.
gnu. org/s/glpk/glpk. html, 2022.

Sam McCandlish, Jared Kaplan, and Dario Amodei. An empirical
model of large-batch training. arXiv preprint arXiv:1812.06162, 2018.
Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota
Team. An empirical model of large-batch training. arXiv preprint
arXiv:1812.06162, 2018.

Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie,
Hailin Zhang, and Bin Cui. Galvatron: Efficient transformer training
over multiple gpus using automatic parallelism. Proc. VLDB Endow.,
16(3), 2022.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. Pipedream: Generalized pipeline parallelism for dnn train-
ing. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19. Association for Computing Machinery, 2019.
Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. {Heterogeneity-Aware} cluster
scheduling policies for deep learning workloads. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 481-498, 2020.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. Efficient large-scale language model training on
gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’21. Association for Computing Machinery, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing sys-
tems, 32, 2019.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: An efficient dynamic resource scheduler for deep
learning clusters. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, New York, NY, USA, 2018. Association for Computing
Machinery.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. Pollux: Co-adaptive cluster scheduling for goodput-optimized
deep learning. In Angela Demke Brown and Jay R. Lorch, editors, 15th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2021, July 14-16, 2021. USENIX Association, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
Improving language understanding by generative pre-training. 2018.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
SQuAD: 100,000+ questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2016.
Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-
tributed deep learning in tensorflow. CoRR, 2018.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake Hechtman.
Mesh-tensorflow: Deep learning for supercomputers. In Advances in
Neural Information Processing Systems, 2018.

Dharma Shukla, Muthian Sivathanu, Srinidhi Viswanatha, Bhargav
Gulavani, Rimma Nehme, Amey Agrawal, Chen Chen, Nipun Kwatra,
Ramachandran Ramjee, Pankaj Sharma, et al. Singularity: Planet-
scale, preemptible, elastic scheduling of ai workloads. arXiv preprint
arXiv:2202.07848, 2022.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Prasoon Sinha, Akhil Guliani, Rutwik Jain, Brandon Tran, Matthew D
Sinclair, and Shivaram Venkataraman. Not all gpus are created
equal: characterizing variability in large-scale, accelerator-rich sys-
tems. arXiv preprint arXiv:2208.11035, 2022.

Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram, and Lidong
Zhou. Astra: Exploiting predictability to optimize deep learning. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 909-923, 2019.

Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee. Piper:
Multidimensional planner for dnn parallelization. In Advances in
Neural Information Processing Systems, 2021.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:
Making preemptible instances resilient for affordable training of large
DNNs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 497-513, Boston, MA, April 2023.
USENIX Association.

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity: Accelerating
DNN training through joint optimization of algebraic transformations
and parallelization. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 267-284, Carlsbad, CA,
July 2022. USENIX Association.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective cluster
scheduling for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 595-610, 2018.
Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. Antman: Dynamic scaling
on gpu clusters for deep learning. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation, OSDI’20.
USENIX Association, 2020.

Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le,
Anna Goldie, and Azalia Mirhoseini. A full-stack search technique for
domain optimized deep learning accelerators. In Proceedings of the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS *22. Association
for Computing Machinery, 2022.

Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang, Lawrence Carin,
and Eric Xing. Autosync: Learning to synchronize for data-parallel
distributed deep learning. In Advances in Neural Information Processing
Systems, 2020.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and Intra-Operator parallelism for distributed deep learning. In
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). USENIX Association, 2022.

Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman,
and Aditya Akella. Shockwave: Fair and efficient cluster schedul-
ing for dynamic adaptation in machine learning. arXiv preprint
arXiv:2210.00093, 2022.



	Abstract
	1 Introduction
	2 DL cluster scheduling and related work
	2.1 Related work in DL cluster scheduling

	3 Sia Design and Implementation
	3.1 Sia components and job life cycle
	3.2 Bootstrapping of throughput models
	3.3 Configurations
	3.4 Scheduler objective
	3.5 Implementation

	4 Experimental Setup
	4.1 Workloads and Traces
	4.2 Hardware measurements and simulator
	4.3 Evaluated settings

	5 Evaluation
	5.1 Physical cluster experiments
	5.2 Simulator experiments
	5.3 Adapting hybrid parallel jobs
	5.4 Attribution of primary benefits
	5.5 Finish Time Fairness
	5.6 Policy overhead and scalability
	5.7 Sia Parameter Sensitivity

	6 Conclusion
	7 Acknowledgements
	References

