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such as the European Union’s General Data Protection Regula-

tion (GDPR) and the former Right to be Forgotten [8] also give

users the right to eliminate their data from the trained model

as if they never existed in the training dataset. Nowadays, bad

patient data (e.g., polluted data in poisoning attacks [20] or

outliers) can seriously degrade the performance of the trained

patient similarity models. Once these data are detected, the

model needs to forget them to regain utility. Therefore, it is

important to design efficient techniques that enable patient

similarity models to forget what has been learned from the

patient samples to be removed.

To remove patient samples from a trained patient similarity

model that need to be forgotten, a straightforward approach is

to simply train a new patient similarity model from scratch

on the remaining dataset (i.e., excluding the samples that

need to be erased) following the original training procedure

of patient similarity learning. However, such a retraining

method comes at a high computation cost and is thus not

practical when adopting large-scale data and accommodating

frequent removal requests. To address this problem, several

exact machine unlearning methods [1], [4], [5] have been

proposed, among which the SISA method proposed in [1] is

the most general one. The basic idea of SISA is to randomly

split the training dataset into several disjoint shards and train

each shard model separately. Upon receiving an unlearning

request to remove a specific sample, the model provider only

needs to retrain the corresponding shard model.

However, existing machine unlearning methods cannot be

directly applied to patient similarity learning tasks, since they

fail to capture the important relationships among the patient

samples. Specifically, since patient similarity learning relies

on the relative comparative information among the training

patient samples to learn the patient similarity model, randomly

partitioning the training patient samples into subsets could

severely damage the resulting model utility. The primary issue

concerning the traditional sampling strategies is the lack of

informative patient samples for training. If we directly follow

existing methods to sample the patient pairs, a large fraction

of patient samples may satisfy the constraints imposed by the

loss function and provide no supervision information for the

training model. In addition, the aggregation methods proposed

in existing unlearning methods fail to identify the optimal

conditions of the local objective functions.

To address the above challenges, for the first time, we
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I. INTRODUCTION

Patient similarity learning [26], [27] aims to learn a clin-

ically meaningful distance metric to measure the similarity

between patient pairs represented by their key clinical indi-

cators. With the learnt patient similarity metric, physicians

can perform different tasks. For example, in personalized

medicine, physicians can retrieve a cohort of similar patients

for a target patient to make medical comparisons and make a
personalized treatment plan effectively [2], [22], [23]. In dis-

ease sub-typing, physicians identify sub-types of diseases (e.g.,

distinct subtypes of type 2 diabetes) by identifying clinically

homogeneous patient subgroups [29]. In personalized medical

prediction (e.g., mortality prediction in intensive care units),

physicians can utilize patient similarity to boost the power of

the model by using only patients most similar to the target

patient in model training [9], [17].

However, in many cases, a patient similarity learning model

also needs to forget certain sensitive data and its complete

lineage. Consider privacy first, recent studies have shown that

patients’ sensitive information could be leaked from the trained

models [15], [18], [30]. In practice, recent privacy legislation
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in this paper propose a novel erasable patient similarity

learning framework, namely PatEraser, which can achieve

high unlearning efficiency while keeping high model utility

in patient similarity learning. Specifically, in order to keep

the informative comparison relationships among patients, we

first design a novel data partition strategy based on the

informative comparison relationships, which can divide the

training patient samples into multiple informative shards. After

splitting patient data into multiple smaller informative subsets,

we apply the basic discriminative patient similarity learning to

each of the subsets to train the submodels. Then, we design

a novel aggregation strategy based on the optimal conditions

of the local objective functions of patient data shards. The

separately learned submodels are summarised into the final

result via the proposed aggregation procedures. The algorithm

of the aggregated patient similarity learning model scales well

with the data size and can be controlled by the partition.

We also conduct extensive experiments to verify the desired

performance properties of the proposed PatEraser.

II. RELATED WORK

Patient similarity learning has become a hot topic in recent

years, with many researchers using patient similarity as a tool

to enable different healthcare tasks [6], [9], [12]–[14], [33].

For example, the authors in [17] utilize the cosine similarity

metric to identify similar patients for the downstream 30-

day mortality prediction based on the MIMIC-II database. [6]

utilizes the Euclidean distance-based metric to select similar

patients for anomaly detection and characterization on the

basis of numeric laboratory data. However, existing methods

fail to remove the impact the patient data in the training set

had on the final patient similarity learning model.

The emergence of the right to be forgotten gave birth to

a paradigm named machine unlearning, which enables data

holders to proactively erase their data from a trained model [7],

[28]. Specifically, machine unlearning refers to a process that

aims to remove the influence of a specified subset of training

data upon request from a trained model at a cheaper computa-

tional cost than fully retraining those models. Currently, many

different machine unlearning methods have been proposed [1],

[10], [19], [21], [25], [31], [32]. However, existing machine

unlearning methods cannot be directly adopted here, since they

fail to either provide the provable guarantee or capture the

important relationships among patient samples.

III. METHODOLOGY

A. Problem Formulation

We are concerned with the task of patient similarity learn-

ing. Patient similarity learning aims to develop computational

algorithms for defining and locating clinically similar patients

to a query patient under a specific clinical context. Let H =
{(xi, yi)}

N
i=1 be the training dataset of N labeled patients with

patient samples xi ∈ R
D and class labels yi ∈ {1, · · · , C}.

For the labeled patients in the training dataset H, we can derive

the following two sets of pairwise constraints:

S = {(xi,xj)| xi and xj are in the same class} (1)

D = {(xi,xj)| xi and xj are in two different classes}

where S is the set of similar pairwise constraints, and D is

the set of dissimilar pairwise constraints. In patient similarity

learning, the distance between any two patients xi,xj ∈ R
D

is calculated as

d2
W

(xi,xj) = ||xi − xj ||
2
W

= (xi − xj)
T
W (xi − xj) (2)

where W ∈ R
D×D is the Mahalanobis metric, a symmetric

matrix of size D×D. Note that W is a positive semi-definite

matrix (i.e., W � 0) to satisfy the properties of metric (e.g.,

non-negativity and triangle inequality). Note that the constraint

W � 0 is implicitly satisfied because of the decomposition

W = MM
T . Patient similarity learning can be cast as an

optimization problem with pairwise constraints. We focus on

learning the similarity metric W = MM
T by leveraging

the similar and dissimilar pairwise relations in S and D. In

patient similarity learning, we learn the similarity metric so

that the distances of similar patients become smaller and the

distances of dissimilar patients become larger. Specifically,

given a triplet (xi,xj ,xk), patient similarity learning aims

to learn a good similarity metric such that patients from the

same class are closer than patients from different classes, i.e.,

∀(i, j, k), d2
W

(xi,xk)− d2
W

(xi,xj) ≥ 0, (3)

where xi and xj are from the same class and xk is from a

different class. For a given triplet (xi,xj ,xk), (xi,xj) have

the same class labels and (xi,xk) have different class labels.

In this work, we frame the problem of data deletion in

patient similarity learning as follows. Suppose a patient sim-

ilarity learning model is trained on N patient samples (i.e.,

{(xi, yi)}
N
i=1). For example, the patient similarity learning

model could be trained to perform disease diagnosis from

data which are collected from N patients. To delete the data

sampled from the i-th patient (i.e., xi) from the trained patient

similarity learning model, we would like to update it such that

it becomes independent of patient xi, and looks as if it had

been trained on the remaining N − 1 patients. Formally, the

task of patient similarity unlearning is to achieve the following

three general objectives:

• Provable Guarantee. It is the basic requirement of

unlearning which demands the revoked patient data must

be really unlearned and not influence model parameters.

• High Unlearning Efficiency. The unlearning process of

forgetting the required data should be as fast as possible.

• Comparable Performance. The performance of the un-

learned patient similarity model should be comparable to

that of retraining from scratch.

B. Proposed Method

Overview. In order to address the above challenges of

unlearning in patient similarity learning, we propose PatEraser,
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which consists of the following three phases: data partition,

submodel training, and optimal aggregation. Specifically, the

data partition part is designed to divide original patient data

while preserving the comparative information among the pa-

tients. Upon partitioning the training patient data into shards, a

submodel is trained for each of the data shards. All submodels

share the same model architecture. The model owner can train

submodels in parallel to speed up the training process. At the

prediction phase, an optimal aggregation strategy is applied to

obtain the aggregated patient similarity learning model while

satisfying the optimal conditions of the local objective func-

tions. For each incoming test patient, its prediction result can

be derived from the aggregated model. When one patient data

needs to be unlearned, only one of the submodels whose shard

contains the patient data to be unlearned and the aggregation

part need to be retrained, which is much more efficient than

retraining the whole patient similarity learning model from

scratch. Next, we will detail each phase.

Data partition with informative comparison relation-

ships. Note that patient similarity learning aims to maximize

the inter-class distance and minimize the intra-class distance

by using the comparison information among the training

patient data. As we have mentioned before, the training data

used for patient similarity learning tasks usually contains rich

comparative information. Randomly dividing the patient data

can result in a lack of informative samples for training. In order

to address this challenge, we propose a novel data partition

mechanism for patient similarity learning. Specifically, we first

randomly sample P patients of each class. We use P to denote

the set of sampled P patient samples. In this way, since there

are C classes, the total number of the local data shards is

K = PC, where P is the number of randomly sampled

patients for each class. Then, for each given patient xi in

the k-th shard, we will construct the informative shards, each

of which consists of a number of challenging patients that

carry discriminative information for patient xi. In order to

achieve this goal, for the k-th shard, we first select N+
k most

challenging positive patients H+
k , which are from the same

class as patient xi. Note that for the given patient xi in the

first shard, its hardest positive patient is defined as follows

(x+
i , y

+
i ) = argmax

xj∈H/P,xj 6=xi,yj=yi

||xi − xj ||
2
2, (4)

where H is the set of training patients. Then, for the k-th

shard, we select N−
k nearest neighbours H−

k from different

classes. For the given patient xi in the first shard, the hardest

negative patient is defined bellow

(x−
i , y

−
i ) = argmin

xj∈H/P,xj 6=xi,yj 6=yi

||xi − xj ||
2
2. (5)

The k-th shard, Hk, is the joint of {(xi, yi)} ∪ H+
k ∪ H−

k ,

where H+
k and H−

k are of size N+
k and N−

k , respectively.

In this way, for the data shards, we can mine the most

valuable comparable information and select pairs of patients

that provide the greatest violation of the pairwise constraints.

Submodel training. Here, we aim to train the submodels by

incorporating discriminative information (i.e., the informative

relative comparison relationships among the patients) available

in the shards. Let Wk = MkM
T
k denote the submodel for

the k-th shard (i.e., Hk), which is trained using the entirety

of the patient data available in k-th shard (Hk). Note that the

learned patient similarity learning model ensures that patients

with the same label from physician’s feedback are close while

the patient with different labels is away from each other. For

each shard Hk, we use X
+
k and X

−
k denote the feature matrix

for H+
k and H−

k , respectively. Then, based on X
+
k and X

−
k ,

we can calculate the following two matrices

Σ
X

+
k

=
∑

xj∈X
+

k

(xi − xj)(xi − xj)
T , (6)

Σ
X

−

k

=
∑

xj∈X
−

k

(xi − xj)(xi − xj)
T . (7)

Next, we will set up the learning objective locally such that the

trained submodels can encode the discriminative information

and the local geometric structure of the patient data in the

shards. The basic idea here is to maximize the distance

between patients if they do not belong to the same distribution

and instead minimize the distance between them if they belong

to the same distribution. Specifically, for the k-th submodel, it

can be derived by solving the following optimization problem

Mk = argmin
Mk

`(Mk) = {
∑

j∈N+

k

||MT
k (xi − xj)||

2 (8)

−
∑

j∈N−

k

||MT
k (xi − xj)||

2}

= argmin
Mk

{Tr(MT
k Σ

X
+

k
Mk)− Tr(MT

k Σ
X

−

k
Mk)}

= argmin
Mk

Tr(MT
k RkMk),

where Tr(·) denotes the trace of matrix, and Rk =
(Σ

X
+

k
− Σ

X
−

k
) and ||MT

k (xi − xj)||
2 = ||MT

k xi −

M
T
k xj ||

2 = (MT
k xi − M

T
k xj)(M

T
k xi − M

T
k xj) = (xi −

xj)
T
MkM

T
k (xi −xj). The above loss aims to minimize the

distances of similar patients and maximizes the distances of

dissimilar patients. The local criterion of submodels on shards

is motivated by encoding discriminative information into the

geometry induced by the objective metric.

Note that when the model owner receives a request to delete

a new patient data, it just needs to retrain the local submodel

whose shard contains this patient data. If the center patient

sample in the k-th sample is deleted, we will select the new

center patient sample x
k
i as follows

x
k
i = argmin

xi∈H+

k
∪H−

k

{
∑

xj 6=xi,yj 6=yi

||(xi − xj)||
2 (9)

−
∑

xj 6=xi,yj=yi

||(xi − xj)||
2}

where xj ∈ H+
k ∪ H−

k /xi. In the above, H+
k and H−

k are of

size N+
k and N−

k , respectively. In this way, we can ensure

that a large fraction of patient samples in this shard do not

have the constraints imposed by the loss function and provide

plentiful supervision information for the training model.
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Aggregation. The next task is to aggregate the local solu-

tions (i.e., {Mk}
K
k=1) into a global patient similarity metric

MA. The most naive straightforward method is to linearly

combine the local solutions. However, {Mk}
K
k=1 are solutions

to locally defined optimization problems over the patient

data shards and the linear combination can damage their

optimality and yield invalid solutions. In order to address

this challenge, we design the aggregation strategy based on

the optimal conditions of the objective functions. Recall that

a submodel Mk is a stationary point of the corresponding

objective function (`k(Mk)), i.e.,

∂`k(Mk)

∂Mk
= 2(Σ

X
+

k
− Σ

X
−

k
)Mk = 0, ∀k ∈ [K], (10)

where [K] ∈ {1, · · · ,K} and `k(Mk) is defined in Eqn.

(8). For a global solution MA, it is ideal for it to fulfill

the optimal conditions of the objective functions in all local

patient data shards, which is generally impossible. Therefore,

we propose to cancel out the violations among all the patient

data shards by vanishing the summation of the local gradients

of the submodels, which is given as follows

K∑

k=1

(Σ
X

+

k
− Σ

X
−

k
)MA = 0, (11)

where WA = MAM
T
A denotes the aggregated model. By

combining Eqn. (10) and (11), we can derive the following

K∑

k=1

(Σ
X

+

k
− Σ

X
−

k
)Mk −

K∑

k=1

(Σ
X

+

k
− Σ

X
−

k
)MA = 0, (12)

⇒ MA =

K∑

k=1

(Σ
X

+

k
− Σ

X
−

k
)

∑K
k=1(ΣX

+

k
− Σ

X
−

k
)
Mk, (13)

where Mk denotes the k-th submodel. From the above, we

can see that the aggregated patient similarity model has the

form of the weighted submodels, where the weight of the k-

th submodel is ωk =
(Σ

X
+

k

−Σ
X

−

k

)
∑

K
k=1

(Σ
X

+

k

−Σ
X

−

k

)
. And the aggregated

patient similarity learning model is the weighted sum of the

local submodels, which is given as follows

MA =

K∑

k=1

(Σ
X

+

k
− Σ

X
−

k
)

∑K
k=1(ΣX

+

k
− Σ

X
−

k
)
Mk. (14)

When the model owner receives a request to delete a new

patient data, it just needs to retrain the local shard model

whose shard contains this patient data, leading to a significant

time gain with respect to retraining the whole model from

scratch. Then we can aggregate these local patient similarity

learning models based on the above equation.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. In experiments, we adopt three real-world patient

datasets and a synthetic dataset to measure the performance

of the proposed method (PatEraser). The Diabetes health

indicators dataset consists of 70,692 survey responses to

CDC’s BRFSS2015 [3]. The target variable has 2 labels, where

label 0 denotes no diabetes and label 1 denotes prediabetes

or diabetes. The Cardiovascular disease dataset [11] is a

collection of 69,301 patient data used to predict the presence

or absence of cardiovascular disease. The input features are

collected from factual information and medical examination

results. The Heart disease health indicators dataset contains

253,680 patients, and the features in this dataset are collected

from cleaned BRFSS2015 [3]. It can be primarily used for the

binary classification of heart disease. The Synthetic dataset

is a randomly distributed binary classification dataset gener-

ated using Scikit-learn [24] dataset module. We initialize the

classification dataset for 10 input features with no duplicate

or redundant features, for a total of 100,000 samples. The

details of the adopted datasets are reported in Table I. Note

that patient datasets are from the Kaggle dataset repository 1.

TABLE I: Details of the adopted datasets in experiments.

Dataset # patients # features

Diabetes 70,692 21

Cardiovascular 69,301 11

Heart Disease 253,680 21

Synthetic 100,000 10

Baselines. We compare the proposed approach with three

state-of-the-art baselines. Retrain is the most straightforward

machine unlearning method, which removes the revoked sam-

ples and retrains the entire model. It is treated as a base

benchmark. Average follows the ideas of the state-of-the-art

machine unlearning method [1], which randomly splits the

training data into shards and then aggregates the results of

all submodels by averaging to make the final prediction. The

Random method randomly selects a model from all local

submodels and treats it as the aggregated model.

Performance metrics. In experiments, we adopt the fol-

lowing evaluation metrics: unlearning time for unlearning ef-

ficiency, recall@1 and recall@2 for classification performance.

Unlearning time measures the retraining time of models after

requesting unlearning samples. Recall@1 and recall@2 mea-

sure whether the ground truth is ranked among the top-1 item

or top-2 items, respectively.

Training. In experiments, we employ the Adam [16] opti-

mizer with a learning rate of 0.01 for ParEraser and train 100

epochs on adopted datasets. The batch size setting in each

submodel training is the corresponding shard size.

B. Experimental Results

Unlearning efficiency. In this section, we conduct experi-

ments to investigate the unlearning efficiency of the proposed

method (PatEraser). Specifically, we set the shard number to

20 and randomly sample 1 patient data to be forgotten from the

training data. The derived experimental results are reported in

Table II. We can observe that the proposed PatEraser can sig-

nificantly improve the unlearning efficiency compared to the

1https://www.kaggle.com/datasets
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TABLE II: Unlearning efficiency comparison for removing 1 data sample. For PatEraser (20 shards), when receiving an

unlearning request of data, only the corresponding submodel and the aggregation part need to be retrained.

Dataset Diabetes Cardiovascular Heart Disease Synthetic

Training Size 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

Retrain (s) 75 149 220 298 70 142 210 293 362 723 1090 1435 146 282 421 547

PatEraser (s) 0.8 1.0 1.3 1.6 0.8 1.0 0.2 1.5 1.3 2.2 3.2 4.2 0.8 1.1 1.3 1.8

TABLE III: Classification performance comparison of dif-

ferent baselines. We apply 20 shards for the Average and

PatEraser methods, and report recall@K (%) for all methods.

Dataset Diabetes Cardiovascular Heart Disease

Recall R@1 R@2 R@1 R@2 R@1 R@2

Retrain 64.19 82.11 63.35 81.28 85.35 92.68

Average 64.53 82.31 63.31 81.67 85.33 92.69

Random 64.72 82.36 62.90 81.57 85.23 92.51

PatEraser 65.13 82.67 63.89 81.73 85.60 92.72

Retrain method. For example, on the Cardiovascular dataset

and the Heart disease dataset with both 80% training sizes, the

proposed PatEraser only needs 1.5 seconds and 4.2 seconds

to achieve the optimal performance, respectively, while the

Retrain method needs about 293 seconds and 1435 seconds,

respectively. This acceleration is 195× for the Cardiovascular

dataset and 341× for the Heart disease dataset, which is

highly valuable in practice and is difficult to achieve through

simple engineering effects. The main reason is that in the

proposed PatEraser, only the corresponding submodel and the

aggregation part need to be retrained to forget the requested

data. Therefore, even for large datasets and a high training

scale, the unlearning time is still incredibly fast. From the

shard-based perspective, we can tolerate more shards for larger

datasets to further improve the unlearning efficiency while

preserving the patient similarity performance.

Classification performance. Next, we evaluate the classi-

fication performance of the proposed PatEraser. Specifically,

the shard number is set to 20 for PatEraser and Average

methods. The obtained classification results are shown in Table

III. We can observe that on the adopted patient datasets,

the proposed PatEraser can achieve a better classification

performance compared to the baselines. For example, on

the Diabetes dataset, the recall@1 of PatEraser is 65.13%,

while the corresponding result of the Average baseline is

64.53% and the Random baseline is 64.72%. Similarly, the

substantial classification improvement is due to the fact that we

partition the patient data by preserving the relative comparison

information among the patient samples and differentiating the

importance scores of different submodels in aggregation. In

addition, the Retrain method can achieve similar classification

results but its unlearning efficiency is extremely low when

the original dataset is large. Therefore, we can derive the

conclusion that the classification performance of the proposed

PatEraser is better than the baselines.
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Fig. 1: Impact of the shard number on the unlearning efficiency

(unlearning 1 data sample) and model performance (recall@1)

on the experiment datasets.
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Fig. 2: Impact of the unlearned patient samples on the unlearn-

ing efficiency (20 shards) and model performance (recall@1

after unlearning) on the experimental datasets.

Impact of the shard number. Furthermore, we conduct

experiments on the adopted datasets to investigate the impact

of the shard number. As shown in Figure 1 (a), the unlearning

time decreases when the number of shards increases for the

proposed PatEraser model on all experiments. This makes

sense since a larger number of shards means a smaller shard

size for each submodel, which will improve the unlearning ef-

ficiency. As shown in Figure 1 (b), the model performance may

slightly decrease when the shard number is too small (e.g.,

2 shards) or the shard number is too large. This is because

patient similarity submodels require comparison information

for model learning. A small shard means the comparison

information may not diverge; a large shard but small shard

size means the comparison information may not strong.

Impact of the unlearned patient samples. Lastly, we con-

duct experiments to study the impact of the unlearned patient

samples. Figure 2 (a) illustrates the impact on the unlearning

efficiency. The results suggest that before a particular number

of unlearned samples (related to the number of shards), the

unlearning time increases rapidly, then slowly decreases after

that. The reason is that the unlearning time is determined
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by the number of submodels that need to be retrained. As

the number of unlearned samples increases, there is a greater

chance that more submodels need to be retrained, and hence

the unlearning time increases. Once all submodels are required

to be retrained but the shard size is reduced, the unlearning

time will be decreased. Figure 2 (b) summarizes the impact

on the model performance, in which we examine recall@1

for PatEraser. We observe that PatEraser is robust to patient

similarity unlearning, even when the unlearned samples reach

10,000 of the training data.

V. CONCLUSION

In this paper, we propose a novel PatEraser framework,

which is, to the best of our knowledge, the first machine

unlearning method for patient similarity learning. To permit

efficient unlearning while keeping the comparison information

of the patient data in different data shards, we first design

a novel data partition strategy to keep the informative com-

parison relationships among the patients. Then, based on the

optimal conditions of the local objective functions, we propose

an adaptive aggregation method to improve the global model

utility. We also conduct extensive experiments to verify the

effectiveness of the proposed method.
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