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MOTIVATION     Single-cell technologies are advancing to enable profiling of multiple modalities within indi-
vidual cells. However, the sparsity and noise in the data poses challenges for analysis. Most existing
computational methods for analyzing single-cell data are either limited to single modality or lack flexibility
and interpretability. In this study, we introduce moETM, a unified deep learning model that integrates single-
cell multi-omics data by projecting them onto a common topic mixture representation. Furthermore,
moETM employs a linear decoder design, which facilitates the interpretability and the discovery of biolog-
ically significant patterns.

SUMMARY

The advent of single-cell multi-omics sequencing technology makes it possible for researchers to leverage
multiple modalities for individual cells and explore cell heterogeneity. However, the high-dimensional,
discrete, and sparse nature of the data make the downstream analysis particularly challenging. Here, we
propose an interpretable deep learning method called moETM to perform integrative analysis of high-dimen-
sional single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts in the
encoder and employs multiple linear decoders to learn the multi-omics signatures. moETM demonstrates
superior performance compared with six state-of-the-art methods on seven publicly available datasets. By
applying moETM to the scRNA +  scATAC data, we identified sequence motifs corresponding to the tran-
scription factors regulating immune gene signatures. Applying moETM to CITE-seq data from the COVID-19
patients revealed not only known immune cell-type-specific signatures but also composite multi-omics
biomarkers of critical conditions due to COVID-19, thus providing insights from both biological and clinical
perspectives.

INTRODUCTION

Multi-omics single-cell high-throughput sequencing technolo-
gies open up new opportunities to interrogate cell-type-specific
gene regulatory programs. Single-cell RNA sequencing (scRNA-
seq) combined with assay for transposase-accessible chromatin
using sequencing (ATAC-seq)1 simultaneously measure the tran-
scriptome and chromatin accessibility in the same cell. Cellular
indexing of transcriptomes and epitopes by sequencing (CITE-
seq)2 measures surface protein and transcriptome data using

oligonucleotide-labeled antibodies. By integrating the informa-
tion from these multiple omics, we can expand our understand-
ing of the genome regulation from multiple perspectives.

However, extracting meaningful biological patterns from the
fast-growing multi-omics single-cell data remains a challenge
due to several factors.3,4 Firstly, the cell yield of multi-omics sin-
gle-cell technologies is lower compared with the single-omics
technologies such as scRNA-seq. On the other hand, the com-
bined feature dimension is much higher (e.g., genes and peaks).
This requires a more deliberate model design that can flexibly
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Figure 1. moETM model overview
(A) Modeling single-cell multi-omics data across batches. For details, see STAR Methods.
(B) Evaluating moETM through cell clustering. The integration performance of moETM is evaluated by clustering cells based on their topic proportion and
qualitatively evaluated by UMAP visualization.
(C) Cross-modality imputation.
(D) Downstream topic analysis. The learned topics-by-{cells, genes, proteins, peaks} matrices enable identifying cell-type-specific topics, gene signatures,
surface protein signatures, and regulatory network motifs, respectively.

distill meaningful cell-type signatures from the multi-modal data
while not overfitting the data. Secondly, multi-omics single-cell
data are noisier compared with bulk-level or single-cell single-
omics data. This calls for a probabilistic model that can infer
latent cell types while properly accounting for the statistical
uncertainty. Thirdly, the batch effects make it challenging to
distinguish biological signals from study-specific confounders.
Finally, multi-omics single-cell data are more costly compared
with scRNA-seq or scATAC-seq alone. It is therefore highly
cost-effective if we can profile single-omics data and then pre-
dict the unobserved omics data.

Recently, several computational methods were developed to
tackle the above multi-modality data-integration challenges
encountered in multi-omics single-cell data analysis. For
instance, SMILE5  integrates multi-omics data by minimizing
the mutual information of the latent representations among the
modalities and batches. The totalVI6     and multiVI7     integrate
CITE-seq data and scRNA + scATAC data via variational autoen-
coder (VAE) frameworks, respectively. Cobolt8 is a hierarchical
Bayesian generative model to integrate cell modalities. scMM9

is a mixture-of-experts (MoE) model developed to impute one
missing modality conditioned on the other. Multigrate10 adopted
a product-of-experts framework to integrate multi-omics data.
MOFA+11 uses mean-field variational Bayes and coordinate

ascent to fit a Bayesian group factor analysis model to integrate
the multi-omics data. Seurat V412 integrated multimodal single-
cell data through the weighted nearest neighbor algorithm. While
many of these methods conferred promising performances in
some of the tasks such as cell clustering or modality imputation,
they often need to compromise scalability, interpretability, and/
or flexibility. In particular, when a neural network is used to
encode the high-dimensional multi-omics data, interpretability
is traded for flexibility; when a linear model or independent
feature assumption is made, flexibility is traded for interpret-
ability and scalability. However, all three are important to reveal
cell-type-specific multi-omics signatures that are indicative of
gene regulatory programs from large-scale data. Furthermore,
most of these methods are entirely data driven and therefore
incapable of fully utilizing the existing biological information
such as gene annotations or pathway information.

In this study, we present a multi-omics embedded topic model
(moETM) to integrate multiple molecular modalities at the single-
cell level. As one of the main technical contributions, moETM
uses product-of-experts to infer latent topics underlying the sin-
gle-cell multi-omics data and a set of linear decoders to learn
shared embedding of topics and multi-omics features that can
accurately reconstruct the high-dimensional multi-omics data
from their low-dimensional latent topic space (Figure 1A).
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Through effectively integrating multiple modalities from multi-
omics single-cell sequencing data, moETM seeks to achieve
three tasks: (1) clustering cells into biologically meaningful
clusters to identify the sub-cell type indicative of phenotype of in-
terests (Figure 1B), (2) imputing one omics using the other omics
(Figure 1C), and (3) identifying cell-type signatures, which serve
as biomarkers for a target phenotype (Figure 1D). Through
comprehensive experiments on seven single-cell multi-omics
datasets, we demonstrate moETM’s ability comparatively with
six state-of-the-art computational methods. We further show-
case how moETM facilitates the analysis of the COVID-19
single-cell CITE-seq dataset. Quantitatively, we observe that
moETM learns the joint embeddings from multiple modalities
with better or comparable bio-conservation, batch effect correc-
tion, and crossmodality imputation compared with the existing
methods.5–9,11,12 Furthermore, the topic embedding learned by
moETM can be used to gain biological insights into the cell-
type-specific multi-omics regulatory elements.

R E S U L T S

moETM model overview
As an overview, moETM integrates multi-omics data across
different experiments or studies with interpretable latent embed-
dings (Figure 1). It is built upon the widely used VAE13 to model
multi-modal data (Figure 1A). However, to tailor the VAE frame-
work for the single-cell multi-omics data, we made two main
contributions on both the encoder and the decoder of the VAE.

The encoder in moETM is a two-layer fully connected neural
network, which infers topic proportion from multi-omics normal-
ized count vectors for a cell. We assume the latent representa-
tion of each omics follows a K-dimensional independent logistic
normal distribution. Our goal is to effectively combine these dis-
tributions into a joint distribution of the multi-omics data. To this
end, we take the product of the K-dimensional Gaussians, i.e.,
product-of-Gaussians (PoG). Because the PoG is also a
Gaussian density function, we can represent the joint latent
distribution in closed form. In principle, this results in a tighter
evidence lower bound (ELBO) and therefore more efficient vari-
ational inference compared with the MoE approaches14 as
adopted in MultiVI/TotalVI6,7 and scMM.9 In particular, these
MoE approaches sample K-dimensional Gaussian variables for
each omics and then take their average. In contrast, our PoG
formalism requires sampling only once from the joint Gaussian.
Therefore, moETM may confer more robust estimates thanks
to the reduced sampling noise from the Monte Carlo approxima-
tion procedure. We perform a softmax transformation on the joint
Gaussian density. The resulting logistic normal distribution can
be considered as a topic mixture membership for the cell. These
topics can be directly mapped to known cell types based on their
top gene signatures detected from our linear decoder as the
topic distribution must sum to 1 over the K  topics; the inferred
topic mixture membership of a cell expresses statistical uncer-
tainty in the cell embedding.

On the decoder side, inherited from our earlier work,15 moETM
employs a linear matrix factorization to reconstruct the normal-
ized count vectors from the cell embedding. Our working
hypothesis is that the encoder creates a linearly separable space
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for the decoder to achieve a good reconstruction when the two
networks are trained end-to-end. Specifically, the decoder fac-
torizes the cell-by-feature matrices into a shared cell-by-topic
matrix Q ,  a shared topic-embedding matrix a, and M separate
feature-embedding matrices rðmÞ, where m ˛ f 1 ; . ; M g  indexes
the omics. Since different omics share the same cells-by-topics
matrix but have their own feature-embedding matrices, we can
explore the relations among cells, topics, and features in a highly
interpretable way. This departs from the existing VAE models
such as scMM,9 BABEL,1 6  and Multigrate10 that used a neural
network as the decoder. Another main challenge in single-cell
data analysis is the batch effects, which are sources of technical
variation. To account for those, we introduced the omics-spe-
cific batch removal factors lðmÞ ˛ R V ð m Þ 3 S  for each omics m (Fig-
ure 1A), which act as linear-additive batch-specific biases in
reconstructing each modality. By regressing out the batch
effects via lð$Þ, moETM can learn biologically meaningful repre-
sentations in terms of the cell topic mixture and the topic/feature
embedding. As detailed in STAR Methods, all the parameters in
moETM are learned end-to-end by maximizing a common objec-
tive function defined as the ELBO of the marginal data likelihood
under the framework of amortized variational inference.

Multi-omics integration
We performed quantitative evaluations of moETM on the inte-
grated low-dimensional representation compared with six
state-of-the-art     multi-omics     integration methods     (SMILE,5

scMM,9 Cobolt,8 MultiVI/TotalVI,6,7 MOFA+,11 and Seurat V412)
on seven published datasets. Four out of the seven datasets
are single-cell transcriptome and chromatin accessibility
(gene + peak) datasets and the other three are single-cell tran-
scriptome and surface protein expression (gene/transcript +
protein) datasets measured by CITE-seq.

The performance of the multi-omics integrative task was
based on both biological conservation metrics and batch
removal metrics (STAR Methods). For the biological conserva-
tion score, we adopted the common metrics including Adjusted
Rand Index (ARI)17 and Normalized Mutual Information (NMI18).
For evaluating batch effect removal, we used k-nearest neighbor
batch effect test (kBET)19 with graph connectivity (GC).

To make a comprehensive comparison, we used three exper-
imental settings: (1) 60/40 random split for training and testing
with 500 repeats (Tables S1 and S2), (2) training and testing
both on the whole dataset (Table S3), and (3) training and testing
across different batches (Tables S4 and S5). The number of
topics was set to 100 during the training based on the robust
performance (Figure S1). Overall, we obtained consistent
results across all three settings and therefore chose to focus
on describing the results based on the first setting.

We observed that moETM achieved the best overall perfor-
mance when averaging over all or gene + protein datasets’
performance scores among three out of four evaluation metrics
(Figure 2). It conferred the second-highest averaged kBET,
which is only marginally behind multiVI/totalVI. The latter two
methods might have over-corrected the batch effect at the
expense of biological conservation. When averaging over
gene +  peak datasets, moETM can still achieve the best perfor-
mance among two out of four evaluation metrics. Specifically,
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Figure 2. Methods comparison based on cell clustering
The left column illustrates the individual performance of each method on each dataset. The seven datasets are indicated on the x axis with gene + peak datasets
colored in blue and gene +  protein datasets colored in black. Within each dataset, the highest value was labeled on the top of the corresponding bar. The middle
column is the comparison of averaging values across datasets for each method. The right column is the comparison between moETM and its three ablated
versions. Each row represents an evaluation metric.
(A) Adjusted Rand Index (ARI).
(B) Normalized Mutual Information (NMI).
(C) k-Nearest neighbor batch effect test (kBET).
(D) Graph connectivity (GC).

moETM ranked the second highest on ARI and NMI and slightly
behind Seurat V4, which has a larger standard deviation
compared with moETM.

For individual datasets, moETM is either the best or the sec-
ond best method on six out of seven datasets (except MBC)
for different experimental settings in terms of the ARI (Figure 2A;
Tables S1 and S2). One possible reason could be that the sample
size of MBC (3,293 cells) from which moETM learns high-dimen-
sional peak embeddings is small compared with the other 6 da-
tasets. To assess the benefits of the added features in moETM,
we compared moETM with its ablated versions (moETM_rna,
moETM_atac, and moETM_protein), where moETM was trained
on a single omic. As expected, the performance of moETM on
single modality decreased, indicating that moETM could
improve its performance by leveraging multiple modalities (Fig-
ure 2, right panel).

Similar quantitative conclusions can be drawn based on NMI
(Figure 2B; Tables S1 and S2). For kBET (Figure 2C), moETM is

the best for the BMMC1 dataset and the second best on the
other datasets—slightly behind MultiVI/TotalVI. Therefore, while
moETM conferred higher biological conservation scores in
terms of ARI and NMI, it still maintains comparable kBET scores
on all four datasets compared with MultiVI/TotalVI. Indeed, we
observed an excellent balance between the biological conserva-
tion and batch effect removal because moETM achieved notably
higher G C  compared with all other methods (Figure 2D). This is
because G C  is the only metric that is based on both cell types
and batch labels by measuring the similarity among cells of the
same type from different batches based on the embedding
learned by each method.20

We postulated that the main reason for moETM’s superior
integration performance is its PoG formulation. To that end, we
constructed moETM_avg, which replaced PoG with averaging
of sampled variables from individual Gaussian distributions
similar to the existing VAE models such as scMM.9 As expected,
the performance of moETM_avg was worse than moETM in all
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Figure 3. UMAP visualization of cell clustering
(A) UMAP visualization of moETM, SMILE, and scMM on single-cell CITE-seq from BMMC2 dataset colored by batches (upper panel) and cell types (lower panel).
(B) UMAP visualization of moETM, SMILE, and scMM on the gene +  peak multi-omics data from the BMMC1 dataset.

datasets in terms of all evaluation metrics (Figure 2, right panel).
Furthermore, since scMM also adopted the average of the
Gaussian samples from the encoder, the fact that moETM_avg
outperformed scMM indicates the benefits of using the linear
decoder, which further improves the multi-omics integration
while correcting batch effects across all cells.

We further verified the clustering performance by visualizing
the cell topic mixture embeddings using Uniform Manifold
Approximation and Projection (UMAP)21 (Figure 3). Indeed, not
only did moETM remove batch effects but also revealed a better
representation of cell type clusters. For example, ‘‘Plasmablast
IGKC–’’ cells were grouped closely by moETM but were clus-
tered into multiple small parts by SMILE (Figure 3A). Moreover,
plasmablast cells from different batches were also mixed better
by moETM compared with SMILE, which indicated a better
batch effects correction. ‘‘CD4+ T activated’’ and ‘‘CD4+ T
naıve’’ cells were closer within the same cluster but clearly distin-
guishable between themselves. In contrast, these two cell types

were mixed together by SMILE and scMM. In modeling the
BMMC1 dataset (gene + peak), ‘‘B1 B’’ cells and ‘‘naive CD20+

B’’ cells (Figure 3B) were mixed by other methods while better
separated by moETM.

In addition, we visually compared the cell clustering by the in-
dividual modalities with that by the integrated modalities via
UMAP (Figure S2). Similarly, we also compared the cell clus-
tering based on the individual omics of single-cell transcriptome
and surface proteins with the clustering based on the integrated
RNA + protein topic mixture using the BMMC2 dataset. We
observed that the integrated topic representation led to a more
coherent cell clustering compared with the topic mixture of indi-
vidual omics (Figure S2). For example, the ‘‘CD14+ Mono’’ cells
were grouped more closely by the integrated topic mixture
compared with their unimodal counterparts (Figure S2A; ARI:
0.735 by RNA +  peak in contrast to 0.690 by RNA only and
0.648 by peak only). Similarly, the plasmablast IGKC–  cells
also formed tighter clusters in the integrated RNA + protein
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Figure 4. Cross-omics imputation
(A) Heatmap of original protein and imputed protein values from gene expression using the BMMC2 CITE-seq dataset. The column and row orders are the same
for the two heatmaps.
(B) Scatterplot of original and imputed surface protein expression. The diagonal line is in blue color.
(C and D) Heatmap and scatterplot of the original and imputed gene expression from chromatin accessibility on the BMMC1 dataset. For more results, see
Figure S3.

embedding space (Figure S2B; ARI: 0.734 by RNA +  protein in
contrast to 0.688 by transcriptome only and 0.590 by surface
proteins only).

Therefore, moETM was able to improve cell clustering by inte-
grating multiple modalities. Taken together, these results show
that moETM is able to distinguish similar cell types by capturing
biological information in its encoding space while removing
batch effects.

Cross-omics  imputation
In the case of gene + protein, moETM accurately imputes surface
protein expression from gene expression for the BMMC2 data-
set, achieving average Pearson (Spearman) correlation of 0.95,
0.92, and 0.88 (0.94, 0.90, and 0.85) on random split, leave-
one-batch, and leave-one-cell-type imputation experiments,
respectively (Table S6). We visualized the reconstructed protein
expression against the observed values using the BMMC2

(gene + protein) dataset (Figure 4A). The imputed protein expres-
sion is highly linearly correlated with the observed one (Fig-
ure 4B), which is what we expected given the high Pearson cor-
relation of 0.95. The runner up methods—namely, scMM and
BABEL—also performed well on this task, both achieving a cor-
relation score of 0.94.

Compared with the surface protein imputation task, imputing
gene expression from the open chromatin regions is a more
challenging task because of the sparser input scATAC-seq sig-
nals and the dynamic and often asynchronous interplay between
the chromatin states and the transcriptome.22–24 Nonetheless,
moETM achieved relatively high Pearson (and Spearman) corre-
lation scores of 0.69, 0.65, and 0.58 (and 0.37, 0.35, and 0.32) on
random split, leave-one-batch, and leave-one-cell-type experi-
ments. These are notably higher than the corresponding correla-
tion obtained by BABEL  (Pearson: 0.65, 0.60, 0.55; Spearman:
0.34, 0.33, 0.30) and scMM (Pearson: 0.63, 0.61, 0.54;
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Spearman: 0.33, 0.33, 0.28) (Table S6). Qualitatively, the imputed
and the observed gene expression profiles also exhibit similar
pattern and linear relationship (Figures 4C and 4D).

In the previous two imputation applications, low-dimensional
modalities were generated from high-dimensional modalities.
The imputation from the low dimension to the high dimension is
more difficult but nonetheless feasible. Specifically, on the
three same experimental designs, the Pearson (and Spearman)
correlations between the observed and the imputed open chro-
matin regions from gene expression are 0.58, 0.55, and 0.51 (and
0.33, 0.30, and 0.28); the Pearson (and Spearman) correlation
between the observed and imputed gene expression from pro-
tein expression are 0.65, 0.63, and 0.60 (and 0.41, 0.39, and
0.37) (Table S6). In contrast, the runner-up method scMM
achieved Pearson (and Spearman) correlations of 0.40, 0.29,
and 0.37 (and 0.29, 0.25, and 0.21) for imputing chromatin
accessibility from gene expression. For imputing gene expres-
sion from surface protein, scMM and BABEL  also fell behind
moETM in terms of both Pearson and Spearman correlations
(Table S6). Qualitatively, the imputed and the observed peaks
and gene expression exhibit consistent patterns (Figures S3A
and S3C)  and strong linear trends (Figure S3B and S3D).

Correlating RNA transcripts with surface proteins and in
c i s  chromatin accessibi l ity regions
As a proof-of-concept, we sought to assess whether the top sur-
face proteins can be mapped to the top genes under the same
topic (i.e., following the central dogma). To this end, we trained a
100-topic moETM on the BMMC2 (gene + protein) dataset
generated by CITE-seq over 90,000 cells. For each topic, we
calculated the Spearman correlation of topic scores between
the 134 pairs of the gene transcripts and the corresponding
translated surface proteins (Figure 5A). The correlations ranged
from 0.096 to 0.751 with an average of 0.29. In particular, 96 of
the 100 topics have positive correlations. Among them, 13
topics have correlations larger than 0.5.

To further quantify the known transcript-protein as well as
gene-peak regulatory relations, we computed their Spearman
correlations across topics inferred from the BMMC datasets.
We paired a peak with a gene if it was within 150k bp distance
from the transcription start site of the gene. The overall distribu-
tion of the correlations for transcript-protein pairs and gene-peak
pairs were both significantly higher than 0 (p < 2.2e16; one-
sample t test) and comparable with the correlations calculated
directly from the observed data (Figures S4A and S4C).

Notably, 90% of transcript-protein pairs exhibited positive cor-
relations and nine pairs displayed correlations exceeding 0.5 (Fig-
ure S4E). Nonetheless, several transcript-protein pairs exhibited
low or negative correlations. Several factors could contribute to
these low correlations. Firstly, random noise may hinder correla-
tions between genes and proteins. Secondly, dynamic cellular
processes at the single-cell level can give rise to variations be-
tween cells, leading to a decrease in correlations.25 For example,
transcriptional bursting or delays between transcription and
translation will lead to asynchronous behavior of gene and protein
during the cell cycle, thereby reducing the correlations between
gene and protein expression levels.25 Particularly, a number of
transcript-protein pairs displayed negative correlations (Fig-
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ure S4E). This phenomenon has also been observed in previous
studies.26–28 For instance, Li et al. reported a mismatch between
mRNA and protein expression levels, including the CD69-CD69
pair.27 One possible cause might be due to the impact of other
biological processes overriding the effects of transcription.28

Taking CD69-CD69 as an example, the CD69 gene may undergo
post-translational modifications such as differential glycosyla-
tion.29 The transcribed CD69 mRNA molecules can be translated
to a 22.5 kDa polypeptide, which can further be differentially gly-
cosylated to two different subunits. These subunits can be
randomly combined to form different receptors, leading to a
reduction in the abundance of the CD69 protein.29 If the influence
of post-translational modifications surpasses the impact of pro-
tein synthesis, it can give rise to a negative correlation. Further-
more, the CD69 mRNA transcripts are unstable. The level of
CD69 mRNA could decline rapidly with a half-life of less than
60 min.29 While mRNA molecules degrade over time, protein
levels may maintain relatively stable or continue to accumulate. If
the rate of mRNA degradation surpasses that of protein synthe-
sis, a negative correlation could emerge.

In addition to investigating correlations across topics, we
calculated correlations across cells by computing Spearman
correlations in terms of observed values and reconstructed
values based on the BMMC datasets (Figures S4A–S4D). The
correlations based on both the observed and reconstructed
data across cells were significantly greater than 0, indicating
consistent relations among transcript-protein and gene-peak
pairs captured at the cell level. However, the correlations from
the reconstructed values are higher than those from the
observed values (Figures S4B and S4D). This is because the
observed values may contain random noise or batch effects
compared with reconstructed values by moETM, which can be
considered as denoised and confounder-corrected values of
the gene/protein/peak signals.

Immune cell-type signatures revealed by multi-omics
topics learned from C I T E - s e q  data
To identify cell-type signatures, we associated each topic with
the specific cell type that exhibit the highest average topic score
across cells. Notably, not all topics were uniquely associated
with one single cell type and some topics might be enriched
for a combination of multiple cell types. Therefore, we chose to
describe a selected subset of the topics based on their distinctly
enriched cell types and heatmap visualization (Figure 5B).

For instance, topic 44 was associated with monocytes and
consists of CD14+ and CD16+ Mono; topic 40 was associated
with B  cells and consists of primarily naive CD20+ B  IG K C +

and naive CD20+ B  IGKC–  cells; topic 83 was associated with
natural killer cells. These are visually easy to detect from the
topic mixture probabilities among the individual cells (Figure 5B).

Under each cell-type-enriched topic, many top genes and top
proteins are the known cell-type markers (Figure 5D). For
example, under topic 40 (i.e., a B  cell topic), the top genes
CR2,  SSPN ,  and ADAM28 are known marker genes for B  cells;
the top proteins CD21, CD20, and CD40 are also marker proteins
for B  cells according to the CellMarker database.30 For topic 7,
one of top proteins CD11c is a marker protein for dendritic cells
(DCs).30 For topic 83, protein CD16, marker for natural killer cells,
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Figure 5. Topic analysis of gene +  protein CITE-seq data
(A) Protein-RNA correlations and pathway enrichments for the 100 topics learned from the CITE-seq BMMC2 data. In the middle and the bottom panels, dots
correspond to the tested immunologic signature gene sets from MSigDB. Different colors represent different gene sets.
(B) Topics embedding of 10,000 sub-sampled cells from the BMMC2 dataset. Only the topics with the sum of absolute values greater than the third quartile across all
sampled cells were shown. The two color bars display two tiers of annotations for the 9 broad cell types (cellType1) and 45 fine-grained cell types (cellType2). (C)
GS EA leading-edge analysis of topic 40. The left and right panel represent significantly enriched gene sets (q value < 0.001) based on gene topic scores and protein
topic scores, respectively.
(D) Genes and proteins signatures of the select topics. The upper and lower panels display the topics-by-genes and topics-by-proteins heatmap. The top genes
and proteins that are known cell-type markers based on CellMarker or literature search are highlighted in blue.
(E) UMAP visualization of the genes, proteins, and topics via their shared embedding space. The corresponding topic indices and gene/protein symbols were
highlighted by corresponding colors.

is among its top proteins.30 For topic 44, the top gene S100A9’s
coding protein is a chemotactic factor for monocytes31 and is
highly expressed during inflammatory processes32; among the
top proteins for topic 44, CD36,33 CD33, and CD11c34 are also
markers for monocyte sub-cell types. Similarly, the monocyte
is also enriched in topic 23, which shares the top marker protein
CD16 with topic 44 but also contains unique top genes such as
CDKN1C and FCGR3A.  While CDKN1C is a known marker gene
for monocyte,35 FCGR3A is upregulated in CD16+ monocytes as
supported by the existing literature.36

Moreover, we performed gene set enrichment analysis
(GSEA) 3 7 , 3 8  using the topic scores for all of the genes and pro-

teins. Because BMMCs are immune cells, we queried the
C7 ImmuneSigDB from MSigDb, which is a collection of
5,219 gene sets related to immune pathways.39–41 Across all
100 topics, we identified 2,569 enriched gene sets with q
values < 0.05 using gene topic scores and 22 enriched gene
sets using protein topic scores (Figure 5A). For example, in
topic 40, using the gene topic scores, we found a gene set
that consists of upregulated genes in B  cells with respect to
monocytes42 (Figure 5C, left panel); using the protein topic
scores, we found a gene set that consists of upregulated
genes in B  cells compared with plasmacytoid DCs (Figure 5C,
right panel).42
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Furthermore, we projected the topic embeddings and feature
embeddings onto a common 2D space using UMAP (Figure 5E).
We observed that the top marker genes and the top marker pro-
teins for the cell type clustered together around the correspond-
ing topics, implying a well-aligned embedding space within and
across these modalities. Together, the results suggested that the
cell-type-enriched topics inferred by moETM from the CITE-seq
data reveal meaningful biological relations between genes and
proteins.

Joint multi-omics topic analysis identified cell-type-
specific pathways and regulatory motifs
The topic embedding learned from the scRNA +  scATAC data
enables us to investigate the relationship between top genes
and top peaks in the cell-type-specific topics. Given that many
top genes are known cell-type markers (Figure 6A), we postu-
lated that the top peaks could be associated with the top genes
via in cis or in trans regulatory elements. One challenge in inter-
preting the gene +  peak multi-omics topics is that peaks cannot
be matched directly with genes. We proposed two approaches
to solve this issue. One is to link peaks to their nearby genes to
obtain the peak-neighboring genes (STAR Methods). The other
approach is to identify enriched motifs among the top peaks
and explore the relationship between genes and motifs via the
corresponding transcription factors (TFs) and their target genes.

For the first approach, the top genes and top peak-neigh-
boring genes in the select topics served as markers for the
cell-type-specific gene regulatory programs (Figure 6A). For
example, topic 32 is associated with CD8+  T cells (Figures 6A
and 6B). We zoomed-in the topic by examining its top genes
and top peaks. Three of the top 5 genes (TNFRSF9, ASTL,
GZMK, DUSP2, and DGKH) were related to T cells. In particular,
GZMK is a marker gene for T cells based on CellMarker30;
TNFRSF9 codes for a signaling protein that promotes expression
of cytokines in CD8+  T cells43; DUSP2 encodes an inducible nu-
clear protein and is highly expressed in T cells.44 Among the top
5 peak-neighboring genes (APBA2, PRDX2, KLRC4 ,  OBSCN ,
and XCL2), APBA2 is a marker gene for cytotoxic CD8+  T lym-
phocytes45; XCL2 expression levels substantially increased in
CD8+ T cells during T cell activation.46 As another example, topic
3 is associated with CD4+  T naive cells. Three out of the top 5
genes (CCR4, ADAM12, PTPN13, MB21D2, and IL4I1) and two
out of the top 5 peak-neighboring genes (INPP4B, CCR4,
PRDX2, RORA, and HIST1H2BD) are related to T cells. Indeed,
C C R 4  is shown to be specifically expressed among naive
CD4+ T cells47; ADAM12 is expressed in T cells in the inflamed
brain and is a potential target for the treatment of Th1-mediated
diseases48; IL4I1 increases the threshold of T cell activation and
partially modulates CD4 T cell differentiation.49 For top peak-
neighboring genes, RORA is upregulated among the activated
CD4+ T cells.50

To gain further mechanistic understanding of the inferred
topics, we performed GSEA on the topic scores for the genes
from the transcriptome modality and the topic scores for the
peak-neighboring genes from the chromatin accessibility modal-
ity (Figure 6D). Many enriched gene sets are related to the topic-
associated cell types. For topic 3, for instance, one of the en-
riched gene sets based on the gene topic scores, is upregulated
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in healthy CD4 T cells compared with healthy myeloid cells51

(Figure 6C). This is consistent with an enriched gene set from
the peak-neighboring gene analysis of topic 3, where the gene
set consists of a set of genes that were upregulated in naive
CD4 T cells relative to the DC.52     Therefore, GSEA further
confirmed the cell-type-specific functions of the top genes and
peak-neighboring genes identified via moETM’s topics. Interest-
ingly, the top transcripts and the top peak-neighboring genes do
not often correspond to the same genes. This implies that the
peaks and genes provide complementary information to (some-
times the same) cell-type-specific regulatory programs. There-
fore, by effectively integrating the scRNA-seq and scATAC-seq
data, the inferred multi-omics topics can reveal functional
convergence at the pathway level.

Besides using peak-neighboring genes, as the second
approach we also performed motif enrichment analysis on the
top 100 peaks per topic (STAR Methods; Figure 6D). We then
constructed a putative regulatory network by linking the top
genes and the enriched motifs via their associated topics
(Figures 6E and 6F). Interestingly, some of the top genes harbor
those enriched motifs, implying that these genes are the puta-
tive target genes of the cognate TF. In topic 3, for example,
one of the enriched motifs corresponds to a TF named FLI1 (p
=  0.00117), and the top genes IL4l1 and PTPN13 are target
genes of FLI1 based on the ENCODE Transcription Factor Tar-
gets.53,54 As another example, one of the enriched motifs for
topic 32 corresponds to TF MEF2A (p =  5.21e-5), whose target
genes include the top genes RGS1 ,  EGR1,  GZMK ,  ASTL, and
DUSP2.53,54

We further expanded our topic-network analysis by including
enriched pathways and cell type information (Figures 6E and
S5). We defined the intra-connections within the same topic as
edges between the topic nodes and cell type nodes. We also es-
tablished inter-connections between genes and external nodes
including motifs and pathways. Specifically, the top genes under
each topic could serve as members of enriched pathways or
target genes for enriched motifs. For instance, in topic 32,
gene DUSP2 is a target gene for enriched motifs MEF2A (p =
5.21e-5, permutation test) and PAX5 (p =  1.53e-5, permutation
test), while also being a member gene in four enriched pathways
and three of them are upregulated gene sets in the enriched
cell type of T cells (UNSTIM_VS._ACD3_ACD28_STIM_WT_
CD4_TCELL_DN, NKT_CELL_VS._ALPHAALPHA_CD8_TCELL_
DN, UNSTIM_VS._ACD3_ACD28_STIM_WT_CD4_TCELL_DN).
Similarly, in topic 30, gene FCAR is a target gene for one
enriched motif C E B P B  (p =  1.27e5, permutation test) and a
member of three enriched pathways, two of which are related to
gene sets upregulated in the enriched cell type of monocyte
(MONOCYTE_VS._MDC_UP,     PBMC_MRKAD5_HIV_1_GAG_
POL_NEF_AGE_20_50YO_1DY_UP, MONOCYTE_VS._MDC_
DAY7_FLU_VACCINE_UP). Likewise, in topic 3, gene DPP4 is a
target gene for two enriched motifs PAX5 (p =  5.39e-4, permu-
tation test) and SP1 (p =  1.13e-4, permutation test) and a mem-
ber of 11 enriched pathways where four of them (NAIVE_TCELL_
VS._NKCELL_UP, NAIVE_TCELL_VS._
MONOCYTE_UP, NAIVE_CD4_TCELL_VS._MONOCYTE_UP,
NAIVE_CD4_TCELL_VS._DC_UP) are upregulated gene sets in
CD4+ T naive cells. Those connections highlighted a consistent
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Figure 6. Topic analysis of single-cell gene +  peak data from the BMMC1 dataset
(A) Top genes and top peak-neighbor genes of the select topics.
(B) Topic embedding of cells from the BMMC1 dataset.
(C) GSEA leading edge analysis of topic 3. The left panel is the GS EA result using gene topic scores and the right panel is the GSEA result using peak-neighboring
gene topic scores.
(D) Pathway enrichment and motif enrichment for the 100 topics.
(E) Topic-directed regulatory networks based on motif enrichment analysis. The yellow edges indicate known TF-target associations based on ENCODE TF
Targets dataset.
(F) Topic-directed regulatory networks incorporating enriched pathways, motifs, and top genes. For more results, see Figure S5.

regulatory relationship across motifs and pathways under in-
ferred topics.

Therefore, our multi-omics topic analysis suggests that some
of the cell-type-specific regulatory programs are implicated with
the sequence motifs and pathways. Further investigation is
needed to establish the hierarchical relation between the TF
and the cell lineage.

Prior pathway-informed enrichment
The single-cell multi-omics data are high-dimensional, sparse,
and noisy. This is especially the case for the scRNA +  scATAC-
seq data because of the large number of genes and open chro-
matin regions. One way to further improve the interpretability of
the topics derived from these data is by incorporating prior
knowledge such as gene sets or pathway information. In the
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context of our moETM, this was done by fixing the embeddings-
by-genes parameters to the observed pathways-by-genes ma-
trix (STAR Methods). Using the 7,000 gene ontology biological
process terms as the pathways-by-genes matrix, we trained the
pathway-informed moETM (p-moETM) on the BMMC1 gene +
peak dataset.

Quantitatively, p-moETM can achieve comparable cell-clus-
tering performance with an ARI of 0.72, which is only slightly
lower than the default moETM that learned the gene embedding
directly from the data (Table S1). We also identified several cell-
type-specific topics along with their top genes and peaks (Fig-
ure S6C–S6H). Notably, the learned topics-by-embeddings
matrix a  from p-moETM is essentially the topics-by-pathways
matrix. This allows us to directly identify the top pathways for
each topic without performing post-hoc GSEA. For instance,
topic 25 is associated with B1 B  cells (Figure S6C). One of its
top pathways is related to B  cell activation (Figure S6A). As
another example, topic 8 was enriched for the CD4+  T activated
cells, and one of its top pathways was connected to the T cell
apoptotic process.

For some topics, their top genes are both the members of the
pathway and the cell-type biomarkers (Figure S6, left panel). For
instance, topic 27 is enriched in the CD4+ T naive cells. One of its
top genes C C R 7  is involved in the elimination process of imma-
ture T cells. In addition, topic 41 is enriched for the transitional
B  cell. Its top pathways include B  cell activation and adaptive im-
mune process. Among its top genes, TNFAIP3 is in the B  cell
activation-related pathway. One of its top peaks in chr14:
100207793–100208735 is upstream of the promoter of YY1
(chr14: 100238298–100282788), which is a gene member in
the B  cell activation-related pathway.55

Furthermore, we experimented using a more specific gene set
namely the immune signature gene set collections from MSigDB
to investigate immune-related pathways implicated in the
BMMC1 dataset (Figure S6, right panel). We identified several
cell-type-specific topics that exhibit high scores for meaningful
immune pathways. For instance, topic 23 is enriched in naive
CD20+ B  cells. Two of its top 10 pathways are associated with
naive B  cells. One of its top genes namely HLA-DPB1 is upregu-
lated in naive B  cells relative to the plasma cells.56 One of the top
peaks     (chr12:     8886393–8887019)     is     upstream     of     PHC1
(chr12:8913896–8941467), which is also involved in the pathway
where genes are upregulated in naive B  cells relative to the
plasma cells.56

Multi-omics topics reveal the molecular basis  of COVID-
19 severity
As the CITE-seq technology interrogates the expression of sur-
face proteins along with the full transcriptome, it is a promising
platform to investigate the immune responses among patients
infected by the SARS-CoV-2 virus (COVID-19). Using moETM,
we sought to identify clinically relevant molecular signatures
from a COVID-19 CITE-seq dataset (HBIC).57 The data consist
of 781,123 cells from 130 COVID-19 patients with varying de-
grees of severity due to the viral infection. To establish model
confidence, we first performed a quantitative analysis as above.
The results showed that moETM could achieve either the highest
or the second-highest evaluation metrics both in bio-conserva-
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tion and batch removal cases (Table S2). In particular, moETM
ranked first with an ARI value of 0.752. Similarly, moETM and
TotalVI attained the highest NMI scores of 0.779 and 0.762,
respectively. Both methods also maintained their top perfor-
mance in terms of batch correction with TotalVI achieving the
highest kBET of 0.197, while moETM came in second with
0.153. Consistent to the above evaluation (Table S2), moETM
obtained the best G C  score of 0.950, whereas TotalVI achieved
the second best of 0.934. Therefore, these quantitative results on
the COVID-19 data further suggest that moETM strikes a good
balance between biological conservation and batch effect
correction.

Qualitatively, we investigated the top features and identified
enriched cell types under each topic (Figures S7A and S7B). In
particular, topic 42 is enriched for B  cells. Among its top 5 genes
(SLC38A11, TCL1B,  IL6, TCL1A, SYN3), IL6 and TCL1A are the
known marker genes. Also, three out of its top 5 proteins
(CD19, CR1, CD22, FCGR2A, and BAFFR) are marker proteins
for B  cells. Topic 31 is associated with platelets. Two out of its
top 5 genes (LYVE1, RADIL, VWF,58 TRHDE, and PPBP )  are
marker genes, namely VWF and PPBP ,  and one of its top 5 pro-
teins (ITGA2B, KIR3DL1, ITGAX, SELP ,  and FCGR2A) is a marker
protein (i.e., ITGA2B) for platelets. In addition, a previous study
has suggested that S E L P  redistributes to the plasma membrane
during platelet activation.59 The enriched pathways based on
GSEA are consistent to the cell-type specificity of those topics
(Figure S7C). Taking topic 42 as an example, the enriched
pathway is the gene set that is downregulated in CD4 T cells
compared with B  cells.51 Because of the shared embedding
space, we also observed localization of the top genes and the
top proteins for the selected topics via UMAP (Figure S7D).

We then leveraged the phenotype severity information among
the patients to explore gene and protein signatures related to the
COVID-19 phenotypes. Specifically, we utilized COVID meta-
data information to test whether a topic is significantly over-rep-
resented for the severity conditions. Here, we considered each
topic as a ‘‘meta-gene’’ and associated their upregulation or
downregulation with the disease phenotypes (Figures 7A and
7B). We delved into topics based on their distinctly enriched
cell types, heatmap visualization (Figure S7A), and differential
analysis by the phenotypes (e.g., COVID severity) (STAR
Methods). For example, we observed that topic 42 is not only en-
riched for B  cell but also upregulated among patients with critical
COVID status, whereas topic 80 is significantly associated with
the severe status. Moreover, topic 42 is associated with other
demographic features such as age and mainly enriched in the
senior group between 70 and 79 years (Figure 7A).

Given its disease relevance, we further investigated topic 42 to
see whether it elucidates more granular cell types and to some
extent whether their top gene/protein signatures can serve as
putative biomarkers for COVID critical conditions. First of all,
the moETM-inferred cell topic embeddings did not only cluster
cells into their primary cell types but also sub-divided B  cells
into six sub-clusters of known sub-cell types (Figure 7C and
zoom-in view). Intriguingly, aligning the COVID phenotypes
with the B  cell sub-types revealed that the critical COVID condi-
tion corresponded to B  malignant cells (Figures 7C and 7D).
B  cell lymphomas start to develop when B  lymphocytes, which
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Figure 7. Topic association with the COVID-19 severity status
(A) Differential analysis of severity states, sex, smoking history, and age. The color intensity values correspond to the differences of average topic scores between the
positive cells and negative cells for each attribute and each topic. Asterisks indicate Bonferroni-adjusted p value < 0.001 based on one-sided t test of up-
regulated topics for each label.
(B) Differential analysis of topics across cell types. The heatmap on the left displays the topic associations with each of the 18 cell types, and the one on the right
associates the same topics with 6 fine-grained B  cell subtypes.
(C) UMAP visualization of cell clustering. The right panel shows a zoom-in version of the B  cell clustering with color indicating the six B  cell subtypes.
(D) UMAP visualization with cells colored by source subjects’ severity states due to COVID-19 infection.
(E) Normalized gene expression of IL6 among the cells on the same UMAP.

are in charge of humoral immunity, start to proliferate beyond
control. This proliferation turns B  cells into malignant cells.60

The previous study61 suggested that individuals with certain can-
cers, such as lymphoma, may be more susceptible to getting se-
vere illness from COVID-19. The top gene IL6 in topic 42 was

consistently expressed at a high level among B  cells, including
although not specifically in B  malignant cells (Figure 7E). IL6
levels were commonly reported in severely ill patients due to
COVID-19.62,63 As another example, topic 21 is also enriched in
B  malignant cells (Figure 7B). One of its top proteins CD5
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(Figure S7B) was shown to be highly expressed on malignant
cells.64 Moreover, the previous study65 suggested that the pro-
portion of CD5+  B  cells was significantly reduced in COVID
patients. Taken together, our results suggest that IL6 or CD5
may be a potential therapeutic target.

DISCUSSION

Gene regulatory programs involve multi-faceted regulation and
cannot be understood via a single-omics approach alone. As
these technologies continue to evolve, computational methods
are needed to account for the challenges in modeling the sparse,
noisy, and heterogeneous nature of data that are being gener-
ated at a rapid pace.3 In this study, we developed a unified
interpretable deep learning model called moETM to integrate
single-cell multi-omics data including transcriptome and chro-
matin accessibility or surface proteins, which are the most com-
mon types of single-cell multi-omics data to date.4

Our technical contributions are 3-fold. First, via the product-
of-experts, moETM effectively integrates multiple omics by pro-
jecting them onto a common topic mixture representation.
Second, the linear decoder enables the extraction of multi-omics
signatures as the top features under each latent topic, which
directly reveal marker genes and phenotype markers under
topics that are aligned with cell types or phenotype conditions.
Third, by efficiently correcting batch effects via a dedicated
linear intercept matrix in the decoder, we can integrate multi-
omics data from multiple studies, subjects, or technologies,
which allows us to exploit the vast amount of multi-omics data
to obtain biologically diverse and coherent multi-omics topics.

To demonstrate the utility of moETM, we benchmarked it with
six existing state-of-the-art computational methods on seven
published datasets including four gene +  peak datasets and
three gene +  protein datasets (Tables S1 and S2). Across all da-
tasets, moETM achieved competitive performance based on
four common evaluation metrics. We also confirmed the advan-
tage of using multiple modalities compared with single modality
in terms of cell clustering. Moreover, because of its joint
modeling capabilities, the trained moETM can accomplish
this cross-omics imputation task. In both imputation directions,
moETM achieved a higher correlation than scMM and
BABEL. Although more challenging, moETM also achieved a
reasonable performance when imputing high dimensions from
low dimensions.

We also explored the moETM-learned cell-type-specific
topics in terms of their top omics features and enriched path-
ways in the light of the supporting evidence from the literature.
moETM is able to detect immune cell-type signatures and iden-
tify cell-type-specific pathways and regulatory motifs. In a more
focused study, we analyzed the COVID-19 CITE-seq dataset
(gene +  protein) and linked moETM-learned immune-specific
topics with patient severity conditions due to the infection. Our
topic analysis revealed not only immune marker genes but also
cell types that are associated with COVID phenotype conditions.

Limitations of the study
There are several challenges that are not addressed in
moETM.4 For instance, moETM has the capacity to integrate
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across multiple batches and modalities, but it requires the
training data to have all omics measured in the same cells. A
more challenging task is to integrate multimodal data without
anchored features or cells, which is commonly known as the di-
agonal integration.4 Some recent approaches made use of
graph representation learning to integrate multi-omics single-
cell data at the expense of computational complexity and
interpretability.66–68

S T A R + M E T H O D S

Detailed methods are provided in the online version of this paper
and include the following:

d  K E Y  R E SOU R C E S  TABLE
d  RESOURCE AVAILABILITY

B  Lead contact
B  Materials availability
B  Data and code availability

d  METHOD DETAILS
B  moETM data generative process
B  moETM model inference
B  Single-cell multi-omic datasets and preprocessing
B  Cross-omic imputation
B  Evaluation metrics

d  QUANTIFICATION AND STATISTICAL ANALYSIS
B  Linking genes to open chromatin regions
B  Pathway enrichment analysis
B  Motif enrichment analysis of top peaks from moETM-

learned topics
B  Differential analysis to detect condition-specific topics
B  Incorporating pathway-informed gene embeddings

S U P P L E M E N T A L  INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
crmeth.2023.100563.

A C KNOW L E D G ME N T S

F.W. would like to acknowledge the support from NIH R01AG076448,
R01AG076234, RF1AG072449, NSF 1750326, and 2212175. Y.L. is supported
by N S E R C  Alliance Catalyst ALLR P 576153-22, N S E R C  Discovery grant
DGECR-2019-00253, and CIHR Canada Research Chair (Tier 2) in Machine
Learning for Genomics and Healthcare.

AUTHOR CONTRIBUTIONS

M.Z. and H.Z. designed and performed the experiments under supervision of
F.W. and Y.L. All authors read and approved the final manuscript.

D E C L A R A T I ON  OF I N T E R E S T S

The authors declare no competing interests.

Received: March 20, 2023
Revised: March 31, 2023
Accepted: July 28, 2023
Published: August 18, 2023

Cell Reports Methods 3, 100563, August 28, 2023 13

https://doi.org/10.1016/j.crmeth.2023.100563
https://doi.org/10.1016/j.crmeth.2023.100563


 ̈                               ̈

€

€
 ́              ́

˚

ll
OPEN A C C E S S

R E F E R E N C E S

1. Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L.,
Snyder, M.P., Chang, H.Y., and Greenleaf, W.J. (2015). Single-cell chro-
matin accessibility reveals principles of regulatory variation. Nature 523,
486–490.

2. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chat-
topadhyay, P.K., Swerdlow, H., Satija, R., and Smibert, P. (2017). Simulta-
neous epitope and transcriptome measurement in single cells. Nat.
Methods 14, 865–868.

3. Lahnemann, D., Koster, J., Szczurek, E., McCarthy, D.J., Hicks, S.C., Rob-
inson, M.D., Vallejos, C.A., Campbell, K.R., Beerenwinkel, N., Mahfouz, A.,
et al. (2020). Eleven grand challenges in single-cell data science. Genome
Biol. 21, 1–35.

4. Argelaguet, R., Cuomo, A.S.E., Stegle, O., and Marioni, J .C.  (2021).
Computational principles and challenges in single-cell data integration.
Nat. Biotechnol. 39, 1202–1215.

5. Xu, Y., Das, P., and McCord, R.P. (2022). Smile: mutual information
learning for integration of single-cell omics data. Bioinformatics 38,
476–486.

6. Gayoso, A., Steier, Z., Lopez, R., Regier, J., Nazor, K.L., Streets, A., and
Yosef, N. (2021). Joint probabilistic modeling of single-cell multi-omic
data with totalvi. Nat. Methods 18, 272–282.

7. Ashuach, T., Gabitto, M.I., Jordan, M.I., and Yosef, N. (2021). Multivi: Deep
Generative Model for the Integration of Multi-Modal Data. Preprint at bio-
Rxiv. https://doi.org/10.1101/2021.08.20.457057.

8. Gong, B., Zhou, Y., and Purdom, E. (2021). Cobolt: integrative analysis of
multimodal single-cell sequencing data. Genome Biol. 22, 351–421.

9. Minoura, K., Abe, K., Nam, H., Nishikawa, H., and Shimamura, T. (2021).
Scmm: Mixture-Of-Experts Multimodal Deep Generative Model for
Single-Cell Multiomics Data Analysis. Preprint at bioRxiv. https://doi.org/
10.1101/2021.02.18.431907.

10. Lotfollahi, M., Litinetskaya, A., and Theis, F.J. (2022). Multigrate: Single-
Cell Multi-Omic Data Integration. Preprint at bioRxiv. https://doi.org/10.
1101/2022.03.16.484643.

11. Argelaguet, R., Arnol, D., Bredikhin, D., Deloro, Y., Velten, B., Marioni, J.C.,
and Stegle, O. (2020). Mofa+: a statistical framework for comprehensive
integration of multi-modal single-cell data. Genome Biol. 21, 111–117.

12. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., But-
ler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated
analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.

13. Kingma, D.P., and Welling, M. (2013). Auto-encoding Variational Bayes.
Preprint at arXiv. https://doi.org/10.48550/arXiv.1312.6114.

14. Wu, M., and Goodman, N. (2018). Multimodal generative models for scal-
able weakly-supervised learning. Adv. Neural Inf. Process. Syst. 31.

15. Zhao, Y., Cai, H., Zhang, Z., Tang, J., and Li, Y. (2021). Learning interpret-
able cellular and gene signature embeddings from single-cell transcrip-
tomic data. Nat. Commun. 12, 5261–5315.

16. Wu, K.E., Yost, K.E., Chang, H.Y., and Zou, J .  (2021). Babel enables cross-
modality translation between multiomic profiles at single-cell resolution.
Proc. Natl. Acad. Sci. USA 118, e2023070118.

17. Hubert, L., and Arabie, P. (1985). Comparing partitions. J .  Classif. 2,
193–218.

18. Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing
community structure identification. Journal of Statistical Mechanics: The-
ory and Experiment 2005, P09008.

19. B uttner, M., Miao, Z., Wolf, F.A., Teichmann, S.A., and Theis, F.J. (2019). A
test metric for assessing single-cell rna-seq batch correction. Nat.
Methods 16, 43–49.

20. Luecken, M.D., B uttner, M., Chaichoompu, K., Danese, A., Interlandi, M.,
Mueller, M.F., Strobl, D.C., Zappia, L., Dugas, M., Colome-Tatche, M., and
Theis, F.J. (2022). Benchmarking atlas-level data integration in single-cell
genomics. Nat. Methods 19, 41–50.

Article

21. McInnes, L., Healy, J., and Melville, J .  (2018). Umap: Uniform Manifold
Approximation and Projection for Dimension Reduction. Preprint at arXiv.
https://doi.org/10.48550/arXiv.1802.03426.

22. Shema, E., Bernstein, B.E., and Buenrostro, J.D. (2019). Single-cell and
single-molecule epigenomics to uncover genome regulation at unprece-
dented resolution. Nat. Genet. 51, 19–25.

23. Lynch, A.W., Theodoris, C.V., Long, H.W., Brown, M., Liu, X.S., and Meyer,
C.A. (2022). Mira: Joint regulatory modeling of multimodal expression and
chromatin accessibility in single cells. Nat. Methods 19, 1097–1108.

24. Ma, S., Zhang, B., LaFave, L.M., Earl, A.S., Chiang, Z., Hu, Y., Ding, J.,
Brack, A., Kartha, V.K., Tay, T., et al. (2020). Chromatin potential identified
by shared single-cell profiling of rna and chromatin. Cell 183, 1103–
1116.e20.

25. Liu, Y., Beyer, A., and Aebersold, R. (2016). On the dependency of cellular
protein levels on mrna abundance. Cell 165, 535–550.

26. Jayapal, K.P., Philp, R.J., Kok, Y.J., Yap, M.G.S., Sherman, D.H., Griffin,
T.J., and Hu, W.S. (2008). Uncovering genes with divergent mrna-protein
dynamics in streptomyces coelicolor. PLoS  One 3, e2097.

27. Li, J., Zhang, Y., Yang, C., and Rong, R. (2020). Discrepant mrna and pro-
tein expression in immune cells. Curr. Genomics 21, 560–563.

28. Koussounadis, A., Langdon, S.P., Um, I.H., Harrison, D.J., and Smith, V.A.
(2015). Relationship between differentially expressed mrna and mrna-pro-
tein correlations in a xenograft model system. Sci. Rep. 5, 10775.

29. Radulovic, K., and Niess, J.H. (2015). Cd69 is the crucial regulator of intes-
tinal inflammation: a new target molecule for ibd treatment? J .  Immunol.
Res. 2015, 497056.

30. Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., Luo, T., Xu, L., Liao,
G., Yan, M., et al. (2019). Cellmarker: a manually curated resource of cell
markers in human and mouse. Nucleic Acids Res. 47, D721–D728.

31. Crowe, L.A.N., McLean, M., Kitson, S.M., Melchor, E.G., Patommel, K.,
Cao, H.M., Reilly, J.H., Leach, W.J., Rooney, B.P., Spencer, S.J.,  et al.
(2019). S100a8 & s100a9: Alarmin mediated inflammation in tendinopathy.
Sci. Rep. 9, 1463–1512.

32. Wang, S., Song, R., Wang, Z., Jing, Z., Wang, S., and Ma, J .  (2018).
S100a8/a9 in inflammation. Front. Immunol. 9, 1298.

33. Woo, M.-S., Yang, J., Beltran, C., and Cho, S.  (2016). Cell surface cd36
protein in monocyte/macrophage contributes to phagocytosis during the
resolution phase of ischemic stroke in mice. J .  Biol. Chem. 291, 23654–
23661.

34. Ong, S.-M., Teng, K., Newell, E., Chen, H., Chen, J., Loy, T., Yeo, T.W.,
Fink, K., and Wong, S.C. (2019). A novel, five-marker alternative to
cd16–cd14 gating to identify the three human monocyte subsets. Front.
Immunol. 10, 1761.

35. Hu, Y., Hu, Y., Xiao, Y., Wen, F., Zhang, S., Liang, D., Su, L., Deng, Y., Luo,
J., Ou, J., et al. (2020). Genetic landscape and autoimmunity of monocytes
in developing vogt–koyanagi–harada disease. Proc. Natl. Acad. Sci. USA
117, 25712–25721.

36. Metcalf, T.U., Wilkinson, P.A., Cameron, M.J., Ghneim, K., Chiang, C.,
Wertheimer, A.M., Hiscott, J.B., Nikolich-Zugich, J., and Haddad, E.K.
(2017). Human monocyte subsets are transcriptionally and functionally
altered in aging in response to pattern recognition receptor agonists.
J .  Immunol. 199, 1405–1417.

37. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,
Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,
and Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proc.
Natl. Acad. Sci. USA 102, 15545–15550.

38. Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S.,
Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., et al.
(2003). Pgc-1a-responsive genes involved in oxidative phosphorylation
are coordinately downregulated in human diabetes. Nat. Genet. 34,
267–273.

14 Cell Reports Methods 3, 100563, August 28, 2023

http://refhub.elsevier.com/S2667-2375(23)00207-2/sref3
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref20
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref38
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref1
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref1
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref1
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref1
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref2
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref2
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref2
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref2
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref3
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref3
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref3
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref3
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref4
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref4
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref4
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref5
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref5
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref5
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref6
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref6
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref6
https://doi.org/10.1101/2021.08.20.457057
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref8
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref8
https://doi.org/10.1101/2021.02.18.431907
https://doi.org/10.1101/2021.02.18.431907
https://doi.org/10.1101/2022.03.16.484643
https://doi.org/10.1101/2022.03.16.484643
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref11
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref11
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref11
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref12
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref12
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref12
https://doi.org/10.48550/arXiv.1312.6114
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref14
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref14
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref15
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref15
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref15
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref16
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref16
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref16
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref17
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref17
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref18
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref18
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref18
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref19
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref19
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref19
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref19
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref20
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref20
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref20
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref20
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref20
https://doi.org/10.48550/arXiv.1802.03426
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref22
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref22
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref22
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref23
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref23
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref23
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref24
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref24
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref24
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref24
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref25
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref25
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref26
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref26
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref26
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref27
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref27
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref28
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref28
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref28
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref29
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref29
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref29
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref30
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref30
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref30
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref31
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref31
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref31
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref31
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref32
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref32
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref33
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref33
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref33
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref33
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref34
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref34
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref34
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref34
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref35
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref35
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref35
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref35
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref36
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref36
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref36
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref36
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref36
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref37
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref37
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref37
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref37
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref37
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref38
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref38
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref38
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref38
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref38


´

´

¨
¨

´

¨

`

´
 ́       ́                                                              ́                                   ́

´ ́                                    ́

˜

Article

39. Godec, J., Tan, Y., Liberzon, A., Tamayo, P., Bhattacharya, S., Butte, A.J.,
Mesirov, J.P., and Haining, W.N. (2016). Compendium of immune signa-
tures identifies conserved and species-specific biology in response to
inflammation. Immunity 44, 194–206.

40. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P., and
Tamayo, P. (2015). The molecular signatures database hallmark gene set
collection. Cell Syst. 1, 417–425.

41. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tam-
ayo, P., and Mesirov, J.P. (2011). Molecular signatures database (msigdb)
3.0. Bioinformatics 27, 1739–1740.

42. Nakaya, H.I., Wrammert, J., Lee, E.K., Racioppi, L., Marie-Kunze, S., Hain-
ing, W.N., Means, A.R., Kasturi, S.P., Khan, N., Li, G.M., et al. (2011). Sys-
tems biology of vaccination for seasonal influenza in humans. Nat. Immu-
nol. 12, 786–795.

43. Frohlich, A., Loick, S., Bawden, E.G., Fietz, S., Dietrich, J., Diekmann, E.,
Saavedra, G., Frohlich, H., Niebel, D., Sirokay, J., et al. (2020). Compre-
hensive analysis of tumor necrosis factor receptor tnfrsf9 (4-1bb) dna
methylation with regard to molecular and clinicopathological features, im-
mune infiltrates, and response prediction to immunotherapy in melanoma.
EBioMedicine 52, 102647.

44. Lang, R., and Raffi, F.A.M. (2019). Dual-specificity phosphatases in immu-
nity and infection: an update. International journal of molecular sciences20
20, 2710.

45. Cari, L., Nocentini, G., Migliorati, G., and Riccardi, C.  (2018). Potential ef-
fect of tumor-specific treg-targeted antibodies in the treatment of human
cancers: A bioinformatics analysis. OncoImmunology 7, e1387705.

46. Fox, J.C., Nakayama, T., Tyler, R.C., Sander, T.L., Yoshie, O., and Volk-
man, B.F. (2015). Structural and agonist properties of xcl2, the other mem-
ber of the c-chemokine subfamily. Cytokine 71, 302–311.

47. Song, K., Rabin, R.L., Hill, B.J., De Rosa, S.C., Perfetto, S.P., Zhang, H.H.,
Foley, J.F., Reiner, J.S., Liu, J., Mattapallil, J.J.,  et al. (2005). Characteriza-
tion of subsets of cd4+ memory t cells reveals early branched pathways of
t cell differentiation in humans. Proc. Natl. Acad. Sci. USA 102, 7916–7921.

48. Liu, Y., Bockermann, R., Hadi, M., Safari, I., Carrion, B., Kveiborg, M., and
Issazadeh-Navikas, S.  (2021). Adam12 is a costimulatory molecule that
determines th1 cell fate and mediates tissue inflammation. Cell. Mol. Im-
munol. 18, 1904–1919.

49. Puiffe, M.-L., Dupont, A., Sako, N., Gatineau, J., Cohen, J.L., Mestivier, D.,
Lebon, A., Prevost-Blondel, A., Castellano, F., and Molinier-Frenkel, V.
(2020). Il4i1 accelerates the expansion of effector cd8+ t cells at the
expense of memory precursors by increasing the threshold of t-cell activa-
tion. Front. Immunol. 11, 600012.

50. Haim-Vilmovsky, L., Henriksson, J., Walker, J.A., Miao, Z., Natan, E., Kar,
G., Clare, S., Barlow, J.L., Charidemou, E., Mamanova, L., et al. (2021).
Mapping rora expression in resting and activated cd4+ t cells. PLo S
One 16, e0251233.

51. Hutcheson, J., Scatizzi, J.C., Siddiqui, A.M., Haines, G.K., 3rd, Wu, T., Li,
Q.Z., Davis, L.S., Mohan, C., and Perlman, H. (2008). Combined deficiency
of proapoptotic regulators bim and fas results in the early onset of sys-
temic autoimmunity. Immunity 28, 206–217.

52. Abbas, A.R., Baldwin, D., Ma, Y., Ouyang, W., Gurney, A., Martin, F., Fong,
S., van Lookeren Campagne, M., Godowski, P., Williams, P.M., et al.
(2005). Immune response in silico (iris): immune-specific genes identified
from a compendium of microarray expression data. Gene Immun. 6,
319–331.

53. ENCODE Project Consortium; and Pachter, L. (2004). The encode (ency-
clopedia of dna elements) project. Science 306, 636–640.

54. The ENCODE Project Consortium (2011). A user’s guide to the encyclo-
pedia of dna elements (encode). PLoS  Biol. 9, e1001046.

55. Kohler, S., Gargano, M., Matentzoglu, N., Carmody, L.C., Lewis-Smith, D.,
Vasilevsky, N.A., Danis, D., Balagura, G., Baynam, G., Brower, A.M., et al.
(2021). The human phenotype ontology in 2021. Nucleic Acids Res. 49,
D1207–D1217.

ll
OPEN A C C E S S

56. Good, K.L., Avery, D.T., and Tangye, S.G. (2009). Resting human memory
b cells are intrinsically programmed for enhanced survival and responsive-
ness to diverse stimuli compared to naive b cells. J .  Immunol. 182,
890–901.

57. Stephenson, E., Reynolds, G., Botting, R.A., Calero-Nieto, F.J., Morgan,
M.D., Tuong, Z.K., Bach, K., Sungnak, W., Worlock, K.B., Yoshida, M.,
et al. (2021). Single-cell multi-omics analysis of the immune response in
covid-19. Nat. Med. 27, 904–916.

58. Kanaji, S., Fahs, S.A., Shi, Q., Haberichter, S.L., and Montgomery, R.R.
(2012). Contribution of platelet vs. endothelial vwf to platelet adhesion
and hemostasis. J .  Thromb. Haemostasis 10, 1646–1652.

59. O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh,
R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016).
Reference sequence (refseq) database at ncbi: current status, taxonomic
expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745.

60. Hodson, D.J., Shaffer, A.L., Xiao, W., Wright, G.W., Schmitz, R., Phelan,
J.D., Yang, Y., Webster, D.E., Rui, L., Kohlhammer, H., et al. (2016). Regu-
lation of normal b-cell differentiation and malignant b-cell survival by oct2.
Proc. Natl. Acad. Sci. USA 113, E2039–E2046.

61. Bonuomo, V., Ferrarini, I., Dell’Eva, M., Sbisa, E., Krampera, M., and Visco,
C.  (2021). Covid-19 (sars-cov-2 infection) in lymphoma patients: A review.
World J .  Virol. 10, 312–325.

62. Jones, S.A., and Hunter, C.A. (2021). Is il-6 a key cytokine target for ther-
apy in covid-19? Nat. Rev. Immunol. 21, 337–339.

63. Sabaka, P., Kos calova, A., Straka, I., Hodosy, J., Liptak, R., Kmotorkova,
B., Kachlıkova, M., and Kusnırova, A. (2021). Role of interleukin 6 as a pre-
dictive factor for a severe course of covid-19: retrospective data analysis
of patients from a long-term care facility during covid-19 outbreak. BMC
Infect. Dis. 21. 308–8.

64. Boyd, S.D., Natkunam, Y., Allen, J.R., and Warnke, R.A. (2013). Selective
immunophenotyping for diagnosis of b-cell neoplasms: immunohisto-
chemistry and flow cytometry strategies and results. Applied immunohis-
tochemistry & molecular morphology 21, 116. AIMM/official publication of
the Society for Applied Immunohistochemistry.

65. Laing, A.G., Lorenc, A., Del Molino Del Barrio, I., Das, A., Fish, M., Monin,
L., Munoz-Ruiz, M., McKenzie, D.R., Hayday, T.S., Francos-Quijorna, I.,
et al. (2020). A dynamic covid-19 immune signature includes associations
with poor prognosis. Nat. Med. 26, 1623–1635.

66. Wen, H., Ding, J., Jin, W., Wang, Y., Xie, Y., and Tang, J .  (2022). Graph
neural networks for multimodal single-cell data integration. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD ’22, 4153?4163 (Association for Computing Machinery).
https://doi.org/10.1145/3534678.3539213.

67. Cao, Z.-J., and Gao, G. (2022). Multi-omics single-cell data integration and
regulatory inference with graph-linked embedding. Nat. Biotechnol. 40,
1458–1466.

68. Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H.,
Ma, Q., and Xu, D. (2021). scgnn is a novel graph neural network frame-
work for single-cell rna-seq analyses. Nat. Commun. 12, 1882–1911.

69. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K. (1999). An
introduction to variational methods for graphical models. Mach. Learn.
37, 183–233.

70. Luecken, M.D., Burkhardt, D.B., Cannoodt, R., Lance, C., Agrawal, A.,
Aliee, H., Chen, A.T., Deconinck, L., Detweiler, A.M., Granados, A.A.,
et al. (2021). A sandbox for prediction and integration of dna, rna, and pro-
teins in single cells. In NeurIPS 2021 Datasets and Benchmarks Track
(Round 2).

71. Cao, J., Cusanovich, D.A., Ramani, V., Aghamirzaie, D., Pliner, H.A., Hill,
A.J., Daza, R.M., McFaline-Figueroa, J.L., Packer, J.S., Christiansen, L.,
et al. (2018). Joint profiling of chromatin accessibility and gene expression
in thousands of single cells. Science 361, 1380–1385.

72. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). Scanpy: large-scale single-
cell gene expression data analysis. Genome Biol. 19. 15–5.

Cell Reports Methods 3, 100563, August 28, 2023 15

http://refhub.elsevier.com/S2667-2375(23)00207-2/sref40
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref41
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref49
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref55
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref61
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref65
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref39
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref39
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref39
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref39
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref40
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref40
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref40
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref41
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref41
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref41
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref42
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref42
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref42
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref42
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref43
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref44
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref44
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref44
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref45
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref45
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref45
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref46
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref46
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref46
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref47
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref47
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref47
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref47
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref48
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref48
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref48
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref48
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref49
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref49
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref49
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref49
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref49
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref50
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref50
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref50
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref50
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref51
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref51
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref51
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref51
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref52
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref52
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref52
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref52
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref52
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref53
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref53
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref54
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref54
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref55
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref55
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref55
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref55
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref56
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref56
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref56
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref56
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref57
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref57
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref57
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref57
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref58
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref58
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref58
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref59
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref59
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref59
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref59
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref60
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref60
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref60
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref60
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref61
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref61
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref61
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref62
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref62
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref63
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref64
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref64
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref64
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref64
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref64
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref65
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref65
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref65
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref65
https://doi.org/10.1145/3534678.3539213
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref67
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref67
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref67
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref68
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref68
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref68
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref69
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref69
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref69
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref70
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref70
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref70
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref70
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref70
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref71
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref71
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref71
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref71
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref72
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref72


`

ll
OPEN A C C E S S

73. Romano, S., Vinh, N.X., Bailey, J., and Verspoor, K. (2016). Adjusting for
chance clustering comparison measures. J .  Mach. Learn. Res. 17,
4635–4666.

74. Lawrence, M., Huber, W., Pages, H., Aboyoun, P., Carlson, M., Gentle-
man, R., Morgan, M.T., and Carey, V.J. (2013). Software for computing
and annotating genomic ranges. PLoS  Comput. Biol. 9, e1003118.

75. Bailey, T.L., and Grant, C.E. (2021). Sea: Simple Enrichment Analysis of
Motifs. Preprint at bioRxiv. https://doi.org/10.1101/2021.08.23.457422.

Article

76. Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. (2015). The meme
suite. Nucleic Acids Res. 43, W39–W49.

77. Bailey, T.L. (2021). Streme: accurate and versatile sequence motif discov-
ery. Bioinformatics 37, 2834–2840.

78. Kulakovskiy, I.V., Vorontsov, I.E., Yevshin, I.S., Sharipov, R.N., Fedorova,
A.D., Rumynskiy, E.I., Medvedeva, Y.A., Magana-Mora, A., Bajic, V.B., Pa-
patsenko, D.A., et al. (2018). Hocomoco: towards a complete collection of
transcription factor binding models for human and mouse via large-scale
chip-seq analysis. Nucleic Acids Res. 46, D252–D259.

16 Cell Reports Methods 3, 100563, August 28, 2023

http://refhub.elsevier.com/S2667-2375(23)00207-2/sref74
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref73
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref73
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref73
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref74
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref74
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref74
https://doi.org/10.1101/2021.08.23.457422
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref76
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref76
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref77
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref77
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref78
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref78
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref78
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref78
http://refhub.elsevier.com/S2667-2375(23)00207-2/sref78


n
M

ll
Article OPEN A C C E S S

S T A R + M E T H O D S

K E Y  R E S O U R C E S  T A B L E

REAGENT or RESOURCE

Deposited data

BMMC CITE-seq

BMMC Multiome data

Mouse skin cell SHARE-seq

Mouse brain cell SHARE-seq

Mouse kidney cell sci-CAR

PBMC CITE-seq

COVID-19 PBMC CITE-seq

Software and algorithms

moETM

scanpy

anndata

biomaRt

seurat

totalVI

SMILE

scMM

Cobolt

MultiVI

MOFA+

SOUR CE

Luecken et al.69

Luecken et al.69

Ma et al.24

Ma et al.24

Cao et al.70

Hao et al.12

Stephenson et al.57

This paper

Wolf et al.71

Virshup et al.72

Durinck et al.73

Hao et al.12

Gayoso et al.6

Xu et al.5

Minoura et al.9

Gong et al.8

Ashuach et al.7

Argelaguet et al.11

IDENTIFIER

GSE194122

GSE194122

GSE140203

GSE140203

GSE117089

GSE164378

https://www.covid19cellatlas.org/

https://github.com/manqizhou/moETM https://doi.org/
10.5281/zenodo.8104798

https://github.com/scverse/scanpy

https://github.com/scverse/anndata

https://rdrr.io/bioc/biomaRt/man/

https://satijalab.org/seurat/

https://github.com/YosefLab/scvi-tools

https://github.com/rpmccordlab/SMILE

https://github.com/kodaim1115/scMM

https://github.com/epurdom/cobolt

https://zenodo.org/record/5762077

https://github.com/bioFAM/MOFA2

R E S O U R C E  AV A I L A B I L I T Y

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yue Li (yueli@cs.
mcgill.ca).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d  All data used in this study is publicly available. The peripheral blood mononuclear cells CITE-seq measuring from both COVID

patients and healthy patients is available at the website https://www.covid19cellatlas.org/. The other datasets used are avail-
able under the NCBI GEO accession numbers as listed in the key resources table.

d  All original code has been deposited at https://doi.org/10.5281/zenodo.8104798 and https://github.com/manqizhou/moETM
and is publicly available as of the date of publication.

d  Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon
request.

METHOD D E T A I L S

moETM data generative process
The molecular activities in each cell n can be measured with M omics, such as gene expression from transcriptome, surface protein
expression, and the open chromatin regions manifested as peaks. For the ease of the following descriptions, we define the entities of

genes, proteins and peaks as ‘‘features’’. Profiling those omics in the cell leads to M count vectors fxðmÞgm = 1, each of which has a
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dimension VðmÞ as the number of unique features in omic m. Adapting the text-mining analogy, we consider each cell as a ‘‘docu-
ment’’ written in M languages or modalities (i.e., transcriptome, proteome, chromatin accessibility); each feature from the mth

omic is considered as a ‘‘word’’ from the mth vocabulary; each sequencing read is a ‘‘token’’ in the document; the abundance of the
reads mapped to the same feature is the ‘‘word count’’ in the document.

The multi-modal document of a cell n can be summarized into a mixture of K  latent topics qn, which are presumably implicated in
each modality (Figure 1A). Inference of these topic mixtures for each cell is accomplished by modeling the distribution of the multi-
omic count data fxðmÞgm = 1 from the topic mixture for the cell and learning the global topic embedding over the M modalities. The

latter are shared among all cells and expressed as M matrices fFðmÞ ˛ RK 3 V ð m Þ  
gm = 1, where a row vector 4ðmÞ ˛ RV ð m Þ  

denotes the
k-th topic from the m-th modality.

To increase information sharing across the omics and the model expressiveness, we further decompose each omic-specific topic

embedding matrix FðmÞ into the topic embedding a ˛ R K 3 L  and feature embedding rðmÞ ˛ R L 3 V ð m Þ  
, where L  denotes the size of the

embedding space. The expected values for the count data for each omic is proportional to the dot product of the cell embedding,
topic embedding matrix, and feature embedding matrix: xðmÞ fqn arðmÞ .

Formally, we formulate the data generative process as follows. For each cell indexed by n ˛ f 1 ; . ; N g ,  draw a 1 3 K  topic proportion
qn from logistic normal distribution qn  LN ð0; IÞ:

dn N ð0; IÞ; qn =  softmaxðdnÞ =  P
k

e x  
exp

;

ðdn;kÞ
: (Equation 1)

For each read iðmÞ ˛ f1; . ; D ð m Þ g  from the mth modality wðmÞ 
Þ , draw a feature index vðmÞ (e.g., the particular transcript or open

chromatin region the read was sequenced) from a categorical distribution CatðrðmÞÞ:

VðmÞ        h i
h  

ðmÞ ðmÞ

i

wn;iðmÞ rn;v
Þ n;iðmÞ (Equation 2) vðmÞ =  1

where DðmÞ denotes the total number of reads. The expected rate rðmÞ 
Þ of observing feature vðmÞ in cell n is parameterized as:

exp rðmÞ

rn;vðmÞ      =  P
v ð m Þ  =  1 exp rn;vðmÞ       

; rn;vðmÞ      =  qnar:;v
ð mÞ

 + lsðnÞ;vðmÞ (Equation 3)

where r:;v
ð
m

Þ
 ˛ R L 3 1  denotes embedding of feature vðmÞ, lsðnÞ;vðmÞ is the batch-dependent and feature-specific scalar effect, where sðnÞ

indicates the batch index for the nth cell. Notably, the softmax function normalizes the expected observation rates over all features
separately within each modality to account for different modality size (e.g., there are more peaks than genes, and more transcripts
than surface proteins). Another reason for the normalization is to capture feature sparsity (i.e., only a small fraction of features from
each modality is non-zero). This is analogous to text mining, where only a small fraction of the unique words are draw from the entire
vocabulary for any given document.

The likelihood for cell n can be expressed as multinomial distribution:

DðmÞ        
VðmÞ        h i

h  
ðmÞ ðmÞ

i
VðmÞ        h i P D

ð m Þ  
h 

ðmÞ ðmÞ

i
VðmÞ        h i  ðmÞ

ðmÞ n;iðmÞ ðmÞ i =  1 n;iðmÞ ðmÞ
n;v                                                                         n;v                                                                                         n;v

i =  1 vðmÞ  =  1 vð mÞ  =  1 vðmÞ  =  1

where xðmÞ =  
P

i  = 1½wðmÞ =  v denotes the read count for feature vðmÞ for cell n in the mth modality. As a result, we can more conve-
niently express the data likelihood in terms of the read count:

VðmÞ ðmÞ

pðxnjrnÞ = rðmÞ      n;v
(Equation 4)

vðmÞ =  1

moETM model inference
For the ease of inference, we consider the cell topic embedding dn (before softmax normalization) for cells n ˛ f 1 ; . N g  as the latent

variables and all the cells are independent. The rest of the parameters including topic embedding a, feature embedding frðmÞgm = 1,

and batch-effect parameter flðmÞ gm = 1 are treated as point estimates and learned by the model. Let’s denote Q  =  fdn ;a;frðmÞ gm = 1;

flðmÞ gm = 1Þg. A principled way to learn those parameters is to maximize the log marginal likelihood:

Q ) a r g m a x
X

l o g  p xðmÞ
m = 1 Q      h a r g m a x

X
L n

n n
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However, this integral is not tractable. Instead, we took a variational inference approach to optimize the model parameters by maxi-
mizing an evidence lower bound (ELBO) of the marginal log likelihood with a proposed variational posterior qðdnÞ as a surrogate to the
true posterior of the cell topic embedding pðdnfxðmÞgm = 1Þ:

Z
L n  = log p      xð

mÞ     
m =  1 ; dnQ     ddn

Z p
n

xðmÞ
oM

; d Q
= log qðdnÞ

qðd 
 1  ddn

" #
p xðmÞ ; d Q

= log EqðdnÞ       qðd 
 1

" #
p xðmÞ ; d Q

R Eqðdn Þ       log
qðd 

 1                                                                                                                 (Equation 5)

h i
=  EqðdnÞ log p      xðmÞ     

m =  1dn ; Q     pðdnÞ  log qðdnÞ

h i
=  EqðdnÞ log p      xðmÞ     

m =  1dn ; Q  EqðdnÞ log
pðdnÞ

h i
=  EqðdnÞ log p      xðmÞ     

m =  1dn ; Q  KL½qðdnÞkpðdnÞhELBOn (Equation 6)

where Equation 5 follows the Jensen’s inequality69 and K L  denotes the Kullback-Leibler (KL) divergence between the proposed dis-
tribution and the prior (i.e., standard Gaussian with zero mean and identity variance), acting as a regularization when maximizing the
data likelihood.

We defined the proposed distribution qðdnÞ as a product of Gaussians (PoGs):
qðdnÞ =  N  dn; m; s2

; (Equation 7)

The mean m and standard deviation s  of the joint Gaussian is computed as:
P

m  =  1mmsm 2
Q

m  = 1 s m

1+     m = 1 s 2                        
 1+     m = 1 s 2

(Equation 8)

where mm and s m  are the mean and variance of the Gaussian latent embedding for the individual modalities, respectively. Those are
output from the encoder neural network (NNET):

mðmÞ; log sðmÞ  
=  NNET xðmÞ; W

(Equation 9)

where xðmÞ is the normalized counts for each feature as the raw count of the feature divided by the total counts of mth modality in cell n,
and W is the parameters for a two-layer feedforward neural network.

We approximate the above ELBO in Equation 6 by sampling from the proposed joint Gaussian distribution using the reparamete-
rization trick13:

dn N ðm; diagðsÞÞ =  m + diagðsÞN ð0; IÞ
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ELBOðmÞ z l o g  p      xðmÞ     
m =  1dn ; Q      KL½qðdnÞkpðdnÞ

where the K L  divergence has closed form:

KL½qðdnÞkpðdnÞ =  EqðdnÞ½log qðdnÞ  EqðdnÞ½log pðdnÞ

=      
2

log f s g 2   
2 

 
2

logð2pÞ       
2

logð2pÞ  
2

fmg2  
2

fsg 2

=  
2 

log f s g 2   fmg2  f s g 2  +  1

Article

(Equation 10)

Together, with the Multinomial likelihood defined in 4 and K L  divergence in 10, we can express the ELBO in its approximate closed-
form using the sampled latent variable:

N M

E L B O z log p      xðmÞ     
m =  1dn; Q      KL½qðdnÞkpðdnÞ n =

1 m =  1

M VðmÞ

= xðmÞ log rðmÞ       log fsg2   fmg2  fsg2  +  1 m =  1

vðmÞ  =  1

(Equation 11)

where rn;v
Þ is defined in 3. The model parameters including the encoder weight W and the decoder weights Q  =  f a ; r g  are optimized

by maximizing the above ELBO via backpropagation:
N

Q; W)ar g max log p      xðmÞ dn ; Q      KL½qðdnÞkpðdnÞ (Equation 12)
Q;W         n =  1

S ingle-cel l  multi-omic datasets and preprocessing
There were 7 public datasets included in this study for performance evaluation and model comparison. All 7 datasets are from pub-
licly available repositories. Among them, 4 datasets provide joint profiling of gene expression and open chromatin regions (denoted as
‘‘gene+peak’’ data).

1. Multiome bone marrow mononuclear cells (BMMC1) dataset from the 2021 NeurIPS challenge consisting of 42,492 cells with
22 cell types from 10 donors across 4 sites,70,

2. SHARE-seq mouse skin late anagen (MSLAC) dataset containing 34,774 cells with 1 batch and 23 cell types,24,
3. sci-CAR mouse kidney cells (MKC) dataset from cell samples with 1 batch and 14 cell types,71,
4. SHARE-seq mouse brain cells (MBC) dataset containing 3,293 cells with 1 batch and 19 cell types.24

For the BMMC1 dataset, we take into account two different batch types: one treats a subject (e.g., site1 +  donor1 as a subject
s1d1, site1 +  donor2 as a subject s1d2, etc) as a batch (s1d1, s1d2, s1d3, s2d1, s2d4, s2d5, s3d3, s3d6, s3d7, s3d10, s4d1,
s4d8, s4d9, 13 batches in total), while the other treats a site (site1 as batch1, site2 as batch2) as a batch (4 batches in total). For the
CITE-seq data measuring transcriptome and surface protein in the same cell, 3 datasets were used in this study.

1. Bone marrow mononuclear cells (BMMC2) dataset from the 2021 NeurIPS challenge from 9 donors and 4 sites,70,
2. Human White Blood Cell (HWBC) dataset containing 211,000 human peripheral blood mononuclear cells,12,
3. Human Blood Immune Cell (HBIC) dataset57 measuring 647,366 peripheral blood mononuclear cells from both COVID patients

and healthy patients.

Similarly, for the BMMC2 dataset, we consider two different batch types: one treats donors as batches (12 batches in total), while
the other treats sites as batches (4 batches in total). All datasets were processed into the format of samples-by-features matrices. For
gene+peak datasets, the read count for each gene and peak were first normalized per cell by total counts within the same omic using
scanpy.pp.normalize_total function in the scanpy,72 then log1p transformation was applied. After that, scanpy.pp.highly_variable_
genes was used to select highly variable genes or peaks. For the joint profiling of transcriptome and surface protein data (denoted as
gene+protein), we used all surface proteins measured by the scADT-seq assay since the number of proteins is much smaller
compared with the number of genes or peaks and all of them are highly informative of immune cell functions. The same normalization as
in the gene+peak data was performed on the gene+protein data.

Cross-omic imputation
The trained moETM can impute one omic from another omic. Suppose we have two omics namely omic A and omic B. For the training
data where both omics are observed, moETM learns a shared topic embedding a  and omic-specific feature embedding rðAÞ and rðBÞ.
For the testing data, suppose without loss of generality that only omic B  is observed. To impute omic A, moETM uses the encoder for
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modality B  to generate the topic mixture, which is then input to the decoder for omic A to complete the imputation (Figure 1C). We
evaluated the imputation accuracy using the BMMC1 (gene+peak) and BMMC2 (gene+protein) datasets based on (1) 60/40 random
split of training and testing data with 500 repeats to get standard deviation estimate; (2) training on all batches except for one batch
and testing on the held-out batch (leave-one-batch); (3) training on all cell types except for one cell type and testing on the held-out
cells of that cell type (leave-one-cell-type).

Evaluation metrics
The batch effects correction and biological variance conservation categories were used to assess the efficacy of the integration
across multiple modalities. To quantify bio-conservation, we used the Adjusted Rand Index (ARI) and Normalized Mutual Information
(NMI), and to measure batch effect removal, we used k-nearest-neighbor batch-effect test (kBET) and Graph Connectivity (GC).
Specifically, ARI calculates the degree of similarity between two clusterings and adjusts for the possibility that objects can randomly
form the same clusters. NMI normalizes the mutual information to a scale of 0–1. While NMI excels in unbalanced clustering or small
clusters, ARI is better suited to clusters of similar size.73 kBET performs hypothesis testing on whether batch labels are distributed
differently across cells based on Pearson’s c2 test.19 G C  measures whether cells of the same type from different batches are close to
one another by computing a K  nearest-neighbour graph based on the distance between cells in the embedding space.20

QUANTIFICATION AND S T A T I S T I C A L  A N A L Y S I S

Linking genes  to open chromatin regions
We sought to investigate the relation between the top peaks and top genes under the same moETM topic (i.e., 4ðmÞ =  ak rðmÞ for topic
k and m ˛ fgene; peakg). To assess the in-cis relation, we measured the genomic distances between genes and peaks and
designated genes that were near peaks as peak-neighboring-genes if they are within 150K base pairs (bp) distance. Specifically,
we first obtained a genes-by-topics matrix 4ðgeneÞ =  arðgeneÞ and a peaks-by-topics matrix 4ð

peak
Þ

 =  arðpeakÞ.

To transform 4ð
peak

Þ
 into a peak_to_genes-by-topics matrix 4ð

peaks  to 
g
ene

s
Þ, we first derived a binary peaks-to-genes mapping ma-trix

H with the entries hp;g = 1 if the corresponding pair of peak p and gene g are within 150K bp genomic distance and are positively
correlated and 0 otherwise. In detail, we computed the Pearson correlation between gene g and peak p in terms of their topic scores:

4ðgeneÞ        ðgeneÞ
u
4ðpeakÞ        ðpeakÞ

rp;g = 
k4ðgeneÞ        ðgeneÞk2k4ðpeakÞ  4ðpeakÞ     k2

The genome distance between peaks and genes was based on the latest genome build (i.e., hg38 for human) and obtained via the
GenomicRanges74 package in R.

Pathway enrichment analysis
For each moETM topic, we performed Gene Set Enrichment Analysis (GSEA)3 7  to associate the topic with known pathways or gene
sets. In particular, we used each topic to query two gene sets from Molecular signatures database (MSigDB), which are the 5219
Immunologic signature gene sets (C7) and the 7763 Gene Ontology Biological Processes (BP) (C5-BP) terms. For each topic, we ran
GSEAPreranked on a ranked list of genes based on their corresponding topic scores against every gene set from C7 or C5-BP, and
calculated the enrichment score (ES) for over- or under-representation. The statistical significance of the E S  was computed based on
1000 permutation test. The gene sets with Benjamini–Hochberg (BH) corrected p values lower than 0.05 were deemed sig-nificant.
Similarly, for the scATAC-seq data, the peaks-by-topics matrix was first converted into a peaks_to_genes-by-topics matrix and then
provide as input to GSEA pipeline.

Motif enrichment analysis of top peaks  from moETM-learned topics
To detect sequence-based regulatory elements for the cell-type-specific topics, we performed motif enrichment analysis using the
top 100 peaks that exhibit the highest topic scores under each topic. The 100 sequences corresponding to those top 100 peaks
under each topic were extracted from Ensembl database and provided as input to the Simple Enrichment Analysis (SEA) pipeline75

from the MEME suite.76 SEA utilizes the STREME motif discovery algorithm77 to identify known motifs that are enriched in input se-
quences. For our purpose, we used the HOmo sapiens COmprehensive MOdel COllection (HOCOMOCO) Human (v11) and
HOCOMOCO Mouse (v11) motif database.78 Motifs with Fisher’s exact test p values lower than 0.05 were selected as the enriched
motifs.

Differential analysis to detect condition-specific topics
We sought to detect moETM-topics that exhibit significantly higher scores for the conditions of interest such as cell types or pheno-
types. Notably, while the cell types were at the single-cell level, the phenotypes were at the subject level (e.g., COVID-19 severity
state). The latter means that the cells from the same subject were assigned the same phenotype label. For each dataset, we first split
the cells into positive and negative groups, corresponding to the presence and absence of the target condition, respectively. For each
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topic, we assessed the statistical significance of the topic score increase for the positive group relative to the negative group based on
one-sided Student’s t test. The topics with a Bonferroni-adjusted p value smaller than 0.001 were considered significant with the label.

Incorporating pathway-informed gene embeddings
In the linear decoder, we reconstruct the cells-by-features matrix by the dot product of the 3 matrices, namely cells-by-topics, topics-
by-embedding, and embedding-by-features. By default, the last feature embedding matrix consist of learnable parameters.
However, we can instill prior pathway information during the training of moETM by fixing the features embedding to a known
gene set. As a result, the topics-by-embedding and embedding-by-features matrices change to topics-by-gene_sets and gene_
sets-by-features with only the topics-by-gene_sets as the learnable parameters. This allows us to directly map each topic to each
gene set, which may further improve the model interpretability especially if the chosen gene sets were highly relevant to the data.
Given that several single-cell multi-omic datasets used in this study were derived from the blood, we utilized the Immunologic signa-
ture gene sets collection (C7) from the MSigDB database. Gene sets with fewer than five or more than 1000 genes were filtered out.
We then converted the gene set information into a binary gene_sets-by-genes matrix with 0 and 1 indicating the absence and pres-
ence of the genes (columns) in the corresponding gene set (rows), respectively. We focused on the gene+peak case by fixing the
gene embedding to the gene set while learning the peak embedding as in the default setting. We did not experiment this approach on
the gene+protein case, for which the topics learned by the default moETM are sufficiently easy to interpret.
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