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Distributed Multi-Agent Deep Q-Learning for Load Balancing
User Association in Dense Networks
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Abstract—Distributed learning can lead to effective user asso-
ciation with low overhead, but faces significant challenges in
incorporating load balancing at all base stations (BS) because
of coupling constraints. In this letter, we propose a distributed
multi-agent deep Q-learning model for user association to sat-
isfy the load balancing constraint at every BS. Specifically, we
design a deep Q-network (DQN) with target Q-network and
experience replay buffer at each user as an agent. We also
propose a multi-agent matching policy to control the num-
ber of users connected to each BS for load balancing. The
policy enhances network throughput by implementing a novel
updating rule for the preference list at each BS. The proposed
multi-agent DQN model operates in a fully distributed manner,
where each agent only uses local information and requires no
information exchange between agents. Simulation results demon-
strate that our proposed algorithm outperforms a conventional
distributed load balancing algorithm and approaches a central-
ized scheme performance, while exhibiting fast convergence and
high adaptability to channel changes.

Index Terms—Association, load balancing, deep Q-learning,
multi-agent, DQN, distributed learning.

I. INTRODUCTION

O MEET the ever-increasing demand for high data rates,

future cellular networks will expand to higher frequency
band including millimeter wave and sub-terahertz frequencies.
As the main challenge at higher frequencies is the high path loss
and short coverage, dense networks have emerged as a viable
solution to provide seamless coverage and high throughput. In
such a dense environment, even with beamforming transmission,
interference can be a major factor impeding performance. User
association plays a key role in reducing interference to other
users, maximizing the network throughput, and maintaining
load balancing among all base stations.

Deep reinforcement learning (DRL) has recently attracted
attention as an effective method for user association. A cen-
tralized DRL algorithm can lead to high throughput for user
association [1], but requires global channel state information
which causes significant backhaul overhead, and has high com-
putational complexity due to the large number of base stations.
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To overcome these issues, distributed DRL algorithms have
been considered [2]; however, existing work requires explicit
message passing among the base stations.

Furthermore, in a dense network, base stations are prone
to be overloaded in crowded/congested areas or times.
Overloading a base station can degrade network performance
in terms of throughput and fairness. Avoiding an overload
scenario necessitates load balancing user association. Load
balancing has recently been considered in reinforcement learn-
ing schemes for user association, either explicitly as in [3]
or indirectly via a collision cost as in [4]. Explicit load
balancing constraints introduce dependency among different
agents’ actions and require some form of actions coordination.
For example, each user performs the association action and
receives a reward in a distributed manner, but a central coor-
dinator is needed to make load balancing association decisions
and compute the sum rate from all users [3]. Such a central
coordinator increases the signaling overhead and can limit the
algorithm scalability. Hence, load balancing user association
is important in practice but is challenging to design in a fully
distributed manner without a central coordinator.

In this letter, we propose a distributed multi-agent deep
Q-network (MADQN) for user association under load bal-
ancing constraints. In particular, we design a deep Q-network
(DQN) at each agent and propose a matching game based
multi-agent policy to satisfy load balancing, where each BS
maintains a preference list to make association decisions. To
the best of our knowledge, this is the first attempt to perform
user association using a fully distributed MADQN under load
balancing. The contributions can be summarized as follows.

e A novel distributed MADRL framework is proposed
for load balancing user association in a dense network.
Each UE agent employs a private deep Q-network which
only exploits local information and does not require
information exchange between BSs and/or agents.

e To accomplish fully distributed training and execution,
we propose a matching-game based multi-agent policy
which guarantees load balancing via a mechanism of
users sending association requests and BSs responding
with ACK/NACK signals.

e The algorithm performance is verified via extensive sim-
ulation, showing network throughput approaching that
of the near-optimal centralized worst connection swap-
ping (WCS) algorithm, with fast convergence and high
adaptability to channel changes.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Consider a multi-cell network where B BSs equipped with
N antenna arrays and K single-antenna users are deployed. Let
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B ={1,2,...,B} and K = {1,2,..., K} denote the set of
BSs and users, respectively. Note that for mmWave communi-
cation, hybrid beamforming structure is desirable to reduce the
energy consumption and hardware complexity. In the hybrid
structure, S;, RF chains are implemented, which is less than
the number of transmit antennas. Due to the limitations of RF
chains, each BS can transmit up to S;, data streams simultane-
ously and the maximum number of users served by each BS
is Sp. Thus, the number of associated users at each BS cannot
exceed its number of RF chains.

Let py , € {0,1} be the association variable between BS b
and UE k. The received signal at the k-th user served by the
b-th BS can be written as

Yp = hakwb,kxk + Iintra + Tinter + 7 (1

where Zk’efl(f”b,k’hz kwb,k’xk” IInter =
k' £k ’

H
DoveB D pex Py kB Wor kT hp g €
b'£b

]Intra =

CN*L denote

#
the channel between the b-th BS and the k-th user, and
Wpk € CN*1 is the transmit beamforming vector for the
k-th user at the b-th BS. For beamforming vector, we employ

h
a MRT based beamforming wy, j, = /PMﬁ where Py
is transmit power from the b-th BS to the k-th user.

For mmWave communication, we adopt cluster based
mmWave channel model as follows:

L
1
h=—= ; aa(er, ), )

where L is the number of NLoS path with / = 0 denoting a
LoS path, and «; is a complex gain of the [-th path. In (2),
¢; and v; are the azimuth and elevation angle of departure,
respectively, and a(¢, ) denotes the array response vector for
a uniform planar array (UPA) to perform 3D beamforming.

B. Problem Formulation

Considering the received signal in (1), signal-to-interference
plus noise ratio (SINR) can be expressed as

- [y pwp g |2
’ Zk:’e(}(pb~k/ [hy kW, gr 2+ Zb'EB Zkle(l(pbl,k/ [hys oWy gr 12 + o2’
K £k b’ #b
3)
where o2 is noise power. We stress that the interference is

significantly dependent on user association, and thus it should
be carefully designed to improve system performance. The
user association problem for load balancing in a dense network
to maximize the sum rate can be formulated as

max S S 1ok Rk (4a)
st 2P o <1, VEeEK, (4b)
S ook < Sy Vb ESB, (4c)

ok € {0, 1}, (4d)

where Ry, ;. = loga (144 1). In (4), (4b) represents the unique
association for each user and (4c) denotes the load balancing
constraint. By restricting the number of maximum users at
each BS, it can balance the loads among all BSs in a dense
wireless network [5].
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Fig. 1. Structure of the proposed distributed MADQN system; each user has
its own DQN where one is shown in detail.

Centralized algorithms have been proposed to solve this
problem [3], [5] but requires a central controller, which
increases the communication signal overhead. To address this
issue, we propose a distributed MADQN algorithm in which
each user independently determines an action, that is to decide
the value of py, j, with only locally observed information.

III. MULTI-AGENT DEEP Q-LEARNING FOR
LOAD-BALANCING USER ASSOCIATION

In this section, we examine how user association can be
performed with DRL using only local information in a fully
distributed manner while satisfying the load balancing con-
straint. We first describe a deep Q-network (DQN) model
for each user as an agent and propose a distributed multi-
agent DRL system consisting of multiple agents each running
its own DQN model, and a multi-agent policy that governs
the interaction among the agents and how their actions are
determined (see Fig. 1).

The learning is performed in episodes, where each episode
can correspond to a frame and contains multiple learning time
steps. The channels are assumed to be fixed during an episode
and can change from episode to episode depending on the
coherence time and network dynamics. During each episode,
the DQN is learning and updating every time step, and associ-
ation for each user is performed once per episode. To the best
of our knowledge, this is the first work that uses multi-agent
DRL for user association, while ensuring load balancing in a
fully distributed fashion.

A. DON Design

For multi-agent deep Q-learning, each user acts as an agent
and has an independent DQN without a central coordinator.
In this letter, we consider the DQN architecture proposed
in [6], which contains two key ideas to improve the stabil-
ity and convergence of deep Q-learning. First is the use of an
experience replay buffer to randomly sample from past expe-
rience for the neural network training, and second is the use
of a target network which is updated periodically from the
learning network to reduce the correlation in Q-values. Next,
we introduce the state, action, reward function, output, and a
distributed training procedure for the DQN.
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1) State: Each agent k obtains local information from
environment and defines its state at time 7 as

s,’é = {ACK}t€7 a}i_l, c,igy,tc}, (5)

where ACK! € {0,1} is a feedback from BS, action a}i_l is
the index of the BS which the k-th user requested to associate
at time ¢ — 1, ¢/ = {cék} is a rejected BS list consist-
ing of indices of BSs which the k-th user has applied and
been rejected, and vf = {’yéy i} bes is SINR information from
all BSs. Note that Eq. (3) is only used for analysis but not
for computing the SINR at each user. In practice, the SINR
at each user can be obtained directly by locally measuring
the reference signal received quality (RSRQ) from the refer-
ence signal at each BS without requiring explicit channel state
information or computation [7]. This local RSRQ measure-
ment makes it possible to perform our multi-agent system in
a fully distributed manner. Each agent gets an ACK/NACK
signal determined by the requested BS to satisfy the load
balancing constraint and constructs a rejected BS list based
on the NACK feedback. It is worth noting that the state
only includes local information and there is no information
exchange between agents to obtain the state. Hence, actions
can be taken at each agent in a fully distributed manner using
only local state information.

2) Action: The overall action space for each agent is
defined as A = {1,2,..., B}. Due to constraint (4b), each
user only chooses one BS at each time ¢. That is, initially,
the k-th agent selects an action, a}i € A, and requests asso-
ciation to that BS. To avoid repeatedly choosing a rejected
BS at each agent, we adopt an action masking technique that
masks out invalid actions and selects an action only from a
valid action space [8]. Based on the current state information,
each agent masks a rejected action, for which its Q-value maps
into —oo. The masked out actions are those in the list c,’é in
the k-th agent’s state. The agent will only choose to take an
action from the valid action space, which is updated at each
time step as ﬂ}i = A\ c,tc. This separation between invalid and
valid action spaces helps to significantly speed up the learning
process and convergence.

3) Reward: To evaluate the action of each agent, an instan-
taneous rate is given as immediate reward, rlg, at time .
However, if the request of an agent is rejected from BS, it
would get a negative reward because it violates the load bal-
ancing constraint. As such, a reward for each agent at each
time ¢ can be defined as

. -1, NACK received
"k = logy (1 + ')/atk’k), ACK received ©)

4) Output: DQN is to estimate Q-value for each action and
the size of output layer equals to the number of possible action
space, |A|. Accordingly, DQN for each agent returns Q-value
as Qi (s}, al) for each action given its state information and
each agent takes an action corresponding to a maximum value
from the obtained Q-values.

B. DON Training and Updating

For multi-agent DRL, we employ the DQN architecture
in [6] at each agent to estimate a Q-value, Q(s, a;0), where
0 is the weights of the learning deep neural network (DNN).
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Each agent trains its own DQN model to minimize the loss
function

Lip(0r) = E[(y;?QN — Qx(sf, a;ﬁﬁk))ﬂv (7)

where y]?QN =Rl + 7y max Q(s}iﬂ, a3 0, ) and the expec-
a; EA

tation is taken over a mini batch sampled from the experience
replay buffer. Here, 6, denotes the weights of the target
network, which is updated from the learning Q-network every
C steps where C is a constant. Specifically, each agent uses
stochastic gradient descent (SGD) to update the parameter of
its DQN as follows [9]:

O < 0y +77(ykDQN — Qx(sk, a£§0k))va(5}éa ag;0y), (8)

where 7 is the learning rate.

Furthermore, each agent adds the current experience
(s}é, a]i, r,i, sé"'l) into its experience replay buffer and ran-
domly samples a mini batch from this buffer at each time
step to train its DQN. To learn more efficiency using the
experience replay, we use prioritized experience relay (PER)
which samples a mini batch based on a set of priority [10].
Specifically, theasampling probability of sample i is defined

as P(i) = <& where p; = |0;| + € is the priority of

Zk} P
sample i, §; is a temporal difference (TD) error obtained as
y,? N Qr (s}, al;0y), € is a positive offset, and « € [0, 1]
is a prioritization parameter.

C. Multi-Agent Matching Policy

The main challenge in designing a distributed multi-agent
DRL is to satisfy the load balancing constraint in (4c),
which cannot be controlled at the user side. To address this
problem, we propose a multi-agent policy based on a matching
game [11] to allow each user to independently learn and take
the best action at each time in a distributed manner, while the
load balancing constraint is ensured every time step.

1) Multi-Agent  Matching Policy Per Episode: The
proposed multi-agent policy is based on the matching game
and consists of four steps as follows.

(i) Each agent determines the index of the best BS from its

valid action set based on its own DQN output and sends
a request to that BS together with the SINR-value for
that BS, to be used by the BS to update its preference
list.

(i) Each BS maintains a waiting list equal to its load bal-
ancing quota. After receiving association requests from
users, each BS ranks all requests based on its own crite-
rion such as sum rate (discussed in more details below),
and uses the ranking to decide acceptance or rejection
of requests for ensuring the load balancing constraint. If
a user is accepted, the BS updates and inserts that user
into its waiting list, but no actual BS-UE connection is
made until the episode terminates. Then, each BS sends
a feedback signal to each requested user containing ACK
or NACK information.'

IFor a centralized scheme, global SINR values are sent to a central coor-
dinator, which requires SBK bits where S is the number of quantization bits
for an SINR value. On the other hand, an ACK/NACK signal requires only
1 bit information, and thus significantly reduces the signaling overhead.
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(iii) If a user receives a NACK, that user updates its state

including a rejected BS list, then comes back to Step (i).

(iv) When all users receive an ACK signal from a requested

BS or have applied to all BSs, the episode terminates

and the final waiting list at each BS determines its user
association.

Note that a rejected user does not request the same BS again

because it has a lower preference at that BS than the accepted

users. At the next time step, the rejected user still has a low

preference, thus it would be rejected and need not request again.

This multi-agent policy is based on the fundamentals of
matching theory which enable our proposed algorithm operate
in a distributed manner. Even though the action is taken at each
agent independently, the feedback signal from each BS ensures
load balancing at that BS. To determine the acceptance of
requesting users, each BS ranks these users and continuously
updates a preference list as follows.

2) Update of BS Preference List: We propose an updating
rule for the preference list at each BS which has a strong
impact on performance. Each BS maintains its own preference
list for all users in episode p at time step ¢ as {vk’t}. These

values are first initialized as v,?’o = 0, Vk. Each BS then
follows these steps to update its preference list in episode p.
(1) When association requests arrive at time step r + 1
together with their SINR-values, the BS updates the

ranking value of requested user k as
1 it 1 t
P = ol logy (149074 —loga(1+477%)- (9)

The ranking value for a non-requested user is retained
]z;,t-&-l _ Up,t.

(ii) After updating the ranking values in each time step, the
BS sorts these values for all users in descending order
to build its preference list. The BS then sends an ACK
signal to the top S, users in its updated preference list.
After the episode is terminated, each user estimates its
SINR value from its associated/connected BS and sends
this information to the BS. Then, each BS computes a sum
rate from its connected users as vgb =D hek p]bj’ka’k

(iii)

where plz ;; 1s the association result of episode p. The BS
b then upaates its initial ranking value in the next episode
for user k as vP 0 = max(v?,, P 7), where v 7T is
k s U ) k
the latest updated ranking value for user k in episode p.
This update helps maintain the highest ranking value for
each user over episodes.

The metric used for ranking the BS’s preference is very
important. Instead of using the sum rate as above, the SINR-
value or Q-value sent by each agent can be mapped directly
into the ranking value, v]f ’t, to simplify the building and
updating of a BS preference list. Furthermore, if we build a
preference list by ranking the minimum rate of requested users
instead of the sum rates, it can improve fairness performance
by maximizing the minimum user rate. The construction and
update of the preference list at the BS have a strong impact
on the end system performance. We will show the effects of
BS preference list in Section I'V.

The overall distributed multi-agent DQN
described in Algorithm 1.

system is
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Algorithm 1 Distributed MADQN for Load Balancing User
Association

1: Initialize the replay buffer and the weights of DQN.

2: Initialize the weights of target network with 8, < 6.

3: for episode = 1,2,...,1 do

4: Each agent observes its own initial state, s,%.
5 for time step = 1,2,..., T do
6: Each agent chooses a BS index a,i at state s}é

using an e-greedy policy based on its DQN output
and send the association request to that BS.

7: Each BS updates its preference list, and responds
based on its load balancing constraint.

8: Each agent adds the experience (s}é, a,’é7 i, s}é"—l)
into its replay buffer.

9: Each agent samples a mini batch from its replay

buffer and computes the loss function (7), then
updates the weights of its DQN as in (8).

10: if ACK{T1=1V k or no available BS quota then
11: breal
12: end if

13: end for
14: Every C steps 0, < 0,
15: end for

IV. SIMULATION RESULTS

In this section, we simulate the performance of distributed
MADQN for load balancing user association. In our simulations,
we consider 5 BSs, each with a N = 100 element antenna
array, located at (0, 0), (125, 125), (125, —125), (—125, —125),
and (—125, 125), in a rectangular area of 500 x 500m?2, and
each BS has a load limit of S, = 4. The carrier frequency and
bandwidth are 28GHz and 400MHz, respectively, and the path
loss model for 28GHz in [12] is adopted. The transmit power
for each BS is 30dBm. The DQN structure for each agent is
constructed with three hidden layers with (64, 32, 32) hidden
nodes, respectively. Rectified linear unit (ReLU) activation
function is applied in each hidden layer. We also use a learning
rate of 7 = 107> and a discount factor of v = 0.9. In each
time step, the weights of DQN are updated using an Adam
optimizer with a mini batch of size 64. Furthermore, we use
the following benchmarks for comparison.

o Worst connection swapping (WCS) [5]: Successively
swapping the worst BS-UE connection with another one to
provide the UE a stronger link and improve the sum rate.

o Distributed deferred acceptance (DA) game [13]: A non-
learning scheme based on the matching game where
preference lists are built based on users’ instantaneous rate.

e Max SINR: Association by selecting at each user the
index of BS providing the maximum SINR.

Fig. 2 represents the performance of the proposed algorithm
in both a static and a dynamic network scenario. In addition,
Jakes model is adopted for the dynamic mobile network using
a channel correlation between consecutive episodes as p = 0.9
(V = 4km/h and Ts = 1ms). As seen in Fig. 2, our proposed
MADQN algorithms converge to a local optimum for the static
network even as each agent trains its own DQN independently.
Furthermore, the proposed algorithms show a similar and sta-
ble convergence behavior in the dynamic network even though
the channels change from one episode to the next.

Fig. 2 also show that the proposed MADQN scheme with
sum-rate based preference list significantly enhances the
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Fig. 2. Spectral efficiency obtained by distributed MADQN for load balanc-
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changed in each episode with a time correlation factor of 0.9.
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association to converge in each episode (K = 20).

network spectral efficiency, outperforms other schemes with
preference list built on the SINR or Q-values as well as the
distributed DA game, while reaching closely the performance
of centralized WCS scheme. Thus, the choice of preference
list strongly affects network performance. This result verifies
the effectiveness of the proposed MADQN and multi-agent
matching policy with sum rate based preference list.

Fig. 3 shows the required time steps in each episode for
load balancing user association to converge. Note that this
time step convergence indicates association delay. We con-
firm that the required number of time steps for convergence
is monotonically reduced during the training procedure. The
SINR-value and Q-value based preference list have the low-
est association delay. The proposed MADQN with sum rate
based preference list achieves a comparable association delay
with the distributed DA game. This result validates that the
proposed MADQN is fast and efficient, striking a good balance
between the performance and delay.

Fig. 4 compares the spectral efficiency performance with
different number of users, where K = 20 is critical load and
K > 20 represents overloaded networks. Under the same BS
load limits, the spectral efficiency increases as the number of
users increases since the system can exploit multi-user diversity.
It should be emphasized that our proposed algorithm enhances
the performance even in overload scenarios. These observation
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Fig. 4. Sum rate performance comparison for critical load and overload
scenarios versus the number of users K, where B = 5 and S, = 4.

confirms that the proposed distributed MADQN provides
comparable performance with the centralized algorithm even
though it performs in a fully distributed manner.

V. CONCLUSION

We proposed a distributed multi-agent DQN for load bal-
ancing user association in dense networks. To achieve fully
distributed training and execution, we introduced a matching
game based multi-agent policy that enhances the performance
of the distributed algorithm by utilizing a sum rate based
preference list at the BSs. Numerical results showed that the
proposed algorithm provides comparable performance with a
centralized algorithm, while outperforming conventional dis-
tributed algorithms. Furthermore, our algorithm exhibits fast
convergence and high adaptivity to channel changes.
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