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ABSTRACT: Near-infrared (NIR) light is known to have
outstanding optical penetration in biological tissues and to be
non-invasive to cells compared with visible light. These character-
istics make NIR-specific light optimal for numerous biological
applications, such as the sensing of biomolecules or in theranostics.
Over the years, significant progress has been achieved in the
synthesis of fluorescent cyclophanes for sensing, bioimaging, and
making optoelectronic materials. The preparation of NIR-emissive
porphyrin-free cyclophanes is, however, still challenging. In an
attempt for fluorescence emissions to reach into the NIR spectral
region, employing organic tetracationic cyclophanes, we have
inserted two 9,10-divinylanthracene units between two of the
pyridinium units in cyclobis(paraquat-p-phenylene). Steady-state
absorption, fluorescence, and transient-absorption spectroscopies reveal the deep-red and NIR photoluminescence of this
cyclophane. This tetracationic cyclophane is highly soluble in water and has been employed successfully as a probe for live-cell
imaging in a breast cancer cell line (MCF-7).

NIR
Emission

B INTRODUCTION The vast majority of NIR-emissive macrocycles reported in
the literature are porphyrins and their analogues'* in addition
to porphyrin-containin§ cyclophanes."® For example, Anderson
and co-workers'*™'® have developed a series of giant
porphyrin-based NIR-emissive cyclophanes exhibiting emis-
sions that can reach 1400 nm. The construction of NIR-
emissive fluorescent porphyrin-free compounds, however,
remains a challenge, despite the fact that a few examples,

Photoluminescent compounds and materials that emit in the
near-infrared (NIR) range possess a deeper and much better
optical penetration in biological tissues and are associated with
less scattering and lower damage caused to the cells compared
to the light emitted in the visible region of the spectrum. These
properties render this class of fluorophores appealing

candidates for various biological applications, such as such as squaraine,'” perylene diimide,'® and n-extended
biomolecular sensing,' bioimaging,” and theranostics.” In anthracene-based'*'? cyclophanes, have been reported to
addition to these biomedical applications, NIR-emissive exhibit these photoluminescent characteristics.
molecules can be incorporated4 into high-performance, organic Recently, the insertion of various aromatic units into the
light-emitting diodes (OLEDs) and in the generation’ of structure of cyclobis(paraquat-p-phenylene)** (CBPQT*) has
photonic devices. been investigated.” The aromatic units have been inserted
Macrocycles bearing one or more aromatic rings embedded both between two of the cyclophane’s pyridinium units and on
in their structures have also been called cyclophanes.® In the the bridges between the bipyridinium units, givin% rise to the
past half-century, numerous synthetic strategies to afford formation ozt;cyclophanes capable of Pirln‘iging blue''** (F igure
cyclophanes have been described in the literature’ and have la), green™ (Figure 1b), yellow ™ (Figure lc), and
diversified substantially on account of their unique molecular
recognition, which has attracted® much attention from Received: February 2, 2023 =JIAICS

supramolecular chemists. Among the wide variety of cyclo- Published: April 12, 2023
phanes, those exhibiting additional fluorescence properties

have emerged9 as exceptional platforms for a myriad of

applications, ranging from sensors'’ and bioimagingll to

catalysis'* and OLEDs."?

© 2023 American Chemical Society https://doi.org/10.1021/jacs.3c01244
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Figure 1. Structural formulas of related previously known photoluminescent CBPQT*-type cyclophanes with (a) blue fluorescence, e.g,

ExTzBox*'"™ and *'°AnBlueBox*;**" (b) green emission, e.g., 1"SNpBox‘”,z‘“’ 2‘7NpBu:)x‘”',23b and DAPPBox*;***

and (c) yellow luminescence,

e.g, 1AnBox*,'"" and "PyBox**."*" (d) In this work, employing two 9,10-divinylanthracene units, the tetracationic cyclophane VAnBox** emits
NIR light, which was unattainable previously with the CBPQT**-type cyclophanes.

circularly polarized25 light. In addition, one of the main
advantages of these tetracationic cyclophanes is their high
solubility in aqueous media, making it possible for them to
address biological applications. Thus, both the blue-emissive
ExTzBox*"''" and the yellow-emissive >*AnBox*"''?! have
been employed in live-cell imaging, and the extended ExBox*"
has been utilized*® as a drug delivery vehicle in photodynamic
therapy. Although a variety of fluorescent CBPQT*'-based
cyclophanes have been designed, none of them exhibit
fluorescence in the NIR spectral region. In this context, the
development of NIR-emissive water-soluble organic
CBPQT*-based cyclophanes presents a challenge of major
importance when it comes to biotechnological applications.

The 9,10-divinylanthracene unit is a fluorophore, giving
rise'””*” to NIR photoluminescence, which has been employ-
ed'’*® previously in the synthesis of self-assembled metal-
based cyclophanes. In order to overcome the stability and
lability issues characteristic of metallacycles, we report herein
the design and synthesis of a 9,10-divinylanthracene-based
organic tetracationic cyclophane (Figure 1d) whose fluores-
cence emission reaches into the NIR spectral region. This red-
shifting of the photoluminescence of VAnBox**, compared to
other synthetic tetracationic cyclophanes, and its excellent
solubility in water''******% render it a good candidate as a
NIR probe for live-cell imaging in a breast cancer cell line
(MCE-7).

B RESULTS AND DISCUSSION

Synthesis and Characterization. The syntheses of the
model compound 2-2PFg and the organic tetracationic
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cyclophane VAnBox-4PF, were performed (Scheme 1) using
Sx2 reactions, a synthetic approach previously employed™ for
extended CBPQT*"-based cyclophanes. Treatment of 9,10-
bis[2-(4-pyridyl)vinylJanthracene (1) with either benzyl bro-
mide (BnBr) or a,a’-dibromo-para-xylene in MeCN afforded,
respectively, the model compound 2-2PF4 and the inter-
mediate 3-2PF; in 35 and 76% yields after counterion
exchange. The final macrocyclization between the bis-benzyl
bromide 3-2PF and the bis-pyridine 1 in the presence of TBAI
in MeCN at high dilution (0.17 mM) gave the desired organic
tetracationic cyclophane VAnBox-4PF, in 19% yield after
purification employing reverse-phase chromatography and
counterion exchange to PF4™.

The cyclophane VAnBox-4PF; was characterized (Figures
S5—S10) by 1D and 2D NMR spectroscopy. High-resolution
mass spectrometry (HRMS) confirmed (Figure S12) the
formation of VAnBox-4PF,. The mass spectrum showed three
characteristic peaks at m/z 633.1896, 373.8053, and
244.1120, corresponding, respectively, to [M — 2PF,]*", [M
— 3PF¢]**, and [M — 4PF¢]", whose experimental and
theoretical isotopic distributions (Figures S13—S15) match
well.

Single crystals of the model compound 2-2PF4 and the
cyclophane VAnBox-4PF; were grown by slow evaporation of
PrOH in MeCN solutions of the compounds. The solid-state
structure of VAnBox-4PF (Figure 2a,b) shows that the size of
the cyclophane is ca. 8.7 X 18.5 A, and its bipyridinium pillars
are bent and rather flexible. Unlike the previously inves-
tigated''" ®'*AnBox-4PF,, the anthracene units of VAnBox:
4PFy4 are not parallel. One of the anthracene units is directed

https://doi.org/10.1021/jacs.3c01244
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Scheme 1. Synthesis of a Model Compound 2-2PF, and the
Cyclophane VAnBox*4PF; Employing Sy2 Reactions”
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“The final macrocyclization was carried out at a concentration of 0.17
mM, affording the desired tetracationic cyclophane VAnBox-4PF, in
19% yield.

Figure 2. (a) Top-down view and (b) side-on view of the solid-state
structure of VAnBox*". Illustration of the packing of VAnBox** along
the (¢) a-axis and (d) b-axis, showing the tubular superstructure.
Solvent molecules and PF;~ anions were omitted for the sake of

clarity.

toward the center of the cavity, obstructing it, while the other
is pointing outside the cyclophane. The packing of VAnBox:
4PF, displays (Figure 2c,d) tubular superstructures that are
obstructed by anthracene units, forming crystalline nanotubes
with two tunnels filled with PF,~ anions and solvent molecules.
In contrast, the solid-state structure (Figure S51) of the model
compound 2-2PF; does not adopt this superstructure on
account of its constitutional linearity.
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Optoelectronic Properties. In order to characterize the
optoelectronic properties of the 9,10-divinylanthracene-based
compounds, electrochemical experiments—namely cyclic
voltammetry (CV) and differential pulse voltammetry
(DPV)—were performed in MeCN solutions containing
TBAPF, (0.1 M) as the supporting electrolyte. The CV of
the cyclophane VAnBox*' and the model compound 2
exhibit (Figure 3a) one reduction wave (—0.46 and —0.48 V

a) Y -0.44 V
—— VAnBox*
—048yv 036V
-0.46 V
10 08 -06 -04 -02 00
E (V vs Ag/AgCl)

Figure 3. (a) CV data (scan rate: 200 mV s™') for VAnBox*" (blue
trace) and the model compound 2** (red trace) in MeCN at
concentrations of ca. 0.5 mM. The CV curve shows that both the
model compound and the cyclophane undergo a single reversible
reduction. (b) HOMO and LUMO energy levels of VAnBox*'
visualized by DFT calculations, which possess a HOMO-LUMO
gap of 2.20 €V, and their respective molecular orbitals. The HOMO
and LUMO of the cyclophane show an intramolecular CT going from
the anthracene to the pyridinium units.

vs Ag/AgCl, respectively, at a scan rate of 200 mV s'),
corresponding to the reduction of the pyridinium (Py*) units
to their radical forms (Py®). The observation of a single
reversible reduction of the pyridinium units indicates the
absence of electronic communication between these units. The
collected data allow the calculation of the HOMO-LUMO
gap (Figure 3b) of the organic tetracationic cyclophane
VAnBox" to be 2.20 eV. In addition, density functional
theory (DFT) calculations were performed, the results of
which show that the molecular orbitals of the HOMO and
LUMO energy levels of VAnBox*" are located (Figure 3b) on
the anthracene and pyridinium units, respectively. Thus, these
results demonstrate the potential for intramolecular charge
transfer (CT) from the divinylanthracene core toward the
pyridinium units.

The photophysical properties of the organic tetracationic
cyclophane VAnBox-4PF; and the model compound 2-2PF¢
were investigated. Both compounds exhibit (Figure 4a) similar
UV—Vis spectra with several absorption bands between 200
and 350 nm and an additional CT band between 400 and 550
nm centered on 473 and 470 nm for VAnBox-4PF; and the
model compound 2-2PF;, respectively, in MeCN. This
behavior is typical® of Robin—Day class II mixed-valence
systems. The molar extinction coefficients of 2-2PF; and
VAnBox-4PF; at their respective CT band maxima are 1.8 X
10* and 2.1 x 10* M~! em™% Remarkably, these values show
only a modest increase in absorption for the cyclophane
compared to the model compound, despite having twice the
number of chromophores per molecule. Comparatively modest
increases in extinction coeflicient have been observed
previously’® in weakly coupled molecular dimers. This small
increase, combined with the weak red shift in the CT
absorption maximum, may be a consequence of the cyclophane

https://doi.org/10.1021/jacs.3c01244
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Figure 4. Photophysical properties of the model compound 2-2PF; and the cyclophane VAnBox-4PF,. UV—Vis (a) and normalized fluorescence
(b) spectra of 2-2PF4 and VAnBox-4PF, in MeCN recorded at 20 °C at a concentration of ca. 1 X 107> M, except for the fluorescence spectrum of
VAnBox-4PF; (ca. 6 X 107° M). In MeCN, both compounds exhibit a deep red/NIR photoluminescence and large Stokes shifts—5613 cm™" for 2.
2PF, and 6149 cm™' for VAnBox-4PF. (c) Normalized fluorescence spectra of VAnBox-4PF in various solvents at ca. 6 X 107% M displaying
similar spectra and an NIR emission in all solvents. (d) Transient absorption spectra of VAnBox-4PF; in MeCN following ~100 fs excitation at 460

nm.

geometry: the CT transition dipole moments are oriented from
the divinylanthracene core to each pyridinium unit, such that
there are two opposing moments in 2-2PF, with J-type
coupling.”' In the case of VAnBox-4PF,, however, there are
four of these transition moments, and the cyclophane
geometry results in (Figure S31) four pairwise J-type versus
two H-type couplings. Thus, the interference between these
transition dipole moment couplings suppresses the total
absorption and results in only a weak red shift (ca. 13§
cm™") of the maximum. The broken symmetry suggested by
the solid-state structure (Figure 2a) may also play a role in
modulating the extinction coeflicient through changes in
effective conjugation lengths. The solid-state structures,
however, represent the equilibrium states for the species in
solution, where fluctuations and disorder will play a larger role.

The emission spectra in MeCN of these two compounds
bearing 9,10-divinylanthracene units display (Figure 4b) a
broad fluorescence band in the red and NIR spectral regions—
from 550 to 850 nm—centered on 657 and 667 nm for 2-2PF,
and VAnBox-4PF, respectively. From the crossing of the (CT
band-normalized) absorption and emission spectra (Figures
$27,529), the energy of the CT state is 2.22 and 2.16 eV in 2-
2PF; and VAnBox-4DPFy, respectively. These values are in good
agreement with the electrochemical bandgap given above.
Mulliken—Hush analysis’> (Figure S30) shows that for the
electronic coupling, the Hp, between the donor and acceptor
units is similar for 2-2PF; and VAnBox-4PF; at about 5280
and 5740 cm™', respectively, with the coupling strength
tracking the change in the molar extinction coefficient.

On account of the high solubility of VAnBox"", the steady-
state photophysical characterization was carried out (Table S1)
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in a variety of solvents, including H,O as its chloride salt. The
emission spectra (Figure 4c) of VAnBox*" in all solvents are
very similar and show deep red and NIR photoluminescence.
The quantum yields of emission for both compounds, in all the
solvents investigated, are rather low, reaching values between
0.31 and 0.05%, depending on the solvent (Table S1). The
NIR fluorescence of these compounds is, however, always
detectable.

The excited-state dynamics of 2-2PF; and VAnBox-4PF, in
MeCN were explored using transient absorption spectroscopy
by exciting the CT band at 460 nm. Figure 4d shows that upon
excitation of VAnBox-4PFy, ground-state bleaching at 460 nm
as well as positive excited-state absorption (ESA) peaks at 367,
582, and 1218 nm appear. Stimulated emission at 680 nm is
also present, which is consistent with the steady-state CT-
based emission shown in Figure 2. The positive ESA features
are attributed to the CT state between the anthracene donor
and pyridinium acceptor groups, as suggested by the DFT
results. All features decay within a nanosecond with minimal
spectral evolution, with the exception of the stimulated
emission feature, which shifts to an apparent minimum at
696 nm, then back to a minimum at 676 nm, with rate
constants of k; = (0.9 + 0.3 ps)™' and k, = (7.8 £ 0.3 ps)~',
respectively, before ultimately decaying with a rate constant of
ky = (51.0 = 0.3 ps)”". At later times during decay, the
stimulated emission appears as an overall positive signal arising
from the additive ESA features, although its shape remains as a
distinctive depletion in the featureless absorption in that
region. The kinetic analysis is presented in Figure 541. No
triplets or other long-lived species are observed following the
decay of the CT state.

https://doi.org/10.1021/jacs.3c01244
J. Am. Chem. Soc. 2023, 145, 9182-9190
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Photoexcited 2-2PF; shows similar behavior (Figure $40)
with slight shifts compared to VAnBox-4PF, particularly in the
stimulated emission band at 673 nm. This apparent minimum
in 2-2PF; shifts to 696 nm and then back to 677 nm with rate
constants of k; = (4.4 + 0.3 ps) ' and k, = (27 £ 1 ps)7),
respectively. Following these shifts, the features decay together
with k; = (79 + 2 ps)™". Again, no long-lived species were
observed.

The persistent presence of the stimulated emission
throughout the entire lifetime of the excited state indicates
that the emission is a result of radiative recombination (k;) of
the CT state. The distortion of the stimulated emission,
relative to the steady-state emission, is caused by the
overlapping positive ESA features that change the location of
the apparent minimum. These ESA features evolve over time,
first on the account of solvation within the first few ps and then
through structural relaxation of the larger molecule. Solvation
is faster in the cyclophane owing to the larger volume
perturbing the solvation shell less severely; conversely,
structural relaxation is restricted in the cyclophane as it is
more rigid than in 2-2PF; and does not permit slow, large
amplitude nuclear motions. Additionally, the earliest spectral
changes may arise from excited-state symmetry breaking within
the acceptor—donor—acceptor system, where solvent or
nuclear fluctuations force charge localization onto one side
of the molecule.*

The short radiative recombination lifetimes are consistent
with the low quantum yields of emission in these samples. The
radiative and nonradiative decay rate contributions to the total
observed rate constant k, (Table S2) show that the radiative
component is the same (~50 ns) for 2-2PFg and VAnBox:
4PF, in MeCN, an observation which is consistent with their
similar H},, values. Thus, the nonradiative component (<100
ps) dominates, and the ratio of the rate constants k; between 2-
2PFy; and VAnBox-4PF, is the same as the ratio of
photoluminescence quantum yields. The (nonradiative) charge
recombination of the CT state in VAnBox-4PF; is faster than
in 2-2PF¢ because of the lower CT-state energy of the
cyclophane (2.16 vs 2.22 eV, respectively). Electron transfer to
the ground state most likely resides in the Marcus-inverted
region, such that the lower free-energy change results in a
faster rate of CT.>* The short CT lifetime precludes triplet
formation as a result of radical pair intersystem crossing (RP-
ISC) following radiative recombination. Indeed, the lack of
observed triplets may suggest that, in solution, the dihedral
angle between the divinylanthracene donor and the pyridinium
acceptor is small, as a significant angle could induce triplet
formation through spin—orbit charge-transfer ISC* (SOCT-
ISC). The solid-state structure does show such a small angle
for one side of the cyclophane, an observation which could
imply that the excited-state symmetry-breaking immediately
upon excitation favors structures with this geometry.

Live-Cell Imaging. The deep-red and NIR emissions of
the divinylanthracene-based organic tetracationic cyclophane
VAnBox-4Cl were exploited for live-cell imaging of a breast
cancer cell line (MCE-7). The live-cell confocal microscopic
images were taken following incubation with the cyclophane
for 6 (Figure S54) and 24 h (Figures 5 and S53) at different
micromolar concentrations. These confocal microscopic
images display the emission of VAnBox-4Cl in the red channel
(Aey = 600—700 nm), which is clearly observable at a
concentration of 1.0 uM (Figure Sc), very bright at 5.0 and
10.0 uM (Figure Sd,e) and not detected at 0.5 uM (Figure 5b)

9186

Figure 5. Live-cell confocal microscopy images of MCF-7 breast
cancer cells. Cells were incubated for 24 h with VAnBox-4Cl at
different concentrations: (b) 0.5 M, (¢) 1.0 uM, (d) 5.0 uM, (e)
10.0 uM, or (a) without the cyclophane, as a control experiment.
Images of the cells show the transmitted light images (left), the
emission of VAnBox-4Cl (middle, 600—700 nm), and the merged
images (right). Scale bars are 15 ym. The cellular imaging experiment
shows that the deep-red/NIR-emissive cyclophane VAnBox-4Cl is a
suitable probe for bioimaging.

or in the absence (Figure 5a) of the cyclophane. These
experiments show excellent cellular uptake after 6 and 24 h of
incubation without significant differences in the brightness of
VAnBox-4Cl in the cytoplasm. Furthermore, the CBPQT*-
class of cyclophanes exhibit' "> very low toxicity to living cells.
In order to confirm this low cytotoxicity for VAnBox-4Cl,
MCE-7 cells were stained with a LIVE/DEAD Fixable Violet
Dead Cell Stain Kit prior to imaging. This cell viability
experiment shows (Figure S$55) that, even though some
apoptosis occurs under all the treatment conditions, no
significant cell death is observed after treatment with
VAnBox-4Cl, even at a relatively high concentration (10 yM).

The divinylanthracene-containing cyclophane VAnBox-4Cl
is, therefore, an excellent probe for live-cell imaging. On
account of its NIR emission, biocompatibility, and cyclic
structure, we envision that VAnBox-4Cl is a good candidate for

https://doi.org/10.1021/jacs.3c01244
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biomedical applications, such as drug cleliveryg6 and oxygen
transport as endoperoxides for photoactivated therapy.”’

M CONCLUSIONS

In summary, we have designed and synthesized an organic
tetracationic cyclophane by the insertion of a 9,10-divinylan-
thracene unit between the pyridinium rings of cyclobis-
(paraquat-p-phenylene). This cyclophane exhibits unique
optoelectronic properties, including a CT-based photolumi-
nescence in the NIR spectral region. This emissive cyclophane
was applied to live-cell imaging, affording an intense emission
in the red channel, while being nontoxic to the cells. The near-
infrared fluorescence and the biocompatibility properties of
this compound provide us with the incentive to employ this
type of cyclophane in various biological applications ranging
from drug delivery to theranostics.
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